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A B S T R A C T

Manure applications in agricultural soils are a major driver of antibiotic resistance gene (ARG) dissemination, yet 
long-term effects of composted manure applications under tropical real field conditions remain unclear. This 
study assessed how successive composted manure applications influence soil physicochemical attributes, bac
teriome and resistome profiles in the Brazilian Cerrado, including one site with naturally high heavy metal 
content. Across all sites, multidrug resistance genes were most abundant, followed by macrolide-lincosamide- 
streptogramin (MLS), tetracycline, β-lactam and glycopeptides resistance, aligning with predominance of Acti
nomycetota and Pseudomonadota as key ARG hosts. Manure increased soil pH and available phosphorus (P), 
with pH significantly shaping bacterial communities and pH and P the resistome in uncontaminated sites (2 and 
3). However, in the metal-rich site (1), Cu was the dominant driver. Manure increased ARG richness and changed 
resistome structure but did not affect clinically relevant genes or resistome diversity. Metal resistance genes 
(MRGs), particularly for Cu and Zn, strongly influenced resistome dynamics, highlighting co-selection. Integrons 
integrase genes (intl) abundance increased in metal-depleted but not in metal-rich soils. While composting ap
pears to mitigate ARG spread, particularly for clinically relevant genes, the high antibiotic use in livestock, large 
manure volumes, and potential for ARG persistence in tropical soils highlight the need for further research on 
manure treatment strategies and ARG fate in these environments.

Environmental Implication.
Our study highlights the environmental risks of antibiotic resistance gene (ARG) dissemination in tropical 

agricultural soils, emphasizing the role of manure application and heavy metal contamination in shaping soil 
resistome. While composted manure increased bacterial diversity and ARG richness, it did not significantly 
impact clinically relevant genes and resistome diversity, suggesting that composting may help mitigate ARG 
spread but does not eliminate it. Metals were the dominant drivers of ARG selection in the contaminated site, 
underscoring the role of co-selection mechanisms in maintaining resistance. However, manure applications 
increased integrons abundance, raising concerns about horizontal gene transfer and potential ARG proliferation 
into pathogens. These findings stress the urgent need for improved manure management policies in Brazil, where 
high antibiotic use in livestock and large manure volumes pose significant environmental and public health risks. 
Developing sustainable manure treatment strategies and monitoring ARG persistence are essential to limit 
antibiotic resistance proliferation in tropical agricultural ecosystems.
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1. Introduction

Antibiotics are widely used in veterinary medicine to prevent and 
treat diseases and promote animal growth (Wu et al., 2023). Animal 
husbandry consumes approximately 70 % of global antibiotics (Singh & 
Kim, 2025), significantly contributing to proliferation of antibiotic 
resistance genes (ARGs) and posing a major global health threat (Heuer 
et al., 2011; Wang et al., 2020a; Wu et al., 2023). Manure is commonly 
applied to agricultural soils due to its high nutrient and organic matter 
content (Rayne & Aula, 2020). However, following application, ARG 
abundance and diversity in soils often increase before gradually 
declining over time (Peng et al., 2017; Muhammad et al., 2020; Liu 
et al., 2021; Wang et al., 2021a). The type of manure also influences 
ARG levels, with swine manure generally leading to higher abundances 
than cattle, chicken, or mixed manure (Wu et al., 2023).

Successive manure applications can either increase (Peng et al., 
2015; Liu et al., 2021) or have no effect (Ghosh & LaPara, 2007; Tang 
et al., 2015) on ARG abundance, depending on soil conditions. Manure 
amendments also alter soil resistome composition by modifying physi
cochemical properties (Xie et al., 2018; Guo et al., 2018; Pu et al., 2019; 
Deng et al., 2020; Wang et al., 2020b). A meta-analysis revealed that 
antibiotic-contaminated manure significantly increases total ARG and 
mobile genetic element (MGE) abundances by 591 % and 351 %, 
respectively, compared to unamended soils (P < 0.05). The greatest 
increase was observed for sulfonamide resistance genes (1121 %), fol
lowed by aminoglycoside (852 %) and tetracycline (763 %) resistance 
genes (Zhang et al., 2022). Long-term manure application can lead to 
linear or exponential ARG accumulation and shifts in associated bacte
rial communities. Although most ARG levels decline within 11 years 
after manure discontinuation, some, particularly tetracycline and mac
rolide ARGs, persist near their previous levels (Zhang et al., 2023a).

ARG contamination in agricultural soils is a global concern, but its 
impact should be particularly relevant in Brazil, a major agricultural 
producer and third-largest consumer of veterinary antibiotics (9 % of 
global consumption), behind China and the USA. By 2030, Brazilian 
antibiotic use is projected to double compared to 2010 levels (Van 
Boeckel et al., 2015). The Cerrado biome, covering nearly 2 million km2, 
is the world’s most biodiverse savanna (Mizobe, 2019). Approximately 
40 % of its land is used for agriculture, with 69 % allocated to pasture 
and 31 % to intensive cultivation, primarily soybean-corn rotation. 
Livestock production is expanding in this region, and manure is largely 
applied to grain-producing areas. Due to intense weathering, Cerrado 
soils are typically acidic, nutrient-poor, and phosphorus-deficient, 
requiring intensive chemical management, including limestone and 
phosphate applications (Brito et al., 2020). Despite Brazil’s prominence 
in global agriculture, data on ARGs in its agricultural soils are limited 
(Bastos et al., 2018; Ferreira et al., 2024), with no studies specifically 
addressing the Cerrado biome.

Cerrado soils may naturally contain high heavy metal concentrations 
or accumulate them through anthropogenic activities, mainly from 
intensive agriculture and phosphate fertilizers (Cabral et al., 2023). 
Heavy metals are persistent in soils and act as long-term selective 
pressures on microbial community (Ji et al., 2012), often exerting a 
stronger influence on ARG dynamics than antibiotics themselves 
(Mazhar et al., 2021). Anthropogenic inputs, such as repeated manure 
application, increase heavy metal contents in agricultural soils (Peng 
et al., 2017; Guo et al., 2025), promoting ARG proliferation through co- 
selection with metal resistance genes (MRGs) (Maurya et al., 2020; Sun 
et al., 2021). ARGs and MRGs often co-occur on mobile genetic elements 
(MGEs), enabling metal-driven ARG enrichment (Guo et al., 2018). Co- 
selection also occurs via cross-resistance, in which a single resistance 
mechanism in a microorganism, like efflux pumps, provides protection 
against multiple types of toxic agents (Gillieatt & Coleman, 2024; Zhang 
et al., 2021a), or via co-regulation, in which different resistance genes, 
such as ARGs and MRGs, are controlled by the same regulatory elements; 
for example, a shared promoter or transcription factor (Vats et al., 

2022).
Heavy metals’ role in modulating ARGs has been extensively inves

tigated in recent years. Microcosm studies have shown that metals such 
as Cd, Cu, and Zn influence ARG dynamics (Tongyi et al., 2020; Wang 
et al., 2021b; Li et al., 2022a; Fu et al., 2023), with effects observed 
across diverse terrestrial environments. Co-selection between ARGs and 
metals has been reported in anthropogenically impacted areas, 
including urban soils (Knapp et al., 2017; Zhao et al., 2019), mining sites 
(Sinegani and Younessi, 2017; Chen et al., 2019a; Zhong et al., 2021), 
and landfills (Li et al., 2024). Agricultural systems have also been 
studied, such as paddy fields (Zheng et al., 2023; Zhang et al., 2024) and 
soils amended with organic fertilizers like sewage sludge (Urra et al., 
2019) and animal manure (Guo et al., 2018; Dong et al., 2022). How
ever, no studies have assessed the effects of composted manure in 
agricultural soils already burdened with natural heavy metal 
contamination.

Composting is an effective strategy to mitigate the risks associated 
with fresh manure application, reducing ARG spread, promoting heavy 
metal complexation, and lowering pathogen loads (Peng et al., 2018; 
Awasthi et al., 2019; Manyi-Loh et al., 2016; Xie et al., 2016; Zheng 
et al., 2022). Its thermophilic phase can decrease ARG transfer to soil by 
2–96 % and alter resistome composition (Deng et al., 2020; Xu et al., 
2020a). Compared to mineral fertilizers or composts, fresh manure 
amendments generally increase ARG abundance across different soil 
types (Qian et al., 2018a; Yang et al., 2020; Li et al., 2022b; Chen et al., 
2018). However, composting does not fully eliminate ARGs (Selvam 
et al., 2012; Ray et al., 2017), and manure-derived ARGs have a greater 
impact on soil resistome than those from sewage sludge (Wu et al., 
2023). Some ARGs, including beta-lactam, MLSB, multidrug, and van
comycin, may even increase in response to composted manure appli
cations (Zhang et al., 2022). Despite its benefits, composted manure 
remains a significant reservoir of ARGs (Wang et al., 2020a), and its 
long-term use in agriculture may still contribute to ARG persistence and 
propagation. Further research is needed to assess these risks under real 
field conditions, particularly in soils contaminated with heavy metals.

This study evaluated the impact of successive applications of com
posted animal manures on soil bacterial community and resistome 
profiles, focusing on diversity, resistome composition, and their corre
lations with soil attributes. It also assessed the effects of manure on 
clinically relevant ARGs, metal resistance genes, and integrons, which 
play a key role in horizontal gene transfer (HGT) (Li et al., 2017; Verraes 
et al., 2013; Ali et al., 2020). Integrons serve as markers of anthropo
genic activity in natural environments and are directly associated with 
ARG transmission risks (Gillings, 2014; Hu et al., 2017; Li et al., 2017). 
To achieve these objectives, soil samples were collected from three 
agricultural sites in the Brazilian Cerrado biome, including one with 
naturally high metal content. The study aimed to address two key 
questions: a) How does successive composted manure application in
fluence resistome and bacterial community of highly weathered tropical 
soils? and b) How do high heavy metal contents and other soil physi
cochemical properties affect antibiotic resistome and bacterial 
community?

2. Material and methods

2.1. Soil samples collection

Soil samples were collected at the municipalities of Rio Verde-Goiás 
State from two places (sites 1 and 2) and of Claraval-Minas Gerais State 
(site 3), in which distinct thermophilic composted manures have been 
applied for at least 4 years (Table 1). At site 2, the pig manure was just 
“stockpiled” for at least 70 days. All sites were in farmed rural properties 
and soil samples were taken from adjacent agricultural fields (called 
parallel soils), either with or without manure application. Compost is 
applied annually in all treatments. Sampling was performed in 
September-2021, prior compost application and crop seedings in sites 1 
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and 2. Site 3 was under a perennial coffee plantation. Each sample was 
composed of 10 subsamples randomly collected from top-soil layer 
(0–20 cm), in triplicates, which were homogenized, placed into plastic 
bags, and ice-transported to the laboratory. Within 48 h, soil aliquots 
were taken, placed into microtubes for DNA extraction, and freezer 
stored at − 20 ◦C. The remaining soil samples were refrigerated (4 ◦C) 
until analysis of their physicochemical attributes.

2.2. Physicochemical attributes of the soils

Soil physicochemical attributes were determined according to Van 
Raij et al. (2001). In summary, soil-pH was measured in 0.01 mol L-1 

CaCl2 solution; available P and K were extracted by ionic exchange resin 
(K was quantified by flame photometry and P by colorimetry); soil 
texture was determined with Bouyoucos hydrometer using 1.0 mol L-1 

NaOH as dispersant; and total-N was determined by the Kjeldahl 
method. OM was extracted by sodium dichromate and quantified by 
colorimetry. Total heavy metal (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) 
contents were extracted following 3050-B method (USEPA, 1996) and 
quantified using inductively coupled plasma (Optical Emission Spec
trometer iCAP 6300, Thermo Scientific).

2.3. DNA extraction

Total DNA was extracted using DNeasy Powerlyzer Power Soil Kit 
(Quiagen, Hilden, Germany), following manufacturer’s specifications. 
Extracted-DNA quality was verified in a 1.0 % agarose gel and quantified 
with BioDrop uLite+ (Biochrom, United Kingdom). Metagenome 
sequencing was performed for 150 bp paired-end sequences on the 
Illumina NovaSeq 6000 platform by Novogene (Novogene Advancing 
Genomic, California, United States).

2.4. Metagenome analysis

Samples were filtered to discard sequences with Q-value < 20, using 
Trimmomatic v0.40. The paired-end sequences (R1 and R2) were joined 
by PEARv0.8. R1 sequences that did not merge were included along with 
merged sequences. Again, sequences with Q-value < 20 and less than 50 
nucleotides were excluded using Trimmomatic v0.40. Quality control of 
the sequences was confirmed using FastQC v0.11.9. Then, 22 million 
randomized sequences per sample were selected to normalize the data. 
ARGs’ survey was performed with DeepArg, SS mode, adopting default 
e-value ≤ 10-10 and probability ≥ 80 % (Arango-Argoty et al., 2018). 
ARG diversity was determined based on the number of identified ARG 
subtypes. Metal resistance genes (MRGs) were identified using the 
BacMet database via DIAMOND v2.0.14 (Buchfink and Xie, 2015), with 
an e-value < 10-5, alignment identity ≥ 90 %, and a minimum alignment 
length of 25 amino acids. Integrons marker (class IntI genes) were 
identified using Integrall database (Moura et al., 2009), through DIA
MOND v2.0.14, also applying an e-value < 10-5, alignment identity ≥
80 %, and a minimum of 25 amino acids. Taxonomic classification was 
performed using MG-RAST v.4 pipeline. Genus-level profiles were ob
tained using the RefSeq database, with an e-value < 10-5, alignment 

identity ≥ 60 %, and minimum alignment length of 15 bp. Sequences 
were assembled using MEGAHIT v1.1.2, based on the de Bruijn graph 
approach. Contigs ≥ 500 bp were selected for the final assembly. To 
construct a non-redundant gene set, all gene sequences were clustered 
using CD-HIT v4.6.1 (90 % identity and 90 % coverage). ARG identifi
cation in contigs was performed using DeepARG (LS mode), applying an 
e-value ≤ 10-5 and a probability score ≥ 80 % (Arango-Argoty et al., 
2018). Taxonomic classification of ARG-containing contigs was con
ducted using Kraken2 (Wood et al., 2019).

2.5. Statistical analysis

All data were tested for normality. Differences in soil physicochem
ical attributes were assessed using ANOVA followed by post-hoc Tukey- 
HSD tests. Venn diagrams were generated, considering genes present in 
at least two replicates. ARG abundance was evaluated using Welch’s t- 
tests, with p-values corrected by the Bonferroni method. Shannon di
versity indices for the resistome and bacterial communities in parallel 
soils (with and without composted manure) were calculated and 
compared via Welch’s t-tests, also applying Bonferroni correction. 
Heatmaps of the 25 most abundant ARGs were generated using z-scores. 
The 25 most clinically relevant genes were selected based on literature 
(Martineau et al., 2000; Stoll et al., 2012; Devarajan et al., 2015; Qian 
et al., 2021). Taxaplots illustrating the main ARG-hosting phyla were 
created, while a dendrogram based on the mean abundance of ARG hosts 
at the class level, was constructed. Heatmaps of the 40 most abundant 
ARG-host genera within representative ARG classes were generated 
using z-scores. The effects of composted manure applications on those 
ARG abundances were analyzed using Welch’s t-tests, with p-values 
corrected by the Benjamini-Hochberg method in STAMP (v2.1.3). ARG 
composition in parallel soils was compared using Chi-square tests.

Redundancy analysis (RDA) was used to assess clustering of resis
tome and bacterial community. Collinear soil physicochemical attri
butes were removed. Monte Carlo tests with 999 random permutations 
were conducted to determine the significance of soil attributes on the 
resistome and bacterial community. Procrustes analysis, using 999 
permutations, evaluated relationships between the resistome profile and 
bacterial community structure. Mantel tests were used to correlate ARGs 
with MRGs. Statistical analyses, including ANOVA, Welch’s t-tests, and 
Chi-square tests, were performed in R (v4.1.2). Shannon index, RDA, 
dendrogram, Mantel, and Procrustes analyses were conducted using the 
vegan package (v2.6–4). Heatmaps and Venn diagrams were generated 
using gplots (v3.2.0) and the taxaplot was generated with ggplot2 
(3.5.1).

3. Results

3.1. Physicochemical attributes of the soils

Adjacent manured and unmanured soils from the same site exhibited 
similar textural class, reinforcing their parallelism, and all soils were 
acidic (pH ≤ 6.0) (Table 2). Among unmanured soils, S1 had higher pH, 
organic matter (OM), and Co, Cr, and Ni contents compared to the others 
(Table 2). At this site, Cr and Hg concentrations exceeded intervention 
values (IV) for potential human health risks, while Cu and Ni levels 
surpassed prevention values (PV) (CETESB, 2021). Manure applications 
did not consistently increase soils’ organic matter or heavy metal con
tents but raised soil pH and available phosphorus (P) levels, regardless of 
manure type (Table 2).

3.2. Abundance and richness of ARGs in the soils

Metagenomic sequencing of the samples yielded 
22135591–43907946 brute paired-end sequences; 8646296–21233087 
merged sequences; and 78326–380642 contigs with at least 500 bp 
(Table S1). A total of 594 distinct ARGs were identified (Fig. 1A). 

Table 1 
Sample codes, sampling locations, compost compositions, and application 
periods.

Sample 
codes

Sampling 
locations

Compost compositions Application 
periods

S1 Rio Verde Control −

S1-Mc Rio Verde Poultry litter + cattle manure 
compost

4 years

S2 Rio Verde Control −

S2-M Rio Verde Stockpiled pig manure 10 years
S3 Claraval Control −

S3-Mc Claraval Poultry litter compost 6 years
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Multidrug resistance genes were the most abundant (135 types), fol
lowed by β-lactam (101), macrolide-lincosamide-streptogramin (MLS) 
(80), aminoglycoside (70), tetracycline (48), glycopeptide (11), rifam
picin (10), nucleoside (4), and bacitracin resistance genes (3) (Fig. 1A, 
Table S2).

The overall abundance of ARGs did not significantly differ between 
paired soils at each site (S1 vs. S1-Mc; S2 vs. S2-M; S3 vs. S3-Mc) (Tukey- 
HSD, p > 0.05). Multidrug resistance genes were the most abundant 
(49.5 %), followed by those conferring resistance to MLS (11.9 %), 
tetracyclines (6.8 %), glycopeptides (4.9 %), rifamycin (3.7 %), baci
tracin (3.4 %), fluoroquinolones (2.4 %), β-lactams (2.3 %), amino
glycosides (1.9 %), nucleosides (1.8 %) and other categories (11.3 %) 
(Fig. 1B). No clear differences in ARG class abundances were observed 
among the different soils (Fig. S1).

Gene richness did not correlate with abundance across ARG classes. 
For instance, β-lactam resistance genes were highly diverse (101 types, 
Fig. 1A) but accounted for only 2.3 % of total ARG abundance in soils 
(Fig. 1B). Similarly, aminoglycoside resistance genes (70 types) repre
sented just 1.9 % of total abundance.

3.3. Resistome composition modulation

Soils receiving composted manure exhibited a greater diversity of 
ARGs, particularly at site 3 (Fig. S2). At site 1, 370 genes were shared 
between parallel soils, with 36 unique to S1 and 39 to S1-Mc (Chi-square 
test, p = 0.73) (Fig. S2A). At site 2, 382 genes were shared, while 28 and 
42 were unique to S2 and S2-M, respectively (Chi-square test, p = 0.09) 
(Fig. S2B). At site 3, 373 genes were shared, but S3-Mc exhibited 
significantly more unique ARGs (56) compared to S3 (26) (Chi-square 
test, p < 0.001) (Fig. S2C).

Composted manure application did not affect the most frequent 
genes in resistome at site 1 but altered the abundance of nine genes at 
site 2 and 16 genes at site 3 (Fig. 2A). However, no clear pattern 
emerged, as some genes increased (e.g., acrB and bacA), while others 
decreased (e.g., muxB, Pur Res Prot, and vanR). At site 3, the clinically 
relevant genes aac3 and msrA increased following manure applications 
(Fig. 2B).

3.4. Bacterial community, resistome diversities, and soil physicochemical 
attributes

Soil bacterial diversity varied significantly across all sites (Welch’s t- 

test, p < 0.05), with higher diversity in manured soils, particularly at 
sites 2 and 3 (Fig. S3A). The smaller difference at site 1 suggests greater 
convergence in bacterial community’ diversity. However, resistome di
versity did not significantly differ after composted manure applications 
at any site (Welch’s t-test, p > 0.05) (Fig. S3B).

Redundancy analysis (RDA) showed that samples clustered based on 
soil attributes, with the first two axes explaining ~96 % of bacterial 
community’ variation (adjusted R2 = 0.68) (Fig. 3A). Despite differences 
in location, compost sources, and application periods, manured soils 
from sites 2 and 3 (S2-M and S3-Mc) had similar bacterial community 
compared to their unmanured counterparts (S2 and S3), likely due to 
increased soil pH. In contrast, bacterial community at site 1 were largely 
unaffected by manure applications and were influenced by high heavy 
metal concentrations, particularly Cu and Ni (Fig. 3A). For the resis
tome, the first two axes explained ~79 % of the variation (adjusted R2 =

0.37) (Fig. 3B). Again, pH and available P were key factors shaping the 
resistome at sites 2 and 3, while Cu was the primary driver at site 1.

3.5. Correlations between MRGs and ARGs

Metal resistance genes (MRGs) for Cr, Cu, Ni, and Zn were positively 
correlated with the most abundant ARG classes in the soils (Table 3). Cu 
resistance genes showed the highest associations, correlating with seven 
ARG classes, followed by Zn (six), Cr (four), and Ni (two). In contrast, Co 
and Pb resistance genes exhibited no correlation with ARG classes.

3.6. Interactions between bacterial community and resistome

A significant positive correlation was observed between bacterial 
community structure and resistome within each site (Procrustes, M2 =

0.45, r = 0.68, p < 0.0001), as well as between resistome and bacterial 
community structure (Mantel, r = 0.77, p < 0.0001) (Fig. 4). Un
amended soil resistome from sites 2 and 3 (S2 and S3) showed lower 
correlations with bacterial community structure (Fig. 4). In contrast, 
their respective composted manured soils (S2-M and S3-Mc) exhibited 
stronger correlations between their resistome and bacterial commu
nities. At site 1, both unamended and manured soils (S1 and S1-Mc) 
showed strong correlations between bacterial community structure 
and resistome, likely due to the high heavy metal contents that dimin
ished the impact of manure application.

Table 2 
Physicochemical attributes of parallel soils without (S1, S2, and S3) and with (S1-Mc, S2-M, and S3-Mc) successive composted manure applications.

Soil attributes Soil treatments

Site 1 Site 2 Site 3

S1 S1-Mc S2 S2-M S3 S3-Mc

Clay/ g kg− 1 ​ 355 ± 8.5b 388.8 ± 8.8ab ​ 292 ± 9.1c 311 ± 0.7c ​ 421 ± 9.7a 305 ± 0.6c
Silt/ g kg− 1 ​ 158.3 ± 8.9b 192.7 ± 8.3a ​ 58 ± 5.1c 55.3 ± 1.2c ​ 170 ± 9ab 81.3 ± 3.8c
Sand/ g kg− 1 ​ 486.3 ± 0.9d 418.7 ± 1.9e ​ 650 ± 4a 633.3 ± 1.3b ​ 409 ± 1.2e 614 ± 3.2c
pH ​ 5.7 ± 0.0003c 6.0 ± 0.01a ​ 5.1 ± 0.01d 5.8 ± 0.02b ​ 4.3 ± 0.02e 6.0 ± 0.01a
OM/ g kg− 1 ​ 42.3 ± 1.3b 50.9 ± 0.6a ​ 28.5 ± 1.2c 27.6 ± 1.5c ​ 33.8 ± 0.4d 35.0 ± 0.3d
P/ mg kg− 1 ​ 34.8 ± 0.6c 56.8 ± 1.1b ​ 10.5 ± 1.9d 68.9 ± 2.8a ​ 57.9 ± 0.1b 76.0 ± 2.3a
K/ mg kg− 1 ​ 1.3 ± 0.06c 1.4 ± 0.02c ​ 1.4 ± 0.09c 1.6 ± 0.03bc ​ 1.8 ± 0.01ab 1.9 ± 0.04a
N/ mg kg− 1 ​ 1684 ± 198a 2207 ± 327a ​ 1057 ± 402a 889 ± 91a ​ 1106 ± 315a 1677 ± 318a
Co/ mg kg− 1 ​ 22.5 ± 1b 29.9 ± 0.3a ​ 3.5 ± 0.1e 4.9 ± 1d ​ 10.6 ± 0.3c 6.2 ± 0.3d
Cr/ mg kg− 1 ​ 515.9 ± 4.8a 447.9 ± 3.8b ​ 100.1 ± 2.6c 94 ± 4.1c ​ 45.4 ± 2.5d 40.2 ± 1.6d
Cu/ mg kg− 1 ​ 72.3 ± 1.1b 99.6 ± 1.1a ​ 15.6 ± 0.5f 24.1 ± 0.7e ​ 70.3 ± 0.6b 46.4 ± 0.8d
Ni/ mg kg− 1 ​ 65.4 ± 1.6a 50.5 ± 0.3b ​ 8.7 ± 0.2d 9.4 ± 0.5d ​ 19.0 ± 0.7c 12.3 ± 0.5d
Pb/ mg kg− 1 ​ 7.9 ± 1.5bc 8.6 ± 1.3bc ​ 11.4 ± 1.2ab 11.7 ± 0.6a ​ 5.7 ± 0.6c 6.4 ± 0.9bc
Zn/ mg kg− 1 ​ 46.2 ± 0.6d 70.8 ± 0.6a ​ 13.7 ± 0.4e 67 ± 0.5ab ​ 62.1 ± 1.2b 51.9 ± 2.0c
As/ mg kg− 1 ​ < 2 < 2 ​ < 2 < 2 ​ < 2 < 2
Cd/ mg kg− 1 ​ < 2 < 2 ​ < 2 < 2 ​ < 2 < 2
Hg/ mg kg− 1 ​ 2.88 ± 0.36 2.17 ± 0.01 ​ < 2 < 2 ​ 8.81 ± 1.93 < 2

Values are expressed as mean ± standard error (n = 3).
Different letters indicate contrasting mean values by the Tukey-HSD, p ≤ 0.05.
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3.7. Co-occurrence for microbial taxa and ARGs

At phylum level, ARG hosts were predominantly Actinomycetota 
(54.9–75.4 %) and Pseudomonadota (22.8–43.3 %), jointly accounting 
for over 83 % of ARG host abundance across all treatments. At class 
level, Actinomycetes and Alphaproteobacteria were the most dominant 
groups (Fig. 5A). ARG host profiles clustered according to soil physi
cochemical attributes, as shown in the dendrogram (Fig. 5B). Similar 
clustering was observed in parallel soils from site 1 (S1 and S1-Mc), 
characterized by high heavy metal contents, and in manured soils 
from sites 2 and 3 (S2-M and S3-Mc), which exhibited higher pH. The 
multidrug resistance class encompassed the highest number of host 
genera (28), followed by aminoglycoside and glycopeptide resistance 
genes (23 each) (Fig. 5C), whereas beta-lactam and fluoroquinolone 
resistance genes were hosted by only four genera. Notably, Streptomyces 
and Bradyrhizobium were the most diverse ARG hosts, carrying 36 and 
28 distinct ARGs, respectively (Table S3).

3.8. Integrons abundance

Integrons were quantified by identifying genes from integrase genes 
(intl). In heavy metal-rich soils (site 1), integrase abundance did not 
significantly differ between soils with or without compost application 
(Fig. 6). In contrast, at sites 2 and 3, compost applications led to an 
increase in intl abundance.

4. Discussion

Successive manure applications influence soil microbial community, 
often enhancing bacterial diversity through physicochemical modifica
tions, particularly in pH and nutrient availability (Liu et al., 2012; Sun 
et al., 2015; Zhang et al., 2018; Neher et al., 2020; Xu et al., 2020b; Li 
et al., 2021a; Schlatter et al., 2022; Zhang et al., 2023a). In this study, 
manured soils exhibited higher pH and available P. The pH is a crucial 
factor shaping microbial community, especially in highly weathered 
Cerrado soils with high acidity (Liu et al., 2012; Tan et al., 2013; Alovisi 
et al., 2020).

At site 1, where heavy metal contamination was high, Cu and Ni 

Fig. 1. Richness (A, refers to the number of genes present within each of the most abundant classes) and abundance (B, refers to percentage of ARGs for a specific 
class of antibiotic in relation to their total).
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strongly influenced bacterial community structures. Heavy metals, 
particularly Cu and Ni (Li et al., 2014; Li et al., 2015; Song et al., 2018), 
are known to shape microbial community (Zhang et al., 2016; Deng 
et al., 2020; Li et al., 2021b) and can promote resistance gene persis
tence through selection pressure (Griffiths & Philippot, 2013). Despite 

this, bacterial diversity remained high, likely due to microbial adapta
tion mechanisms, including genetic resistance via mutations and hori
zontal gene transfer (Margesin et al., 2011; Li et al., 2015).

ARG profiles were dominated by multidrug resistance genes, fol
lowed by MLS and tetracycline resistance genes, a pattern observed 

Fig. 2. Heatmaps displaying the 25 most abundant ARGs in soils (A) and the 25 most clinically relevant ARGs (B). Asterisks next to treatment pairs denote significant 
differences between parallel fields, as determined by the Welch’s t-test (p ≤ 0.05).

Fig. 3. Redundancy analysis (RDA) of correlations between key soil physicochemical attributes and bacterial community (A) or the resistome (B) in parallel soils 
with and without composted manure application. Significance of environmental variables were evaluated using Monte Carlo permutation tests (p ≤ 0.05).
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globally in diverse environments, including the Alaskan tundra and 
Amazon rainforest (Qian et al., 2021). Liu et al. (2021) reported that 
multidrug-resistant genes accounted for 54.4–85.3 % of total ARGs in 
manure-treated soils, while Guo et al. (2018) found them most abundant 
in pig-manured soils (37.1–49.5 %), followed by fluoroquinolone 
(11.6–20.8 %), bacitracin (7.8–15.8 %), and sulfonamide (0.5–15.8 %) 
resistance genes. Despite this global trend, our study found that repeated 
manure applications did not significantly alter total ARG abundance 
within each site. This may be due to ARGs suppression during com
posting or dissipation over time (Keenum et al., 2021). Composting in
activates manure-borne microbes and ARGs through heat and microbial 
competition, while time interval between compost application and 
sampling may allow native soil microbiota to re-establish dominance. In 
all sites, compost was applied annually, but sampling was performed at 
season end, which may have allowed ARGs to dissipate throughout 
agricultural year. Increases in resistome abundance after manure 
application are often transient, with levels returning to baseline within 

weeks or months (Chen et al., 2019b; Radu et al., 2021; Wang et al., 
2021a), as introduced fecal bacteria are gradually outcompeted by 
native soil microbiota (Zhang et al., 2023a). Supporting this, Chen et al. 
(2019b) reported no change in ARG abundance and diversity 120 days 
after applying antibiotic-amended cow manure compost. Wind et al. 
(2021) also found that ARG levels returned to baseline within 120 days 
of compost application. Guo et al. (2018) observed a short-term increase 
in ARGs following compost or raw manure application, but levels 
normalized after 32 and 60 days, respectively. Even long-term applica
tion showed limited impact, as Wang et al. (2018) found no significant 
ARG accumulation after 26 years of swine manure compost use in dry or 
paddy soils.

The most diverse ARG classes were multidrug, beta-lactam, MLS, 
aminoglycoside, and tetracycline resistance genes, a pattern also 
observed globally across manure-amended soils in subtropical, humid 
continental, and cold desert climates (Cheng et al., 2019; Muurinen 
et al., 2017; Sun et al., 2023). Multidrug resistance genes were generally 

Table 3 
Correlations between metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) for the most relevant classes of antibiotics.

ARGs Metal Resistance Genes (MRGs)

Classes Co Cr Cu Ni Pb Zn

Aminoglycoside − 0.005† 0.243 0.535** 0.252 0.001 0.400*
Bacitracin − 0.124 0.240 0.335* 0.246 − 0.167 0.199
В-lactam − 0.081 0.285* 0.315* 0.305* 0.088 0.264
Fluoroquinolone − 0.053 0.153 0.040 − 0.004 − 0.006 − 0.090
Glycopeptide 0.042 0.311* 0.559** 0.238 0.014 0.524*
MLS − 0.126 0.093 0.241 0.258 0.016 0.361*
Nucleoside 0.001 0.459** 0.551** 0.243 0.208 0.329*
Rifamycin − 0.031 0.213 0.410** 0.245* − 0.019 0.523**
Tetracycline − 0.101 0.310* 0.375** 0.223 − 0.064 0.416**

† Correlation Coefficient − Mantel tests, p ≤ 0.05 (*) and p ≤ 0.01(**).

Fig. 4. Procrustes analysis of bacterial community structures and resistome profiles in parallel soils at each site, with and without composted manure application. 
Squares and circles represent soil sample positions based on the resistome profile, while arrows indicate their corresponding positions based on bacterial commu
nity structure.
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the most abundant, particularly in subtropical regions of China and the 
USA (Guo et al., 2018; Yang et al., 2020; Liu et al., 2022). These ARGs 
originate naturally in soils and can be present even in environments with 
minimal anthropogenic influence (Walsh & Wright, 2005; Van Goethem 

et al., 2018; Song et al., 2021) due to natural presence of antimicrobials 
in soils (McSorley et al., 2018) resulted from microbial competition or 
signaling between microbial cells (Linares et al., 2006; Nesme et al., 
2015; Niehus et al., 2021). Multidrug ARGs play multifunctional roles 

Fig. 5. Taxonomic composition of ARG hosts among the ten dominant taxonomic classes (A), dendrogram illustrating taxonomic relationships of ARG hosts (B), and 
heatmap showing the most abundant microbial genera hosting ARGs (C) in parallel soils at each site, with and without composted manure applications.

Fig. 6. Rarefied abundance of integrase (intl) genes in parallel soils from each site, with and without composted manure applications. Values represent the mean ±
standard error (n = 3); Welch’s t-test (p ≤ 0.05).

J.F. Osti et al.                                                                                                                                                                                                                                    Environment International 203 (2025) 109783 

8 



beyond antibiotic resistance, including detoxification, virulence, and 
signal trafficking (Lubelski et al., 2007; Martínez, 2008).

In this study, ARGs abundance increased in uncontaminated soils 
(sites 2 and mainly 3) but not in heavy metal-rich soils (site 1), sug
gesting that metal contamination exerted a stronger influence on soil 
resistome than manure application. Han et al. (2018) observed intro
duction of 67, 82, and 73 unique ARGs into soils amended with swine, 
poultry, and cattle manures, respectively, none of which were com
posted. In high Arctic soils, lithology (metal content) determined ARGs 
abundance in unimpacted sites, whereas fecal inputs from wildlife were 
the dominant source of ARGs in impacted areas (McCann et al., 2019). 
However, ARGs tend to exhibit higher relative abundance in tropical 
regions compared to boreal and temperate zones (Khalid et al., 2023). 
Tropical conditions likely influence ARGs distribution and host profiles, 
promoting greater microbial abundance. Warmer climate may enhance 
genetic exchange among bacteria, including more frequent conjugative 
transfers of antibiotic resistance plasmids (Devarajan et al., 2017). We 
also observed that clinically relevant ARGs were unaffected by manure, 
consistent with previous findings that composted manure has minimal 
impact on resistome composition (Chen et al., 2019b; Deng et al., 2020).

Long-term manure applications can increase microbial and ARGs 
diversity (Wang et al., 2017; Zhang et al., 2021b). Some studies suggest 
that manure introduces unique ARGs via MGEs (Han et al., 2018; Liu 
et al., 2021), while others report no long-term impact on ARGs diversity 
(Muurinen et al., 2017; Cheng et al., 2019). Our results indicate that 
composted manure enhanced bacterial diversity of metal deprived soils 
(sites 2 and 3) but did not significantly increase resistome diversity of all 
sites, likely mitigating ARG introduction through microbial competition 
(Cheng et al., 2019; Wang et al., 2021a). This reinforces that composting 
may be an effective strategy to mitigate the introduction of extraneous 
ARGs present in manure.

Bacterial community structures were major determinants of resis
tome profiles (Forsberg et al., 2014; Su et al., 2015). At site 1, high heavy 
metal contents, especially Cu and Ni, drove bacterial clustering, while at 
sites 2 and 3, manure-induced pH changes dictated bacterial shifts. 
Despite differences in geographical locations and manure treatment, 
soils from sites 2 and 3 showed similar bacterial and ARG profiles, 
highlighting the influence of soil physicochemical properties in shaping 
the resistome (Su et al., 2015; Chen et al., 2016). Therefore, pH for 
bacterial community and pH and P for the resistome were key drivers of 
bacterial and resistome shifts post-manure application in these soils 
(sites 2 and 3), as previously reported (Cadena et al., 2018; McCann 
et al., 2019; Wang et al., 2020b; Zhang et al., 2021c). Animal waste 
applications are known to elevate soil pH and nutrient content (Li et al., 
2012; Zhang et al., 2017), influencing bacterial community and ARG 
modulation, particularly in P-deficient tropical soils (Cadena et al., 
2018; Mendes et al., 2021).

In contrast, site 1′s resistome was primarily shaped by high Cu con
centrations rather than manure application. Although an essential metal 
for microbiota, in high concentrations, Cu becomes toxic to soil organ
isms, damaging the cell macromolecules (Seiler and Berendonk 2012; 
Kang et al. 2018). Its low sorption compared to antibiotics like tetra
cyclines increases soil bioavailability (Gillieatt & Coleman, 2024). Cu 
also interacts with antibiotics, affecting their mobility and stability, and 
enhancing microbial efflux pump activity (Poole, 2017). Among trace 
metals, Cu exerts the strongest selective pressure on ARGs, exceeding Fe, 
Ni, Pb, and Zn (Kang et al., 2018; Glibota et al., 2020). This role has been 
demonstrated in rhizosphere (Pan et al., 2023), subsurface (Wang et al., 
2021c), mining (Zou et al., 2025), urban (Knapp et al., 2017; Zhao et al., 
2019), and agricultural soils amended with sludge (Urra et al., 2019) or 
manure (Peng et al., 2017; Guo et al., 2018; Zhang et al., 2023a). In a 
microcosm study, Kang et al. (2018) showed that even a short 2-month 
exposure to Cu altered ARG composition, with stronger effects at higher 
concentrations. Long-term field studies have also shown that Cu can 
affect ARG abundance and diversity, depending on soil type and Cu 
levels (Hu et al., 2016).

Unlike antibiotics, which degrade over time, heavy metals persist in 
soils and impose sustained selective pressure on microbial communities 
and ARGs (Ji et al., 2012; Chen et al., 2019a). This pressure facilitates 
ARGs enrichment through co-selection with metal resistance genes 
(MRGs), particularly when both gene types co-occur on MGEs (Guo 
et al., 2018). Zhou et al. (2016) reported a positive correlation between 
ARG and MRG richness. Under metal stress, MRGs contribute to bacte
rial survival and indirectly sustain antibiotic resistance (Li et al., 2022a), 
a process intensified by the genetic linkage of ARGs, MRGs, and MGEs, 
which facilitates horizontal transfer of resistance clusters (Wu et al., 
2024).

In our study, Cu and Zn resistance genes were strongly correlated 
with the overall resistome structure, with those of Cr and Ni also 
contributing significantly, supporting known genetic linkages indicative 
of co-resistance (Farias et al., 2015; Zhang et al., 2021a). Genetic asso
ciations between Zn, especially Cu, and ARGs have been repeatedly 
observed in mobile genetic elements (MGEs) such as plasmids and 
transposons (Poole, 2017). Soil bacteria have been found carrying Cu 
and Zn resistance genes and ARGs for tetracyclines and β-lactams, within 
the same genome (Glibota et al., 2020), with suck linkages occurring on 
both chromosomes and plasmids (Martins et al., 2014; Poole, 2017). 
Silveira et al. (2014) reported that Cu resistance genes and ARGs co- 
occurring in Enterococcus can be co-transferred to other isolates. High 
levels of Cu and Zn (or other metals) may promote plasmid conjugation 
via co-resistance, as both gene types often reside on the same plasmid 
(Xu et al., 2017). Co-selection may also result from cross-resistance, 
where a single gene confers resistance to both antibiotics and metals 
(Kang et al., 2018; Zhang et al., 2021a). For instance, RND efflux pumps 
like MdtABC mediate resistance to antibiotics, Cu, and Zn (Nishino et al., 
2007; Gillieatt & Coleman, 2024).

Evidence of co-selection via co– and cross-resistance also extends to 
Cr and Ni. Cr resistance plasmids have been found to carry ampicillin 
resistance genes (Vats et al., 2022), and Cr exposure can induce efflux 
pump expression and plasmid conjugation (Wu et al., 2024). Cr has also 
been linked to increase abundance of sulfonamide, MLSB, β-lactamase, 
and aminoglycoside resistance genes, along with upregulation of related 
efflux pumps (Zhang et al., 2023b). When combined with sulfameth
oxazole, Cr further amplified sul1 and sul2 gene abundances (Xu et al., 
2023). In parallel, Ni has been linked to ARG co-selection, including in 
aquatic environments (Stepanauskas et al., 2006). This may result from 
cross-resistance via shared efflux pump mechanisms between multidrug 
and Ni resistance genes (Zhang et al., 2021a). Co-resistance has been 
directly observed in plasmids carrying both Ni MRGs and ARGs (Raja 
and Selvam, 2009; Zhai et al., 2016).

Actinomycetota and Pseudomonadota were the predominant ARG- 
hosting phyla, reflecting their well-documented capacity to both pro
duce and resist multiple antibiotics (Alam et al., 2022; Park et al., 2019), 
consistent with findings from previous studies (Han et al., 2022). 
Streptomyces (Actinomycetota) alone produces over 70 % of naturally 
derived antibiotics, including tetracyclines, aminoglycosides, macro
lides, and β-lactams, while members of Pseudomonadota, such as Pseu
domonas and Burkholderia, synthesize phenazines and polyketides. 
Likewise, Streptomyces and Bradyrhizobium (Pseudomonadota) corre
spond to genera carrying the highest ARGs diversity. Although Bra
dyrhizobium is primarily known for N fixation rather than antibiotic 
production, it may acquire ARGs through horizontal gene transfer 
mechanisms, such as integrons and gene cassettes. These mobile genetic 
elements facilitate rapid adaptation by capturing and expressing novel 
resistance genes, potentially facilitating the spread of ARGs to other 
environmental or pathogenic bacteria (Ormeño-Orrillo & Martínez- 
Romero, 2019).

The above phyla dominance aligns with the high diversity of multi
drug resistance gene hosts reported by Han et al. (2022). Multidrug 
resistance genes, including those for tetracyclines, MLS, beta-lactams, 
and glycopeptides, originate naturally in soils (McSorley et al., 2018), 
where antibiotic-producing microbes use these compounds for 
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competition and signaling, while others acquire ARGs for protection 
(Linares et al., 2006; Niehus et al., 2021). However, human activities 
accelerate their spread, even to remote locations like Antarctica (Wang 
et al., 2016). ARGs are both intrinsic to soil ecosystems and shaped by 
environmental pressures, making it difficult to distinguish between 
natural and anthropogenic sources, contributing to a dynamic resistome 
(Khalid et al., 2023). These authors mention that microbiome changes 
due to environmental factors may exert selective pressures on microbial 
communities, resulting in resistome expansion. Therefore, distinguish
ing allochthonous from autochthonous ARGs is difficult due to wide
spread human, agricultural, and industrial pollution, with few truly 
“pristine” environments remaining (McCann et al., 2019). Although not 
significantly observed in this study, these genes could be mobilized via 
lateral gene transfer and potentially disseminate into clinically relevant 
pathogens, contributing to global antibiotic resistance (Larsson & Flach, 
2022).

Integrons are MGEs that facilitate horizontal gene transfer and play a 
key role in ARGs dissemination as well as microbial community modu
lation in the environment. They enhance bacterial adaptability to 
diverse stressors, including antibiotics, heavy metals, and other pollut
ants, and their presence in contaminated settings accelerates the spread 
of multidrug-resistant bacteria, posing risks to human, animal, and 
ecosystem health. In sites 2 and 3, composted manure application 
increased abundance integrase genes (intl), consistent with previous 
studies (Nõlvak et al., 2016; Li et al., 2017; Peng et al., 2017). This in
crease may result either from direct introduction of integron-carrying 
microbes via manure or from changes in soil physicochemical proper
ties induced by manuring (Nõlvak et al., 2016). Poultry and swine 
manure commonly contain not only antibiotics but also heavy metals, 
pesticides, and disinfectants (Gosling et al., 2017; Kyakuwaire et al., 
2019; Souza et al., 2019; Soares et al., 2021; Li et al., 2025; Zhao et al., 
2025), which persist in soils after application (Qian et al., 2018b; Xie 
et al., 2018; Xiao et al., 2022; Zeng et al., 2024). Composting reduces but 
does not fully eliminate these pollutants (Congilosi & Aga, 2021), and 
subinhibitory concentrations may select for microbial defense mecha
nisms (Gillings, 2014), including integrons proliferation (Dealtry et al., 
2014; Gillings et al., 2015).

Integrons are often associated with other MGEs, such as transposons 
and plasmids, that carry ARGs and pollutant degradation genes, pro
moting co-selection (Gillings et al., 2015; Mulder et al., 2018). This 
process is intensified when pollutants select for both ARGs and MRGs via 
cross-resistance or co-resistance mechanisms (Paul et al., 2019; Zeng 
et al., 2024). In site 1, intI abundance was not affected by manure but 
remained higher than in other sites, likely due to high heavy metal 
concentrations, particularly Cu (Hu et al., 2016), Zn (Tongyi et al., 
2020), Cr (Xu et al., 2023; Zhang et al., 2023b), Ni (Hu et al., 2017), and 
Co (Di Cesare et al., 2016), all of which are associated with integrons 
proliferation. The co-occurrence of integrons and MRGs on the same 
transposons or plasmids could have masked any manure-induced in
creases as observed at other sites (Vats et al., 2022; Gillieatt & Coleman, 
2024).

5. Conclusions

This study provides novel field-based insights into how successive 
composted manure applications and heavy metal contamination interact 
to shape soil bacteriome and resistome profiles under tropical condi
tions. Across all sites, multidrug resistance genes dominated the resis
tome, followed by MLS and tetracycline resistance genes, with 
Actinomycetota and Pseudomonadota as the main host phyla, consistent 
with their natural roles in antibiotic production and resistance. Manure 
application increased soil pH and P availability, enhancing bacterial 
diversity and influencing resistome composition in metal-depleted soils. 
However, compost amendment had little impact on total ARG abun
dance, resistome diversity, or clinically relevant ARGs, indicating partial 
mitigation of ARG inputs. In the metal-contaminated site, Cu primarily 

shaped the resistome, while both Cu and Ni influenced bacteriome 
structure. Strong correlations between ARGs and MRGs for Cr, Ni, Cu, 
and Zn suggest co-selection between resistance genes. Elevated levels of 
integrons, indicate that metals may sustain and facilitate the horizontal 
transfer of ARGs independently of antibiotic pressure. While composted 
manure increased integrons abundance in uncontaminated soils, this 
effect was not observed in the metal-rich site, likely due to pre-existing 
high integrons levels driven by metal-induced selective pressure. This 
highlights the importance of background soil contamination in modu
lating the impacts of manure inputs. Overall, these findings show the 
need for improved manure management practices tailored to local soil 
conditions, particularly in tropical regions where high antibiotic use and 
large manure volumes converge. Future studies should investigate ARG 
dynamics across temporal scales, ideally spanning a full agricultural 
cycle and accounting for seasonal variation (dry and wet seasons) in 
tropical soils, while conducting long-term tracking studies on different 
types of soil and fertilization management strategies to further explore 
changes in antibiotic resistance genes. Evaluating alternative manage
ment practices and integrating metagenome-assembled genomes 
(MAGs) analysis will be critical for identifying host-specific ARG-MRG- 
MGE associations and elucidating mechanisms of genetic co-selection, 
especially in metal-reach soils. Such efforts are essential to advance 
our understanding of ARG persistence, mobility, and environmental 
risks in tropical agroecosystems.
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Nõlvak, H., Truu, M., Kanger, K., Tampero, M., Espenberg, M., Loit, E., Raave, H., 
Truu, J., 2016. Inorganic and organic fertilizers impact the abundance and 
proportion of antibiotic resistance and integron-integrase genes in agricultural 
grassland soil. Sci. Total Environ. 562, 678–689. https://doi.org/10.1016/j. 
scitotenv.2016.04.035.

Ormeño-Orrillo, E., Martínez-Romero, E., 2019. A genomotaxonomy view of the 
bradyrhizobium genus. Front. Microbiol. 10, 1334. https://doi.org/10.3389/ 
fmicb.2019.01334.

Pan, J., Zheng, N., An, Q., Li, Y., Sun, S., Zhang, W., Song, X., 2023. Effects of cadmium 
and copper mixtures on antibiotic resistance genes in rhizosphere soil. Ecotoxicol. 
Environ. Saf. 259, 115008. https://doi.org/10.1016/j.ecoenv.2023.115008.

Park, C.J., Smith, J.T., Andam, C.P., 2019. Horizontal Gene Transfer and Genome 
Evolution in the Phylum Actinobacteria. In: Villa, T. G., Viñas, M. (Eds.), Horizontal 
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