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ARTICLE INFO ABSTRACT

Handling Editor: Adrian Covaci Manure applications in agricultural soils are a major driver of antibiotic resistance gene (ARG) dissemination, yet
long-term effects of composted manure applications under tropical real field conditions remain unclear. This

Keywords: study assessed how successive composted manure applications influence soil physicochemical attributes, bac-
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teriome and resistome profiles in the Brazilian Cerrado, including one site with naturally high heavy metal
content. Across all sites, multidrug resistance genes were most abundant, followed by macrolide-lincosamide-
streptogramin (MLS), tetracycline, p-lactam and glycopeptides resistance, aligning with predominance of Acti-

Microbiome

Resistome nomycetota and Pseudomonadota as key ARG hosts. Manure increased soil pH and available phosphorus (P),
Integrons with pH significantly shaping bacterial communities and pH and P the resistome in uncontaminated sites (2 and
Soil pollution 3). However, in the metal-rich site (1), Cu was the dominant driver. Manure increased ARG richness and changed

resistome structure but did not affect clinically relevant genes or resistome diversity. Metal resistance genes
(MRGs), particularly for Cu and Zn, strongly influenced resistome dynamics, highlighting co-selection. Integrons
integrase genes (intl) abundance increased in metal-depleted but not in metal-rich soils. While composting ap-
pears to mitigate ARG spread, particularly for clinically relevant genes, the high antibiotic use in livestock, large
manure volumes, and potential for ARG persistence in tropical soils highlight the need for further research on
manure treatment strategies and ARG fate in these environments.

Environmental Implication.

Our study highlights the environmental risks of antibiotic resistance gene (ARG) dissemination in tropical
agricultural soils, emphasizing the role of manure application and heavy metal contamination in shaping soil
resistome. While composted manure increased bacterial diversity and ARG richness, it did not significantly
impact clinically relevant genes and resistome diversity, suggesting that composting may help mitigate ARG
spread but does not eliminate it. Metals were the dominant drivers of ARG selection in the contaminated site,
underscoring the role of co-selection mechanisms in maintaining resistance. However, manure applications
increased integrons abundance, raising concerns about horizontal gene transfer and potential ARG proliferation
into pathogens. These findings stress the urgent need for improved manure management policies in Brazil, where
high antibiotic use in livestock and large manure volumes pose significant environmental and public health risks.
Developing sustainable manure treatment strategies and monitoring ARG persistence are essential to limit
antibiotic resistance proliferation in tropical agricultural ecosystems.
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1. Introduction

Antibiotics are widely used in veterinary medicine to prevent and
treat diseases and promote animal growth (Wu et al., 2023). Animal
husbandry consumes approximately 70 % of global antibiotics (Singh &
Kim, 2025), significantly contributing to proliferation of antibiotic
resistance genes (ARGs) and posing a major global health threat (Heuer
et al., 2011; Wang et al., 2020a; Wu et al., 2023). Manure is commonly
applied to agricultural soils due to its high nutrient and organic matter
content (Rayne & Aula, 2020). However, following application, ARG
abundance and diversity in soils often increase before gradually
declining over time (Peng et al., 2017; Muhammad et al., 2020; Liu
et al.,, 2021; Wang et al., 2021a). The type of manure also influences
ARG levels, with swine manure generally leading to higher abundances
than cattle, chicken, or mixed manure (Wu et al., 2023).

Successive manure applications can either increase (Peng et al.,
2015; Liu et al., 2021) or have no effect (Ghosh & LaPara, 2007; Tang
et al., 2015) on ARG abundance, depending on soil conditions. Manure
amendments also alter soil resistome composition by modifying physi-
cochemical properties (Xie et al., 2018; Guo et al., 2018; Pu et al., 2019;
Deng et al., 2020; Wang et al., 2020b). A meta-analysis revealed that
antibiotic-contaminated manure significantly increases total ARG and
mobile genetic element (MGE) abundances by 591 % and 351 %,
respectively, compared to unamended soils (P < 0.05). The greatest
increase was observed for sulfonamide resistance genes (1121 %), fol-
lowed by aminoglycoside (852 %) and tetracycline (763 %) resistance
genes (Zhang et al., 2022). Long-term manure application can lead to
linear or exponential ARG accumulation and shifts in associated bacte-
rial communities. Although most ARG levels decline within 11 years
after manure discontinuation, some, particularly tetracycline and mac-
rolide ARGs, persist near their previous levels (Zhang et al., 2023a).

ARG contamination in agricultural soils is a global concern, but its
impact should be particularly relevant in Brazil, a major agricultural
producer and third-largest consumer of veterinary antibiotics (9 % of
global consumption), behind China and the USA. By 2030, Brazilian
antibiotic use is projected to double compared to 2010 levels (Van
Boeckel et al., 2015). The Cerrado biome, covering nearly 2 million kmz,
is the world’s most biodiverse savanna (Mizobe, 2019). Approximately
40 % of its land is used for agriculture, with 69 % allocated to pasture
and 31 % to intensive cultivation, primarily soybean-corn rotation.
Livestock production is expanding in this region, and manure is largely
applied to grain-producing areas. Due to intense weathering, Cerrado
soils are typically acidic, nutrient-poor, and phosphorus-deficient,
requiring intensive chemical management, including limestone and
phosphate applications (Brito et al., 2020). Despite Brazil’s prominence
in global agriculture, data on ARGs in its agricultural soils are limited
(Bastos et al., 2018; Ferreira et al., 2024), with no studies specifically
addressing the Cerrado biome.

Cerrado soils may naturally contain high heavy metal concentrations
or accumulate them through anthropogenic activities, mainly from
intensive agriculture and phosphate fertilizers (Cabral et al., 2023).
Heavy metals are persistent in soils and act as long-term selective
pressures on microbial community (Ji et al., 2012), often exerting a
stronger influence on ARG dynamics than antibiotics themselves
(Mazhar et al., 2021). Anthropogenic inputs, such as repeated manure
application, increase heavy metal contents in agricultural soils (Peng
et al., 2017; Guo et al., 2025), promoting ARG proliferation through co-
selection with metal resistance genes (MRGs) (Maurya et al., 2020; Sun
etal., 2021). ARGs and MRGs often co-occur on mobile genetic elements
(MGEs), enabling metal-driven ARG enrichment (Guo et al., 2018). Co-
selection also occurs via cross-resistance, in which a single resistance
mechanism in a microorganism, like efflux pumps, provides protection
against multiple types of toxic agents (Gillieatt & Coleman, 2024; Zhang
et al., 2021a), or via co-regulation, in which different resistance genes,
such as ARGs and MRGs, are controlled by the same regulatory elements;
for example, a shared promoter or transcription factor (Vats et al.,
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2022).

Heavy metals’ role in modulating ARGs has been extensively inves-
tigated in recent years. Microcosm studies have shown that metals such
as Cd, Cu, and Zn influence ARG dynamics (Tongyi et al., 2020; Wang
et al., 2021b; Li et al., 2022a; Fu et al., 2023), with effects observed
across diverse terrestrial environments. Co-selection between ARGs and
metals has been reported in anthropogenically impacted areas,
including urban soils (Knapp et al., 2017; Zhao et al., 2019), mining sites
(Sinegani and Younessi, 2017; Chen et al., 2019a; Zhong et al., 2021),
and landfills (Li et al., 2024). Agricultural systems have also been
studied, such as paddy fields (Zheng et al., 2023; Zhang et al., 2024) and
soils amended with organic fertilizers like sewage sludge (Urra et al.,
2019) and animal manure (Guo et al., 2018; Dong et al., 2022). How-
ever, no studies have assessed the effects of composted manure in
agricultural soils already burdened with natural heavy metal
contamination.

Composting is an effective strategy to mitigate the risks associated
with fresh manure application, reducing ARG spread, promoting heavy
metal complexation, and lowering pathogen loads (Peng et al., 2018;
Awasthi et al., 2019; Manyi-Loh et al., 2016; Xie et al., 2016; Zheng
et al., 2022). Its thermophilic phase can decrease ARG transfer to soil by
2-96 % and alter resistome composition (Deng et al., 2020; Xu et al.,
2020a). Compared to mineral fertilizers or composts, fresh manure
amendments generally increase ARG abundance across different soil
types (Qian et al., 2018a; Yang et al., 2020; Li et al., 2022b; Chen et al.,
2018). However, composting does not fully eliminate ARGs (Selvam
etal., 2012; Ray et al., 2017), and manure-derived ARGs have a greater
impact on soil resistome than those from sewage sludge (Wu et al.,
2023). Some ARGs, including beta-lactam, MLSB, multidrug, and van-
comycin, may even increase in response to composted manure appli-
cations (Zhang et al., 2022). Despite its benefits, composted manure
remains a significant reservoir of ARGs (Wang et al., 2020a), and its
long-term use in agriculture may still contribute to ARG persistence and
propagation. Further research is needed to assess these risks under real
field conditions, particularly in soils contaminated with heavy metals.

This study evaluated the impact of successive applications of com-
posted animal manures on soil bacterial community and resistome
profiles, focusing on diversity, resistome composition, and their corre-
lations with soil attributes. It also assessed the effects of manure on
clinically relevant ARGs, metal resistance genes, and integrons, which
play a key role in horizontal gene transfer (HGT) (Li et al., 2017; Verraes
et al., 2013; Ali et al., 2020). Integrons serve as markers of anthropo-
genic activity in natural environments and are directly associated with
ARG transmission risks (Gillings, 2014; Hu et al., 2017; Li et al., 2017).
To achieve these objectives, soil samples were collected from three
agricultural sites in the Brazilian Cerrado biome, including one with
naturally high metal content. The study aimed to address two key
questions: a) How does successive composted manure application in-
fluence resistome and bacterial community of highly weathered tropical
soils? and b) How do high heavy metal contents and other soil physi-
cochemical properties affect antibiotic resistome and bacterial
community?

2. Material and methods
2.1. Soil samples collection

Soil samples were collected at the municipalities of Rio Verde-Goids
State from two places (sites 1 and 2) and of Claraval-Minas Gerais State
(site 3), in which distinct thermophilic composted manures have been
applied for at least 4 years (Table 1). At site 2, the pig manure was just
“stockpiled” for at least 70 days. All sites were in farmed rural properties
and soil samples were taken from adjacent agricultural fields (called
parallel soils), either with or without manure application. Compost is
applied annually in all treatments. Sampling was performed in
September-2021, prior compost application and crop seedings in sites 1
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Table 1
Sample codes, sampling locations, compost compositions, and application
periods.

Sample Sampling Compost compositions Application

codes locations periods

S1 Rio Verde Control -

S1-M, Rio Verde Poultry litter + cattle manure 4 years
compost

S2 Rio Verde Control -

S2-M Rio Verde Stockpiled pig manure 10 years

S3 Claraval Control -

S3-M, Claraval Poultry litter compost 6 years

and 2. Site 3 was under a perennial coffee plantation. Each sample was
composed of 10 subsamples randomly collected from top-soil layer
(0-20 cm), in triplicates, which were homogenized, placed into plastic
bags, and ice-transported to the laboratory. Within 48 h, soil aliquots
were taken, placed into microtubes for DNA extraction, and freezer
stored at —20 °C. The remaining soil samples were refrigerated (4 °C)
until analysis of their physicochemical attributes.

2.2. Physicochemical attributes of the soils

Soil physicochemical attributes were determined according to Van
Raij et al. (2001). In summary, soil-pH was measured in 0.01 mol L1
CaCl; solution; available P and K were extracted by ionic exchange resin
(K was quantified by flame photometry and P by colorimetry); soil
texture was determined with Bouyoucos hydrometer using 1.0 mol L'
NaOH as dispersant; and total-N was determined by the Kjeldahl
method. OM was extracted by sodium dichromate and quantified by
colorimetry. Total heavy metal (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn)
contents were extracted following 3050-B method (USEPA, 1996) and
quantified using inductively coupled plasma (Optical Emission Spec-
trometer iCAP 6300, Thermo Scientific).

2.3. DNA extraction

Total DNA was extracted using DNeasy Powerlyzer Power Soil Kit
(Quiagen, Hilden, Germany), following manufacturer’s specifications.
Extracted-DNA quality was verified in a 1.0 % agarose gel and quantified
with BioDrop ulite+ (Biochrom, United Kingdom). Metagenome
sequencing was performed for 150 bp paired-end sequences on the
Mllumina NovaSeq 6000 platform by Novogene (Novogene Advancing
Genomic, California, United States).

2.4. Metagenome analysis

Samples were filtered to discard sequences with Q-value < 20, using
Trimmomatic v0.40. The paired-end sequences (R1 and R2) were joined
by PEARvO0.8. R1 sequences that did not merge were included along with
merged sequences. Again, sequences with Q-value < 20 and less than 50
nucleotides were excluded using Trimmomatic v0.40. Quality control of
the sequences was confirmed using FastQC v0.11.9. Then, 22 million
randomized sequences per sample were selected to normalize the data.
ARGs’ survey was performed with DeepArg, SS mode, adopting default
e-value < 107'° and probability > 80 % (Arango-Argoty et al., 2018).
ARG diversity was determined based on the number of identified ARG
subtypes. Metal resistance genes (MRGs) were identified using the
BacMet database via DIAMOND v2.0.14 (Buchfink and Xie, 2015), with
an e-value < 10>, alignment identity > 90 %, and a minimum alignment
length of 25 amino acids. Integrons marker (class Intl genes) were
identified using Integrall database (Moura et al., 2009), through DIA-
MOND v2.0.14, also applying an e-value < 1075, alignment identity >
80 %, and a minimum of 25 amino acids. Taxonomic classification was
performed using MG-RAST v.4 pipeline. Genus-level profiles were ob-
tained using the RefSeq database, with an e-value < 107, alignment
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identity > 60 %, and minimum alignment length of 15 bp. Sequences
were assembled using MEGAHIT v1.1.2, based on the de Bruijn graph
approach. Contigs > 500 bp were selected for the final assembly. To
construct a non-redundant gene set, all gene sequences were clustered
using CD-HIT v4.6.1 (90 % identity and 90 % coverage). ARG identifi-
cation in contigs was performed using DeepARG (LS mode), applying an
e-value < 10 and a probability score > 80 % (Arango-Argoty et al.,
2018). Taxonomic classification of ARG-containing contigs was con-
ducted using Kraken2 (Wood et al., 2019).

2.5. Statistical analysis

All data were tested for normality. Differences in soil physicochem-
ical attributes were assessed using ANOVA followed by post-hoc Tukey-
HSD tests. Venn diagrams were generated, considering genes present in
at least two replicates. ARG abundance was evaluated using Welch’s t-
tests, with p-values corrected by the Bonferroni method. Shannon di-
versity indices for the resistome and bacterial communities in parallel
soils (with and without composted manure) were calculated and
compared via Welch’s t-tests, also applying Bonferroni correction.
Heatmaps of the 25 most abundant ARGs were generated using z-scores.
The 25 most clinically relevant genes were selected based on literature
(Martineau et al., 2000; Stoll et al., 2012; Devarajan et al., 2015; Qian
et al., 2021). Taxaplots illustrating the main ARG-hosting phyla were
created, while a dendrogram based on the mean abundance of ARG hosts
at the class level, was constructed. Heatmaps of the 40 most abundant
ARG-host genera within representative ARG classes were generated
using z-scores. The effects of composted manure applications on those
ARG abundances were analyzed using Welch’s t-tests, with p-values
corrected by the Benjamini-Hochberg method in STAMP (v2.1.3). ARG
composition in parallel soils was compared using Chi-square tests.

Redundancy analysis (RDA) was used to assess clustering of resis-
tome and bacterial community. Collinear soil physicochemical attri-
butes were removed. Monte Carlo tests with 999 random permutations
were conducted to determine the significance of soil attributes on the
resistome and bacterial community. Procrustes analysis, using 999
permutations, evaluated relationships between the resistome profile and
bacterial community structure. Mantel tests were used to correlate ARGs
with MRGs. Statistical analyses, including ANOVA, Welch’s t-tests, and
Chi-square tests, were performed in R (v4.1.2). Shannon index, RDA,
dendrogram, Mantel, and Procrustes analyses were conducted using the
vegan package (v2.6-4). Heatmaps and Venn diagrams were generated
using gplots (v3.2.0) and the taxaplot was generated with ggplot2
(3.5.1).

3. Results
3.1. Physicochemical attributes of the soils

Adjacent manured and unmanured soils from the same site exhibited
similar textural class, reinforcing their parallelism, and all soils were
acidic (pH < 6.0) (Table 2). Among unmanured soils, S1 had higher pH,
organic matter (OM), and Co, Cr, and Ni contents compared to the others
(Table 2). At this site, Cr and Hg concentrations exceeded intervention
values (IV) for potential human health risks, while Cu and Ni levels
surpassed prevention values (PV) (CETESB, 2021). Manure applications
did not consistently increase soils’ organic matter or heavy metal con-
tents but raised soil pH and available phosphorus (P) levels, regardless of
manure type (Table 2).

3.2. Abundance and richness of ARGs in the soils

Metagenomic sequencing of the samples yielded
22135591-43907946 brute paired-end sequences; 8646296-21233087
merged sequences; and 78326-380642 contigs with at least 500 bp
(Table S1). A total of 594 distinct ARGs were identified (Fig. 1A).
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Table 2
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Physicochemical attributes of parallel soils without (S1, S2, and S3) and with (S1-Mc, S2-M, and S3-Mc) successive composted manure applications.

Soil attributes Soil treatments

Site 1 Site 2 Site 3

S1 S1-M, S2 S2-M S3 S3-M,
Clay/ g kg’l 355 + 8.5b 388.8 + 8.8ab 292 +9.1c 311 +£ 0.7¢ 421 +9.7a 305 + 0.6¢
Silt/ g kg’l 158.3 + 8.9b 192.7 + 8.3a 58 + 5.1c 55.3 £ 1.2¢ 170 + 9ab 81.3 £+ 3.8¢c
Sand/ g kg71 486.3 + 0.9d 418.7 £ 1.9e 650 + 4a 633.3 + 1.3b 409 + 1.2e 614 + 3.2¢
pH 5.7 + 0.0003c 6.0 + 0.01a 5.1 +£0.01d 5.8 + 0.02b 4.3 + 0.02e 6.0 + 0.01a
OM/ g kg 1 42.3 +1.3b 50.9 + 0.6a 28.5 £ 1.2c 27.6 £ 1.5¢ 33.8 +£0.4d 35.0 + 0.3d
P/ mg kg’l 34.8 £ 0.6¢ 56.8 + 1.1b 10.5 + 1.9d 68.9 + 2.8a 57.9 + 0.1b 76.0 £ 2.3a
K/ mg kg71 1.3 £+ 0.06¢ 1.4 + 0.02¢c 1.4 £+ 0.09¢ 1.6 + 0.03bc 1.8 + 0.01ab 1.9 £+ 0.04a
N/ mg kg 1 1684 + 198a 2207 + 327a 1057 + 402a 889 + 91a 1106 + 315a 1677 + 318a
Co/ mg kg71 22.5 + 1b 29.9 £ 0.3a 3.5+ 0.1e 4.9 + 1d 10.6 + 0.3c 6.2 + 0.3d
Cr/ mg k371 515.9 + 4.8a 447.9 + 3.8b 100.1 + 2.6¢ 94 + 4.1c 45.4 + 2.5d 40.2 + 1.6d
Cu/ mg kg 1 72.3 +£1.1b 99.6 + 1.1a 15.6 + 0.5f 24.1 £0.7e 70.3 + 0.6b 46.4 + 0.8d
Ni/ mg kg~ 65.4 £ 1.6a 50.5 + 0.3b 8.7 £ 0.2d 9.4 + 0.5d 19.0 £ 0.7¢ 12.3 £ 0.5d
Pb/ mg kg71 7.9 + 1.5bc 8.6 + 1.3bc 11.4 + 1.2ab 11.7 + 0.6a 5.7 + 0.6¢ 6.4 + 0.9bc
Zn/ mg kg71 46.2 + 0.6d 70.8 + 0.6a 13.7 + 0.4e 67 + 0.5ab 62.1 +1.2b 51.9 £+ 2.0c
As/ mg kg™! <2 <2 <2 <2 <2 <2
Cd/ mg kg™* <2 <2 <2 <2 <2 <2
Hg/ mg kg ! 2.88 + 0.36 217 £ 0.01 <2 <2 8.81 £ 1.93 <2

Values are expressed as mean =+ standard error (n = 3).
Different letters indicate contrasting mean values by the Tukey-HSD, p < 0.05.

Multidrug resistance genes were the most abundant (135 types), fol-
lowed by p-lactam (101), macrolide-lincosamide-streptogramin (MLS)
(80), aminoglycoside (70), tetracycline (48), glycopeptide (11), rifam-
picin (10), nucleoside (4), and bacitracin resistance genes (3) (Fig. 1A,
Table S2).

The overall abundance of ARGs did not significantly differ between
paired soils at each site (S1 vs. S1-Mc; S2 vs. S2-M; S3 vs. S3-Mc) (Tukey-
HSD, p > 0.05). Multidrug resistance genes were the most abundant
(49.5 %), followed by those conferring resistance to MLS (11.9 %),
tetracyclines (6.8 %), glycopeptides (4.9 %), rifamycin (3.7 %), baci-
tracin (3.4 %), fluoroquinolones (2.4 %), p-lactams (2.3 %), amino-
glycosides (1.9 %), nucleosides (1.8 %) and other categories (11.3 %)
(Fig. 1B). No clear differences in ARG class abundances were observed
among the different soils (Fig. S1).

Gene richness did not correlate with abundance across ARG classes.
For instance, p-lactam resistance genes were highly diverse (101 types,
Fig. 1A) but accounted for only 2.3 % of total ARG abundance in soils
(Fig. 1B). Similarly, aminoglycoside resistance genes (70 types) repre-
sented just 1.9 % of total abundance.

3.3. Resistome composition modulation

Soils receiving composted manure exhibited a greater diversity of
ARGs, particularly at site 3 (Fig. S2). At site 1, 370 genes were shared
between parallel soils, with 36 unique to S1 and 39 to S1-Mc (Chi-square
test, p = 0.73) (Fig. S2A). At site 2, 382 genes were shared, while 28 and
42 were unique to S2 and S2-M, respectively (Chi-square test, p = 0.09)
(Fig. S2B). At site 3, 373 genes were shared, but S3-Mc exhibited
significantly more unique ARGs (56) compared to S3 (26) (Chi-square
test, p < 0.001) (Fig. S2C).

Composted manure application did not affect the most frequent
genes in resistome at site 1 but altered the abundance of nine genes at
site 2 and 16 genes at site 3 (Fig. 2A). However, no clear pattern
emerged, as some genes increased (e.g., acrB and bacA), while others
decreased (e.g., muxB, Pur Res Prot, and vanR). At site 3, the clinically
relevant genes aac3 and msrA increased following manure applications
(Fig. 2B).

3.4. Bacterial community, resistome diversities, and soil physicochemical
attributes

Soil bacterial diversity varied significantly across all sites (Welch’s t-

test, p < 0.05), with higher diversity in manured soils, particularly at
sites 2 and 3 (Fig. S3A). The smaller difference at site 1 suggests greater
convergence in bacterial community’ diversity. However, resistome di-
versity did not significantly differ after composted manure applications
at any site (Welch’s t-test, p > 0.05) (Fig. S3B).

Redundancy analysis (RDA) showed that samples clustered based on
soil attributes, with the first two axes explaining ~96 % of bacterial
community’ variation (adjusted R%Z= 0.68) (Fig. 3A). Despite differences
in location, compost sources, and application periods, manured soils
from sites 2 and 3 (S2-M and S3-Mc) had similar bacterial community
compared to their unmanured counterparts (S2 and S3), likely due to
increased soil pH. In contrast, bacterial community at site 1 were largely
unaffected by manure applications and were influenced by high heavy
metal concentrations, particularly Cu and Ni (Fig. 3A). For the resis-
tome, the first two axes explained ~79 % of the variation (adjusted R?Z=
0.37) (Fig. 3B). Again, pH and available P were key factors shaping the
resistome at sites 2 and 3, while Cu was the primary driver at site 1.

3.5. Correlations between MRGs and ARGs

Metal resistance genes (MRGs) for Cr, Cu, Ni, and Zn were positively
correlated with the most abundant ARG classes in the soils (Table 3). Cu
resistance genes showed the highest associations, correlating with seven
ARG classes, followed by Zn (six), Cr (four), and Ni (two). In contrast, Co
and Pb resistance genes exhibited no correlation with ARG classes.

3.6. Interactions between bacterial community and resistome

A significant positive correlation was observed between bacterial
community structure and resistome within each site (Procrustes, M2 =
0.45, r = 0.68, p < 0.0001), as well as between resistome and bacterial
community structure (Mantel, r = 0.77, p < 0.0001) (Fig. 4). Un-
amended soil resistome from sites 2 and 3 (S2 and S3) showed lower
correlations with bacterial community structure (Fig. 4). In contrast,
their respective composted manured soils (S2-M and S3-Mc) exhibited
stronger correlations between their resistome and bacterial commu-
nities. At site 1, both unamended and manured soils (S1 and S1-Mc)
showed strong correlations between bacterial community structure
and resistome, likely due to the high heavy metal contents that dimin-
ished the impact of manure application.
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A)ARGs Richness

B Multidrug
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-
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Fig. 1. Richness (A, refers to the number of genes present within each of the most abundant classes) and abundance (B, refers to percentage of ARGs for a specific

class of antibiotic in relation to their total).

3.7. Co-occurrence for microbial taxa and ARGs

At phylum level, ARG hosts were predominantly Actinomycetota
(54.9-75.4 %) and Pseudomonadota (22.8-43.3 %), jointly accounting
for over 83 % of ARG host abundance across all treatments. At class
level, Actinomycetes and Alphaproteobacteria were the most dominant
groups (Fig. 5A). ARG host profiles clustered according to soil physi-
cochemical attributes, as shown in the dendrogram (Fig. 5B). Similar
clustering was observed in parallel soils from site 1 (S1 and S1-Mc),
characterized by high heavy metal contents, and in manured soils
from sites 2 and 3 (S2-M and S3-Mc), which exhibited higher pH. The
multidrug resistance class encompassed the highest number of host
genera (28), followed by aminoglycoside and glycopeptide resistance
genes (23 each) (Fig. 5C), whereas beta-lactam and fluoroquinolone
resistance genes were hosted by only four genera. Notably, Streptomyces
and Bradyrhizobium were the most diverse ARG hosts, carrying 36 and
28 distinct ARGs, respectively (Table S3).

3.8. Integrons abundance

Integrons were quantified by identifying genes from integrase genes
(intl). In heavy metal-rich soils (site 1), integrase abundance did not
significantly differ between soils with or without compost application
(Fig. 6). In contrast, at sites 2 and 3, compost applications led to an
increase in intl abundance.

4. Discussion

Successive manure applications influence soil microbial community,
often enhancing bacterial diversity through physicochemical modifica-
tions, particularly in pH and nutrient availability (Liu et al., 2012; Sun
et al., 2015; Zhang et al., 2018; Neher et al., 2020; Xu et al., 2020b; Li
et al., 2021a; Schlatter et al., 2022; Zhang et al., 2023a). In this study,
manured soils exhibited higher pH and available P. The pH is a crucial
factor shaping microbial community, especially in highly weathered
Cerrado soils with high acidity (Liu et al., 2012; Tan et al., 2013; Alovisi
et al., 2020).

At site 1, where heavy metal contamination was high, Cu and Ni
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Fig. 2. Heatmaps displaying the 25 most abundant ARGs in soils (A) and the 25 most clinically relevant ARGs (B). Asterisks next to treatment pairs denote significant

differences between parallel fields, as determined by the Welch’s t-test (p < 0.05).

A) Bacterial communities

0.754

0.50+

_0.25-

RDA2 (12.43%

-0.25-

pH
-0.50+

-0.754

0.00f---------

Cu

L e e e e e e @ — ==

-08 -06

02 00 02 04 06 08

RDA1 (83.54%)

-0.4

B) Resistome

X
0.75 :
Cu |
1
0.50 |
I
1
: L}
025 !
N . \
(=) ' |
< \ L
© 1
L0001 = s = ey o e s ey Mg ey N
2 B
14 1
-0.25 ]
. P .: Groups
L | = S1
- ! e S1-Mc
g0 l =S
} e S2-M
1 = S3
X e S3-Mc
-08 -06 -04 -02 00 02 04 06 08

RDA1 (52.79%)

Fig. 3. Redundancy analysis (RDA) of correlations between key soil physicochemical attributes and bacterial community (A) or the resistome (B) in parallel soils
with and without composted manure application. Significance of environmental variables were evaluated using Monte Carlo permutation tests (p < 0.05).

strongly influenced bacterial community structures. Heavy metals,
particularly Cu and Ni (Li et al., 2014; Li et al., 2015; Song et al., 2018),
are known to shape microbial community (Zhang et al., 2016; Deng
et al., 2020; Li et al., 2021b) and can promote resistance gene persis-
tence through selection pressure (Griffiths & Philippot, 2013). Despite

this, bacterial diversity remained high, likely due to microbial adapta-
tion mechanisms, including genetic resistance via mutations and hori-
zontal gene transfer (Margesin et al., 2011; Li et al., 2015).

ARG profiles were dominated by multidrug resistance genes, fol-
lowed by MLS and tetracycline resistance genes, a pattern observed
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Table 3

Correlations between metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) for the most relevant classes of antibiotics.
ARGs Metal Resistance Genes (MRGs)
Classes Co Cr Cu Ni Pb Zn
Aminoglycoside —0.005' 0.243 0.535%* 0.252 0.001 0.400*
Bacitracin —0.124 0.240 0.335* 0.246 —0.167 0.199
B-lactam —0.081 0.285* 0.315* 0.305* 0.088 0.264
Fluoroquinolone —0.053 0.153 0.040 —0.004 —0.006 —0.090
Glycopeptide 0.042 0.311* 0.559%* 0.238 0.014 0.524*
MLS —0.126 0.093 0.241 0.258 0.016 0.361*
Nucleoside 0.001 0.459%* 0.551%* 0.243 0.208 0.329*
Rifamycin —0.031 0.213 0.410%* 0.245* —0.019 0.523%*
Tetracycline —0.101 0.310* 0.375%* 0.223 —0.064 0.416%*

 Correlation Coefficient — Mantel tests, p <0.05 (*) and p < 0.01(*%).

Procrustes errors
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Fig. 4. Procrustes analysis of bacterial community structures and resistome profiles in parallel soils at each site, with and without composted manure application.
Squares and circles represent soil sample positions based on the resistome profile, while arrows indicate their corresponding positions based on bacterial commu-

nity structure.

globally in diverse environments, including the Alaskan tundra and
Amazon rainforest (Qian et al., 2021). Liu et al. (2021) reported that
multidrug-resistant genes accounted for 54.4-85.3 % of total ARGs in
manure-treated soils, while Guo et al. (2018) found them most abundant
in pig-manured soils (37.1-49.5 %), followed by fluoroquinolone
(11.6-20.8 %), bacitracin (7.8-15.8 %), and sulfonamide (0.5-15.8 %)
resistance genes. Despite this global trend, our study found that repeated
manure applications did not significantly alter total ARG abundance
within each site. This may be due to ARGs suppression during com-
posting or dissipation over time (Keenum et al., 2021). Composting in-
activates manure-borne microbes and ARGs through heat and microbial
competition, while time interval between compost application and
sampling may allow native soil microbiota to re-establish dominance. In
all sites, compost was applied annually, but sampling was performed at
season end, which may have allowed ARGs to dissipate throughout
agricultural year. Increases in resistome abundance after manure
application are often transient, with levels returning to baseline within

weeks or months (Chen et al., 2019b; Radu et al., 2021; Wang et al.,
2021a), as introduced fecal bacteria are gradually outcompeted by
native soil microbiota (Zhang et al., 2023a). Supporting this, Chen et al.
(2019b) reported no change in ARG abundance and diversity 120 days
after applying antibiotic-amended cow manure compost. Wind et al.
(2021) also found that ARG levels returned to baseline within 120 days
of compost application. Guo et al. (2018) observed a short-term increase
in ARGs following compost or raw manure application, but levels
normalized after 32 and 60 days, respectively. Even long-term applica-
tion showed limited impact, as Wang et al. (2018) found no significant
ARG accumulation after 26 years of swine manure compost use in dry or
paddy soils.

The most diverse ARG classes were multidrug, beta-lactam, MLS,
aminoglycoside, and tetracycline resistance genes, a pattern also
observed globally across manure-amended soils in subtropical, humid
continental, and cold desert climates (Cheng et al., 2019; Muurinen
etal., 2017; Sun et al., 2023). Multidrug resistance genes were generally
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Fig. 6. Rarefied abundance of integrase (intl) genes in parallel soils from each site, with and without composted manure applications. Values represent the mean +

standard error (n = 3); Welch’s t-test (p < 0.05).

the most abundant, particularly in subtropical regions of China and the
USA (Guo et al., 2018; Yang et al., 2020; Liu et al., 2022). These ARGs
originate naturally in soils and can be present even in environments with
minimal anthropogenic influence (Walsh & Wright, 2005; Van Goethem

etal., 2018; Song et al., 2021) due to natural presence of antimicrobials
in soils (McSorley et al., 2018) resulted from microbial competition or
signaling between microbial cells (Linares et al., 2006; Nesme et al.,
2015; Niehus et al., 2021). Multidrug ARGs play multifunctional roles
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beyond antibiotic resistance, including detoxification, virulence, and
signal trafficking (Lubelski et al., 2007; Martinez, 2008).

In this study, ARGs abundance increased in uncontaminated soils
(sites 2 and mainly 3) but not in heavy metal-rich soils (site 1), sug-
gesting that metal contamination exerted a stronger influence on soil
resistome than manure application. Han et al. (2018) observed intro-
duction of 67, 82, and 73 unique ARGs into soils amended with swine,
poultry, and cattle manures, respectively, none of which were com-
posted. In high Arctic soils, lithology (metal content) determined ARGs
abundance in unimpacted sites, whereas fecal inputs from wildlife were
the dominant source of ARGs in impacted areas (McCann et al., 2019).
However, ARGs tend to exhibit higher relative abundance in tropical
regions compared to boreal and temperate zones (Khalid et al., 2023).
Tropical conditions likely influence ARGs distribution and host profiles,
promoting greater microbial abundance. Warmer climate may enhance
genetic exchange among bacteria, including more frequent conjugative
transfers of antibiotic resistance plasmids (Devarajan et al., 2017). We
also observed that clinically relevant ARGs were unaffected by manure,
consistent with previous findings that composted manure has minimal
impact on resistome composition (Chen et al., 2019b; Deng et al., 2020).

Long-term manure applications can increase microbial and ARGs
diversity (Wang et al., 2017; Zhang et al., 2021b). Some studies suggest
that manure introduces unique ARGs via MGEs (Han et al., 2018; Liu
et al., 2021), while others report no long-term impact on ARGs diversity
(Muurinen et al., 2017; Cheng et al., 2019). Our results indicate that
composted manure enhanced bacterial diversity of metal deprived soils
(sites 2 and 3) but did not significantly increase resistome diversity of all
sites, likely mitigating ARG introduction through microbial competition
(Cheng et al., 2019; Wang et al., 2021a). This reinforces that composting
may be an effective strategy to mitigate the introduction of extraneous
ARGs present in manure.

Bacterial community structures were major determinants of resis-
tome profiles (Forsberg et al., 2014; Su et al., 2015). Atsite 1, high heavy
metal contents, especially Cu and Ni, drove bacterial clustering, while at
sites 2 and 3, manure-induced pH changes dictated bacterial shifts.
Despite differences in geographical locations and manure treatment,
soils from sites 2 and 3 showed similar bacterial and ARG profiles,
highlighting the influence of soil physicochemical properties in shaping
the resistome (Su et al., 2015; Chen et al., 2016). Therefore, pH for
bacterial community and pH and P for the resistome were key drivers of
bacterial and resistome shifts post-manure application in these soils
(sites 2 and 3), as previously reported (Cadena et al., 2018; McCann
et al.,, 2019; Wang et al., 2020b; Zhang et al., 2021c). Animal waste
applications are known to elevate soil pH and nutrient content (Li et al.,
2012; Zhang et al., 2017), influencing bacterial community and ARG
modulation, particularly in P-deficient tropical soils (Cadena et al.,
2018; Mendes et al., 2021).

In contrast, site 1's resistome was primarily shaped by high Cu con-
centrations rather than manure application. Although an essential metal
for microbiota, in high concentrations, Cu becomes toxic to soil organ-
isms, damaging the cell macromolecules (Seiler and Berendonk 2012;
Kang et al. 2018). Its low sorption compared to antibiotics like tetra-
cyclines increases soil bioavailability (Gillieatt & Coleman, 2024). Cu
also interacts with antibiotics, affecting their mobility and stability, and
enhancing microbial efflux pump activity (Poole, 2017). Among trace
metals, Cu exerts the strongest selective pressure on ARGs, exceeding Fe,
Ni, Pb, and Zn (Kang et al., 2018; Glibota et al., 2020). This role has been
demonstrated in rhizosphere (Pan et al., 2023), subsurface (Wang et al.,
2021c), mining (Zou et al., 2025), urban (Knapp et al., 2017; Zhao et al.,
2019), and agricultural soils amended with sludge (Urra et al., 2019) or
manure (Peng et al., 2017; Guo et al., 2018; Zhang et al., 2023a). In a
microcosm study, Kang et al. (2018) showed that even a short 2-month
exposure to Cu altered ARG composition, with stronger effects at higher
concentrations. Long-term field studies have also shown that Cu can
affect ARG abundance and diversity, depending on soil type and Cu
levels (Hu et al., 2016).
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Unlike antibiotics, which degrade over time, heavy metals persist in
soils and impose sustained selective pressure on microbial communities
and ARGs (Ji et al., 2012; Chen et al., 2019a). This pressure facilitates
ARGs enrichment through co-selection with metal resistance genes
(MRGs), particularly when both gene types co-occur on MGEs (Guo
et al., 2018). Zhou et al. (2016) reported a positive correlation between
ARG and MRG richness. Under metal stress, MRGs contribute to bacte-
rial survival and indirectly sustain antibiotic resistance (Li et al., 2022a),
a process intensified by the genetic linkage of ARGs, MRGs, and MGEs,
which facilitates horizontal transfer of resistance clusters (Wu et al.,
2024).

In our study, Cu and Zn resistance genes were strongly correlated
with the overall resistome structure, with those of Cr and Ni also
contributing significantly, supporting known genetic linkages indicative
of co-resistance (Farias et al., 2015; Zhang et al., 2021a). Genetic asso-
ciations between Zn, especially Cu, and ARGs have been repeatedly
observed in mobile genetic elements (MGEs) such as plasmids and
transposons (Poole, 2017). Soil bacteria have been found carrying Cu
and Zn resistance genes and ARGs for tetracyclines and p-lactams, within
the same genome (Glibota et al., 2020), with suck linkages occurring on
both chromosomes and plasmids (Martins et al., 2014; Poole, 2017).
Silveira et al. (2014) reported that Cu resistance genes and ARGs co-
occurring in Enterococcus can be co-transferred to other isolates. High
levels of Cu and Zn (or other metals) may promote plasmid conjugation
via co-resistance, as both gene types often reside on the same plasmid
(Xu et al., 2017). Co-selection may also result from cross-resistance,
where a single gene confers resistance to both antibiotics and metals
(Kang et al., 2018; Zhang et al., 2021a). For instance, RND efflux pumps
like MdtABC mediate resistance to antibiotics, Cu, and Zn (Nishino et al.,
2007; Gillieatt & Coleman, 2024).

Evidence of co-selection via co- and cross-resistance also extends to
Cr and Ni. Cr resistance plasmids have been found to carry ampicillin
resistance genes (Vats et al., 2022), and Cr exposure can induce efflux
pump expression and plasmid conjugation (Wu et al., 2024). Cr has also
been linked to increase abundance of sulfonamide, MLSB, f-lactamase,
and aminoglycoside resistance genes, along with upregulation of related
efflux pumps (Zhang et al., 2023b). When combined with sulfameth-
oxazole, Cr further amplified sull and sul2 gene abundances (Xu et al.,
2023). In parallel, Ni has been linked to ARG co-selection, including in
aquatic environments (Stepanauskas et al., 2006). This may result from
cross-resistance via shared efflux pump mechanisms between multidrug
and Ni resistance genes (Zhang et al., 2021a). Co-resistance has been
directly observed in plasmids carrying both Ni MRGs and ARGs (Raja
and Selvam, 2009; Zhai et al., 2016).

Actinomycetota and Pseudomonadota were the predominant ARG-
hosting phyla, reflecting their well-documented capacity to both pro-
duce and resist multiple antibiotics (Alam et al., 2022; Park et al., 2019),
consistent with findings from previous studies (Han et al., 2022).
Streptomyces (Actinomycetota) alone produces over 70 % of naturally
derived antibiotics, including tetracyclines, aminoglycosides, macro-
lides, and B-lactams, while members of Pseudomonadota, such as Pseu-
domonas and Burkholderia, synthesize phenazines and polyketides.
Likewise, Streptomyces and Bradyrhizobium (Pseudomonadota) corre-
spond to genera carrying the highest ARGs diversity. Although Bra-
dyrhizobium is primarily known for N fixation rather than antibiotic
production, it may acquire ARGs through horizontal gene transfer
mechanisms, such as integrons and gene cassettes. These mobile genetic
elements facilitate rapid adaptation by capturing and expressing novel
resistance genes, potentially facilitating the spread of ARGs to other
environmental or pathogenic bacteria (Ormeno-Orrillo & Martinez-
Romero, 2019).

The above phyla dominance aligns with the high diversity of multi-
drug resistance gene hosts reported by Han et al. (2022). Multidrug
resistance genes, including those for tetracyclines, MLS, beta-lactams,
and glycopeptides, originate naturally in soils (McSorley et al., 2018),
where antibiotic-producing microbes use these compounds for
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competition and signaling, while others acquire ARGs for protection
(Linares et al., 2006; Niehus et al., 2021). However, human activities
accelerate their spread, even to remote locations like Antarctica (Wang
et al., 2016). ARGs are both intrinsic to soil ecosystems and shaped by
environmental pressures, making it difficult to distinguish between
natural and anthropogenic sources, contributing to a dynamic resistome
(Khalid et al., 2023). These authors mention that microbiome changes
due to environmental factors may exert selective pressures on microbial
communities, resulting in resistome expansion. Therefore, distinguish-
ing allochthonous from autochthonous ARGs is difficult due to wide-
spread human, agricultural, and industrial pollution, with few truly
“pristine” environments remaining (McCann et al., 2019). Although not
significantly observed in this study, these genes could be mobilized via
lateral gene transfer and potentially disseminate into clinically relevant
pathogens, contributing to global antibiotic resistance (Larsson & Flach,
2022).

Integrons are MGE:s that facilitate horizontal gene transfer and play a
key role in ARGs dissemination as well as microbial community modu-
lation in the environment. They enhance bacterial adaptability to
diverse stressors, including antibiotics, heavy metals, and other pollut-
ants, and their presence in contaminated settings accelerates the spread
of multidrug-resistant bacteria, posing risks to human, animal, and
ecosystem health. In sites 2 and 3, composted manure application
increased abundance integrase genes (intl), consistent with previous
studies (Nolvak et al., 2016; Li et al., 2017; Peng et al., 2017). This in-
crease may result either from direct introduction of integron-carrying
microbes via manure or from changes in soil physicochemical proper-
ties induced by manuring (Nolvak et al., 2016). Poultry and swine
manure commonly contain not only antibiotics but also heavy metals,
pesticides, and disinfectants (Gosling et al., 2017; Kyakuwaire et al.,
2019; Souza et al., 2019; Soares et al., 2021; Li et al., 2025; Zhao et al.,
2025), which persist in soils after application (Qian et al., 2018b; Xie
etal., 2018; Xiao et al., 2022; Zeng et al., 2024). Composting reduces but
does not fully eliminate these pollutants (Congilosi & Aga, 2021), and
subinhibitory concentrations may select for microbial defense mecha-
nisms (Gillings, 2014), including integrons proliferation (Dealtry et al.,
2014, Gillings et al., 2015).

Integrons are often associated with other MGEs, such as transposons
and plasmids, that carry ARGs and pollutant degradation genes, pro-
moting co-selection (Gillings et al., 2015; Mulder et al., 2018). This
process is intensified when pollutants select for both ARGs and MRGs via
cross-resistance or co-resistance mechanisms (Paul et al., 2019; Zeng
et al., 2024). In site 1, intl abundance was not affected by manure but
remained higher than in other sites, likely due to high heavy metal
concentrations, particularly Cu (Hu et al., 2016), Zn (Tongyi et al.,
2020), Cr (Xu et al., 2023; Zhang et al., 2023b), Ni (Hu et al., 2017), and
Co (Di Cesare et al., 2016), all of which are associated with integrons
proliferation. The co-occurrence of integrons and MRGs on the same
transposons or plasmids could have masked any manure-induced in-
creases as observed at other sites (Vats et al., 2022; Gillieatt & Coleman,
2024).

5. Conclusions

This study provides novel field-based insights into how successive
composted manure applications and heavy metal contamination interact
to shape soil bacteriome and resistome profiles under tropical condi-
tions. Across all sites, multidrug resistance genes dominated the resis-
tome, followed by MLS and tetracycline resistance genes, with
Actinomycetota and Pseudomonadota as the main host phyla, consistent
with their natural roles in antibiotic production and resistance. Manure
application increased soil pH and P availability, enhancing bacterial
diversity and influencing resistome composition in metal-depleted soils.
However, compost amendment had little impact on total ARG abun-
dance, resistome diversity, or clinically relevant ARGs, indicating partial
mitigation of ARG inputs. In the metal-contaminated site, Cu primarily
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shaped the resistome, while both Cu and Ni influenced bacteriome
structure. Strong correlations between ARGs and MRGs for Cr, Ni, Cu,
and Zn suggest co-selection between resistance genes. Elevated levels of
integrons, indicate that metals may sustain and facilitate the horizontal
transfer of ARGs independently of antibiotic pressure. While composted
manure increased integrons abundance in uncontaminated soils, this
effect was not observed in the metal-rich site, likely due to pre-existing
high integrons levels driven by metal-induced selective pressure. This
highlights the importance of background soil contamination in modu-
lating the impacts of manure inputs. Overall, these findings show the
need for improved manure management practices tailored to local soil
conditions, particularly in tropical regions where high antibiotic use and
large manure volumes converge. Future studies should investigate ARG
dynamics across temporal scales, ideally spanning a full agricultural
cycle and accounting for seasonal variation (dry and wet seasons) in
tropical soils, while conducting long-term tracking studies on different
types of soil and fertilization management strategies to further explore
changes in antibiotic resistance genes. Evaluating alternative manage-
ment practices and integrating metagenome-assembled genomes
(MAGsS) analysis will be critical for identifying host-specific ARG-MRG-
MGE associations and elucidating mechanisms of genetic co-selection,
especially in metal-reach soils. Such efforts are essential to advance
our understanding of ARG persistence, mobility, and environmental
risks in tropical agroecosystems.
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