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to our definition, but they are not graded division rings. We
exhibit an easy example of this kind of rings and characterize
such class among groupoid graded semisimple rings. We also
relate groupoid graded semisimple rings with the notion of
semisimple category defined by B. Mitchell. For that, we
show the link between functors from a preadditive category
to abelian groups and graded modules over the groupoid
graded ring associated to this category, generalizing a result
of P. Gabriel. We characterize simple artinian categories and
categories for which every functor from them to abelian groups

is free in the sense of B. Mitchell.
© 2025 Elsevier Inc. All rights are reserved, including those
for text and data mining, Al training, and similar

technologies.
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1. Introduction

Semisimple rings and the Wedderburn-Artin Theorem lie at the basis of classical
Ring Theory. Later, the study of group graded structures became important for the
development of different branches of Mathematics [34], [20], [14]. Many classical concepts
and results in Ring and Module Theory have a group graded version, for example the
Wedderburn-Artin Theorem [27], [34, Theorem 2.10.10] or [13, Theorem 2.12]. Nowadays,
groupoids [21] play an important role in Mathematics [36], [31], [15], and groupoid graded
structures have already appeared in different contexts such as partial actions [4], [5], [33]
and Leavitt path algebras [19].

A groupoid, together with a zero, can be regarded as a semigroup. Thus, some results
about group graded rings might be shrouded in the theory of semigroup graded rings.
To knowledge of the authors, the first work that began the study of groupoid graded
rings and modules as a separate class was [29]. Usually, first results in the theory were
obtained supposing that either the graded ring has an identity element and/or that the
groupoid has a finite number of objects [28], [30], [37]. A systematic study of groupoid
graded rings and modules that do not satisfy these conditions began in [11] where the
first results about groupoid graded semisimple modules were also given. In that work,
graded rings are supposed to have a good set of local units. They refer to such rings as
object unital rings, a term that we adopt in this work (see Subsection 2.3). This concept
was already used in [35] under the name of locally unital ring.

The general purpose of this work is twofold: to continue the systematic study of object
unital groupoid graded rings and to offer an application of such objects to the study of
(small) preadditive categories. A more precise description of our aim is given in the
following paragraphs.

Naturally, in the groupoid graded context, rings do not necessarily have a unity. In fact,
imposing the existence of an identity element implies that there is only a finite number of
idempotents of the groupoid inside the support of the graded ring [29, Proposition 2.1.1].
The possibility of an infinite number of idempotents in a groupoid does not allow some
classical definitions to be generalized as directly as they do in the group graded case.
For instance, many interesting examples of groupoid graded rings are decomposed as an
infinite direct sum of nonzero graded right modules. The usual definition of artinianity
does not apply in this case, but another descending chain condition is useful. It is the
natural generalization of the notion of a categorically artinian ring, introduced in [2,
Definition 1.1] and [1, Section 4.2], to the setting of groupoid graded rings. We will talk
about I'p-artinian rings, see Subsection 5.2. In other cases, the natural generalization of
certain concepts lead to unexpected properties. For example, groupoid graded division
rings are not necessarily graded prime rings. Other definitions are not useful in the
groupoid graded context. Also, if a module is graded by a groupoid but not by a group,
then no element is linearly independent. For this reason, we define pseudo-free modules
instead of free modules, see Subsection 3.1 for more details.
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Another difficulty that appears when dealing with rings R graded by a groupoid I is
how to induce I'-gradings on matrix rings with entries in R. In the group graded context,
a finite sequence of n elements of the group is enough to produce a group grading on
the matrix ring (of finite size n x n). In our case, we will require sequences of suitable
subsets of the groupoid in order to obtain groupoid gradings on matrix rings with entries
in a groupoid graded ring. On the other hand, these graded matrix rings have similar
properties to those that appear in the group graded context.

One of our main results is a groupoid graded version of the Wedderburn-Artin the-
orem. We prove that groupoid graded semisimple rings are precisely certain (may be
infinite) direct products of gr-simple 'p-artinian rings, see Theorem 5.30. These rings
are the groupoid graded generalization of simple artinian rings and we characterize them
as graded matrix rings (perhaps of infinite size) over graded prime division rings, see
Theorem 5.23.

It is a well-known result in Ring Theory that every unital right (left) module over
a division ring has a basis (see, for example, [22, Theorem 2.4]). One can use the
Wedderburn-Artin theorem to prove the converse. In fact, suppose that R is a ring
with unity such that every unital right (left) R-module is free. This implies that every
unital right (left) R-module is projective. By [24, Theorem 2.8], R is a semisimple ring
and it follows that R must be a finite product of matrix rings over division rings. But
all modules over such ring are free if and only if the ring is a division ring. Analogous
arguments show the correspondent characterization of group graded division rings (cf.
[7, Theorem 3.3] for one implication). We were surprised to build a non-sophisticated
example of a groupoid graded ring (a 3 x 3 matrix ring with a suitable grading) over
which all graded right modules are pseudo-free, but that is not a graded division ring.
With this example in mind and using our graded Wedderburn-Artin Theorem, we are
able to characterize graded rings whose modules are all pseudo-free.

One of our main examples of groupoid graded ring is the ring obtained from a small
preadditive category. In small preadditive categories, one can define ideals, simplicity
[16], semisimplicity and artinianity [32]. This suggests that concepts of ring theory can
be defined in category theory and that graded results about the ring of the category can
be used to get results about the category. We show that semisimplicity, artinianity and
simplicity of the category are equivalent to the graded semisimplicity, graded artinianity
and graded simplicity, respectively, of the ring of a small preadditive category.

In Section 2, we present the basic definitions, examples and results about groupoids
and groupoid graded rings and modules that will be needed in the paper. In addition,
we fix the conventions that will be adopted throughout the text.

Section 3 is dedicated to study groupoid gradings on matrix rings, homomorphisms be-
tween groupoid graded modules and the identification of graded matrix rings with graded
endomorphism rings of certain graded modules. We begin this section by presenting
pseudo-free modules. Next, we define and prove some results about gr-homomorphisms
and homomorphisms with degree. Then, we describe a key method to obtain groupoid
gradings in matrix rings over graded rings. One of the main results of this section is the
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expression of homomorphisms with degree as matrices. Later, in order to obtain results
about left modules from those about right modules, we consider the opposite ring of a
graded ring as a graded ring. These techniques are useful to get isomorphisms between
categories of graded left modules over a graded ring and graded right modules over the
opposite ring. We also show other isomorphisms between categories of graded modules
that are obtained when the groupoid is connected. We finish this third section with
groupoid gradings in additive groups of rectangular matrices.

In Section 4, we deal with properties of groupoid graded division rings. The first main
result is the decomposition of a graded division ring as a sum of graded prime (simple)
division rings. Another important result is the fact that all graded modules over a graded
division ring are pseudo-free. We finish proving some results about graded division rings
that are similar to the ones in basic linear algebra.

We study groupoid graded semisimple rings in Section 5. We begin with basic re-
sults about graded simple modules, such as graded Schur’s Lemma, and about graded
semisimple modules and rings. Then we find the structure of graded prime semisimple
rings as certain graded matrix rings over graded division rings and prove that graded
semisimple rings are direct sums of these. We end the section studying the uniqueness
of this matrix representation.

In Section 6, we get another proof of the structure of gr-simple I'g-artinian rings,
proving a groupoid graded version of the Jacobson-Chevalley density theorem.

Section 7 is devoted to study pseudo-free module (pfm) rings, that is, those graded
rings over which all graded modules are pseudo free. The main result of this section is the
characterization of such rings. This theorem is obtained from the one that characterizes
graded prime (simple) pfm rings. We also find an invariant for pfm rings: the gr-simple
dimension. In the final part of the section, we study some relations between pfm rings
and graded division rings.

Example 2.3 tells us how to obtain a groupoid graded ring from a small preadditive
category. This example and [32,18] motivate us to apply the concepts discussed in pre-
vious sections to the categorical context. This is the main objective of Section 8. We
begin by showing that additive contravariant functors from a small preadditive category
to abelian groups can be regarded as graded modules over the ring of the category. After
that, we obtain new characterizations of semisimple categories. We also define and char-
acterize simple artinian categories and division categories. We show that the concept of
free functors given in [32] is linked with our concept of pseudo-free modules and we use
this to get a characterization of categories for which all functors to abelian groups are
free.

2. Preliminaries

In this section we collect some known definitions and results that will be used through-
out the paper, sometimes without reference.
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2.1. Groupoids

A groupoid T is a small category in which every morphism is invertible. In other words,
every morphism of I' is an isomorphism. We will denote the set of objects of T' by T'y.
The identity morphism of e € T'y will be denoted again by e. In this way, we identify
the groupoid with its set of morphisms and sometimes we will refer to I'y as the set of
idempotents of T'. If e, f € T'y and v is a morphism from e to f, we will write d(vy) = e
and r(y) = f. Notice that d(y~!) = r(y) = f and 7(y~!) = d(y) = e. If, moreover,
d(0) = f, then §y € T’ with d(dv) = d(y) = e and r(dv) = r(§) = f. If d(6) # f, we will
say that & is not defined in T". For a detailed study of groupoids the interested reader
is referred to [21] or [23].

Groupoids with a unique object can be identified with groups. Some other important
examples of groupoids that we will deal with are the following.

Example 2.1.

(1) Let {G; : i € I} be a family of groups where e, is the identity element of G; for
each i € I. Let T' be the disjoint union of {G; : @ € I'}. Then I is a groupoid with
Iy = {eg, : @ € I} if we define the inverse of each element in the natural way and
the composition only for elements in the same group. Thus r(g;) = d(g;) = eg, for
all7 eI and g; € G;.

(2) Let X be a non-empty set. We endow I' := X x X with a structure of groupoid
in the following way. For (y,z) € T, define d(y,z) = (z,z), r(y,z) = (y,y) and
(y,2)~! = (z,y). Thus Ty = {(x,2): * € X} and it can be identified with X in
the natural way. Note that there exists a unique morphism between two objects in
Ty. For each (y,x),(z,w) € T, the composition (z,w)(y,x) is defined if and only if
w =y. In that case, (z,v)(y,z) = (2, x).

(3) Generalizing the previous example, let X be a non-empty set and G be a group with
identity element e. We endow I' := X x G x X with a structure of groupoid in the
following way. For each (y,g,z) € T, define d(y, g,2) = (x,e,z), r(y,9,2) = (y,€,y)
and (y,g,2)"! = (2,97 %, y). Thus Ty = {(z,e,7): € X} and it can be identified
with X. Note that the morphisms between two objects in 'y can be identified with
the elements of G. For each (z, h,w), (y,g,z) € T, the composition (z, h, w)(y, g, )
is defined if and only if w = y. In that case, (z, h,y)(y, g,2) = (2, hg, ). Notice that
we obtain the foregoing example when G is the trivial group.

This example is important because any groupoid is the disjoint union of subgroupoids
isomorphic (in a non-canonical way) to the groupoid presented in this example, see
for example [9, p. 125]. O

Now we introduce some more notation on groupoids. Let I' be a groupoid. For X,Y C
I" and 7,0 € T', we define the following subsets of I':
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X ti={a""ae X},
vX = {ya: a € X with d(y) = ()},
X6 :={ad: a € X with d(a) = r(8)},
XY :={af|ac X,f€Y and d(a) = r(3)},
VX6 := {yad: a € X with d(y) = r(a) and d(a) = r(5)}.

We say that the groupoid I is connected if eI'f # () for all e, f € T'g. In other words,
given e, f € 'y, there exists o € I' such that r(o) = e and d(o) = f.

Note that if e € Ty, then el'e = {y € T': d() = r(vy) = e} is a group with identity
element e. While I'(e) is the standard notation for this group in the literature, we choose
the more suggestive notation el'e to better serve our purposes and to avoid potential
confusion with other concepts.

2.2. Groupoid graded additive groups

Let ' be a groupoid. An additive group G is I'-graded if there exists a family {G, :
v € I'} of subgroups of G such that G = @,
(which we define below) are examples of graded additive groups.
Jer X~ be a I'-graded additive
group. For each v € I, X, is called the homogeneous component of degree v of X, its

G.. Graded rings and graded modules
We continue fixing some general notation. Let X =

nonzero elements are said to be homogeneous of degree v and we write deg(z) =y €T
when 0 # z € X,. For each v € I and = € X, we write x = Z’yEF 2z, with 2, € X,
(with all but finitely many z, nonzero) and we call x., the homogeneous component of
degree v of x. The set of the homogeneous elements of X is h(X) := U'yGF X, We
define the support of X as supp(X) := {y € I' : X, # 0} and the support of x € X
as supp(z) := {y € ' : &, # 0}. When 0,7 € T are such that d(o) # r(7), that is, o7
is not defined, we adopt the convention X, := {0}. If Y is a I'-graded additive group,
then a homomorphism of groups g : X — Y it is said to be a gr-homomorphism of
groups if g(X,) C Y, for all o € T'. If, moreover, g is bijective, then we say that g is a
gr-isomorphism of groups, that X is gr-isomorphic to Y as groups and we will denote it
by X =, Y.

2.8. Groupoid graded rings

Throughout this work, rings are assumed to be associative but not necessarily unital.

Let R be a ring. We say that R is a I'-graded ring if there is a family {R,},er of

additive subgroups of R such that R = @ R, and R,Rs C R,s, for each v,6 € T
yel

Following [10], we say that R is object unital if, for all e € Ty, the ring R, is unital with

identity element 1., and for all v € I' and r € R,, we have 1,(,)r = rl4y) = r. This

r(y
concept has received other names in the semigroup graded context, see [3]. It follows



from [29, Proposition 2.1.1] that the object unital I'-graded ring R = @

Z. Cristiano et al. / Journal of Algebra 687 (2026) 1-116

ver R, is unital

if and only if I'y = {e € I'p: 1c # 0} is finite. In this event, 1p =3 cr/ 1e.

Now we present some examples of (object unital) groupoid graded rings.

Example 2.2.

(1)

(4)

If R is a group graded (unital) ring, then R is a (object unital) groupoid graded
ring. More generally, if I is a non-empty set and, for each i € I, R; is a (unital)
ring graded by the group Gj, then R := @, ; R; is (object unital) graded by the
groupoid obtained as the disjoint union of the groups Gy, i € I, via Ry, = (R;)g, if
gi € Gj.

Suppose that a ring R has enough idempotents, i.e., there exists a set {e; : i € I}
ier Rei = @, eiR [17].
Then R is an object unital I x I-graded ring via Ry; ;) := e;Re; for all i, j € I. Note

of pairwise orthogonal idempotents of R such that R = €

that e; is the unity of the ring R(; ;) for each i € I.
An object crossed system (A,T,«,3) consists of a family A = {A. : e € Ty} of
nonzero unital rings, a family o = {as : Age) — Ay} of isomorphisms of rings
(respecting identity elements) and a family 8 = {f,, € U(A(») : 0,7 € I',d(0) =
r(7)} of invertible elements, satisfying

(i) ae—sz for all e € T'y.
(i) Bo.d(o) = Br(o).o = la,,, forallo €T
(iii) a4 (aT( ) = Bmfam(a)ﬁc;l for all 0,7 € T with d(o) = r(7) and a € A1)
(iv) BorBor.p = o (Br,p)Borp for all o,7,p € I with d(o) = r(7) and d(7) = r(p).
Given an object crossed system (A, T, «, 3) and a copy {uy, : 0 € '} of T', consider
the set of formal sums

A Xg I':= {Z UgUy - (ag)o—er S @Ar(g)} .

cel’ oel

The sum in A x3 I' is defined by

Z AolUy + Z auy = Z(ag +al )ug

ocel cel’ oel’

and the product is defined to be the natural extension of

506 (br)Bortor, ifd(o)=r(T)

sy ) - (bruy) =
( ) ) {O, if d(o) # r(1).

By [10, Proposition 16], A xg ' is an (object unital) groupoid graded ring via (A NG
F)U = Ar(g)u

Given a partial action o = ({D+}, € ', {ay }yer) of a groupoid I" on a ring R as in
[5, Section 3], the skew groupoid ring R *, I' is defined. It is I'-graded, associative
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and object unital. See also [4, Section 3] for mild conditions under which R %, I" is
associative and object unital.
In [19], a free groupoid grading on Leavitt path algebras is presented. O

Now we provide what we believe is the most important class of examples of groupoid

graded rings. As far as we know, this family of examples has not been studied as graded

rings until now. The first example will be very important in Section 8.

Example 2.3.

(1)

Let C be a small preadditive category, i.e., Obj(C) is a set and every morphism set has
an additive group structure such that the composition of morphisms is Z-bilinear.
We define the ring of the category C as *

R[C] := @ Home (A, B)
A,BEOb;(C)

where, given morphisms f and g, the product fg is defined by fog if the composition
is possible and 0 otherwise. The ring (possibly without unity) R[C] has a natural
structure of ring graded by the groupoid Obj(C) x Obj(C) via

R[C](a,p) := Hom¢(B, A),

for each A, B € Obj(C). Considering the identity morphisms I4 € Hom¢(A, A),
A € 0bj(C), it is easy to show that R|[C] is object unital.

Let C be a small preadditive category and G be a group. In the literature, the
category C is G-graded if every morphism set is given the structure of a G-graded
additive group and for A, B,C € Obj(C) the composition is Z-bilinear and induces
a homomorphism

Home (B, C) @ Home (A, B) — Home (A, C)

of G-graded abelian groups (i.e., preserving degrees). Then R|C] is also graded by
the groupoid Obj(C) x G x Obj(C) via

R[C}(Ag,g) = Homc(B, A)g,

for each A,B € Obj(C) and g € G. Again, considering the identity morphisms
I, € Home(A, A), A € Obj(C), it is easy to show that R|C] is object unital.

4 Our definition of preadditive category is called additive category in [32, p. 9]. Our definition of ring of
a category is the Gabriel functor ring of [16, p. 123] and is denoted by Z[C] in [18, p. 346]. We point out
that our ring of a category is not the same as the one in [32, Section 7).
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Conversely, if X is a non-empty set and G is a group, then every X x G x X-graded
ring R is the ring of some G-graded small preadditive category. In fact, it suffices
to consider the category C whose set of objects is X and, given z,y € X, we set
Home(z,y) := @gGG R(y.g,2)- In particular, the X x X-graded rings are exactly the
rings of small preadditive categories with set of objects X. Thus, to study the rings
graded by groupoids of the form X x X and X x G x X (X a set, G a group) means
to study rings of categories. 0O

In this work, unless otherwise stated (Section 6), all groupoid graded rings are supposed
to be object unital.

Given I'-graded rings R and S, a gr-homomorphism of rings is a homomorphism of
rings ¢ : R — S which is also a gr-homomorphism of I'-graded abelian groups and
satisfies ¢(1%) = 15 for all e € 'y, where 17 (resp. 19) denotes the unity of the ring
R, (resp. S.). A gr-isomorphism of I'-graded rings is a bijective gr-homomorphism of
I'-graded rings. When there exists a gr-isomorphism of I'-graded rings ¢ : R — S, we
say that R is gr-isomorphic to S as rings and we write R =, S.

Let R be a I'-graded ring and S C R. We will say that S is a graded subring of R if
S is closed under sums and products, S = @_ (S N Ry) and, for all e € I', if S # 0,
then 1, € S..

A way to produce a new I'-graded ring from other I'-graded rings is the graded direct

product that we proceed to define. Let {R; : j € J} be a family of I'-graded rings. We

yel’

denote by

gT
R;
jeJ

the I'-graded ring whose homogeneous component of degree v € I' is the additive group

H(Rj)v-

jeJ

It is easy to see that this defines a direct product in the category of I'-graded rings and
it coincides with the usual direct product of rings if J is finite.

2.4. Groupoid graded modules

In this section, most of our definitions and results are formulated for modules on the
right. For modules on the left, they can be stated in the natural way.

Throughout this section, let I' be a groupoid and R = @ﬂ{er R, be a I'-graded ring.

If M is a right R-module, we say that M is I'-graded if there exists a family {M, :

v € T'} of additive subgroups of M such that M = @wer M., and, for each o,7 €T,
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M, if o7 is defined
MsR .
{0}, if o7 is not defined

The support of M is the subset of I' defined by supp(M) := {y € I': M, # 0}.

A submodule N of M is a graded submodule if N = . . Ny where N, := N N M,
for each v € I'. Equivalently, if n,, +--- +n,, € N with n,, € M, and v; # ~; for
different 4,5 =1,...,¢, then n,, € N forall ¢ =1, ...,¢

Clearly Rp is a I'-graded right R-module. A right ideal U of R is a graded right ideal
if Ug is a graded submodule of Rp. A graded ideal of R is a bilateral ideal of R that is,
simultaneously, a graded right ideal and a graded left ideal of R.

Let R and S be I'-graded rings and M be an (S, R)-bimodule. We say that M is a I'-
graded (S, R)-bimodule if M is a T'-graded right R-module and a I'-graded left S-module
such that (sz)r = s(zr) forall s € S,r € R and x € M.

Let M, N be I'-graded right R-modules. A homomorphism of modules g : M — N
it is said to be a gr-homomorphism of modules if g(M,) C N, for all o € I'. We denote
by Homg, g(M, N) the abelian group consisting of the gr-homomorphisms of modules
g : M — N. We also define the ring Endg,. g(M) := Homg,.r(M, M). It is easy to show
that if g € Homg, (M, N), then ker g is a graded submodule of M and im g is a graded
submodule of N. A bijective gr-homomorphism of modules g : M — N is called a gr-
isomorphism of modules. We say that M is gr-isomorphic to N as modules (denoted by
M =,, N) if there exists a gr-isomorphism of modules g : M — N.

If {Mj : j € J} is a family of I'-graded right R-modules, then the direct sum P, ; M
is also a I'-graded right R-module via (B¢ ; M)y 1= D¢ ;(M;), for each v €.

Let M be a I'-graded right R-module and N be a graded submodule of M. The
quotient module M /N is I'-graded via (M/N), = M”A';'N for each v € I'. We say that NV
is a graded direct summand of M if there exists a graded submodule X of M such that
M = N & X. In this event, M/N =, X.

A right R-module M is unital if MR = M. In other words, for each m € M, there
exist mq,...,m, € M and ay,...,a, € R such that mya; + --- + mpna, = m.

Proposition 2.4. [11, Proposition 5] Let R be a T'-graded ring and let M be a T'-graded
right R-module. Then M is unital if and only if the equality mq1q() = mo holds for all
cel and my, € M,. O

In this work, unless otherwise stated (Section 6), all groupoid graded modules are
supposed to be unital. Moreover, in expressions such as “let M be a I'-graded R-module”
we assume that M is a I'-graded right R-module.

Remark 2.5.

(1) Let I be a set. Endow I x I with the groupoid structure of Example 2.1(2). Let R
be an I x I-graded R-module. For each i € I, recall that 1; ;) is the identity element
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of R(;;). Fix ig € I. Then every unital right R-module M can be regarded as an
I x I-graded R-module via M, ;y := M1(; ;) for each i € I. Notice that supp(M) C
{io} x I. Furthermore, any unital (R, R)-bimodule (i.e. R- M = M = M - R) can
be regarded as an I x I-graded (R, R)-bimodule via M(; j) := 1¢; ;)M 1(; ;), for each
i,j € I. In particular this applies to the ring R|C] of a small preadditive category C.
In this case, every ideal of R[C] is Cy x Cp-graded.

(2) Consider the commutative ring Z () =], er, Z with the obvious I'-grading with
support I'y. Every I'-graded abelian group is a I'-graded right and left ZT°)-module
and vice-versa. In fact, let X be a I'-graded abelian group. Then, considering X as
a right (resp. left) Z-module, we make X a T-graded right (resp. left) Z('o)-module
via

Ley - (ne)eeFo = Ty Nd(y) (resp. (ne)eefo C Ly = nr(’y)x’y)a
for each v € T', z, € X, and (ne)eer, € 7o) g

Let M be aI'-graded right R-module and ¢ € I'. For each v € I, define M (o)., := M.,
where we follow the convention M, = {0} if d(o) # r(vy). The shift of M by o is
the I'-graded right R-module M (o) := @, M(0). Note that supp(M (o)) C d(o)T.
Analogously, if M is a I'-graded left R-module and v € T, set ((¢)M), := M,,. The
shift of M by o is the I'-graded left R-module (0)M := @ cp((c)M),. Notice that
supp((c)M) C I'r(o). The following property of shifts of modules will be very useful.
For a left version, see [11, Proposition 10(a)].

Lemma 2.6. Let M be a I'-graded R-module and o € T'. Then M (o) equals M(r(o)) as
R-modules. More precisely, M (o) and M (r(c)) have the same homogeneous components
(albeit labeled with a different degree).

Proof. If v € supp(M(o)), then r(y) = d(o) and M(0), = Myy = M(1(0))sy is a
homogeneous component of M(r(c)). On the other hand, if v € supp(M(r(c))) then
r(vy) = r(o) and it follows that M(r(c))y = My = Mys-1, = M(0)s—1
neous component of M(c). O

~ is a homoge-

Note that if R is a I'-graded ring and M is a I'-graded right R-module, then M =
@D.cr, M(e). This decomposition will be important, so we define

Io(M):={ee€Ty: M(e) #0}.

The next result gives two more ways of expressing I'((Rg) and shows that T'j(Rg) =
I'y(rR). Thus we can write I'j(R) or simply I'j, when the I'-graded ring R is clear,
instead of I'y(RR) or T'y(rR).
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Lemma 2.7. Let R be a I'-graded ring. Then
le #0 < R. # {0} < R(e) #{0} < (e)R # {0}
for each e € Ty.

Proof. It suffices to note that, for each e € T'g, R, is a ring with unity 1. and R(e) (resp.
(e)R) is a right (resp. left) R-module generated by 1.. O

Given v € TI', we say that a homomorphism of right R-modules ¢ : M — N is a
homomorphism of degree ~ if g(M,) C N4, for each o € T, where we understand that
N,» = {0} whenever o is not defined in I'. For all v € I, HOMg(M, N), will denote
the additive group of the homomorphisms g : M — N of degree . Hence, we can define
the I'-graded additive group HOMpg (M, N) := @, cp HOMg(M, N),,.

A word of caution is needed for graded left modules. If M, N, P are I'-graded left
R-modules and g: M — N, h: N — P are homomorphisms of I'-graded modules, g will
act on the right. Thus, the image of x € M will be denoted by (z)g, and the composition
g o h means that g acts first. Now, given 7 € I', we say that the homomorphism of left
R-modules g : M — N is a homomorphism of degree v if (M,)g C N, for each o € T.
For all v € I', HOMRg(M, N ), will denote the additive group of the homomorphisms g :
M — N of degree . Hence, we can define the I'-graded additive group HOMg (M, N) :=
@ver HOMpg (M, N),.

The following results follow immediately from the definition (see [11, Proposition

13(c)]).
Lemma 2.8. Let R be a I'-graded ring and v,0 € T.

(1) Let M, N and P be T'-graded right R-modules and consider homomorphisms g €
HOMg(M,N),, h € HOMRg(N, P),. If o7y is defined, then hog : M — P is a
homomorphism of degree oy, and h o g = 0 otherwise.

(2) Let M, N and P be I'-graded left R-modules and consider homomorphisms g €
HOMRg(M,N),, h € HOMg(N, P),. If yo is defined, then hog : M — P is a
homomorphism of degree vo, and ho g =0 otherwise. 0O

Lemma 2.9. Let R be a I'-graded ring, M and N be I'-graded R-modules and o € T'.

If g € HOMRr(M,N),, then @ M(e) C kerg and img C N(r(o)). In particular,
er
e;d(g)
HOMR(Ma N)a = HOMR(Ma N(T(J)))J' |

Let M be a I'-graded right (resp. left) R-module and e € I'y. Considering the de-
composition M = P, M(e) (resp. M = P, (e)M), we denote by 1. the canonical
projection M — M (e) (resp. M — (e)M). It is easy to see that 1. € ENDr(M)e,.
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Proposition 2.10. Let R be a I'-graded ring and M be a I'-graded R-module. Then
ENDRg(M) is an object unital T'-graded ring with g - h := go h for all g,h € ENDg(M).
Moreover, the ring ENDg(M), has unity 1. for each e € T'y.

Proof. We know that ENDg(M) = @, ENDg(M), and, by Lemma 2.8, we have
ENDRg(M),ENDg(M)s € ENDg(M),s for each 7,6 € I'. In particular, ENDg(M) is a
ring. It follows easily from Lemma 2.9 that 1,y 0 g =g = go 14, for each v € I' and
g € ENDg(M),. Thus, ENDg(M) is an object unital I-graded ring in which 1. is the
unity of the ring ENDr (M), for each e € Ty. O

A graded module and its endomorphism ring END are linked by the following impor-
tant relation.

Lemma 2.11. Let R be a I'-graded ring and M be a I'-graded R-module. Then T'y(M) =
T)(ENDg(M)).

Proof. By definition of I'y(M), e € T(M) if and only if M (e) # 0. By definition of 1.,
M (e) # 0 if and only if 1, # 0. By Proposition 2.10 and Lemma 2.7, 1, # 0 if and only if
ENDg(M)e # 0. Again by Lemma 2.7, END (M), # 0 if and only if e € T (ENDg(M)),
as desired. O

Note that if M, N are I'-graded R-modules such that ¢ : M — N is a gr-isomorphism
of modules, then END (M) 2, ENDg(N) as graded rings via g — ¢ ogo ¢! for all
g € ENDg(M).

Remark 2.12. It is easy to show that if R is a I'-graded ring and M, N are I'-graded
R-modules, then

(1)

Homyg, r(M, N) < H HOMpg(M, N),
ecly

via h — (he)eer, where he = h on M(e) and h, = 0 on M (f) for all e # f € T'y.
(2)

Homg, p(M,N) = H Homg, (M (e), N(e))
e€lg

via the homomorphism of additive groups i ~ (h|as(e))eer,, Where h[ys(e) denotes
the restriction of the gr-homomorphism h: M — N to the graded submodule M (e)
for each e € T'yg. Notice that h(M(e)) € N(e) because h is a gr-homomorphism.
Thus, ) € Homg, r(M(e), N(e)) for each e € T'g. O
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The following result is a graded version of the generation Lemma [25, (1.1)]. If R
is a T'-graded ring, M is a T'-graded R-module and {m; : ¢ € I} C h(M) is a set
of homogeneous generators of M, we will say that {m; : ¢ € I} is a minimal set of
generators if, for each ¢y € I, m;, does not belong to the graded submodule of M
generated by {m; : i € I\ {io}}.

Lemma 2.13. Let R be a I'-graded ring, M be a T'-graded R-module and {m; : i € I} C
h(M) a minimal set of homogeneous generators of M where I is infinite. Then M cannot
be generated by a set of homogeneous elements with cardinality less than |I|. In particular,
every minimal set of homogeneous generators of M has cardinality |I|.

Proof. Suppose that {z; : j € J} is another set of homogeneous generators of M. Each
x; is a linear combination of m;’s. Then, let Iy be a minimal subset of I such that
{z; :jeJ} C{m; :i € Ih}R. Thus, M = {z; : j € J}R C {m; : i € Ip}R and it
follows that Iy = I. If J is a finite set, then Iy is also a finite set, contradicting that |I|
is infinite. Therefore, |J| is infinite and it follows that |I| = |Io| < |J]-Ro = |J|. O

Corollary 2.14. Let R be a T'-graded ring, M be a T'-graded R-module and {m; : i €

I}, {m’ : j € J} be subsets of h(M)\ {0} such that M = @ m;R = @ m;R. If I orJ
iel j€J
is infinite, then |I| = |J|.

Proof. It suffices to note that {m; : i € I} and {m} : j € J} are minimal set of
homogeneous generators of M. Now the result follows from Lemma 2.13. O

2.5. Conventions

Throughout this work, rings are assumed to be associative but not necessarily unital.

Unless otherwise stated (Section 6), all groupoid graded rings are supposed to be
object unital.

Unless otherwise stated (Section 6), all groupoid graded modules are supposed to be
unital.

In expressions such as “let M be a I'-graded R-module,” we assume that M is a
I'-graded right R-module.

We will consider left modules. In this event, we will make explicit the word left. If
M, N, P are left modules and g: M — N, h: N — P are homomorphisms of modules,
g will act on the right. Thus, the image of x € M will be denoted by (z)g, and the
composition g o h means that g acts first.

Let X = EnyeF X, be a I'-graded additive group; for instance, X could be a I'-graded
ring or a I'-graded (right or left) module. When o, 7 € T are such that d(o) # r(7) (that
is, o7 is not defined) we adopt the convention X,, := {0}.
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3. Gr-homomorphisms and rings of matrices

Throughout this section, let T' be a groupoid and R = @ R, be a I'-graded ring.
~el’

3.1. Pseudo-free modules

Let M be a I'-graded R-module. Consider a sequence of homogeneous elements

(x:)icr € [] M5, where (v;)ier is a sequence of elements of I'. A homogeneous el-
iel
ement * € M, is said to be a genuine linear combination of (x;);es if there exists

(a;) € @ R,-1, such that v = > @;a;. We say that (2;)ies is pseudo-linearly indepen-
iel iel
dent if the only sequence (a;)icr € @ lg(,)R such that > xzja; = 0 is (as)ier = 0.
icl i€l
Equivalently, the only sequence (a;)icr € @ la¢y,) R, with a; € h(1g,,)R) for all i € I,
i€l
for which > x;a; = 01is (a;)icr = 0. Analogously, the only genuine linear combination of
i€l
(z;)ies that equals 0 € M is with a; = 0 for all i € I. The sequence (z;);cs is a pseudo-
basis of M if (z;);er generates M as an R-module and it is pseudo-linearly independent.
If M has a pseudo-basis, we say that M is a pseudo-free module.

It is worth noting that the R-module Rgr = € R(e) is pseudo-free, with pseudo-basis
ecly

{1e}eery(r)- Furthermore, for each o € T' such that r(o) € TH(R), R(0) is pseudo-free
with the pseudo-basis formed by 1,5y € (R(0))s-1.

Modules of the form @ R(o;) were called free in [29] and free by suspension in [11].

i€l

In the next result, we show the universal property of these modules and that they are
(gr-isomorphic to) what we have just called pseudo-free modules.

Proposition 3.1. Let M be a I'-graded R-module. Consider a sequence of homogeneous

elements (z;)icr € [] M., where (v;)icr s a sequence of elements of I'. The following
iel
statements are equivalent.

(1) (zi)ier is a pseudo-basis of M
(2) For each x € M, there exists a unique sequence (a;)icr € @ la(y,) R such that

el
Tr = E T;Q;.

iel

(3) Every homogenous element © € M can be uniquely expressed as a genuine linear
combination of (x;)icr. That is, for each o € T and x € M,, there exists a unique
sequence (a;)icr1 € @ R,,-1, such that

i€l
xr = E ;5.

icl
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(4) For any R-module N and sequence (y;)icr € [[ Nla(y,), there exists a unique ho-
iel
momorphism of R-modules f: M — N such that f(z;) =y; for alli € I.

(5) For any I'-graded R-module N and sequence (y;)icr € [ N~,, there exists a unique
iel
f € Homg,.gr(M, N) such that f(x;) =vy; for alli € I.
(6) For any o € T', I'-graded R-module N and sequence (y;)icr € [[ Nyv,;, there exists

iel
a unique f € HOM(M, N), such that f(xz;) =y; for alli € I.
(7) There exists a unique gr-isomorphism ¢ : M — @ R(v;~") such that o(x;) = 1404,

iel
foralliel.

Proof. (1) = (2) Since (2;)ier € [[ M,, generates M, x = Y x;d; for some (d;);es €
icl i€l
@ R. If we (uniquely) express each d; as d; = a; + aj where a; € 1g¢,, R and aj €
iel
@ 1R, then
e€To\d(vi)

T = indi = Zﬂci(ai +a)) = inai

i€l icl icl

because, for all i € I, z;a; = 0 due to the fact that M., - < &b 1€R> = {0}.
(i)

e€lo\d
Now suppose that there exists (b;)icr € @ 14(-,)R such that 2 = >, _; x;b;. Then
i€l
il

Since a; — b; € 14(y;) 2 and (24)ier is pseudo-linearly independent, we obtain that a; = b;
foralli e I.
(2) = (4) Let x € M. By (2), there exists a unique sequence (a;)icr € €D lg(y,) R
iel
such that

Tr = E T;Q;.

i€l

Define f(z) = f(>_;c; ®iai) := Y _;c; yiai- Now it is routine to see that f is a homomor-
phism of R-modules.

(4) = (1): First, we show that (x;);cs generates M. Let M’ be the graded submod-
ule of M generated by (z;)ier and consider N := M/M’. By (4) there exists a unique
homomorphism of R-modules f: M — N such that f(z;) = 0 for all i € I. Thus, f is
the canonical projection and it follows that N = 0, i.e., M’ = M. Now we prove that
(w4)icr is pseudo-linearly independent. Suppose that a sequence (a;)ic; € @ 1g(y,) R is

iel

such that ) z;a; = 0. For each i € I, let f;: M — 14(,,)R be the unique homomorphism
il
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of R-modules such that f;(x;) = 14(,,) and fi(z;) = 0 for all j € I'\ {i}. So, for all i € I,
we have

Oifz ZIJ'CLJ' :Zfi(xj)aj = a;.

jerI jer

(2) = (3) is clear.
(3) = (5) is shown in the same way that (2) implies (4) and observing that the
homomorphism f so defined is a gr-homomorphism.

(5) = (7) Set N = @ R(y; ). First note that 14.,,) € N,, for each i € I.
il
By (5), there exists a unique gr-homomorphism of R-modules ¢: M — N such that
@(x;) = lg(y,) for each i € I. Now observe that the sequence (1g¢,,))icr € [] N5, is a
i€l

pseudo-basis of N. Hence ¢ is a gr-isomorphism.

(7) = (1) follows because P, R(v; ') is pseudo-free.

() = (6) For each i € I, y; € N,y, = N(0),,. By (5), there exists a f €
Homg, (M, N(0)) such that f(x;) = y; for all ¢ € I. Now f can be regarded as a
homomorphism of R-modules from M to N such that f(M,) C N, for all y € T

(6) = (5) Let Ag = {r(v;) | i € I}. Let e € Ag. By (6), there exists a unique
fe € HOM(M, N), such that

N R if r(v;)=e
felw) = { 0 ifr(v)#e

Notice that f(M(e)) C N(e) and f.(M(e')) = {0} for all ¢’ € Ay, ¢’ # e. Define also
fe: M — N as zero for all e € T'g \ Ag. Now set f € Homg, g(M, N) as the unique
R-module homomorphism such that f = f. when restricted to M (e) for all e € T'y. By
Remark 2.12, (5) follows. O

Corollary 3.2. Let M be a I'-graded R-module. Then M is a pseudo-free module if and
only if M(e) is a pseudo-free module for every e € T'y.

Proof. It follows from condition (7) in Proposition 3.1. O

In order to state the next result, we will say that a I'-graded R-module P is gr-
projective if, for each I'-graded R-modules M, N, a surjective g € Homg, p(M,N) and
h € Homg, (P, N), there exists f € Homg, r(P, M) such that h = gf [11, Proposition
35]. Now we give a direct proof of [11, Lemma 37] for object unital graded rings.

Corollary 3.3. Let P be a I'-graded R-module. If P is pseudo-free module, then P is
gr-projective.
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Proof. Let M, N be I'-graded R-modules. Suppose we are given a surjective g €
Homg, g (M, N) and h € Homg, (P, N). Let (x;)ics € [l;c; P> where (yi)ier € I'Y,
be a pseudo-basis of P. Let (m;)icr € [[;c; M, be such that g(m;) = h(x;) for all i € I.
By Proposition 3.1(5), there exists f € Homg, (P, M) such that f(x;) = m,; for all
i € 1. Then h = gf, as desired. O

3.2. Technical results on homomorphisms of modules with degree

In this section, we study in more detail some aspects of the graded objects END(M)
and HOM(M, N) for T'-graded modules M, N.

We begin with the regular R-module Rg. In future sections, it will be useful to regard
the graded ring R as a ring of endomorphisms with degree.

Lemma 3.4. The map
R — END(RR), a — my,

where mg is the homomorphism given by multiplication on the left by a, is a gr-
isomorphism of I'-graded rings. Moreover, gr-isomorphisms of I'-graded rings

1.R1. =, ENDg(R(e))
are induced by restriction for each e € T'y.

Proof. Consider ¢ : R — END(RRg), a — m,, with m, as defined in the statement.
Note that if a € Ry for some v € I', then m, is a homomorphism of degree ~y. Clearly,
Map = Mg © My for a,b € R. Now we prove that ¢ is an isomorphism. If m, = 0, then
ale = mg(le) = 0 for all e € T'g and it follows that ¢ = 0. Let v € I" and ¢ € END(RR),.
Then g(Ra) € Rya, for all o € T'. Hence g(x) # 0 implies € R(d(7)). In this event,
9(x) = g(La()®) = g(la(y) ). Therefore, g = ¢(g(1a(y)))-

Let e € Ty. If a € 1.R1,, then m,(R(e)) C R(e). Thus,

¢': 1cR1, — ENDg(R(e)), a— ma|p(e)

is well-defined. Let now be 0 # g € ENDg(R(e)),. As before, g = my(1,), where g(1.) =
9(1)1, € R(e)l, = 1,Rl.. O

Let M be a I'-graded R-module. Denote by P(T") the power set of I" and consider a
subset X € P(T).

Following [29, Section 2.2], we define M(¥) := @ 5, M(0). When M = R we write
R(X) := Rg(X). Notice that if r(o) = f for some ¢ € ¥ and f € T’ \ I'((M), then
M (o) = {0}. Thus, if ¥’ = {oc € X: r(0) € T{(M)}, then M(X) = M(X').
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We say that X is r-unique for M if {r(c) : 0 € £} CT{(M) and, for each e € T'j(M),
there exists at most one o € ¥ with 7(o) = e. This condition implies that, for o, 7, p, A €
¥, the equality oy7~! = pdA~! holds in T if and only if

o=p, T=Xand v =¢.

Indeed, if oy7=1 = pdA~L, then r(o) = r(oyr™!) = r(pdA~1) = r(p). Since ¥ is r-
unique, then o = p. This implies that y7=! = §A~!. Thus, r(7) = d(77!) = d(y77 1) =
d(6A™Y) = d(A71') = r()\). Since ¥ is r-unique, then 7 = \. As a consequence, we also
have v = 0.

We say that ¥ is fully r-unique for M if the correspondence o +— r(c) defines a
bijective function ¥ — T'((M). In other words, ¥ is an r-unique subset for M that
satisfies the following condition: for each e € I'j(M) there exists ¢ € ¥ such that
r(o) =e.

We say that ¥ € P(T') is d-unique if, for each e € I'y(M) (different from e € I'y(M)!),
there exists at most one o € ¥ with d(o) =e.

Let H be a I'-graded additive group and ¥, A € P(T
if there are (unique) o € ¥ and § € A such that r(v) =
Hpys-1 := Hsyp-1. Otherwise, Hpy-1 := {0}.

The following technical result is concerned with shifts of modules and their gr-

) d-unique subsets. Given v € T,
d(6) and d() = d(o), we denote

homomorphisms. It will be very useful in the sequel and some aspects of it can be
regarded as an improvement of [11, Proposition 13]. The equality of Proposition 3.5(1)
was given in [11, Proposition 13(a)]. We include a proof for completion.

Proposition 3.5. Let M, N be I'-graded R-modules. The following assertions hold:
(1) For each v €T,
Homg, (M, N(v)) = HOMg(M, N), = Homg, (M (y~1),N)
and the isomorphism above is the identity if M = M(y~') as sets.
(2) Let Z,A € P(T') be such that ¥ is r-unique for M, A is r-unique for N and both
¥, A are d-unique. Then, for each v € T,

HOMpg (M (%), N(A)), = HOMp(M, N)avs -1,

and such isomorphism is the identity if there exists o € ¥ such that M = M (o) as
sets.

Proof. (1) If g : M — N is a homomorphism of R-modules then, for each a € T,
we have g(M,) € N(v)q if and only if g(M,) C N,q. Therefore, the equality of the
statement follows.
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If g e HOMRg(M, N), then, for all o € T,
g (M('y_l)oc) = g(M'yfla) - N'y'yfla C N
Thus, we can consider the function

¢ : HOMg(M, N), — Homg, g(M (v~ 1), N)

g — g‘M(,Y—l)

By Lemma 2.6, M (y~!) = M(d(v)) as R-modules. Thus

M=My e B Me

ecly

e#d(y)
as R-modules. Hence, if g,/ € HOMg(M, N),, coincide in M(y~'), then g = ¢’ by
Lemma 2.9. That is, ¢ is injective. Furthermore, every g € Homg, r(M (7~ '), N) can
be extended to a gr-homomorphism of R-modules g : M — N by defining g(M(e)) = 0
for all e € Ty \ {d(7)}. Such g has degree v because, for all « € T, if r(a) # d(v),
then g(My) C g(M(r(a))) = 0, and if r(a) = d(v), then g(My) = g(My-1,,) =
g(M (v 1)ya) € Nya. Thus, ¢ is surjective, and therefore an isomorphism. Clearly ¢
is the identity function if M = M (y~1) as sets.

(2) Suppose there exist (unique) o € ¥ and § € A such that d(o) = d(vy) and

d(6) = r(v). Using (1), we obtain

HOM (M(X),N(A)), = Homg,. g (M(X), N(A) (7))

Y Homg,.x (M(5), N(57))
= HOM (M (%), N)s,,
= Homyg, (M(2)(v"'67"), N)

@ Homg,.p (M (o~ '67"), N)
~ HOM (M, N)Ma,l
= HOM(M, N)as-1.
Notice that, if o or ¢ as before do not exist, then (x) equals zero. Hence,

HOM (M(E), N(A))., = HOM(M, N) oys-1

and the first part of (2) follows. And, again by (1), if there exists o € T' such that
M = M(o) as sets (in this case, I'((M) = {r(c)} and ¥ = {o}), then the isomorphisms
above are the identity. O
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3.8. Graded matriz rings

Now we turn our attention to the representation of homomorphisms with degree of
pseudo-free modules as matrices. For this purpose, given a ring R and a set I, we consider
two rings of I x I matrices with entries in R. The first one is CFM;(R), consisting of
the column finite I x I matrices with entries in R. The second one is M;(R), consisting
of the I x I matrices with only a finite number of nonzero entries in R. In the ungraded
context, if R is a unital ring these matrix rings can be identified with certain rings of
endomorphisms of free R-modules, as the next example shows.

Example 3.6. Let R be a unital ring and let M be a free right R-module with basis
B={e;:iecl}. Let f € Endgr(M). We can associate to f the matrix [f]; € CFM;(R),
whose i-th column consists of the coordinates of f(e;) with respect to the basis B for
each i € I. Then the map Endr(M) — CFM;(R), given by f — [f]g, defines a ring
isomorphism. Under this isomorphism, the subring M;(R) of CEM[(R) is then identified
with the subring of Endg(M) consisting of the endomorphisms f such that the set
Ip ={ie€I: f(e;) # 0} is finite. Notice that if I is finite, then CFM;(R) = M;(R). O

In this subsection, we aim to generalize Example 3.6 to the groupoid graded context.
To this end, we have to define first the graded objects that will play the role of CEM;(R)
and My (R).

Let I be a non-empty set and ¥ = (X;);e; € P(T')! be a sequence of non-empty
subsets. We say that X is d-finite if, for each e € I'y, the set

{i € I: d(o) = e for some o € ;}

is finite.

We say that the sequence ¥ = (%;);e; € P(I)! is cf-matricial for R if ¥; is d-unique
and 7-unique for R for each i € I. If, moreover, ¥ is d-finite, we say that X is matricial
for R. Notice that if I is finite, then ¥ is cf-matricial for R if and only if it is matricial
for R. The sequence % is called fully matricial for R if it is matricial for R and ¥; is
fully r-unique for R for all i € I.

Suppose that ¥ = (%;)ier € P(I')! is cf-matricial for R. Let CFM;(R) be the set
of column finite I x I matrices with entries in R. For each v € I', consider the subset
CFM/(R)(X), of CFM[(R) where

CFM[(R)(E),Y = {(au) S CFM[(R) | a5 € RZ'L'YEII} .
Note that each CFM;(R)(Y)., is an additive subgroup of CFM;(R). Thus

CFM,(R)(S) := Y | CFM;(R)(T),
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is an additive subgroup of CEM;(R).

Let i,j € I. If a € ngﬁl for some v € T', 0; € &; and 7; € ¥, with d(o;) = ()
and d(y) = d(7;), then the matrix whose (i, j)-entry is a and all its other entries are
zero will be denoted by aE;;. Note that aE;; € CFM;(R)(X),. As an important special
case, we define the matriz units Ef; as follows. Suppose that e € Iy, and there exist

o; € ¥, 7; € ¥ such that r(0;) = r(7;) = e. Then Ef; := 1.E;; € CFM;(R)(¥), -

Tj

Lemma 3.7. Let X = (3;)ic; € P(I)! be a cf-matricial sequence for R.

(1) CFM(R)(X) = @, CFM;(R)(Z),. B

(2) The product in CFM;(R) induces a product in CFM[(R)(X) that endows
CFM;(R)(X) with a natural structure of T'-graded ring with identity elements

L= Y E“)cCFM[(R)E)., where I, :={i € I: S;e # 0}, for each e € T.
icl,
o, €3 e

Proof. (1) It is enough to prove that ZF Rznzj‘l is direct for each 4,5 € I. Let i,j € I
vE ’

and v,d € I such that RE”E_A and Ry, ;5,1 are nonzero. Let o, o, € 3; be the unique
elements in 3; such that d(o;) = r(7) and d(o}) = 7(5), and let 7;, 7] € X; be the unique
elements in ¥; such that d(7;) = d(vy) and d(7}) = d(0). Then, since ¥; and ¥; are
r-unique for R and d-unique, it follows that

szzj—l = REitSE;l <~ R 1= RUQ(;TJ/_A

TiNT;
— Ui’yTj*l = 02(57]{_1

= o;=o0;, Tj=T;and y =0
= y=9.

(2) Fix ’)/,(5 el'.Let Ae CFMI(R)(E),Y and B € CFM[(R)(S)(; Then AB = (Cij) S
CFM/(R), where

Cij S E Rzi’yz,:l 'REkEE;I'
kel

—1
TiYPy
. , .
and REME;l = RP;C(;TJ_A for certain o; € X;, pi,p), € Xx and 7; € X;, where py is

Let k € I be such that RZ',YEZI and Rzkmfl are nonzero. Then ng,mgl =R
v )op i

the unique element in X5 with d(py) = d(7y) and p), is the unique element in 3 with
() = ().

Suppose first that 74 is defined in I'. Now, since d(7y) = r(9), we get that d(px) = d(p},)
which implies pi, = pj, because Xy, is d-unique. Hence

RZi'yEglREkéZTI =R 1R CR

oiypy Tt = Moyt T Rﬁmézjl'
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This implies AB € CFM(R)(X)~s-
Suppose now that 4 is not defined in I'. Thus, d(v) # (). This implies d(px) # d(p},).
Since X, is r-unique for R, we obtain that r(px) # r(p},). Thus

szzgleksE;l = Ranp,glRp;céaj—l =0.

This implies AB =0 € CFM;(R)(X)s.
Now we prove that the ring is object unital. Let e € T'y. Consider the matrix

Ie= Y E") e CFM(R)(E).,
olE¥ e

consisting of 1,(,,) € Ry(s,) = R, .,—1 in the (i,7)-entry, i € I., and zero everywhere

else. Let A = (ax;) € CFM;(R)(X), where r(y) = e. If k ¢ I., then there is no element
o € Xy, with d(o) = e. Thus, ay; € R2k72;1 = {0}. If k € I, then, taking o), € ¥}, such
that d(cy) = e, we obtain ag; € RZMEl—l = Ro_wzl_l. Thus, 1,.(,)ak = ag- Then, it is
routine to show that I,A = A. In the same way, one can show that Bl, = B for any
B € CFM(R)(Z)s with d(§) =e. O

Let M;(R) be the set of I x I matrices with only a finite number of nonzero entries in
R. Let ¥ = (%;)ier € P(I)! be a cf-matricial sequence for R. For each v € T', consider

the subset M;(R)(X), of M;(R) C CFM(R) where
My (R)(S), = { (@) € My(R) | aij € Ry 51 } © CFMy(R),.
Note that each M;(R)(X), is an additive subgroup of M;(R) and CFM;(R),. Thus

M;(R)(Z) := P M(R)(E),

yel’

is an additive subgroup of M;(R) and a I'-graded additive group, by Lemma 3.7(1).

Proposition 3.8. Let ¥ = (%;);er € P(I)! be a matricial sequence for R. Then

CFM(R)(X) = M;(R)(X), and therefore the following statements hold true.

(1) The product in Mi(R) induces a product in Mp(R)(X) that endows My (R)(X) with
a natural structure of T'-graded ring with identity elements I, := > E;(Ui) €
iel,
o,€EXe

M;(R)(X)e, where I, :={i € I: d(o) = e for some o € X;}, for each e € Ty.
(2) If ¥ is fully matricial for R, then M7(R) = M;(R)(X) as rings. Thus, M;(R) can
be endowed with a I'-graded ring structure.
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Proof. In order to prove CFM;(R)(X) = M;(R)(X), it is enough to show that
CFM(R)(X), = M/(R)(X), for each v €T
For each vy € T, since ¥ is d-finite, I,.(y) and I, are finite and therefore szzfl #0

for only a finite number of 4, j € I. Thus, CFM(R)(X), € M;(R)(X),.

(1) follows from Lemma 3.7(2). Note that, since the sequence X is d-finite, it follows
that the sets I, are finite and, therefore, the matrices I, = > E;([”) € M;(R)(%), for

e

all e € T'.

(2) Let 0 # a € R, for some v € I'. Since X is fully matricial for R, there exist o; € ¥;
and 7; € X; such that T(Gi)iz r(v)and r(7;) = d(v). Thena € R, = R, (o=1yr;)r—1- This
shows that aE;; € M;(R)(X)

5
v Therefore any matrix in M;(R) can be expressed as
sum of a finite number of homogeneous elements in M;(R)(X). O

-1
g

Remark 3.9.

(1) In Proposition 3.8(1), if the sequence ¥ is cf-matricial for R, but not matricial for
R, then M;(R) is a I'-graded ring which is not object unital.

(2) In Proposition 3.8(2), if the sequence X is matricial for R, but not fully matricial for
R, then M;(R) # M;(R)(X).

(3) Assume that ¥ is cf-matricial for R and all 3; are fully r-unique for R. Then

(a) If I is finite, then CFM;(R)(Z) = M;(R)(Z) = M;(R) = CFM;(R).

(b) If supp R is finite, then M;(R)(X) = M;(R). O
3.4. Graded endomorphism rings as graded matriz rings

Now we want to show that the matrix rings just defined correspond to rings of en-
domorphisms with degree. For that, we need Proposition 3.10 that will be useful in
Section 5 too.

Let I, J be non-empty sets and {M;: j € J}, {N;: i € I} be families of I'-graded
R-modules. Set M = @ M, and N = @ N;.

jeJ i€l

For eachy € T', we imu denote by Hyx s(M, N), the set of I x J column finite matrices
(fij) where f;; € HOM(M;, N;), for each (i,5) € I x J. Clearly each Hyy (M, N), is
an additive group. Thus

Hiss (M, N) = @ Hyws (M, N),
yel’

is a I'-graded additive group. Moreover, H jx ;(M, M) is a I'-graded ring with the usual
product of matrices.
That is, given F' = (f;;) € Hyxs(M, M), and G = (g;;) € Hx. (M, M)s, then

FG = (hij) € HJXJ(M7M)’Y5
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where h;; = > fikgr;. Note that, if e € T'g, then the matrix whose (j, j)-entry is 1;e,
keJ
the identity element of END(M;)e, for each j and zero any other entry is the identity

element of H j ;(M, M)..

Proposition 3.10. Let I, J be non-empty sets, {M;: j € J} and {N;: i € I} be families

of T'-graded R-modules and M = @ M;, N = @ N;. Suppose that, for all j € J and
jeJ icl
g € h(HOM(M;, N)), there exists a finite I, C I such that img C @ N;. Consider the
icl,
natural inclusions pj: M — M, pi: N; — N and the natural projections wj: M — M,
it N = N; foralli €1, j € J. The following statements hold true.

(1) The natural map
HOM(MaN)_)HIXJ(MaN)a fH(W;fpj)tja

is a gr-isomorphism of I'-graded additive groups.
(2) The natural map

END(M) — Hyyxy (M, M), [~ (mifp;)ij,

is a gr-isomorphism of I'-graded rings.

(3) If, moreover, for all e € Iy there exists a finite J. C J such that M(e) = @ M;(e),
Jj€Je
then Hyx s(M, N) consists of matrices with only a finite number of nonzero entries.

Proof. Let
(I):HOMR(MvN)_)HIXJ(M7N)a fH(W;fp])U

First we prove that ® is well-defined. For that it is enough to show that ® is well defined
for homogeneous elements. Let v € " and f € HOMg(M, N),. For each i € I,j € J we
have that 7} fp; € HOMg(M;, N;),. Fix now j € J. By hypothesis, there exists a finite
Iy,, C I such that im(fp;) € @ N;. Hence, 7 fp; # 0 implies i € Iy,, and it follows
i€l

that the sequence (7 fp;)ier is alnjlost Z€ero.

Clearly, @ is a gr-homomorphism of I'-graded abelian groups. Thus, in order to prove
(1), it is enough to show that ® is bijective. First we show the injectivity of ®. Suppose
that f € ker ®. Then, n/fp; =0, for all ¢ € I, j € J. It implies

Fm) =" pimif(m) =" phrif | D pymi(m) | =D phmi fpimi(m) =0,

iel = jeJ i€l jed

for all m € M, that is, f = 0. Now we prove that ® is onto. Let v € I and (g;;) €
H;x (M, N),. Since (g;;) is a column finite matrix, it follows that, for all I € J, the sum
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>~ pigrim is finite and, therefore, it is an element of HOMg(M, N),. Since, for each
kel

m e M = @ M;, we have m;(m) # 0 only for a finite number of [ € J, we can define
jeJ

f = Z (Zp;yklm> S HOMR(M, .Z\/v),y

leJ \keI

Then

O(f) = (mifpj)ij = (ZZ#PZQHMP;‘) = (mi039:;7iPj)i; = (9i)ij»
ij

leJ kel

which shows (1).
For the proof of (2), changing N for M, it is enough to show that ® respects products.
Indeed, if f,g € ENDg(M) then

®(fg) = (mifgpj)ij = (mf (me) gﬂj>

leJ j

= (Z mfpzmgpj> = (mifpj)i; - (migps);; = 2(f)2(9)-

leJ

(3) Since Hjx j(M, N). consists of column finite matrices, to prove this statement
it is enough to show that, for each v € T, if F' = (f;;) € Hyx. (M, N), then only a
finite number of columns of F' is nonzero. There exists only a finite number of j’s such
that M;(d(v)) # 0, say ji,j2...,jr. Fix j € J different from ji,...,j,. Let « € I'. If
r(a) £ d(y), then fi;((M;)a) € (Ni)ya = {0} And if r(a) = d(v), then M;(r(a)) = 0
and fi;(Mj)a) C fi;(M;(r(a)) = {0}. This shows that f;; = 0 if j is not one of
Iy dr. O

We say that a I-graded R-module M is T'g-finitely generated if the R-module M (e) is
finitely generated for all e € T'y. This concept will play an important role in the sequel.

Remark 3.11.

n the statement of Proposition 3.10, the following hypotheses are equivalent:
1) In th fP ition 3.10, the following h h ival
(a) For all j € J and g € h(HOM(M;, N)), there exists a finite I, C I such that
img C @ N;.
i€l
(b) For all j € J and g € HOM(M,, N), there exists a finite [, C I such that
img C @ N;.
i€l
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(2) The foregoing hypotheses are satisfied when M is I'g-finitely generated. This holds
because if ¢ € HOM(M,, N), for some 7 € T, then g(M;(e)) = 0 for all e €
Lo\ {d(7)}, and g(M;(d(7))) is fully determined by the values of ¢ in the generators
of the finitely generated R-module M;(d(7)). O

Below we present a series of results that are consequence of Proposition 3.10.

Corollary 3.12. Let I be a non-empty set and {M;: i € I} be a family of T'-graded R-

modules such that HOM(M;, M;) = 0 for different i,j € I. Consider M = @ M;. Then
=l

END(M) =, [[" END(21).
el

Proof. For each j € I and ¢ € HOM(M;, M), we have img C M; because m; 0 g €
HOM(M;,M;) = 0 for all i € I\ {j} (where m; : M — M, denotes the canoni-
cal projection). It follows from Proposition 3.10 that END(M) =, Hyy (M, M). But
Hy« (M, M) consists of diagonal matrices and therefore

ar
Hpvr (M, M) 24, P [[ENDr(M;), = [[ ENDr(M;),
~eliel el

as desired. 0O

Let M be a I-graded R-module and ¥ = (3;);cr € P(I')! be a sequence of non-empty
subsets of I'. We will denote

M(T) =P M(%).

i€l

Corollary 3.13. Let M be a I'-graded R-module and ¥ = (3;);c; € P(I')! be a sequence
of subsets of I'. The following statements hold true.

(1) If ¥ is cf-matricial for END(M) and each M(X;) is T'o-finitely generated, then
END(M (X)) =, CFM;(END(M))(2).
(2) If ¥ is matricial for END(M), then END(M (X)) 2, M;(END(M))(X). If,

moreover, ¥ is fully matricial for END(M), then END(M (X)) is isomorphic to
M;(END(M)) as graded rings (with the induced grading from M;(END(M))(X)).
(3) If ¥ is cf-matricial for R, then END(R(X)) &, CFM[(R)(2).
(4) If ¥ is matricial for R, then END(R(X)) =, M;(R)(X). If, moreover, 3 is fully

matricial for R, then END(R(X)) is isomorphic to M(R) as graded rings (with the

induced grading from M(R)(X)).
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Proof. (1) By Proposition 3.10(2) and Remark 3.11, END(M (X)) Hyy (M (X), M(Z ))
For each (i,j) € I x I and v € I, the (4, j)-entry of a matrix in Hyx;(M(Z), M(X)), i
an element of HOM(M (X;), M (3;))~. But by Proposition 3.5(2),

HOM(M (5;), M(5:)), = END(M)y, 1.

(2) For each e € T, as ¥ is d-finite, we have M(%;)(e) # 0 only for the elements of
the finite set

I.:={ie€I:d(c) =e for some o € ;}.

So, for each e € T'y we have

=P MEi)(e) =P M=

el i€le

In particular, if v € I' and g € HOM(M (%), M (X)), then

img CME)(r(v)= P ME)r() C P M),

i€l i€l

By Proposition 3.10, END(M (X)) & Hyy;(M(X), M(X)) and this ring consists of ma-
trices with only a finite number of nonzero entries. Finally, for each (i,5) € I x I
and v € T, the (i,7)-entry of a matrix in Hyy;(M(X), M(X)), is an element of
HOM(M (%), M (X)) = END(M)E”E;L The second part of the statement is a conse-
quence of Proposition 3.8(2). '

(3) Let e € T'y. Then, for each i € I, R(X;)(e) = € R(oe) is a cyclic R-module
oey;
because ¥; is d-unique. Thus, R(X;) is I'o-finitely generated. Now apply (1) to the R-

module M = R and recall that END(R) =, R by Lemma 3.4.

(4) By Lemma 3.4, R =, END(Rg). Thus, if we make M = Rp in (2), we obtain
END(R(X)) &, M;(END(RR))(XZ) 2, M;(R)(X) and the first part of the statement is
proved.

Suppose now that ¥ is fully matricial for R. Again, if we make M = Rp in (2), we get
END(R(Y)) is isomorphic to M;(END(RR)) as graded rings (with the induced grading
from M;(END(RR))(X)). Therefore, END(R(X)) is isomorphic to M;(R) as graded rings
(with the induced grading from M;(R)(X)). O

Before stating the next results we will need some notation.

Let ¥ = (X)ier € P(I)! be a sequence of subsets. When %; = {o;} for all i € I,
that is, when each X;, ¢ € I, consists of a unique element, we will denote the sequence
by @ = (0y)ier. If ¥ is finite, suppose ¥ = (21, 3s,...,%,), then we will usually write
M, (R)(21,...,%,) instead of M;(R)(X). Likewise, when & = (071, . .., 0,), we will write
M, (R)(o1,...,00).
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Corollary 3.14. Let I be a non-empty set, e € Ty and & = (0;)ies € (eI)!. The following
statements hold true.

(1) Let M be a T-graded R-module with M = M/(e). If & is d-finite, then T is fully
matricial for END(M) and therefore

END(M (7)) ,, CEM, (END(M))(7) = M; (END(M))() = M; (END(M)),

where the last equality is as rings.
(2) Suppose supp(R) C ele. If 7 is d-finite, then T is fully matricial for R and therefore

END(R(7)) =4, CFM;(R)(@) = M;(R)(@) = M;(R),
where the last equality is as rings.
Proof. (1) As T{(END(M)) = T'4(M) = {e}, since 7 is d-finite, it is fully matricial for
END(M). Then the result follows from Proposition 3.8 and Corollary 3.13.
(2) Follows from (1) and Lemma 3.4. O

Corollary 3.15. Let ¥ = (X4,...,%,) € P(I)" be a sequence of subsets.

(1) If % is d-unique and r-unique for M for all i = 1,...,n, then ¥ is matricial for
END(M) and

END(M (X)) 2, CFM,,(END(M))(31,...,%,) = M, (END(M))(Z1, ..., Z).
If, moreover, ¥; is fully r-unique for M for alli =1,...,n, then we also have the
equality as rings M, (END(M)) = M,,(END(M))(Xq,...,%,).

(2) If ©; is d-unique and r-unique for R for alli =1,...,n, then ¥ is matricial for R
and

END(R(Z)) 2, CFM,,(R)(21,. .., %) = M (R)(1, ..., 5n).

If, moreover, ¥; is fully r-unique for R for all i =1,...,n, then we also have the
equality as rings M, (R) = M, (R)(21,...,%,).

Proof. Clearly, ¥ is d-finite. Now (1) follows from Proposition 3.8 and Corollary 3.13.
(2) follows from (1) together with Lemma 3.4. O

We end this subsection with the following remark.

Remark 3.16. If I', := I'{(R), then
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M; (R)(Tp) via a — (a);

My, (R)(€), where € := (€)cery, Via Y aef ¢+ (Gef)e, fery,-
e,feTy

(1) R
2) R

gqr
qar

111

3.5. Some results concerning the opposite ring

The aim of this section is to present techniques for deriving results about gr-semisimple
left R-modules from those obtained for gr-semisimple right R-modules.

The opposite ring R°P equals the ring R as an additive group, but it is endowed with
a new operation given by

a-°?b="ba

for all a,b € R. It is not difficult to show that if we define (R?), := R,-1 for all v € T,
then R°P becomes a I'-graded ring.

If gL is a I'-graded left R-module, we denote by L°P the right R°P-module whose
underlying additive group equals L, but with multiplication defined by

z-Pa=ax

for all @ € R, z € L. Moreover, we endow L°P with a structure of I'-graded right R°P-
module defining (L°P), = L.-: for all y € I".

Let g: L — L' be a homomorphism of left R-modules. Recall that, since L is a left
R-module, the homomorphism g acts on elements of L from the right by convention. We
define §: L°? — (L')°P by §(x) = (x)g for all € L. Since

3z " a) = (az)g = alw)g = §(z) " a
for all z € L and a € R, we get that § is a homomorphism of right R°P-modules.

Proposition 3.17. Let L be a ['-graded left R-module and ¥ = (;);er € P(I) be a
sequence of d-unique sets. The following assertions hold:

(1) If ¥ is matricial for R, then ¥ is matricial for R°P and

M;(R)(X)” =g My (R7)(X)

via the homomorphism defined by transposition of matrices.
(ENDg L)°? =4, END gor (L°P) via the map g — §.

)
) @) = ((57) L)Op, where 51 = (57,
4) If S is matricial for END(L), then ENDp ((E‘l) L) =~ . M;(ENDx(L))(Z).
) Suppose that there exists a family {R; : j € J} of I'-graded rings such that R =

1" R;. Then R» = TT" (&))"

jeJ JjeJ
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Proof. (1) The first part follows from I'y(R) = I'y(R°P). Let

® : M (R)(Z)? — M (R)(T)
Ar—s At

where A! denotes the transpose matrix of A. Let v € T'and A = (a;;) € (M (R)(X)P),.

Then A € M;(R)(X),-1, that is, a;; € Ry —ix1 for all i,j € I. Thus, the (i, j)-entry
of A? is

.. — op
aj; € sz,y,lzi—l = (R )Zmzjl.

Hence, A € M;(R°P)(X),. Therefore, ® is well-defined and it is also a gr-homomorphism

of additive groups. Given A, B € M(R)(3)°, we have

B(A -7 B) = B(BA) = (BA)' < A'Bt — &(4)d(B),

where, in (x), we have used that the (i,j)-entry of (BA)! is

o
> bjkaki = Y agi - bjk.

kel kel

Furthermore, since ® fixes diagonal matrices, it follows that ®(I.) = I, for all e €
T'y. Therefore, ® is a gr-homomorphism of rings. In order to prove that ® is bijective,
it is enough to show that matrix transposition also defines a map M(RP)(X) —
M;(R)(X)°P. Let v € T' e B = (b;;) € Mj(R°P)(X),. Then, for all i,j € I we have

.. op —
bij € (R?)g ym1 = By apot

Thus, the (4, j)-entry of B is b;; € REW,IE;l and B' € M[(R)(X),-1 = (M;(R)(X)P),
as desired.

(2) First note that if h: L°? — L°P is a homomorphism of right R°?-modules, the map
h: L — L defined by (z)h = h(x) is a homomorphism of left R-modules. Indeed,

(az)h = h(z -°P a) = h(z) -°P a = ah(z) = a(x)h

for all z € L and a € R. Moreover, § = ¢ for each endomorphism of left R-modules
g: L — L and h = h for each endomorphism of right R°’-modules h: L°P — L°P.

Furthermore
g € (ENDg L)?)., <= g € (ENDg L),
> (Lq-1)9 € Lo-14-1,Ya el
< §((LP)a) € (L?)ya,Ya €T
<= § € ENDpgor(L?),.



Z. Cristiano et al. / Journal of Algebra 687 (2026) 1-116 33

This implies that the map (ENDg L)°? — ENDgor (L°P), g +— §, is well-defined and it
is bijective. Finally, observe that if g1, g2 € ENDg(L), then gg/ool’\gl = g192 = G201, as
desired.

(3) For each v € T', we have

L), = D)5,

=Pr, s
= DD,
= (& )L),

(4) If ¥ is matricial for ENDg(L), then, from the previous items and Corollary 3.13(2),
we get

1

(END 5 (i’l) L) " > ENDpe (5 L))

= ENDpor (L?(T))

= . M (END geor (L)) ()
=y M((ENDg(L)))(Z)
=~ . M;(END(L))(Z).

Therefore, END (S ')L) 2, M;(ENDx(L))(S).
(5) Just notice that for each v € T" we have

(R7), = Rys = [[(Ry), = [[(@)™), = | [T (®p)*| - o

jeJ jeJ jeJ
3.6. Some isomorphisms between categories of graded modules

Throughout this subsection, let I' be a groupoid.

Let R be a I'-graded ring. The category whose objects are the I'-graded right (resp.
left) R-modules and morphisms are gr-homomorphisms will be denoted by I" — gr-R
(resp. I' — R-gr). If e € Ty is fixed, then the full subcategory of I' — gr-R (resp. I' — R-gr)
whose objects are the I'-graded right (resp. left) R-modules M such that supp M C el
(resp. supp M C Te) will be denoted by e’ — gr-R (resp. I'e — R-gr). We denote by
el —mod-R (resp. I'e —R-mod) the category whose objects are the I'-graded right (resp.
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left) R-modules M for which there exists )y € T'g satisfying supp M C ep I (resp.
supp M C Teyps) and, for objects M and N, the set of morphisms from M to N is
HOMpg (M, N). Note that if M = M (e) for some e € Ty, then 1. is the unity of the
ring HOMpg(M, M). In some cases, we will refer to objects of el' — gr-R as el'-graded
R-modules.

We aim to describe categories of left modules using categories of right modules. One
way to proceed is to induce gradings on opposite rings and modules using I' as in the
previous subsection. An alternative approach, which we adopt here, is to work with I"°P,
the opposite category of I', which is again a groupoid and is called the opposite groupoid
of T'. It comes equipped with a natural bijection I' — T'°P, given by v — ~°, where
d(v°) = r()° and r(y°) = d()°. Furthermore, if v,§ € " are such that v¢ is defined in
T, then (76)° = §°7° and (y~1)° = (v°)~ L.

Let R be a I'-graded ring. The next result considers the ring R°P as a ['°P-graded ring
via the grading (R°?),. := R,. In this context, if L is a I'-graded left R-module, then
L°P will be regarded as a I'°P-graded right R°P-module via (L°P),0 := L.. Note that

(LP)yo -7 (R%)s0 = RsLy © Lsy = (L) (5y)0 = (L?)yoge-

Proposition 3.18. Let R be a I'-graded ring. We have the following category isomor-
phisms:

(1) T — R-gr 2T — gr-R°? = T°P — gr-R°P,
(2) Te — R-gr = eI’ — gr-R°P = ¢°T%P — gr-RP.
(3) I'e —R-mod = eI’ — mod-R°P = eI’’’ — mod-R°?.

Proof. In all three cases, we define a functor from the corresponding category of I'-
graded left R-modules to the category of T'-graded (or I'°P-graded) right R-modules.
This functor is defined on objects by L — L°P, and sends any morphism g : L — L’ to
the morphism § : L°? — (L')°P defined on Section 3.5. In the third case, observe that if
g is of degree « in I'e — R-mod, then § is of degree 7° in eI'? — mod-R°? and of degree
v tin el —mod-R°P. O

Now, we turn our attention to categories of modules graded by connected groupoids.
In view of Proposition 3.18, we will focus on right modules.

Lemma 3.19. Let R be a I'-graded ring. Let e, f € Ty such that there exists o € T' with
d(o) = f, r(c) = e. Then the categories el'—gr-R and fT —gr-R are isomorphic. Hence,
if I' is connected, eI’ — gr-R and fT" — gr-R are isomorphic for all e, f € Tg.

Proof. Let M,N € eI' — gr-R. Then M(o),N(o) € fI' — gr-R. If h € Homg, (M, N),
then hy,: M(o) — N(o) defined by h,(z) = h(x) for all x € M(0)s = Mys, 6 € fT, is
such that h, € Homg, (M (o), N(o)). Hence
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Ty:el'—gr-R — fT'—gr-R
M — M(o)
h € Homgy,(M,N) +— h, € Homg(M(o),N(o))

is a functor with inverse T,-1. O

Let T’ be a connected groupoid and fix an idempotent ey € I'g. Consider the group
G := egl'ey. Set 0., = ey and, for each e € Ty \ {eo}, pick o. € T with d(c.) = e and
r(o.) = ep. Thus, for each v € T', there exists a unique g € G such that v = Jr_(}y)gad(n/).

o -1
For each vy €T, let gy := Tr(1) Y0 g(y) € G. Then

r — TogxGxTy

v = (r(1),94,d(7)) (3.1)
O'glgO'f — (e’g’ f)

is an isomorphism of groupoids, see for example [9, p. 125]. Of course, if T is a groupoid
of the form I x G x I for some group G and set I, there is a natural choice of isomorphism
in (3.1) making o, = (eg, 1, e) for all e € I =T'y. We remark on passing that we obtain
a relation between rings graded by a connected groupoid and categories graded by a
group from Example 2.3(2) and (3.1).

Keep in mind the context of the previous paragraph and let R = 69761“ R, be a
I-graded ring. We proceed to define the category of right R-modules graded by the
group G, as well as the category of right R-modules graded by G x I'y (both notions
will be explicitly defined below). We then relate these categories with eI’ — gr-R in
Proposition 3.20. Later, in Corollary 5.42, we will use this Proposition to relate the
gr-semisimplicity of the I'-graded ring R with that of the objects in those categories.

The objects of the category G — gr-R are the G-graded R-modules. That is, right
R-modules M such that MR = M and for which there exists a family {M,: g € G} of
additive subgroups of M such that M = gec Mg as additive groups and MyR, C My,
for each v € I'. If NV is another G-graded right R-module, a homomorphism of G-graded
modules is a homomorphism of modules p: M — N such that p(M,) C N, forall g € G.
An example of a G-graded R-module is R(e), where e € I'y, via R(€)g := P, R
for each g € G.

The objects of the category (G x I'y) — gr-R are the (G x T'p)-graded R-modules M.
That is, right R-modules M such that MR = M and for which there exists a family

of additive subgroups {M,c): (g,¢) € G x I'g} such that M = D My as
(g9,e)€GxTg

additive groups and, for each v € T', My o) Ry € M(yq. a(y)) if 7(7) = e and Mg oy Ry =0
otherwise. Given (G xI'g)-graded R-modules M, N, a homomorphism of (G x I'y)-graded
modules is a homomorphism of R-modules p: M — N such that p(M,.)) € Ny, for
all (g,e) € G x T'g. An example of a (G x I'g)-graded R-module is R(e), where e € Ty,
, for each (9,f) € G xTy.

oélgt’f

via R(e)g,p) = Ry-1

go
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Proposition 3.20. Let " be a connected groupoid and R = @ R, be a I'-graded ring.

~el’
Then the categories G — gr-R, (G x T'g) — gr-R and e[’ — gr-R are isomorphic for any

e €Ty and any ey € Ty, G :=egley and {oc}eer, as in (3.1).

Proof. Fix eg € Ty, G := egl'eg and {o¢}eer, as in (3.1).

First we show that G — gr-R and (G x I'g) — gr-R are isomorphic.

A G-graded right R-module M = . M, has a natural structure of (G'xI'g)-graded
module. Indeed, for each g € G and f € I'y, consider the identity element 1; € Ry and
define

Mg,y = Mgly.

Note that M, ) = Myly C Mgy, = Mye, = My, forallg € G, f € Tg. Let x € M. Since
MR = M, then x = 22:1 xsas for some s € My, as € R, such that gsg,, = g for each
s =1,...,t. Note that xsas € MgsR%ld(%) - Mgld('ys) = M(g,d('ys
M, = Zfel“o Mg, 5y- Moreover, since {1;}rer, is an orthogonal set of idempotents, we

get My = @D cr, Mg, r). Therefore M = @  My,s). Moreover
(9,f)€EGXTo

" for each s. Hence

M(g,f)R“f =MglsR, C Mgm Lagy) = M(gymd(v))

if r() = f and zero otherwise. Also, it is not difficult to realize that any homomorphism
of G-graded R-modules is in fact a homomorphism of (G x I'g)-graded R-modules.

Conversely, any (G x T'g)-graded right R-module M = @ My, can be re-
(9,£)EGXTo
garded as a G-graded module defining M, = rero M(g.p)- And any homomorphism of

(G x T'p)-graded R-modules is a homomorphism of G-graded modules.

Now we fix an e € T'g and show that (G x T'g) — gr-R and eI’ — gr-R are isomorphic
Let M =D, ryeaxr, M(g,r) be a (G x T'g)-graded R-module. Set M := D cr M
where M = My () for each v € eI'. Since for each (g, f) € G'xTI'g there exists a unique
~ € el'f such that (g7 f) = (94, f), then M = M as additive groups. Define the product
of elements of M by elements of R in the natural way, that is, if z € M = My, .d(v))
and a € Rs for some v € el’ and 6 € T, then za is the product given by action of R
in M. Thus, za € My 45 a(5)) = Mys if d(y) = r(0) and xa = 0 otherwise. Thus M is
an el-graded right R-module. Moreover, if h: M — N is a homomorphism of (G x I'g)-
graded right R-modules, then h: M — N where i = h as maps, is a homomorphism of

el’-graded right R-modules.

Conversely, given an el-graded right R-module X = 697661“ )?q,, then X =
®(g,f)EGXFo X(g,r) where X, ) = )~(,Y, where v is the unique element in el'f such
that g = g,, is a (G x I'g)-graded right R-module. Also, any homomorphism of eI'-
graded right R-modules X — Y can be regarded as a homomorphism of (G x I'g)-graded
R-modules X - Y. O
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3.7. Gradings on rectangular matriz groups

Let I,J be non-empty sets. We denote by My« s(R) the additive group consisting of
the I x J matrices with entries in R and with at most a finite number of nonzero entries.
Suppose, moreover, that supp(R) C el'e for some e € T'g. If & = (0y)ier € (eI)!, 7 =
(1j)jes € (eI')?. We will denote by My ;(R)(7)(T) the I'-graded additive group whose
homogeneous component of degree v € I', My s(R)(G)(T)~, is the subset of M;y;(R)
consisting of the matrices whose (4, j)-entry belongs to RUWTj—l foralli e I,j € J. Note
that > Mrx(R)(7)(T), s, in fact, a direct sum because, for each i € I and j € J,
the sum Zwer RUWTJ_—l is direct. Furthermore, if v € I' and 0 # a € R,, then, for each
i€l and j € J, CLEij S M[XJ(R)(E)(?)
of My« s(R) by T'. Note that

oy, Therefore, this indeed defines a grading

Mrx1(R)()(7) = M (R)(7).

If T and J are finite with |I| = m,|J| = n € Z~q, we will also write M,,x,(R), and
M xn(R)(@)(T). If K is a non-empty subset of I, we will write & to denote the sequence

(0i)iek € (e)¥.

Lemma 3.21. Let I be a non-empty set, eg € Ty such that supp(R) C eoleg and 7 =
(04)ier € (eOF)I be a d-finite sequence. For each e € Ty, consider the finite set I, := {i €
I:d(o;) =e}. Then, foralle, f,g €Ty, v €el'f and § € fTg, there exist isomorphisms
of additive groups

¢y M1 (R)(0)y — M1 x1,|(R)(@1.) (@1, )~
such that the following diagram is commutative

M (R)(a), x M[(R)(7)s 0t) M1 %1,/ (R)(@1.)(T1; )y X M1, 111, (R)(@1,) (1, )5

| |

M;(R)(7)~s o M1, x5, (R)(@1.)(T1, )5

where vertical arrows indicate matrix multiplication. In particular, there exist gr-
isomorphisms of I'-graded additive groups

der: P MI(R)(@)y — My, x)1,(R)(@1,)(@1,)-

yeel' f

Proof. For each e, f € I'g and v € eI'f, M;(R)(5), = (R,
0 implies that Ui’yaj_l is defined, and thus, 7 € I. and j € Iy. Therefore, we obtain a

awa;l)ij. Moreover, Rawaj’l £

natural isomorphism of additive groups
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Gyt M (R)(T)y — Myz, 51,/ (R)(@1.) (01, )~

that associates to a matrix of degree «, the matrix obtained considering just the entries
in I, x Iy because all other entries are zero. Then ¢, ¢ := @'yeef‘ f ¢ is well-defined
and a gr-isomorphism of I'-graded additive groups. The commutativity of the diagram
follows by the way matrices are multiplied. O

4. Graded division rings
Throughout this section, let I' be a groupoid.
4.1. General facts on graded division rings

Let D = @ D, be a I'-graded ring.
yel’
We say that D is a gr-domain or a graded domain if D # {0} and for all v,6 € T

with d(y) = r(0) and nonzero elements a € D., b € Ds, we have ab # 0. We say that
D is a gr-division ring or a graded division ring if D # {0} and for all v € supp D
and nonzero a € D,, there exists an element a~le D, -+ such that aa"t = 1,(y) and
ala = Lagyy- In [37, Section 2], the element o' is called the T-inverse of a, but we
prefer to say that a=! is the inverse of a. We will also write that a is invertible (with
inverse a). Note that no confusion will arise with the usual concept of invertibility in
ring theory because we will not deal with it. A gr-division ring is a gr-domain. Indeed,
given 7,0 € I' with d(y) = r(d) and elements a € D, b € Ds, suppose that ab = 0. If
b+#0, then 0 = abb™! = alyyy = a.

It is important to note that if D is a gr-division ring and a,b € h(D) are such that
ab # 0, then (ab)~! =b~ta™t.

We say that D is a gr-prime ring if for all nonzero graded ideals I and J of D, we
have IJ # 0. Equivalently, D is a gr-prime ring if and only if, for all a,b € h(D) \ {0},
we have aDb #£ 0. D will be called a gr-simple ring if D # {0} and its only graded ideals
are {0} and D. Clearly, every gr-simple ring is a gr-prime ring,.

In general, a gr-division ring can have nonzero graded ideals different from D, even if
T is connected. For example, let I' = {1,2,3,4} x {1,2,3,4} and F be a field. Then

oo
ooy

0 0
0 0
F F
F F
is a I-graded division ring, via D(; ;) := Ey; DEj; for all 1 <4,5 < 4, but

I: 7J:

0
0
F
F

Mmoo

F F
F F
0 0
0 0

[evlen N en i an)

0
0
0
0

SO OO
OO OO
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are graded ideals of D such that IJ = 0. Note that D is not strongly graded because
D ,3yD3,1y = {0} # D(1,1). Also notice that I and J are I'-graded division rings.

Let D = @ D, be a gr-division ring. We define the gr-primality relation on T'f :=
yel’
I't(D) in the following way. For e, f € I,

e~ f ifand only if 1.D1; #0.
Equivalently, e ~ f if and only if eI f N supp(D) # 0 if and only if supp(1.D1y) # 0.
Proposition 4.1. Let D be a I'-graded division ring. The following assertions hold:

(1) ~ is an equivalence relation.
(2) If we define

Py ={yel|dm.r() elel}, Dy= D D,
Y€l ¢

for each equivalence class [e] € I'y/ ~, then Dy is a nonzero graded ideal of D and
Die) Dy = {0} for [e] # [f] € Tp/ ~.

(3) D= ’ QFB/ Dye) and Dy is a gr-simple gr-division ring for each equivalence class
elelo/~
[e] € TG/ ~

(4) The following assertions are equivalent about D.
(a) D is gr-simple
(b) D is gr-prime
(c) T/ ~ possesses only one equivalence class.

Proof. (1) The relation ~ is reflexive because 1. € 1.D1, for all e € T. It is also
symmetric. Indeed, suppose that 1.D1f # 0 for e, f € I', then there exists a nonzero
element a € D, for some v € e['f. Now a™! € D, -1 belongs to 1yD1.. Suppose that
e, f,g € T are such that e ~ f and f ~ g¢. Then there exist nonzero homogeneous
elements a € 1.D1¢, b € 14D1,. Since D is a gr-domain, we obtain that the relation ~
is transitive.

(2) It is enough to show that DDy C Dy and DDy = 0 for all e, f €
I'y, with [e] # [f]. Thus, fix different [e],[f] € T'{/~. Given v,7" € T such that
r(7),d(),r(v'),d(v’) € [e], we have D, D., C D, C D). This shows DD C Dig.
Now let 0 € T' be such that 7(0),d(6) € [f]. If we had D, Ds # 0, we would have D.s5 # 0
and therefore, 1,.(,)D145) # 0 and consequently e ~ () ~ d(d) ~ f, a contradiction.
Hence, D,Ds = 0 for all v, € T such that r(v),d(y) € [e] and r(8),d(d) € [f]. That is,
Dig Dy = 0.

(3) Since I';gy NIy = D if e » f, and suppD € |J Tg, we obtain that D =

[e]eTy/~
Dy,). Fix e € I'}. Since ~ is an equivalence relation, if y € T, then y~! € T,
[e]€T/~
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Thus, Dy is a I'-graded (or even a I'j-graded) division ring. We now show that Dy is
gr-simple. Let v, € I',) and a € D, b € D5 with a # 0. We will prove that any graded
ideal containing a must contain b too. First note that d(vy) ~ r(d). Hence there exists a
nonzero homogeneous element u € 14(,)D1,(5). Then b = (au) 'a(ub), as desired.

(4) (a) = (b): It was observed above right after the definition of gr-simple ring.

(b) = (c): This implication follows from (2).

(¢) = (a): This implication follows from (3). O

There exists a way of describing gr-prime components of a gr-division ring as crossed
products. It can be done as in [37, Proposition 2.7] with maps

a: supp Dy x supp Di) — D, \ {0} and o: supp Dj,) — Aut(D,)

satisfying the properties in that paper. In the next result, we describe the gr-prime
components of a gr-division ring using a group graded division ring and the rings of
matrices introduced in Section 3.

Theorem 4.2. Let D be a T'-graded division ring which is gr-prime. Fiz e € T'{(D) and
set H = 1.D1.. Then H is a el'e-graded division ring and D =, Mr; p)(H)(7) where

G =(0f)feryp) € 11 supp(leD1y).
felo(D)
Conversely, let e € Ty, H be an el'e-graded division ring andc € [[ el'f for some
f€Ao
Ag CTgy. Then D := Ma,(H)(7) is a gr-prime I'-graded division ring with Tj(D) = Ao.

Proof. H is clearly an el'e-graded division ring. For each f € I'4(D), fix oy € eI'f such
that D, # {0} and 0 # uy € D,,. Notice that @ = (0)sery(p) is d-finite because
for each eg € T'y there exists at most one f € I'((D) such that d(os) = eg. Thus 7 is
matricial for H and My, (p)(H)(@) is a I'-graded ring by Proposition 3.8.

Let v € supp D. Then d(v),r(y) € Ty(D). If a € D, set

CH.

_ -1
ha - UT(V)aud('y) € DO’,.(.Y)’)/O';(}Y) -

Thus, haEr('y)d('y) € MF{)(D)(H)(E)’W We define ®(a) = haEr('y)d('y) for each a € D,,
v € supp D. Extending ® by additivity, we obtain a gr-homomorphism of I'-graded
additive groups ®: D — My, (p)(H)(7). If a € D, b € Ds with ,§ € supp D, then

P(a)®(b) = haEr(y)a) o Er(s)acs)

_J0 if d(v) # ()
N hathr('y)d(é) if d(’)/) = 7"((5)

)0 if d(v) # r(9)
havEr(ys)a(rs)  if d(v) = ()
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= ®(ab),
where we have used that, when d(vy) = r(0),

—1 —1
hahy = wr(yyaug yur)bug )
= “r(w)ab“;és)

-1
= “r(vé)ab“d(wé)

= Nap-

Moreover, for each f € I'y(D), (1) = uflfuglEff = 1.Es; = Iy, the identity element
of Mr; (p)(H)(7) . Therefore @ is a gr-homomorphism of rings. It remains to show that
® is bijective. For that, we construct an inverse ¥: My, (p)(H)(7) — D as follows. Note
that if v € supp My, (p)(H)(7), then O’f’YU;,l is defined in I' for some f, f’ € T'((D).
But this happens if and only if f = r(v) and f' = d(v), ie., r(v),d(y) € T{(D).
IfheD 717)7 then hEr(y)d(w) € MF(’J(D)(H)(E)'Y and we define \I/(hET(A/)d(A/)) =

Tr(1) VO g
-1
ur(’y)h’ud(')’) eD,.
Conversely, let e € Ty, Ag C T'g, H be an el'e-graded division ring and

o= (Uf)fer S H el'f.

feho

By construction, & is (fully) matricial for H and, by Proposition 3.8, D := Ma,(H)(7)
is a I-graded ring. Notice that if v € T' with either d(vy) ¢ Ag or r(y) ¢ Ay, then

Haflwfl = 0 for all f1, fo € Ag. This implies D, = 0. Now, if v € supp D, there exist
2

unique f; = (), fo = d(y) € Ag such that Uflva]?zl is defined. Thus the homogeneous
matrices of D have at most one nonzero entry. In particular, if f € I'g, we have Iy = 0 if
f ¢ Agand,if f € Ag, Iy = 1.Eyy, that is the matrix with 1. in the (f, f)-entry and zero
everywhere else. From this we obtain I'y (D) = Ag. Now if A € D, \ {0}, then A = aEy, ¢,
where f1 =r(y), fo=d(y) and 0 £ a € HUf1 yop k- This homogeneous matrix is invertible
with A=1 = a_lEfol. Indeed, A7TA = 1eEf, 5, = ]Id("y) and AA™! = 1.Ep = HT(,Y).
Now D is gr-prime because, for all a,b € h(H) \ {0} and f1, fo, f3, fa € Ag, we have

0 # E;Iﬁ = (aEf1f2)(a71b71Ef2f3)(bEf3f4) € (aEflfz)D(bEf3f4)' o

More generally than the converse in Theorem 4.2 one can show, with a similar proof,
the following result.

Remark 4.3. If H is a (gr-prime) gr-division ring and ¥ := (%;);er € P(I')! is a matricial
sequence for H such that, for all f € 'y there exists at most one o € | J;.; X; satisfying
d(o) = f, then D := M;(H)(X) is a (gr-prime) I'-graded division ring with T'((D) =
Uiertd(oi) 1 0s € 83}, O
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4.2. Graded modules over gr-division rings

In this subsection, our aim is to show that the behavior of graded modules over
groupoid graded division rings is similar to the one graded modules over group graded
division rings.

The proofs of Theorem 4.4 and Corollary 4.6 follow very much the pattern for group
graded division rings [20, Section 1.4].

Theorem 4.4. Let D be a I'-graded division ring and M be a I'-graded D-module. The
following assertions hold:

(1) M is pseudo-free.

(2) Any pseudo-linearly independent sequence of M can be extended to a pseudo-basis of
M.

(3) Any two pseudo-basis of M have the same cardinality.

Proof. First we show (2). Let (z;)icr € [[ M,, be a pseudo-linearly independent se-
i€l
quence of homogeneous elements in M. Consider the set

F = (2:)icq € H M, | I CQ, (x;)icq is pseudo-linearly independent
1€Q

Clearly F is not empty and it is a partially ordered set with inclusion and every chain

has an upper bound. By Zorn’s lemma, F has a maximal element. Let (z;);cx € [[ M,
icK

be one such maximal element. Let N be the graded D-submodule of M generated by

{z; : i € K}. Suppose that N # M. Thus there exists zg € M,, \ N for some vy € T

We claim that the sequence (7;);cxu{o} is pseudo-linearly independent. Indeed, suppose

that there exists a sequence of homogeneous elements (a;);cxuoy € @  l4(y,)D such
1€ KU{0}

that xgag+ > wia; = 0. If ag # 0, then g = — > miaiagl € N, a contradiction. Thus,

ag = 0. Herfc:eeKai = 0 for all 7 € K, and the claianis proved. But the claim contradicts

the maximality of (z;);cx in F. Therefore M = N and (x;);cx is a pseudo-basis of M,

as desired.

(1) Suppose that M # {0}. There exist v € I' and « € M, such that « # 0. If there
exists a homogeneous element a € 14,y D such that xa = 0, then a # 0 would imply that
T = xlgy) = raa~! = 0. Thus {z} is a pseudo-linearly independent sequence and we
can extend it to obtain a pseudo-basis of M by (2). Hence, M is a pseudo-free D-module.

(3) If M has a pseudo-basis consisting on an infinite number of elements, then
Lemma 2.13 implies the result. Thus, we can suppose that the pseudo-bases of M have

n P
a finite number of elements. Let (z;)7_; € [[ M,, and (yj)é-):l € [I Ms, be two pseudo-
i=1 j=1



Z. Cristiano et al. / Journal of Algebra 687 (2026) 1-116 43

n
bases of M. We will show that n = p. Let (a;)_; be the unique sequence in @ D

-1
i=1 Vi a

such that
Y1 = T101 + -+ Tpdp.

Since 1 # 0, there exists 1 < i; < n such that a;; # 0. Then

-1

i1 7

—1
Ty = y1a;; — (T1a1 + 0+ iy o100, -1 + Tiy 410041+ 0 Tpan)a

and therefore (y1)U ((x;)7_; \ {2, }) generates M. If p =1, then we have p < n.If p > 1,
there exist b; € valéz, .o biy € D61—1627 ...,b, € D -5, such that

Yo = y1by, + 2101 + -+ —1by 1 @y 41 b 1 -+ TRy

Since (y1,y2) is pseudo-linearly independent, there exists io € {1,...,n}\ {i1} such that
bi, # 0. As before, x;, is a D-linear combination of {y1,y2,Z1,...,Zn} \ {Zi,, Zi, }-
After the k-th step of this process of changing one wx;; by one y;, we obtain that
{y1,- s yk, 21y xn P\ {@4y, - . -, 24, } generates M. Thus, n < p implies that {y1,...,yn}
generates M. But this contradicts the fact that {y1,...,y,} is a pseudo-basis of M.
Therefore p < n. An analogous argument shows that n <p. O

If D is a I'-graded division ring, then every I'-graded D-module has a pseudo-basis
by Theorem 4.4(1). Unlike in the group graded context [7, Theorem 3.3], the converse is
not true. We will deal with this situation in Section 7.

Corollary 4.5. Let D be a I'-graded division ring and M, N be I'-graded D-modules.

For all (7;)ier € T, pseudo-linear independent sequence (x;)ic; € [[ M-,, o € T and
iel
(yi)ier € 1] Nov,, there exists g € HOMp(M, N), such that g(x;) = y; for each i € I.
i€l

Proof. Follows from Theorem 4.4(2) and Proposition 3.1(6). O

By Theorem 4.4, every graded module M over a I'-graded division ring D has a pseudo-
basis and any two pseudo-basis have the same number of elements. Such cardinality will
be called the pseudo-dimension of M and it will be denoted by pdimp,(M).

Corollary 4.6. Let D be a I'-graded division ring and M be a I'-graded D-module. If N
is a graded submodule of M, then

pdimp(N) + pdimp (M/N) = pdimp (M).

Proof. Let (z;)icr € ][] N4, be a pseudo-basis of NV, which exists by Theorem 4.4(1). By
icl
Theorem 4.4(2), it can be extended to a pseudo-basis (x;)icrus € [I M,, of M with
i€fug
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I and J disjoint sets. It is enough to show that (z; + N);cs is a pseudo-basis of M/N.
Since (x;)icrus generates M, (z; + N);cs generates M/N. If a sequence of elements

(ai)ics € @ 14y, D is such that 3 (x; + N)a; = 0, then ) x;a; € N. But then, there
ieJ ieJ
exists a sequence of elements (b;)ic; € €D 14y, D such that ) x;a; = > ;b € N. If
ieJ =y
(a;)icg # 0, this is a contradiction with the fact that (x;);crus is a pseudo-basis of M.
Now clearly, pdimp (M) = |I U J| = |I| 4 |J| = pdimp(N) + pdimp(M/N). O

Remark 4.7. Let D be a I'-graded division ring and M be a I'-graded D-module. It can be

shown that if a sequence o homogeneous elements (z;);cr € [[ M-, generates M, there
i€l
exists a subset J C I such that (x;);cs is a pseudo-basis of M. Indeed, any subsequence

(2;)ies maximal among the subsequences of (x;);cs that are pseudo-linearly independent
works. 0O

4.8. Graded linear algebra over gr-division rings

Now we turn our attention to gr-homomorphisms of finitely generated pseudo-free
modules. We showed in Proposition 3.1 that each finitely generated pseudo-free R-module

m
is gr-isomorphic to a graded module of the form € R(w;).
i=1

Let R be a I'-graded rmg Set @ = (a1,...,a0,) € T™, B = (B1,...,0,) € T,
M= @ R(B;) and N = @ R(a;). Set also

all A1n
Mpsn(R)@B = | 1 1 | € Mun(R) | a5 € Ry g1 0

Qm1 e Amn

where we follow the convention Raiﬁj—l = {0} if d(ay) # r(ﬂ;l) = d(B;).

It is important to note that if A € M« (R)[@][8] and B € M,,x,(R)[8][7] for some
7 € I'P, then AB € M,,,»,(R)[@][T].

One can show as in the proof of Proposition 3.10 and Corollary 3.15(2) that
Homyg, r(M, N) is isomorphic to the additive group of matrices M, (R)[@][3]. More-
over, if @ = /3, one obtains the isomorphism of rings Endg, p(M) = M, xn(R )[B][B]. But
we will prove this in a more traditional way.

Let M be a I'-graded R-module. Suppose that M is a finitely generated pseudo-

free module with pseudo-basis B = (u;)7_; € H M = for some f31,f82,...,8, € I'. If

x € M;, there exists a unique (a;)7_; € @ Rg,s such that
j_

T =uU1a] + U202 + -+ + UpQp.
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We will write

Note that (a1,...,an) € (R(f1) ® - ® R(B,))s. Furthermore, the map
M — R(B1) ® - @ R(By), x> ()5,

defines a gr-isomorphism of modules.
m
Let N be a I'-graded pseudo-free R-module with pseudo-basis C = (v;)i2; € [[ N, -1
1

1=

for some ay, ag, ..., q, € I'. Suppose that f € Homg, g(M, N). Then

Qa1j
a2;
(fluj))e = : € (R(Ou)@”'éBR(am))gj—l :Ralﬁj_l @"'@Ramﬁj‘l'

Amj

Define [f]sc € Mynxn(R)[@][f] as the matrix

aip a2 ... Qin
a a ce. Qop
flse = [(Fn)e Flw)e G = | 7 ;
Aml Am2 ... (amn
Then it is routine to show that
[flc - () = (f(x))e for all z € h(M) (4.1)

and that [f]pc is the unique matrix in M,,x, (R)[@][5] that satisfies (4.1).

Conversely, if A € M,x,(R)[@][3], then there exists a unique f € Homg, (M, N)
such that A = [f]gc.

P
Moreover, if L is a pseudo-free module with pseudo-basis A = (t;)4_, € [] L o and
k=1
g € Homg, g (L, M), then
[flBc - [9las = [f o glac.

All in all, we have proved

Proposition 4.8. Let R be a I'-graded ring. Let M and N be pseudo-free R-modules with
corresponding pseudo-bases
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m

n
B = (uj)j_; € H Mg-1 and C = (v;)iZ, € HNa_—l
j=1 i=1

for some B1, B2y ..., Bn, 1,2, . ..,y €T, respectively. Then the map f — [f]gc defines

a gr-isomorphism Homg, r(M, N) — My, (R)[@][8]. Moreover, if M = N and B =C,

we obtain the gr-isomorphism of rings Endg, r(M) — My xn(R)[5]18], f — [flg. O

Let now I, ) € Myxm(R)[@][@] be the matrix whose (i,%)-entry is 1,(,) and whose
(i,7)-entry, with i # j, is zero for all 4,5 € {1,...,m}. Note that I, A = A for all
A € Myxn(R)[@][B] and that the matrix I, () corresponds to the identity of N :=
@.", R(a;) in the gr-isomorphism Endg, gr(N) — M, xm(R)[@][@] of Proposition 4.8.
We say that A € M, x,(R)[@][B] is invertible if there exists B € M, x,(R)[f][@] such
that AB = I,.5), BA = Ir(E) and 1,(q,), Lyg,) # 0 for all i = 1,...,m. Notice that
such B corresponds to the inverse gr-homomorphism of the one represented by A in the
gr-isomorphism Homg, p(M, N) — M,,x,(R)[@][B] of Proposition 4.8. Because of this,
such matrix B is unique and it will be called the inverse of A.

Corollary 4.9. Let D be a I'-graded division ring, M and N be I'-graded D-modules and
f: M — N a gr-homomorphism. Then

pdim(M) = pdim(ker f) + pdim(im f).

If, moreover, pdim(M) = pdim(N) =n < oo, then f is a gr-isomorphism if and only if
either f is surjective or f is injective.

As a consequence, if A € My xn(D)[@][B] and B € M,,»n(D)[B][@] for some @, 3 € T,
then

AB = Ir(a) < BA= ]T(B)

Proof. Since M/ker(f) =, im f, Corollary 4.6 implies the first part.
For the second part, suppose that f is surjective. Then im f = N. Hence

n = pdim(M) = pdim(ker f) + pdim(N) = pdim(ker f) + n.

Thus, pdim(ker f) = 0 and ker f = 0. If f is injective, the proof is analogous.
For the last part, note that if @ = (a1,...,00),6 = (B1,...,0,) € T, then A €
M, xn(D)[@][B] and B € M,,«,,(D)[B][@) can be regarded as gr-homomorphisms

R(B1)® - ®R(Br) = Rlar) ® -+ & R(avn),
R(an) @ @ R(ay) = R(B1) ® -+ ® R(Bn),
respectively. The fact that AB = I,..&) implies that A is surjective. Since both R-modules

have the same pseudo-dimension n, the first part implies that A is also injective. There-
fore there exists B’ € M,,x,,(D)[B][@] such that B'A = (@) Now
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B == T(E)B == B/(AB) = B/Ir(a) == .BI7
as desired. O

Let R be a I'-graded ring and @ = (ay,...,amy) € T™, 8 = (B1,...,8,) € ™. Let
P, @) be the matrix obtained from I, by interchanging the rows ¢ and j. Note that if
A € Myxn(R)[@][8], then P, ;@) A is the matrix obtained from A by interchanging rows i
and j. Notice that P, (&) € Myxm(R)[/][@], where o is obtained from @ interchanging
a; and aj, and P, (@) A € My xn(R)['][3].

Let a € Ry with d(v) = r(a;). Let D, ()(a) be the matrix that agrees with I, ()
except that it has an a (instead of 1,(,,)) in the (4,7)-position. Notice that D, ) (a)A
is the matrix obtained from A by multiplying by a the entries of the i-th row of A.
Notice that D, )(a) € Myxm(R) [/][@] where @ = (a1, ..., 1,YQ, Qit1,- -y Q)
and D,., &) (a)A € My,xn(R)['][B].

Let a € R, with d(7) = r(a;) and r(y) = r(a;) for some i # j. Let T, ()(a) be the
matrix obtained from I,.&) by replacing row;(I,)) by a-row;(I,)) + row;(I,)) and
leaving the other rows intact. Note that 7. (4)(a)A is the matrix obtained from A by
replacing row;(A) by a-row;(A)+row;(A) and leaving the other rows intact. Notice that
Ty (@) (@) € Mpxem (R)[][a] and T, @) (a)A € Myxn(R)[][B], where o is obtained
from @ replacing o; by vya;.

In the same way, one can define the n x n matrices obtained from I, 3, making
elementary column operations and such that when they multiply A on the right they
perform that same operation on the columns of A.

Let now D be a I'-graded division ring. Fix @ = (a1, ..., am) €T, 8= (B1,...,5n) €
I'™ and A € M,,x.(D)[@][B].

For each i = 1,...,m, one can regard the rows of A as homogeneous elements of
the left D-module (8;)D @ --- @ (8;')D. We define p,(A), the row rank of A, as the
pseudo-dimension of the graded left D-submodule generated by the rows of A. It can be
computed multiplying A on the left by adequate matrices P, (), Dy, @) (@), Ty, @) (a)-

The columns of A are homogeneous elements of the right D-module D(a1) @ -+ @
D(ay,). We define p.(A), the column rank of A, as the pseudo-dimension of the graded
right D-submodule generated by the columns of A.

Consider now all possible p > 0, 7 € I'” and matrices B € M,,x,(D)[a][7], C €
M, xn(D)[7][B] such that

A=BC. (4.2)

We define p(A), the inner rank of A, as the least p > 0 for which there exist 7 and
matrices B,C as in (4.2). Note that we always have I, 54 = A and AIT(B) = A. Thus,
p(A) < min{m,n}.

Observe that (4.2) means that the columns of A are a genuine linear combination of
the columns of B, or that the rows of A are a genuine linear combination of the rows of

C.
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We define p;(A) as the largest integer s such that A has an s x s invertible submatrix.

The following result, shows that all four ranks just defined are equal over a graded
division ring. We follow very close the proof in [26, Exercises 13.13, 13.14] where the
result is proved for (ungraded) division rings.

Proposition 4.10. Let D be a I'-graded division ring. Let m,n be positive integers, a € I'™
and B € T™. For A € M,,x.(D)[@][B], we have

Proof. Suppose that p.(A) = r and that the rows iy,...,i. of A form a pseudo-basis of
the graded left D-module generated by the rows of A. Thus, all the rows of A are a genuine
left linear combination of these rows by Proposition 3.1(3). Let o/ = (v, ,..., ;) € I"

and C € M,x,(D)[a/][B] be the submatrix of A formed by the rows is,...,i.. Let
B € M, (D)[@][a’] such that

A= BC. (4.3)

This equality shows that the columns of A are a genuine right D-linear combination of
the r columns of B. Hence p.(A4) < p,(A). A similar argument shows that p,.(4) < p.(A).

By the definition of p(A), equality (4.3), also shows that p(A) < p.(4) = p.(4).
But, on the other hand, observe that if p(A) = s, then the rows of A are obtained as
genuine left D-linear combinations of s homogeneous elements. It implies that the pseudo-
dimension of the graded D-module generated by the rows of A has pseudo-dimension at
most s. Thus p(A) = p.(A).

Now we prove that p;(A) equals the other ranks. Suppose first that A is of size n xn. If
pc(A) = n, this means that the columns of A form a pseudo-basis of R(a1)®---® R(ay,).
Hence the homogeneous elements

Lr(an) 0 0
0 Lr(as) 0
0 0 Lr(an)
which are of degrees i L By Lo , B, respectively, can be obtained as genuine linear

combinations of the columns of A. That implies the existence of B € M, x,(R)[3][a]
such that AB = I,g). By Corollary 4.9, it implies that A is invertible and therefore
pi(A) = n. Conversely, suppose that p;(A) = n. Thus, A is invertible. Hence, there
exists B € M,,»,,(R)[B][@] such that BA = I, This implies that the columns of A are
pseudo-linearly independent. Therefore, p.(A) = n.

Suppose now that p;(A) = s < n. Let M be an s x s submatrix of A that is invertible.
Suppose it is formed by the entries in the i < -+ < ig rows and j; < - -+ < js columns.
Let C be the submatrix of A formed by the ji, jo, ..., js columns of A. Then its columns
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are pseudo-right linearly independent. This implies p.(A) > s = p;(A4). If p.(A) > s,
then we can add one more column to C to produce a new matrix C’ with s + 1 pseudo-
linearly independent columns of A. Since s+ 1 = p.(C’) = p,(C"), we can add one more
row to the unique s X (s 4+ 1) submatrix of C’ containing the s rows of M to produce
an (s + 1) x (s + 1) submatrix C” of A such that p.(C"”) = s+ 1. But this is equivalent
to C” being invertible by what we have already proved. This contradicts the fact that
pi(A) = s. Therefore, p.(A) = s, as desired. O

We end this section with the following observation. Let A € M,,x,(D)[@][3] for some
@ eI and 3 € I'". Notice that there could exist other o/ € I'™ and B’ € T'™ such that
A € M,,5n(D)[@/][B]. Thus, it could seem that the inner rank of A, p(A), depends on
@ and (3. By Proposition 4.10, if D is a gr-division ring, then it does not depend on @
and f. Indeed, p(A) = p,.(A) and p,(A) can be computed multiplying on the left by the
matrices that define elementary row operations that can be performed in the same way
if A is considered to belong to either M,, x,(D)[@][B] or My xn(D)[/][5'].

5. Structure of gr-semisimple rings

Throughout this section, let T be a groupoid and R = @ R, be a I'-graded ring.
yel

5.1. Gr-simple modules and Schur’s lemma

Given a I'-graded R-module S, we say that S is gr-simple if S # 0 and its only graded
submodules are {0} and S.
An immediate consequence of the definition and Lemma 2.6 is the following.

Lemma 5.1. If S is a gr-simple R-module, then there exists e € Ty such that S = S(e).
Furthermore, S(c) is gr-simple for each o € eI'. O

This suggests that the definition of gr-simple module may be too restrictive. So we
say that the I'-graded R-module S is T'g-simple if S(e) is a gr-simple R-module for each
e € TH(S).

When considering rings and modules without a grading, it is useful to study simple
modules up to isomorphism. In the graded context, one has to take into account the
shifts of the simple modules. Inspired by the idea of [13, p. 395], we say that two I'-
graded R-modules M and N are in the same isoshift class if there exists 3 C I' such
that ¥ is fully r-unique for N, ¥~! is fully r-unique for M and M 2, N(X). Note that
this defines an equivalence relation for I'-graded modules. The next proposition helps to
understand how gr-simple isoshift classes are. Note that, by Lemma 5.1, two gr-simple
modules M and N are in the same isoshift class if and only if there exists ¢ € I' such
that M =, N(o0).
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Lemma 5.2. Let S, S’ be two gr-simple R-modules. The following assertions are equiva-
lent.

(1) S and S’ are not in the same isoshift class.

(2) HOM(S, §') = 0.

(3) HOMpgr @S(Uj),@s/(ag) = {0} for all (cj)jes € T/ and (0})ier € T.

JjeJ i€l

Proof. (1) = (2): Suppose there exists o € I' and nonzero h € HOMpg(S,S"),. So
0 # h € Homg, (S, S(c)) by Proposition 3.5(1). In particular, S’(0) # 0. Therefore,
it follows from Lemma 5.1 that S’ = S'(r(0)) and S’(0) is gr-simple. Since ker h is
a proper graded submodule of S and im A is a nonzero graded submodule of S’(¢), it
follows that kerh = 0 and imh = S’(0). Hence, h is a gr-isomorphism between S and
S’(0), contradicting (1).

(2) = (1): Suppose that S and S’ are in the same isoshift class and let o € I" such
that S =4, S’(0). By Proposition 3.5(1), we have HOMg(S, S"), = Homg, g (S, 5'(0)) #
0.

(2) = (3): Using Proposition 3.10 and Remark 3.11 (since gr-simple modules are
generated by a single element) we have

HOMpg | €D S(0;), P S'(07) | Zgr Hixs | D S(0), P ' (07)

jed i€l jed iel
So it suffices to show that HOMg(S(c;), S’ (0}))y = {0} foralli € I, j € J and vy € T.
In fact, Proposition 3.5(2) and (2) give us

HOM5(S(0;), S' (o)), = HOMg(S, S') = 0.

S —1
g0

(3) = (2): Itisclear. O

Notice that it follows from Lemma 5.2 that two gr-simple R-modules S and S’ are in
the same isoshift class if and only if HOMg(S, S’) # 0.
Next we present a result analogous to Schur’s Lemma in the groupoid graded context.

Theorem 5.3. Let S be a Ty-simple R-module, D := ENDg(S) and I'y :=T({(D) = T'y(S).
The following assertions hold:

(1) D is a gr-division ring.

(2) Consider the gr-primality relation ~ defined on T'y. Then e ~ f in T}, if and only if
S(e) and S(f) are in the same isoshift class.

(3) There exists a bijection between I'{/ ~ and the isoshift classes of {S(e) : e € T’}
that sends each [e] € T/ ~ to the isoshift class of S(e).
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(4) D is a gr-prime (resp. gr-simple) ring if and only if all S(e) are in the same isoshift
class for each e € T,.

Proof. (1) Let o € supp(D) (in particular, r(c),d(c) € T() and 0 # g € D,. Then
g = gls(e-1) € Homg(S(0™ "), S(r(0))) because

9 (S(U_l)v) =g (SU‘“/) C Soo-14 = S(r(0))y,

for all v € T such that r(y) = r(c). We have that ker ¢’ is a proper graded submodule
of S(¢~!) and img’ is a nonzero graded submodule of S(r(c)). Since S is T'g-simple,
it follows that S(c~!) and S(r(c)) are gr-simple R-modules. Therefore, ker ¢’ = 0 and
img’ = S(r(0)), ie., ¢ is a gr-isomorphism. Let h' € Homg, r(S(r(c)),S(c™1)) be
the inverse of ¢’. Extend I/ to a h € Homg g(S,S(0c™1)) defining h(z) = 0 for all
x € S(e) when e € Ty \ {r(0)}. Thus, goh : S — S is the zero function on S(e), for all
e € I'o\{r(0)} and it is the identity on S(r(c)), that is, goh = 1,(,y. On the other hand,
g (and therefore h o g) is the zero function on S(e), for all e € 'y \ {d(0)} and ho g is
the identity on S(¢~') (= S(d(0)), as R-modules, by Lemma 2.6). Hence, ho g = 14(,).

(2) Let e, f € I'y. Assume e ~ f. So there exists v € el'f N supp D. By Proposi-
tion 3.5(2), we get

0 # D, = HOMg(S, S)eys = HOMa(S(f), S(€)),.

This implies that S(e) and S(f) are in the same isoshift class, by Lemma 5.2. Conversely,
suppose that S(e) and S(f) are in the same isoshift class. Take o € I" such that S(f) =,
S(e)(o). Again, by Proposition 3.5, we obtain

Deoy = HOMR(S, S)eor = HOMR(S(f),S(€e))e = Homg,.r(S(f), S(e)(o)) # 0.

Therefore, o € el'f Nsupp D and it follows that e ~ f.
(3) It follows from (2).
(4) It is immediate from (3) and Proposition 4.1(4). O

Corollary 5.4. If S is a gr-simple R-module, then D := ENDRg(S) is a gr-division ring
with supp(D) C el'e, where e € Ty is such that S = S(e). O

Gr-simple modules also have the following interesting property that will be used later.

Proposition 5.5. Let M be a I'-graded R-module. Suppose M = S1 & ---® S, = T1 &
<o+ @ Ty, where n,m € Z~qg and S1, ..., S0, 11, ..., Ty, are gr-simple graded submodules of
M. Then n = m and there exrists a permutation w of {1,...,n} such that S; =y, Ty for
eachi=1,...n.

Proof. We proceed by induction on n.
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ItM=5 =T,®- - -®T,, as in the statement, it is clear that m = 1 and T7 = 5.

Let n > 1 and assume that the result is valid for n — 1. Suppose M = S1&---® S, =
T, ®---®T,, as in the statement. Note that m > 1. Given 1 <i<mand 1< j <m, let
pi: M — S;, p;- : M — T} be the canonical projections and ¢; : S; — M, L;- : Ty — M be
the canonical inclusions. Then

n n
idr, = piuy = pridmty = p) <Z Lz’pi> b= plupi).

i=1 i=1

Hence, there exists 1 < k < n such that pgt] # 0. Therefore, pgt) : Ty — Si is a gr-
isomorphism since T} and Sy are gr-simple. On the other hand, note that pyt| = pi|r, -
The injectivity of this function is equivalent to 77 N ker pi, = 0, that is,

TiNSi® - ®S®--®S,) =0. (5.1)

The surjectivity of pg|r, is equivalent to py(7h) = Sk. Thus, given t; € Ty, we have
n

pr(t1) =t1 — > pi(t1) and it follows that
=1
2k

SRCTi+ (5@ @@ &S5, (5.2)
By (5.2, M=5®---&5, §T1+(51€B~~-€B§;@~~~EBS”). So, from (5.1), we get

M=T &5 & &% @5,
Hence,

510 @D D8, 2 Ta® - & T

By the induction hypothesis, n — 1 = m — 1 and there exists a bijection 7 : {1,...,k —
Lk+1,...,n} — {2,...,m} such that S; =, T, foreach i = 1,....k — 1,k +1,...,n.
Now just define w(k) =1. O

By Corollary 2.14 for the case |I| or |J| are infinite and Proposition 5.5 for the case
|I| and |J| are finite, we obtain

Proposition 5.6. Let M be a I'-graded R-module. Suppose M = @ S; = @ T; where

iel jET
Si, T; are gr-simple graded submodules of M for alli e I,j € J. Then |I| =|J|. O

5.2. General results about gr-semisimple rings and modules

A TI'-graded R-module M is said to be gr-semisimple if M is a sum of gr-simple graded
submodules. That is, there exists a family of gr-simple submodules {S;};c; such that
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M =37,c; Si. In the same way, one can define left gr-semisimple modules. We say that
the I'-graded ring R is a right gr-semisimple ring if Rp is a gr-semisimple module. That
R is a left gr-semisimple ring if rR is a gr-semisimple module.

Let M be a I'-graded R-module. We say that M is a gr-artinian R-module if M
satisfies the descending chain condition on graded submodules. Note that if M is gr-
artinian, then M(e) # 0 only for a finite number of e € I'g. Thus, as in the case
of gr-simplicity of modules, this motivates us to define that M is a I'g-artinian R-
module if M(e) is a gr-artinian R-module for all e € T'y. We say that R is a right
To-artinian ring if Rp is a I'p-artinian R-module. Analogously, we define when R is a
left Tg-artinian ring. We observe that if R is a right I'g-artinian ring, Ag C I'y and
A={yeTl:d(v),r(y) € Ao}, then Ra := D, Ry is a right Ag-artinian ring. Indeed
an infinite strict descending chain of graded right ideals of Ra contained in Ra(e) for
some e € Ag

LOLD---DI, D

implies the existence of the infinite strict descending chain of graded right ideals of R
contained in R(e)

LRODLRD---DIL,RD---.

We also note that if R is right I'g-artinian, then R is right gr-artinian if and only if I'{ (R)
is finite. Thus, being I'g-artinian implies being gr-locally artinian in the following sense:
if R =D, cr Ry is a right T'p-artinian ring, then, for any finite subset Ag C I'y(R), the
A-graded ring Ra = @D,ca
artinian in the foregoing sense, it does not imply that R is ['g-artinian. For example,

R, is right gr-artinian. On the other hand, if R is locally

consider the ring R := UTy(D) of countably infinite upper triangular matrices over a
division ring D with only a finite number of nonzero entries endowed with its natural
N x N grading. Then R is locally artinian, because for any finite subset Ag C N we
have Ra =4, UT, (D), where n = |Aq|. However, we have the strict descending chain of
graded right ideals

FEFh1WRDFERD---DFE,RD---.

The first results of this section are basic facts on gr-semisimple modules. The following
result will be used throughout the paper and its proof can be found in [11, Lemma 51
and Propositions 52-53].

Proposition 5.7. Let M be a gr-semisimple module and N be a graded submodule of M.
Suppose that M = 3, S; where S; is a gr-simple submodule of M for all i € I. The
following statements hold true.
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(1) There exists I' C I such that M = N & <@ Si>. Hence N is a graded direct
il
summand of M.

(2) There exists Iy C I such that M = €D S;.
i€ly
(3) There exists I'" C I such that N =4, @ S;. O
Z'GI//

Proposition 5.8. [11, Proposition 57] Let M be a T'-graded R-module. If M is a semisim-
ple R-module, then M is a gr-semisimple R-module. O

In order to state the next result, we need a definition. We say that a I'-graded R-
module @ is gr-injective if, for all gr-homomorphisms j : M — N and g : M — @ between
I'-graded R-modules with j injective, there exists a gr-homomorphism A : N — @ such
that g = hj [11, Propositions 42 and 44].

Proposition 5.9. /11, Proposition 59] The following assertions are equivalent:

(1) R is a right gr-semisimple ring.

(2) Every graded right ideal of R is a graded direct summand of Rg.
(3) Every I'-graded R-module is gr-injective.

(4) Every I'-graded R-module is gr-projective.

(5) Every I'-graded R-module is gr-semisimple. O

Now we proceed in a similar way to [8, Section 4.6], [24, p. 35-36] and [13, Section 2].
Let M be a I'-graded R-module and S be a gr-simple R-module. The isoshiftical compo-
nent of type S of M, denoted by Mg, is the sum of the graded submodules T" of M that
are in the same isoshift class of S. If S’ is another gr-simple submodule of M in the same
isoshift class of S, then Mg = Mg:,. Thus Mg depends only on the isoshift class of S.
We denote by S(R) the set of isoshift classes of gr-simple R-modules. Thus, if j € S(R)
is the isoshift class of S, we can write M; instead of Mg.

Lemma 5.10. Let M be a gr-semisimple R-module. The following statements hold true.

(1) M =jesr M;-
(2) Let {Si}icr be a family of gr-simple submodules of M such that M = @, ; S;. For
each j € S(R), let I(j) ={i € I: S; € j}. Then M; = D, Si-

Proof. (1) Since M is gr-semisimple, M =} 5py M;. We must show that this sum is
direct. Let j € S(R) and S € j.

Set M := 3y cs(r)\ ;1 Mr and consider M;NM;. On the one hand M;NM} is a graded
submodule of the gr-semisimple module M;. By Proposition 5.7(3), M; N M} = @, S
where S; € j. On the other hand, M; N M ]’ is a graded submodule of the gr-semisimple
module M;. By Proposition 5.7(3), M; N M} = @

ser Si is a direct sum of gr-simple
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submodules S; not isomorphic to a shift of S for each i € I"”. If M; N M} # 0, pick
lo € L. By Proposition 5.7(3), S, =g, @;cym Si for some I C I". Since, Sy, is gr-
simple, Sj, =g S;, for some ig € I'”, a contradiction.

(2) By construction, M; 2 @iel(j) S;. Let S be a gr-simple submodule of M that
belongs to j. Since S is a cyclic R-module, S C @), S;, for some iy,...,i, € I. Note
that if the composition S < b, S, gt S;, is not zero, where ¢ and p;, are the natural
inclusion and projection, respectively, then S =, S;,. Thus, 41,...,%, can be chosen to
belong to I(j). Hence S C 37, (;) Si- Therefore, M; C B,cr(;) Si- O

Although the next result applies for general graded rings, we turn our attention to
gr-semisimple rings.

Lemma 5.11. Let S be a minimal graded ideal of the I'-graded ring R. Suppose that S
belongs to j € S(R).

(1) R; is a graded ideal of R.
(2) Let S' be a minimal graded right ideal of R that belongs to j' € S(R). If j # j', then
R;-Rj =0.

Proof. Notice that S = S(e) for some e € T’y by Lemma 5.1. Consider the family
F :={T graded right ideal of R : there exists o € eI" such that Tr =, S(o)}.

Note that F # () because S € F, and, by definition,

Rj:ZT,

TeF

which is a graded right ideal of R. Let us see that R; is a graded ideal of R. Let
0€l',a € Rs and take T' € F. If aT' = 0, we already have a1' C R;. So assume a1 # 0
and consider the following gr-homomorphism of I'-graded right R-modules

©:T(6Y — R

T — ax

Since aT # 0, it follows that T(d(d)) = T is gr-simple. Therefore, by Lemma 5.1, we
have that 7°(6') is gr-simple. Thus, ¢ is injective, as it is nonzero. Therefore aT 2,
T 2, S(o)(671) = S(c671) for some o € el. It follows that aT € F and aT C R;.
Hence

aR; = Z al C R;.
TEF
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Since a was an arbitrary homogeneous element of R, it follows that R; is also a left ideal
and therefore it is a graded ideal of R.

(2) It is enough to show that S-S’ = 0. Assume, on the contrary, that s'S # 0 for
some homogeneous element s’ € S’. Since S’ is a minimal graded right ideal, the nonzero
graded right ideal s'S equals S’. Moreover, if § = deg(s’), then ¢: S — S’ s — §'s, is
such that 0 # ¢ € HOM(S, S)s, a contradiction by Lemma 5.2. O

Lemma 5.12. Let R be a right gr-semisimple ring and suppose that {S; : i € I} is a

family of gr-simple graded right R-submodules of R such that R = @ S;. The following
il

statements hold true.

(1) Each gr-simple R-module is gr-isomorphic to a shift of some S;.

(2) For each e € Ty, there exists a finite subset I. C I such that R(e) = €D S;.
icl.
(3) R is a right Tg-artinian ring.

Proof. (1) Let S’ be a gr-simple R-module. Taking o € supp(S’) and 0 # = € S/, we
have the surjective gr-homomorphism

¢:R— S'(0)
r— r
and thus S’(o) =, %. On the other hand, since R = @ S;, there exists ¢ € I such
i€l
that the projection 7 : S; — % is nonzero. Therefore, 7 is a gr-isomorphism because

it is a gr-homomorphism between gr-simple modules. Since S’ is gr-simple, we have
S" = S'(r(0)) = S'(c)(01) and therefore

R

S, ——
9" ker

(071) Zgr Si(a™h).

(2) Set e € T'g. We have R(e) = @ S;(e). For each ¢ € I, since S; is gr-simple and
iel
Si(e) is a graded submodule of S;, we have S;(e) = 0 or S;(e) = S;. Therefore, there

exists I’ C I such that R(e) = € S;. So there exists a finite subset I, C I’ such that
i€l
le = > s, for certain s; € (S;). \ {0}, ¢ € I.. Hence
i€l

R(e)=1.RC P siR=EHS: € Re).

icl, icl.

(3) It follows from (2). O

Our aim is now to express a gr-semisimple ring as a graded direct product of gr-
simple rings. In the non-graded case, a finite direct product of semisimple rings is also
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semisimple. Also, a direct product of a family of rings equals their direct sum if and only
if the family is finite. In the groupoid-graded context this equivalence is not true as the
following example shows.

Example 5.13. Let {R; : i € I} be an infinite family of rings with unity. Each R; is a
I x I-graded ring via R; = (R;)(; ;) and we have

II"z=- & (H(Rk)(i,o) e (H(Rk)u@)) =Pr. o

kel (i,))eIxI \kel iel \kel kel

Motivated by this, we will say that a family {R, : j € J} of I'-graded rings is summable

if ng R; = @ R;. The following characterization of summable families will be useful.
jeJ jeJ

Proposition 5.14. Let {R; : j € J} be a family of T'-graded rings. The following state-
ments are equivalent.

(1) The family {R; : j € J} is summable.

(2) The set {j € J:(R;)s # 0} is finite for allo €T
(3) The set {j € J: (Rj)e # 0} is finite for all e € Ty.
(4) The set {j € J: Rj(e) # 0} is finite for all e € Ty.

Proof. For each o € T', we have

"Ry =[] ®), and PBr| =P&,,.

jed . jeJ jeJ o jeJ

Thus, {R; : j € J} is summable if and only if {j € J: (R;), # 0} is finite for all o € T".
Therefore, we obtain (1) < (2).

(2) = (3) is clear.

(3) <= (4) follows from Lemma 2.7 which gives us (R;). # 0 <= Rj(e) # 0, for all
eely.

Finally, if J. := {j € J : Rj(e) # 0} is finite for all e € 'y, then given o € I" we have
that (R;), # 0 implies R;(r(0)) # 0, i.e., j € Jy(»). Thus, (4) = (2). O

Now we are ready to show the main result of this subsection. We follow very close the
proof of the ungraded case given in [24, p. 35-36].

Theorem 5.15. Suppose that R is a right gr-semisimple ring. The following statements
hold true.

(1) R; is a nonzero graded ideal of R for each j € S(R).
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(2) {R;j:j € S(R)} is a summable family of T'-graded rings and R = H]GS(R R;.
(3) R; is a gr-simple right T'g-artinian ring for each j € S(R).

Proof. (1) By Lemma 5.11(1), R; is a graded ideal of R for each j € S(R). By
Lemma 5.12(1), R; # 0 for each j € S(R).
(2) By Lemma 5.10(1),

R= P R, (5.3)

For each e € Ty, 1, = ZjGS(R) 1;c where 1. € (Rj). and 1j. # 0 for only a finite
number of j € S(R). By Lemma 5.11(2), 1. is an idempotent such that 1.z = = and
ylje =y for each z € (R;)5, y € (R;)s such that r(y) = e and d(J) = e. Hence R; is
object unital for each j € S(R). Since 1;. # 0 for only a finite number of j € S(R),

R;(e) # 0 for only a finite number of j € S(R). Thus, {R; : j € S(R)} is a summable
family of I'-graded rings by Proposition 5.14.

(3) Let j € S(R). By Lemma 5.12(3), R is a I'p-artinian right R-module, thus R; is
too because R;(e) C R(e) for each e € I'y. By Lemma 5.11(2), this implies that R; is a
T'p-artinian ring.

Let now I # 0 be a graded ideal of R;. Observe that I is also a graded ideal of R
by Lemma 5.11(2). Since R is a right I'g-artinian ring, I contains a minimal graded
right ideal T' of R. By Lemma 5.10(2), T' € j. It is enough to show that I O R;. Let
S = S(e) for some e € T'{(R) be a gr-simple submodule of Rg such that S € j. There
exists o € I with 7(0) = e and a gr-isomorphism ¢: T' — S(o). Since T is a graded
direct summand of Rr by Proposition 5.7(1), T' = aR for some homogeneous idempotent
a € R. Then aT = a(aR) = a®?R = T. Now S(c0) = ¢(T) = p(aT) = p(a)T. Moreover,
S(o) = 8(r(c)) = S(e) = S as sets. Since I is an ideal of R, S = ¢(a)T C p(a)I C I, as
desired. O

5.8. Structure of gr-simple Tg-artinian rings

As we have just shown in Theorem 5.15, a right gr-semisimple ring is the product
of gr-simple right I'p-artinian rings. Our objective is to characterize this latter class of
graded rings as certain matrix rings over gr-division rings. Proposition 5.17 describes
such matrix rings over gr-division rings and characterizes when they are gr-simple right
T'p-artinian rings. For that, we will need the following result first.

Lemma 5.16. Let D be a T-graded ring and let ¥ = (%;);e; € P(T)! be a matricial
sequence for D. Consider the T-graded ring R := M;(D)(X). Giveni,j € I, o; € ¥; and
Tj € X; we have that

HOM g (E™ R, X7 R) 2, My (D) (0)(7))-
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Moreover,
END g (B} R) 2, My(D)(0)
as graded rings.

Proof. It is well-known that if e is an idempotent of a ring X and M is a right X-
module, then Hompg(eR, M) — Me, f — f(e), is an isomorphism of additive groups
and Hompg(eR,eR) — eRe, f — f(e), is an isomorphism of rings. We apply this to the
idempotent E;](-Tj) of the ring R.

For each v € T, a homomorphism f € HOMR(E;](.Tj)R, E;.(O")R)W is uniquely deter-
mined by the element f(E]T-J(-Tj)) € (E;(Ui)RE;j(-Tj))Vd(T].) because E;-J(-Tj) € Ry(r,). This
means that

HOMp (£} R B[ R) =, E[" RE}”) 24, My (D)(0) (7). ©
Proposition 5.17. Let D be a gr-division ring and ¥ = (%;)ie; € P(T)! a matricial
sequence for D. Consider the T-graded ring R := M(D)(X). The following assertions
hold:

(1) F = {EZ(W)R 24 € Loy € X} is a family of gr-simple T'-graded R-modules.

Analogously, F' := {RE;(U’i) ci € 1,0, € X} is a family of gr-simple left R-modules.
(2) Given i,j € I, 0; € ¥; and 7; € X; we have that E;-(gi)R and E;;Tj)R are in the
same isoshift class if and only if 1,(5,)D1,(+;) # 0.

(3) For eachi €I and o € 3; we have
END& (B R)(0™)) Zgr Li(o) DLy (o)-

4) R=p S= P T.
SeF TeF
(5) R is a right and left gr-semisimple ring.
(6) If D is a gr-prime ring, then R is a gr-simple ring.
(7) R is a gr-simple right (left) To-artinian ring if and only if D is a gr-prime ring.

Proof. (1) Let i € I and o; € X;. Consider the nonzero I'-graded right R-module

$:= (B R
generated by the homogeneous element E:i(ai) € Ry(,)- Let v € supp(S) and 0 # s € S,
(that is, s = (sk)g where s; € D, s~ and sp = 0if k # ). Then there exists j € I
such that s;; # 0. So, for each a € I and x = (xy)r1 € Sa, since zg = sk = 0 for all
k # i, we have
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T = E s - (s;jlxitEjt) € sR.

Thus, S is gr-simple. For 7' we have a similar proof.

(2) By (1) and Lemma 5.2, we have that E;](-Tj)R and E;-(Ui)R are in the same
isoshift class if and only if HOMg(E}\" R, E[{")R) # 0. But this is equivalent to
Mix1(D)(0:)(75) # 0 by Lemma 5.16. Now, note that 1,.,,)D1,.(r,) and Myx1(D)(0;)(75)
are naturally identified.

(3) Using Proposition 3.5(2) and Lemma 5.16, we obtain that

HOMg(E\ " R(o— "), E;' R(o™")), = HOM(E}\" 'R, E[{")R) , -1,
= Ml(D)(U)O'_l'yo'

=D D

o(oc~1yo)o—t = My

for all v € r(0)Tr(0). If v ¢ r(o)Tr(c), HOMR(EL” R(c=1), E\ R(o~1)), = 0. Thus,
it is induced a gr-isomorphism of graded rings as in the statement.
(4) It is clear that

D ( D E;(‘“)R> =R=0 ( D RE{}"“) .

i€l \o;€X; i€l \o;€X;

(5) It follows from (1) and (4).

(6) Suppose that D is a gr-prime ring and let U be a nonzero graded ideal of R. Then
there is 0 # « € U, for some v € I'. Thus, there exists 4,j € I such that the (i, j)-entry
of x is z;; € Dgi,y_’_j—l \ {0}, where 0; € ¥; and 7; € X, are (the unique) such that

d(o;) = r(v) and d(7;) = d(7). So,

l‘ijEij = (E;(UI)) x (EJTJ(TJ)) clU —= E;(Ul) = (xijEij) (.’El_JlEﬂ) eU.

Take any k € I and o € Xj. Since D is a gr-prime gr-division ring and r(o;),r(0) €

I'6(D), it follows from Proposition 4.1 that there exists 0 # yir € h(1,(5,)D1y(c)). So
YirEir, = (E'T‘(Ui)) (yinBix) € U = E;Zz(cg) = (Yix Ewi) WinEir) € U.

1

Therefore, for each a = (ax;)r € h(R), we have

a = Z aklEkl = Z <E;§€degakl>> (aklEkl) € U

kel kel

and it follows that U = R.
(7) By Proposition 4.1, D = @@ Dy where each Dy is a graded ideal of D which
le]eTy/~
is a gr-simple gr-division ring and D is not gr-prime if and only if I'j/ ~ possesses
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more than one class. This implies that R is not gr-simple if D is not gr-prime because
M;(Dy)(X) is an ideal of R for each e € Tg/ ~.

Suppose D is gr-prime. By (6), R is gr-simple. By (5), R is left and right gr-semisimple.
Now, R is a right and left T'g-artinian ring by Lemma 5.12(3). O

Now we proceed to give some results with different characterizations of gr-simple right
(left) Tg-artinian rings in view.

Lemma 5.18. The following assertions hold:

(1) If R is a right Tg-artinian ring, then, for each e € Ty, either R(e) = 0 or R(e)
contains a minimal graded right ideal of R.
(2) If R is a gr-simple ring and it has a minimal graded right ideal S = S(e) for some e €
Lo, then there exists a d-finite sequence (0;)icr € (e')! such that Rr =, @ S(0).
i€l

In particular, R is a right gr-semisimple ring.
Proof. (1) Assume R is a right I'p-artinian ring and take e € I'((R). Since R(e) is a gr-
artinian right R-module, R(e) contains a minimal graded right R-submodule S, which
is a minimal graded right ideal of R.

(2) Suppose that R is a gr-simple ring and it has a minimal graded right ideal S. Then
S = S(e) for some e € Ty by Lemma 5.1. Consider the family

F :={T graded right ideal of R : there exists o € eI" such that Tr =, S(o)}.

By Lemma 5.11(1),
Rs=> T
TeF

is a graded ideal of R. Since R is gr-simple and Rg # 0, we have

R= Z T=, Z S(or),

TeF TeF

where (o7)rer € (eI')” is such that Tr =, S(or) for each T € F. By Proposi-
tion 5.7(2), there exists I C F such that

Rp =g €P S(0v). (5.4)
iel
Now note that (5.4) gives us
R(f) = P S () = D Sl

el el
d(o;)=f
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for each f € T'y. On the other hand, Lemma 5.12(2) tells us that R(f) is a direct sum of
a finite number of S(o;). Therefore {i € I : d(o;) = f} is a finite set for all f € 'y, that
is, (0:)iesr € (eI)! is d-finite. O

Theorem 5.19. Suppose that R is a gr-simple ring. The following assertions are equiva-
lent.

(1) R is a right gr-semisimple ring.
(2) R is a right Tg-artinian ring.
(3) R has a minimal T'-graded right ideal.

The equivalence of the left version of the foregoing statements holds true.

Proof. (1) = (2) it follows from 5.12(3).

(2) = (3) = (1) is Lemma 5.18.

In order to get the left versions of the statements, it suffices to note that R is a
gr-simple ring if and only if R°P is a gr-simple ring. O

We give now the main step towards obtaining the structure of gr-simple right (left)
T'p-artinian rings.

Proposition 5.20. If R is a gr-simple right (resp. left) T'g-artinian ring, then there exist
e € Ty, a T'-graded division ring D with supp(D) C el'e and a d-finite sequence & =
(0i)icr € (eI) such that

R =, M;(D)(@).
Furthermore, if R has unity, then I is finite.

Proof. Suppose that R is a gr-simple right I'p-artinian ring. By Lemma 5.18, there
exist e € Ty, a minimal graded right ideal S = S(e) of R and a d-finite sequence
& = (0y)ie1 € (eI')! such that

Rr = @ S(0i) = 5(7).

iel

By Corollary 5.4, D := ENDg(S) is a I'-graded division ring and supp(D) C el'e. By
Lemma 3.4 and Corollary 3.14(1), we have gr-isomorphisms of I'-graded rings

=gr END(RR) =4, ENDg(5(7)) =4r M1(D)(@).

If R is a gr-simple left ['g-artinian ring, then R°P is a gr-simple right I'p-artinian
ring. As we have just proved, there exist e € I'g, a I'-graded division ring D with
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supp(D) C el'e and d-finite sequence & = (0;);er € (eI')! such that R°P =, M;(D)(7).
Then we get form Proposition 3.17(1) that

R =g, M1(D)(@)" =g M1 (D?)(7).

Finally, note that if R has unity, then R(f) # 0 only for a finite number of f € T'y.
Then Lemma 5.12(2) guarantees the existence of finite subsets Iy C I, f € I'{(R), such

that I = |J Iy is finite. O
ferg(R)

Note that, in Proposition 5.20, D is graded by the isotropy group el'e and we have
r(o;) = e for all ¢ € I. But the I'-grading on M;(D) () may not be realized as a group
grading (in the sense of [14, Definition 1.8]). In fact, if there exist ¢ # j such that
d(o;) # d(oj), then Ef; € M[(D)(7)q4(,) and Ef; € M;(D)(7)4(s,)- Therefore, Ef; and
E%; are in distinct homogeneous components. This cannot occur in a group grading
because Ef; and EY; are nonzero homogeneous idempotents and thus both should be in
the component corresponding to the unity of the group.

On the other hand, the I'-grading on M;(D)(7) is a refinement of a group grading,
see [12, Corollary 2 of Section 4]. Indeed, for each f € I'j) := I'{(M;(D)(7)), take iy € I
such that d(o;,) = f. Then M;(D)(7) is a el'e-graded ring if we define the component

of degree g € el'e as f,,gzr(g MI(D)(E)G{flgmf, . More generally, suppose that R = %“ R,
is a T'-graded ring such that there is e € T'|{(R) with the property that for all f € T{(R)
there exists oy € eI'f. In other words, the groupoid I := {y € T': 1,(,), 14(y) # 0} is
connected. Then R is a el'e-graded ring if we define the component of degree g € el'e as
R _—1 . This is a coarsening of the I'-grading of R.

rierymy T

Corollary 5.21. Let R be a gr-simple ring. Then R is a right Ug-artinian ring if and only
if R is a left Tg-artinian ring.

Proof. By Proposition 5.20, if R is either a right or a left I'g-artinian ring, then there
exist e € Ty, a I'-graded division ring D with supp(D) C el'e and a d-finite sequence
7 = (0;)ier € (eI')! such that R =, M;(D)(7). But M;(D)(7) is a right and left gr-
semisimple ring by Proposition 5.17(5). It follows from Theorem 5.19 that M;(D)(7) is
a right and left ['g-artinian ring. O

Remark 5.22. From now on, in view of Corollary 5.21, we shall be at liberty to drop the
adjectives “left” and “right” and just talk about gr-simple I'g-artinian rings. 0O

For a I'-graded division ring D and I'-graded right D-module V, we say that V is
To-finite dimensional over D if V(e) has finite pseudo-dimension for each e € T'y.

Combining the previous results, we obtain the following characterization of gr-simple
T'g-artinian rings which is the main result of this section.
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Theorem 5.23. The following statements are equivalent.

(1) R is a gr-simple Tg-artinian ring.
(2) There exist e € Ty, a I'-graded division ring D with supp(D) C el'e and a d-finite
sequence @ := (0;)ic1 € (eI)! such that

Zgr M1(D)(@).

(3) There exist a gr-prime I'-graded division ring D and a matricial sequence ¥ :=
(X)ier € P(D)! for D such that

R, M;(D)(X).

(4) There exist a T-graded division ring D with supp(D) C eT'e for some e € Ty and a
I'-graded right D-module V' which is I'g-finite dimensional over D such that

RE

=, ENDp(V).
(5) There exist a gr-prime T'-graded division ring D and a T-graded right D-module V
which is T'g-finite dimensional over D such that

R, ENDp(V).

Proof. Proposition 5.20 gives (1) = (2) and it is clear that (2) = (3).
Proposition 5.17(7) gives (3) = (1).
Let us see that (3) <= (5). If (3) holds, then just take V := D(X). Note that

V has D'o-finite dimension because ¥ is d-finite. So, applying Corollary 3.13(4), we

get ENDp (V) = END(D(X)) =4 M;(D)(X) =4 R. Conversely, if (5) holds, then
Theorem 4.4(1) and Proposition 3.1(7) imply that V =, @ D(o;) for a certain
i€l

G = (0i)icr € ! with r(0;) € Ty(D) for each i € I. Since V is TI'o-finite dimen-
sional, it follows that & is d-finite and therefore matricial for D. Then Corollary 3.13(4)
gives M;(D)(5) =, END(D(7)) =, ENDp(V) =,, R.

The equivalence (2) <= (4) is proved analogously to (3) <= (5) using Corol-
lary 3.14(2). O

In Section 6, we present another proof of Theorem 5.23 using a groupoid graded
version of the Chevalley-Jacobson Density Theorem. In fact, we will obtain a slightly
stronger result, for graded rings that are not necessarily object unital.

We end this subsection with some consequences of Theorem 5.23 about some impor-
tant graded subrings.
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Proposition 5.24. Let R be a gr-simple Tg-artinian ring. For each Ay C Ty, the ring
Ia,R1p, =D, Feno 1.R1; is also gr-simple I'g-artinian. In particular, if e € I'y, then
1.R1. is a gr-simple gr-artinian ring (as a group graded ring).

Proof. By Theorem 5.23, there exist ey € 'y, a I'-graded division ring D with supp(D) C
eoleg and a d-finite sequence & = (0;)icr € (eol')! such that R 22, M;(D)(7).
If Ao g F07 then

Ing :i={i€I:d(o;) € Ao}
is such that

1a,R1a, o MIA() (D)(E[A())
is a gr-simple I'g-artinian ring, by Theorem 5.23. O

Inspired by [20, Subsection 1.4.1], the next example shows that there does not exist a
full version of Proposition 5.24 for the subrings R, e € I'g. In Proposition 5.26, we give
a characterization of when the subrings R, are simple artinian.

Example 5.25. Let K be a division ring and G be a nontrivial group. Consider K with
the trivial G-grading and take o, 7 € G such that o # 7. Then My(K)(0o, 7) is a gr-simple
gr-artinian ring, but

My(K)(0,T)e = <IO( [0()

is not a simple ring. O

Proposition 5.26. Let R be a I'-graded ring. If R is a gr-simple T'g-artinian ring, then R,
is a semisimple ring for all e € T'y. More precisely, suppose that R =4, M(D)(T) where
eo € Ty, D is a T'-graded division ring with supp(D) C eqleq and & := (0;)icr € (eol')!
is a d-finite sequence. Fiz e € T((R) and consider the finite set I, := {i € I : d(0;) = e}.

The following statements hold true:

(1) There exist positive integers mq,...,n, such that ny + -+ + ng = |I.| and R, =
[Tizi Ma,, (Dey)-

(2) R is a simple artinian ring if and only if D, .-+ # 0 for all i, j € I with d(o;) =
d(oj) = e. In this case, Re = M1 |(De,). '

Proof. Suppose that R is a gr-simple I'g-artinian ring. The fact that R, is a semisimple
ring for all e € T'y will follow from (1) and Proposition 5.20.
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(1) Consider the following equivalence relation in I,:
1~ ] = crm}l € supp D.

Let I, ..., I, be the equivalence classes of this relation. For each k = 1,...,n and i,j € I,
we have, by Proposition 3.5(2),

HOngr_D(D(O'j), D(O’z)) = HC)l\/[D(l)7 D(Ui))aj—l
= Homg.p(D, D(07)(0; "))
— HOMp (D, D)

oot
i%;

= Do_ia‘—1 75 0

and it follows that D(o;) =4, D(0;). For each k =1, ..., n, fix iy € I}, and let ng := |I].
Set o’ := (0!)ier € (eol')! where o = oy, if i € I} and o} = 0; if i ¢ I.. Then

D) = @ Do) ® P D(ov)
igl. i€l
= @ D(o;) @ @ @ D(0;)
i¢l, k=1icl;
=, @@ D(o) & P D(os,) ™
i¢l. k=1
— D).

Thus, by Corollary 3.14(2), we obtain
R =, ENDp(D(7)) =, ENDp(D(c")) =, M;(D)(c").
Now, note that if (a;;);; € M(D)(0”)., then
a;; #0 = Ddgg,;l #0 = i~}

Therefore

(2) follows from (5.5). O
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5.4. Structure of gr-semisimple rings

In this subsection, we obtain a version of Wedderburn-Artin Theorem for gr-
semisimple rings. For that, we begin with some technical results.

Proposition 5.27. Let {R; : j € J} be a summable family of I'-graded right (left) gr-
semisimple rings. Then R = ng R; is a right (resp. left) gr-semisimple ring.
JjedJ

Proof. We begin with the right case. For each j € J, we can write R; = & S for
keK;

some family {S; : k € K;} of gr-simple I'-graded right R;-modules.

Fix j' € J and k € K. We can make S}, a I'-graded right R-module via s-(r;),cs :=
sry for all s € Sy, and (rj)jes € R. Let us see that Sj is a gr-simple R-module. Let
0 # s € h(Sj/x) and take any x € Sj. Since sR;s = Sj/i, there exists r’ € R;, such that
sr’ = x. Therefore, (rj)jes € R, where r;; = 1’/ and r; = 0 for all j # j/, is such that
s-(rj)jes = . Thus, sR = Sj;. From this we conclude that

R=1]"R=Pr =D D s

jed jed jEJ kEK,

is a direct sum of gr-simple right R-modules. Hence, R is a right gr-semisimple ring.
Suppose now that {R; : j € J} is a summable family of left gr-semisimple rings. So
{(R;)°P : j € J} is a summable family of right gr-semisimple rings. From what we have
T
just proved, Hg (R;)°P is a right gr-semisimple ring. By Proposition 3.17(5), we have
jeJ
that RP is right gr-semisimple. It follows that R is left gr-semisimple. O

Corollary 5.28. The I'-graded ring R is a right gr-semisimple ring if and only if it is a
left gr-semisimple ring.

Proof. If R is a right gr-semisimple ring, it follows from Theorem 5.15 that there exists
a summable family {R; : j € J} of gr-simple I'g-artinian rings such that R =, ng R;.
By Corollary 5.21 and Theorem 5.19, each R; is a left gr-semisimple ring. It follg)ivJs from
Proposition 5.27 that R is a left gr-semisimple ring.

Conversely, if R is a left gr-semisimple ring, then R°P is a right gr-semisimple ring. So,
as we have just proved, R°P is a left gr-semisimple ring, that is, R is a right gr-semisimple
ring. O

Remark 5.29. From now on, in view of Corollary 5.28, we shall be at liberty to drop the
adjectives “left” and “right” and just talk about gr-semisimple ring. O

Combining previous results, we obtain the following characterization of gr-semisimple
rings that can be seen as a version of the Wedderburn-Artin Theorem.
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Theorem 5.30. The following statements are equivalent for the I'-graded ring R.

(1) R is a gr-semisimple ring.

(2) There exist (e;)jes € (Do)’ and, for each j € J, a T-graded division ring D; with
supp(D;) C e;Te; and a d-finite sequence o; := (0ji)rek, € (€;T)57 such that the
family {Mg,(D;)(7;):j € J} is summable and

gr _
Ry, [] M, (D))(@5).
JjeJ

(3) There exists a set J and, for each j € J, a gr-prime I'-graded division ring D;
and a matricial sequence ¥; := (Sjp) ek, € P(T)%i for D; such that the family
{Mk, (D;)(%;) : j € J} is summable and

-~ gr —
Ry, [ Mk, (D)(E)).
jeJ

(4) There exists a summable family {R; : j € J} of gr-simple T'g-artinian rings such
that

~Y gr
Rz, R;.
s

Proof. (1) = (2): By Theorem 5.15, the summable family {R;} csr) of gr-simple
To-artinian rings is such that R = []7_ ) R;. By Theorem 5.23, for each j € S(R),
R; =4 Mk, (D;)(G;) where D; is a I'-graded division ring with supp(D;) C e;T'e; for
some e; € T'g and ; = (0jx)kek, € (e;T)% is a d-finite sequence.

(2) = (3): Tt is clear.

(3) = (4): By Proposition 5.17(7), R; := Mg, (D;)(%;) is a gr-simple I'g-artinian
ring for all j € J.

(4) = (1): Theorem 5.19 tells us that each R; is gr-semisimple. Therefore, R is
gr-semisimple by Proposition 5.27. 0O

Note that if R is a gr-semisimple ring with unity, then I'j(R) is finite and it follows
that, in Theorem 5.30(2), we have that

Ki= |J {keK;:d(oj)=e}
e€T)(R)

is finite for all j € J and

J= |J {jeJ: Mk (D)) # 0}
e€T)(R)

is finite.
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Remark 5.31. One can prove (1) = (2) in Theorem 5.30, using a more traditional
argument. Suppose that {T; : i € I} is a family of gr-simple graded right R-submodules

of R such that R = @ T;. Let {S; : j € J} be a subset of {T; : i € I} formed by
el

exactly one representative of each isoshift class. For each j € J, let e; € I'y be such

that S; = S;(e;). Grouping together the modules that are in the same class, we obtain

a sequence 0 = (0jz)kek, € (e;I)%/ for each j € J such that

Rr =, @ S,()). (5.6)

JjeJ

From Lemma 5.2, we have that HOMg (S,(7;), Sj/(G;)) = {0}, for distinct j, ;" € J.
So we can apply Corollary 3.12 which, together with Lemma 3.4, gives us the following
gr-isomorphisms of I'-graded rings:

R =, END(Rz) =, [[ END&(S;(a;))- (5.7)
jeJ

By Lemma 5.12(2), for each e € T'y, we have that R(e) is gr-isomorphic to a direct sum
of a finite number of S;(o;1). Thus, it follows from (5.6) that, for all j € J, K; . := {k €
K; :d(ojx) =e} and J. :={j € J : K. # 0} are finite sets. The finiteness of the sets
K . implies that each &; is d-finite and therefore we can use Corollary 3.14(1). Hence,
(5.7) gives us R =, ng Mg, (D;)(;), where, for each j € J, D; := ENDg(S;). The
jeJ

fact that {Mg;, (Dj)(gj) : j € J} is a summable family follows from Proposition 5.14,
the finiteness of J. (e € I'y) and the equality

Je ={j € J: Mg, (D;)(@;)e # 0},

for all e € T'o. If Mg, (D;)(@j)e # 0, e € T, then there exist k,I € Kj; such that
(Dj)ajkenfll # 0. In particular, ajkeaj_ll is defined. Thus, we obtain k € K . and there-
J

fore j € J.. Conversely, if j € J., then taking k € K, i.e., d(o;z) = e, we have that
0 # E}j, € Mg, (D;)(G))e. O

The following results are about the relation between the gr-semisimplicity of a
groupoid graded ring and certain important graded subrings.

Proposition 5.32. Let R be a I'-graded gr-semisimple ring. The following statements hold
true.

(1) If Ao C T, then 1a,R1n, =D, e, leR1y is a gr-semisimple ring.
(2) Ife €Ty, then 1.R1. is a gr-semisimple ring.
(3) Ife €Ty, then R, is a semisimple ring.
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Proof. By Theorem 5.30, there exists a summable family {R; : j € J} of gr-simple
T'p-artinian rings such that

gar
~Y
=gr Rj~

jed

(1) Let Ag C I'y. By Proposition 5.24, 1o,R;1a, is a gr-simple I'g-artinian ring, in
particular gr-semisimple, for all j € J. It is clear from Proposition 5.14, that {1a,R;1a, :
j € J} is a summable family. Then

gr
IagR1a, Zor [ 1a,Ri1a,
JjEJ

is a gr-semisimple ring, by Proposition 5.27.

(2) Set Ag = {e}. Since 1a,R1a, = 1l R1., the result follows from (1).

(3) Let e € I'g. By Proposition 5.26, (R;). is a semisimple ring for all j € J. By
Proposition 5.14, the set J. := {j € J : (R;)e # 0} is finite and it follows that R, =
[jcs, (Rj)e is a semisimple ring. O

In general, the converse of items (1)—(3) in Proposition 5.32 are not true as the fol-
lowing example shows.

Example 5.33. Let K be a division ring and T' := {1,2} x {1,2}. Consider the ring

R = (Ig g) I'-graded via R(i,j) = E;RE;; for each 1 <14 < j <2. Then R(1,1) and

R(3,2) are semisimple rings. However, R is not a gr-semisimple ring because E12R is not
a direct summand of Rg. O

Before obtaining some important cases where the converse of items (1)—(3) in Propo-
sition 5.32 hold, we need some definitions. Let e € I'g. For a I'-graded ring R, we say
that R is right e-faithful if, for each, v € eI’ and 0 # a € R, there exists r € R,-1 such
that 0 # ar € R.. We will say that R(e) is {e}-faithful if, for each 0 # a € h(R(e)), there
exists 7 € h(R) such that 0 # ar € 1.R1.. Clearly, if R is right e-faithful, then R(e) is
{e}-faithful. We also say that R is strongly I'-graded if R, Rs = R, for all v, € I". It is
not difficult to see that if R is strongly I'-graded, then R is right e-faithful for all e € T'y.
The previous concepts generalize items (2) and (3) of [6, Definition 7 (p. 536)].

Proposition 5.34. Let R be a I'-graded ring.

(1) If, for all e € Ty, R. is a semisimple ring and R is right e-faithful, then R is a
gr-semisimple ring.

(2) If, for all e € Ty, 1.R1. is a gr-semisimple ring and R(e) is {e}-faithful, then R is
a gr-semisimple ring.
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Proof. (1) Suppose that e € T'g, R is right e-faithful and 1. = $; + -+ + s,, where
81, ...,8n € R. and s; R, is a simple R.-module for each i = 1,...,n. We will show that
each s;R is a gr-simple R-module. Fix ¢ = 1,...,n and 0 # a € s;R. By e-faithfulness,
there exists r € h(R) such that 0 # ar € R,. Since 0 # ar € (s;R). = $; R, it follows
from simplicity that arR. = s;R.. In particular, s; € arR. C aR and thus aR = s;R.
Hence R(e) = 1.R =Y., s;R is a gr-semisimple R-module.

(2) Suppose that e € Ty, R(e) is {e}-faithful and 1, = s+ - -+$,, where s1, ..., s, € R,
and s;(1.R1.) is a gr-simple 1.R1.-module for all i = 1,...,n. It suffices to show that
each s;R is a gr-simple R-module. Fix ¢ = 1,...,n and 0 # a € s;R. Take r € h(R)
such that 0 # ar € 1.R1.. Then 0 # ar € 1.(s;R)1. = s;(1cR1.) and it follows that
ar(1.R1.) = s;(1.R1.). Thus, s; € aR and therefore aR = s;R. O

Corollary 5.35. For a strongly I'-graded ring R, the following assertions are equivalent:

(1) R is a gr-semisimple ring.
(2) 1.R1, is a gr-semisimple ring for all e € Ty.
(3) Re is a semisimple ring for alle € Ty. O

Corollary 5.36. For a gr-prime strongly I'-graded ring R, the following assertions are
equivalent:

(1) R is a gr-simple Tg-artinian ring.
(2) 1.R1, is a gr-simple gr-artinian ring for all e € Ty.

Proof. The result follows from Corollary 5.35, noting that each 1.Rl., e € Ty, is a
gr-prime ring. 0O

Following [10, Definition 12], we will say that the I'-graded ring R is an object crossed
product if, for each v € I', there exists an invertible element in R,. Object crossed
products are strongly graded. In fact, for each o,7 € I' with d(o) = r(7), taking an
invertible element u € R, we have

R,r = Ra‘rld('r) = Raru_lu C R,R;.
Furthermore, [10, Proposition 16|, says that the object crossed products are precisely
the I'-graded rings of the form A x§ I', where (A, T', o, B) is an object crossed system as

in Example 2.2(3). In this context, we have:

Proposition 5.37. Let (A,T,a, ) be an object crossed system. Then A xg I' is a gr-
semiasimple ring if and only if A, is a semisimple ring for all e € T'y.

Proof. The result follows from Corollary 5.35, because (A Ngf‘)e 2 A foralleecy. O
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Corollary 5.38. Let (A,T,«, 3) be an object crossed system. The following assertions
hold:

1) If T is connected and A, is a prime ring for all e € Ty, then A x% T is a gr-prime

( P g ; 5 gr-p
ring. The converse holds if, for each e € 'y and o € el'e, we have oy, =1da, .

2) If T is connected and A, is a simple artinian ring for all e € T'g, then A X% T is a

( P g Y B
gr-simple Ug-artinian ring. The converse holds if, for each e € Ty and o € el'e, we
have oy =1ida, .

Proof. (1) Suppose that I' is connected and A, is a prime ring for all e € Ty. Let o, 7 € T,
0#ac A and 0 # b € Ay(;y. Take v € d(o)I'r(7). Then 0 # aq(ay (b)) € Ao
Since A, () is prime, there exists « € A, () such that azay(a, (b)) # 0. Then a;*(z) €
Ad(e) = Ar(y) and

(auo) (g (2)us) (bur) = (a2 4t ) (ur) = 02Bg.5 00~ (b) Boy.tioyr

= GT0qy (a"/(b))ﬂm’yﬁav,‘rua'yr

is nonzero because arag(a, (b)) # 0 and B, -, Boy,r are invertible in A, (). Thus A x§ T
is a gr-prime ring.

Now suppose that A ¥ I' is a gr-prime ring and, for each e € Ty and o € el'e, we
have a, =id4, . I' is connected because

(1AEU6)A N%F(lAfo)#O = el'f £0

forall e, f € I'g. Fix e € I'g and let a,b € A, \ {0}. Since A x§ I is gr-prime, there exist
o € el'e and x € A, such that (aue)(zus)(bue) # 0. Then

0 # (aue)(zuy ) (bue) = (azuy)(bue) = axbuy,

because a, =ida,, and it follows that axb # 0. Hence, A, is a prime ring.

(2) If T' is connected and A, is a simple artinian ring for all e € Ty, it follows from
(1) and Proposition 5.37 that A xg I' is a gr-prime gr-semisimple ring. Conversely, if
A x5 I' is a gr-simple ['p-artinian ring and, for each e € T'y and o € el'e, we have
o, = ida,, it follows from (1) and Proposition 5.37 that A, is a prime semisimple ring
foralleeI'y. O

We observe that Corollary 5.38 applies for object twisted groupoid rings [10, Definition
22).

If D is a I'-graded division ring and ¥ = (%;);er € P(I')! is a matricial sequence for
D, then R := M;(D)(X) is a gr-semisimple ring by Proposition 5.17(5). On the other
hand, R can also be described as in Theorem 5.30(2). The next result gives an explicit
way of passing from the former to the latter description of R.
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Proposition 5.39. Let D be a I'-graded division ring, ¥ = (X;)ier € P(I)! be a matricial
sequence for D and let R := M;(D)(X). Consider

== {[r(a)] eT)(D)/ ~:0 € Uzi}

icl

where ~ is the gr-primality relation on T((D). Let ¥ := |J {i} x X;. For each £ € 2, let
i€l
Y :={(i,0) € Z:1(0) € &} and fix (ig,0¢) € Xe. Then, for each § € =, there exists

(’Yz‘,m)(i,ai)ezg € H Supp(lr(ag)Dlr(o’i)) such that
(i7o"i)625

—ng MEE r( T(O’g))(ﬁg))

g€z
where Jg := (Yi,0,04) (i,0:)exe € (1(0¢)T).

Proof. First notice that ¥ = [J X, and this is a union of disjoint sets. Let (i,0;) € ¥
ge=
and take (the unique) £ € = such that r(o;) € £ Thus, [r(o¢)] = [r(0;)], i.e., there exists

Yi,o; € (supp D) N7 (0¢)I'r(0;). Then, taking 0 # u;,, € D, , we have that
E"R — B[R
igie

T (Ujo, Bigi)T

is an isomorphism of degree o¢ 1%-701, o; = deg(u; o, Ei;). Therefore,

=@ ER=D| D ER| =0 DS,

el ez 1,0)EX EeE
oL (i,04) €%

where S¢ = (E;(ZE)R> (O‘gl) and 5 = (Yi0,08)(i,0nexe € (r(o¢)T)¥¢. By Propo-
sition 5.17(2), the gr-simple R-module (E;(i?)R) (Ugl) is in the same isoshift class

of (El;,iii)R) ((Tg,l) if and only if Lioe)Dlir(og) # 0, and this is equivalent to
§=[r(og)] = [r(oe)] = ¢ From Lemma 5.2, we have that HOMg(Se(F¢), Se (7¢r)) =
{0} for distinct £, &’ € E. So we can apply Corollary 3.12 which, together with Lemma 3.4,

gives us the following gr-isomorphisms of I'-graded rings

R =, END(Rg) =, [[ ENDr(Se(7e))- (5.8)
€=

Now note that ENDg(S¢) = END ((ET(?)R)(agl)) =gr Lr(o)Dly(oe) by Proposi-
tion 5.17(3). Hence, (5.8) and Corollary 3.14(1) give
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gr -
Ry [T Mz (oo Dliog)(Fe)- O
Ee=

As a consequence, we have the following result, which shows how to decompose graded
division rings as a product of matrix rings.

Corollary 5.40. Let D be a I'-graded division ring and consider the gr-primality relation
~ defined on I'y := I'o(D). Then, for each [e] € I'y/ ~, there exists Fio := (Vf)fele] €

[1 supp(1eD1y) such that
felel

gr —
D ggr H M[e] (]-eD]-e)(’Y[e])'
le]eTo/~

Proof. By Remark 3.16(1), D =, M;(D)(I'j). Now apply Proposition 5.39 for = =
o/~ Y= {1} xI'y 2T, ¥ = {1} x [e] = [e] and o}, = e for each [e] € Tj/~. O

Corollary 5.41. Let D be a gr-prime I'-graded division ring, ¥ := (£;)ie; € P(T)! be a

matricial sequence for D and consider R := M;(D)(X). Set ¥ := |J{i} x ¥; and fix
i€l
(io,0) € B. Then there exists (Vio,)(i,on)ex € 11 supp(ly(o)Dly(o,)) such that
(i,04)€X

R ggr MZ(lr(a)Dlr(J))(7)7
where 7 := (Yi,0,01) (i,01)ex € (r(0)T)*.

Proof. It follows from Proposition 5.39, noting that, by Proposition 4.1(4), the gr-
primality relation on I'((D) has a unique equivalence class. O

Corollaries 5.40 and 5.41 provide another proof of Theorem 4.2. Indeed, let D be a
gr-prime I'-graded division ring. By Remark 3.16(1), D =, M;(D)(T(). Fix e € T, :=
I'5(D). By Corollary 5.40 or Corollary 5.41, there exists (vf)ser; € f]_[ supp(1l.D1y)

ery

0

such that
D =, Mi(D)(Tg) =gr Mry (1cD1e) (7),

where 7 := (v¢) sers -

We end this subsection with a consequence of the results in Section 3.6. We need
some definitions first. Suppose that I' is a connected groupoid and let R be a I'-graded
ring. Let eg € Ty, G := epl'eg and {o¢}eer, as in (3.1). A (G x I'p)-graded R-module
M is gr-simple if M # {0} and the only graded submodules of M are {0} and M. The
(G x Tp)-graded module M is gr-semisimple if it is a sum of (G x T'y)-graded gr-simple
submodules. A G-graded R-module M is gr-simple if M # {0} and the only graded
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submodules of M are {0} and M. The G-graded module M is gr-semisimple if it is a
sum of G-graded gr-simple submodules.

Corollary 5.42. Suppose that I' is a connected groupoid and let R be a I'-graded ring. Let
eo € Lo, G :=eoleg and {oc}eer, as in (3.1). The following statements are equivalent.

(1) R is a gr-semisimple I'-graded ring.

(2) There exists e € Ty such that any graded right R-module in the full subcategory
el' —gr-R of I' — gr-R is gr-semisimple.

(3) Any G-graded right R-module is gr-semisimple (as a G-graded module).

(4) Any (G xTg)-graded right R-module is gr-semisimple (as a (G xT'g)-graded module).

Proof. The equivalence of (1) and (2) follows from Proposition 5.9 and Lemma 3.19,
upon observing that a I'-graded right R-module M is gr-semisimple if and only if M (e)
is gr-semisimple for every e € I'y.

The equivalence of (2), (3) and (4) follows from Proposition 3.20. O

5.5. On the uniqueness of the representation as matriz rings

The main aim of this subsection is to prove a kind of uniqueness of the decomposition
in Theorem 5.30(2) for a gr-semisimple ring. The following general result, together with
Theorem 5.45, provides such result.

Theorem 5.43. Let {R; : j € J} and {T; : j € J'} be summable families of gr-simple
rings. Then Hg R; =g, Hg Tj if and only if there exists a bijection w: J — J' such

jeJ =k
that Rj =g, Ty ;) for each j € J.

Proof. Assume that ® : ng R; — ng T} is a gr-isomorphism of rings. We denote

jeJ jeJ’
R=]["RjandT:= [[" 7;. Given j € J and k € J', let p; : R — Ry, pl, : T — T
jeJ jeJ’

be the canonical projections and ¢; : R; — R, ¢}, : T, — T be the canonical inclusions.
Fix jo € J. We have that ¢j,(R;,) is a graded ideal of R and therefore ®(¢;,(R;,)) is a

graded ideal of T'= @ Tj. It is easy to see that
jeJ’

(I)(Ljo (Rjo)) = @ p;‘(q)(bjo (Rjo)))'
JjEJ’

Since ® o ¢, is an injective gr-homomorphism and R, is gr-simple, it follows that
®(1j,(Rj,)) is a gr-simple ring and a graded ideal of T. Thus, there exists a unique
7(jo) € J' such that pl; (®(1s,(Ry,))) # {0} Then pl ;) (@(1s,(R;,))) s a nonzero
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graded ideal of the gr-simple ring 77 (;,) and it follows that pﬂ(m)(@(LjO (Rjy))) = Tr(jo)-
Hence

(I)(Ljo(Rjo)) = L;r(jo)(TTr(jo))' (59)

In particular, R, It also follows from (5.9) that the function 7 : J — J' is

Zgr Tr(jo)-
injective. Finally, note that

[Im=2(]] 7| =2|PuE)|=PR;) =P (T.

jeJ’ JjeJ jeJ JjeJ jeJ

and it follows that 7 is surjective as well. O

Proposition 5.44. Let H be a T'-graded ring and ¥ := (3;);er € P(T)! be a fully matricial
sequence for H. Let R := M;(H)(X). Fizig € I and consider M := @ (E'''R)(c™Y).

[ASIFN ot
The following assertions hold:

(1) E T(U’ R =, M(0;) for each i € I and 0; € X;.

(2) H =, ENDR(M) as I'-graded rings.

(3) For each 6,8’ € T with r(d),r(8") € TH(H), if M(§) =4 M(8'), then 6’671 €
supp(H). And the converse holds if H is a T'-graded division ring.

Proof. (1) Let i € I, 0; € ¥; and take o € X;, such that r(c) = r(0;). So it is easy to
see that
E[""R — (E]Y)R = M(o;)
i — zgzg ( ) (JZ

T(Ut)
Z[)Z

z— E.

is an isomorphism of right R-modules and it is graded since E:O(ZU )€ Ry,
(2) Consider

®: H— ENDg(M)
x— ®(x): M - M

m = xm.

Let us see that ® is well-defined and is graded. Let v € ' and v € H,. Let a € T
and 0 # m = (mp)w € M, = ( :O(Z))R)( o € R,-1, where 0 € %, is such

that r(o) = r(«). For each j € I, we have m;,; € HE_OU,lazfl = H_-1. Therefore,
* J

J
TMiyj € szj_l = H2i0771'7a2;1 where 7 € ¥, is such that r(7) = r(y). Since my; =0

for all k # io, it follows that zm € ( ”(”R) = M,. Thus, ®(z) € ENDg(M),.
iples

20t0
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Clearly ® respects sums, products and units. Hence, ® is a gr-homomorphism of rings.
It is injective because if z € (ker @), with r(v),d(vy) € T'((H), then EZ(Z)) € M and it

follows that 2EX?) = &(2)(EXY) = 0 from where z = 0. Finally, let us see that ® is

Z(]io ZAO7;0

surjective. Suppose that v € I" and 0 # g € ENDg(M),. Then
r(v),d(y) € To(ENDg M) = To(M) = {r(0) : 0 € 5, } = T4 (H).

Let 0,7 € ¥,;, such that r(o) = d(v) and r(r) = r(7). Since EZ-TO(ZJ) € M, and img C
M(r(y)) = (ET(T)R) (r=1), we have g(E')) € M,, = (E’”“)R) and
T 1lv0

i0io i0io i0io

g(ET(U)) — E”'(T)g(ET(U'))ET(U) — in

i0io igio igio igio 0%0

for some @ € Hy, 1 s = Hy. It m € M(d(y)) = (Em,)R) (01), we have
N i0

00

a(m) = g(Ejy7)m) = g(E; 7 )m = xm = &(x)(m).
Since g and ®(z) have degree v, it follows that they vanish on M (e) for all e € T'o\{d()}.
Thus g = ¢(z).
(3) First notice that, using Proposition 3.5(1) and the previous item, we get

Homyg,. (M (), M(6')) = HOM g (M, M(8')) 51
= Homg, p(M, M(8')(671))
= HOMp (M, M)si5-1

= H5/5—1

for all ¢, € I'. Furthermore, if r(d),r(8") € T4(H) = T'H(ENDg(M)) = I'y(M), then
M(6),M(8") # 0. Thus, if M(6) =, M(0'), then 0 # Homg, g(M (), M(8")) = Hss—
and therefore 6’6~! € supp(H). If H is a I'-graded division ring, then M is I'g-simple
by Proposition 5.17(1). In this case, if 8’6~ € supp(H), then Homg, r(M(5), M (d")) =
Hsis-1 # 0. But since M(0) and M(d') are gr-simple, it follows that every nonzero
element of Homg, r(M (), M (d")) is a gr-isomorphism. O

Theorem 5.45. Let e, e’ € Ty, D, D’ be I'-graded division rings with supp(D) C ele,
supp(D') C €Te’ and 7 := (0;)ics € (eD)!, 8 := (8;)scr € (¢T) be d-finite sequences.
Then M[(D)(7) =4 Mp/(D')(8) if and only if there exist a bijection m : I — I' and
7 € €'Te such that D" =g, My(D)(t~") and 0, ;y € T(supp D)o; for each i€ I.

Proof. Let R := M;(D)(d) and suppose that R =, Mp/(D’)(d). Fix iy € I and let
S = (ET(UiO)Rg (o;1) which is a gr-simple R-module by Proposition 5.17(1). By Propo-

ioio 10
sition 5.44, we have



78 Z. Cristiano et al. / Journal of Algebra 687 (2026) 1-116

Rrp =@ E"" R, @@ S(0;) and D=, ENDg(S).

iel i€l
Since R =, M/(D')(5), we similarly obtain a gr-simple R-module 7" such that
Rp 2, @T(5;) and D' =, ENDg(T).
el

Fix f € Ty and consider the finite sets
Ip:={icl:d(o;)=f} and I;:={icl :d(%)=f}
We have then

R(f) %gr @ 5(01) ggr @T((sv)

iel; iel}

Since S and T are gr-simple, it follows from Proposition 5.5 that |I;[ = [I}| and there
exists a bijection 7 : Iy — I} such that S(0;) =g T(0r,(;)) for each i € Iy. Since

I'= U Iy and I' = {J I} are disjoint unions it follows that we have a bijection
felo felo
m: I — I' given by m(i) = m¢(i) when ¢ € Iy. Now notice that, for each i € I, we have

T= T(&r(i))(é;&)) =4 S(Jié;(li)) and it follows that

-1
m(io)

By Proposition 5.44(3), we have o;,9 577(1')0{1 € supp D for all ¢ € I. That is, taking

Ti= (5,r(i0)ai_01 cele
we have 6. ;) € T(supp D)o; for all i € I. Finally, we have

D' =g, ENDg(T) =4, ENDR(S(0i0;,))) = ENDr(S(771)) =g My(D)(771),

where the last gr-isomorphism follows from Corollary 3.14(1).

Conversely, assume that there exist a bijection 7 : I — I’, 7 € €'T'e, a gr-isomorphism
of rings ¢ : My(D)(7~!) — D’ and we have é,(;) € T(supp D)o; for all i € I. For each
i € I, let y; € supp D such that 6.y = 7v;0; and fix u; € D, \ {0}. Define the following
isomorphism of additive groups

o - M[(D)(E) — M[’(D/)(S)
dB;j — ¢(uidu} ) Ex(iyr(y)-

® is graded because, for each v € I', we have
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de D -1

TiY0;

-1 -
ity € Dot = Dotg iy

dEij € MI(D)(E)V =
=
= (widuj') € My(D)(rY);
_—

-1
=705
A

8 ()V0 ()
— p(widu; ) Er(iyn(j) € M1 (D')(0)5.

cp(uiduj*l) eD

Let us see now that @ respects products. For this, let d,d € D and i, 5, k,l el . If j #£k,
then 7(j) # w(k) and we have

(I’((dEij)(CZEkl)) = (I)(O) =0= Lp(uiduj_l)Eﬂ(i)w(j)gp(ukciul_l)Ew(k)w(l)
= O(dE;;)®(dE).

If j =k, then

®((dE;;)(dEw)) = ®(ddEy)

widdu; ") Exiya)

widu; ) En iy () o (wrdu ) Ex e
dE”) (dEw).

(
o(
p(uiduy Yupdu; ) Ergiyr
o(
®(

Finally, note that if f € T'g, then d0,(;y = 770, for all i € I implies w([y) = I}. Thus,

D UEL | =Y 0(1l)Eriyay = O e Bryriy = 9 B

iEIf ’iEIf iEIf iEI}
Hence, @ is a gr-isomorphism of rings. 0O

Remark 5.46. When I' is a group, Theorem 5.45 can be stated as follows: Let G be a group,
D, D" be G-graded division rings and & = (01,...,0,) € G, § := (01,...,0m) € G™.
Then M,,(D)(5) =4 M, (D')(8) if and only if n = m and there exist a permutation
mof {1,..,n} and 7 € G such that D’ =, Ml(D)( 1) and b.(; € T(supp D)oy for
each i = 1,...,n. This is essentially what was achieved in [14, p. 32-33]. Therefore,
Theorem 5.45 generalizes the group graded case and we believe that our proof here,
when adapted to T' being a group, provides a more elementary proof (or at least based
on more elementary facts) of the result of [14]. O

Next we present a generalization of Theorem 5.45. As its proof has a more complicated
notation, it follows the same idea of Theorem 5.45 and the main results of this section
have already been proved, we present only a sketch of the proof.
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Theorem 5.47. Let D, D’ be I'-graded division rings and ¥ = (%;)ie; € P(T)!, A :=
(Ay)icr € P(D) be fully matricial sequences for D e D', respectively. Consider ¥ :=
U{i} x % and A := |J {i} x A;. Then My(D)(X) =, My (D')(A) if and only if
i€l el

there exist a bijection 7 : ¥ — A and T := (Tet)ererypy € [ €T(IG(D)) such

e’eT) (D)

that D' =, Mpg(D/)(D)(?_l) for7 1 := (Te_/l)elel“(/J(D/)7 and 6 € T,(5)(supp D)o for all
(i,0) € X and (V',9) = w(i,0).

Proof. Set R := M;(D)(X) and suppose that R =, M (D')(A). Fix ig € I and let
S:= &P (EZO(Z))R)(U_l) which is a Tg-simple R-module by Proposition 5.17(1). By

ISP
Proposition 5.44, Rr =, @ S(X;) and D =, ENDg(S). Analogously, since R =,
iel
M/ (D')(5), we obtain and I'g-simple R-module T such that Rp =,. @ T(4;) and

il
"=, ENDR(T). Set f € T'g and consider the finite sets

Zf = {(7;,0’1') ST d(O’l) = f} e Af = {(Z,(Sl) eA: d(&) = f}

Then

Since S and T are I'g-simple, it follows from Proposition 5.5 that |X ;| = |Af| and there
exists a bijection 7y : ¥ — Ay such that S(o;) =, T(0;) for all (i,0;) € Xy, where

(¢/,0i) = ms(i,0;). Since the unions ¥ = |J Xy and A = |J Ay are disjoint, we
f€lo feTlo
obtain a bijection 7 : ¥ — A given by 7(i,0) = Ta(s,)(4,0). Fix € € T((D"), ig € I

and 0, € Ay such that 7(d;) = €’. Take (ig,04,) € X such that (ig,d;;) = (i, 04y )-
Now note that, for each i € I, o; € ¥; and (¢, 6y ) := m(i,0;).

T(r(0)) =4 S(0:6,1).

It follows that S(0;0; ') =, T(€') =, S(aioé%l) whenever r(d;/) = ¢’. In this event, by

Proposition 5.44(3), Jioéizléi/afl € supp D. That is,

Ter i= 0y 0, " € ' T(TH(D))

0 %0

is such that ¢ € 7o/ (supp D)o;. Therefore, we have

D' =, ENDRT = ENDp| P T(¢)
e’€Ty(D")
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~,ENDp [ € S
e/ €T (D)

= ENDg(S(F 1))
=0 My (pry(D)(T71),

where the last gr-isomorphism follows from Corollary 3.13(2).
Conversely, suppose that there exist T := (Te')ererypy € [ €T(IH(D)) and
e'eTy (DY)
a bijection 7w : ¥ — A, together with a gr-isomorphism ¢ : Mpé(D/)(D)(?_l) — D’
and § € 7,5 (supp D)o whenever (i,0) € ¥ and (i',6) = n(i,0). For each (i,0) € %,
let 7;,0 € supp D be such that § = 7,(5)7i,0,0 where (i',6) = 7(i,0). Fix also u;, €
D,,, \ {0}. It can be shown in the same way as in the proof of Theorem 5.45 that the

map ® : M;(D)(X) — Mp(D')(A) defined b
p (D)(¥) (D)( y
O(dEij) = (i duj ;. Ers,)e(s,) By

for all i,j € I and d € 1,(5,)D1l,(,) and where (i',6;) = n(i,0;) and (j',6;) =
(j,05). O

6. The graded Jacobson-Chevalley density theorem

In this section, in contrast to the other sections of this paper, I'-graded rings need not
be object unital and I'-graded modules need not be unital.

We begin by extending the definitions of gr-simple rings and modules for not neces-
sarily object unital rings. Let R be a I'-graded ring and M be a I'-graded R-module. We
say that M is gr-simple if MR # 0 and the only graded submodules of M are {0} and
M. And M is said to be faithful if its right annihilator is zero, that is,

ann, (M) :={a € R: Ma =0} ={0}.

We say that R is a right gr-primitive ring if there exists a I'-graded (right) R-module
which is gr-simple and faithful. The graded ring R is a gr-simple ring if R? # 0 and the
only graded ideals of R are {0} and R. The concepts of I'g-artinian graded rings and
modules are defined in the same way as in the object unital context. We observe that
Theorem 5.3 is still valid for gr-simple R-modules not necessarily unital over I'-graded
rings not necessarily object unital.

Example 6.1. Let D be a I'-graded division ring such that supp(D) C el'e for some
e € Typ and V be a I'-graded unital left D-module. Set R := ENDp (V). Then V is a
I-graded right R-module via z -t := ()t for all z € V e t € R. Note that V = V(e).
Moreover, if z,y € h(V) with z # 0, then, extending (x) to a pseudo-basis of V, there
exists g € R such that (x)g = y. Since xR # 0, it follows that Vg is gr-simple and
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faithful. Hence R is a right gr-primitive ring. If pV is T'g-finite dimensional, then it
follows from Theorem 5.23 that END por (VP) is a gr-simple I'g-artinian ring. And from
Proposition 3.17(2), we get that R°P is a gr-simple I'p-artinian ring. Therefore R is a
gr-simple ['p-artinian ring. O

The aim of this section is to show, via a graded version of the Density Theorem, that
all right gr-primitive rings which are right I'g-artinian are described in Theorem 6.1.

Let D be a I'-graded division ring and V' be a I'-graded unital left D-module. A graded
subring T' of ENDp(V) is said to be a gr-dense subring of ENDp (V) if for all n > 0,
Y15 ¥n € I', pseudo-linearly independent sequence (uy,...,u,) € V4, x --- x V, and
(V1y.r, ) € Vg, X -+ X V5, with r(d;) = r(y;) for all i = 1,...,n there exists ¢t € T such
that (u;)t = v; for all ¢ = 1,...,n. By Corollary 4.5, ENDp(V) is a gr-dense subring
of ENDp (V). In fact, if (uq,...,un) € V4, X --- XV, is a pseudo-linearly independent
sequence and (vq, ..., ) € Vg, X -+ x V5 with r(6;) = r(v;) for all i =1, ..., n, then, for
each i = 1,...,n, there exists t; € ENDD(V),Y;l& such that (u;)t; = v; and (u;)t; = 0 for
every j # i. It suffices to take t ==ty + - -+ + t5,.

Lemma 6.2. Let R be a I'-graded ring, S be a gr-simple R-module and D := ENDg(S).
The following statements hold true.

(1) S=2zR for all 0 # x € h(S).
(2) If pV is a graded D-submodule of pS with pdimp (V) < oo and x € h(S)\ V, then
there exists a € h(R) such that xa # 0 and Va = 0.

Proof. (1) Let 0 # = € h(S). Consider the graded R-submodule of S
X:={seS:sR=0}.

Since SR # 0, we have that X # S and, thus, X = 0 because S is a gr-simple module.
In particular, xR # 0 and, therefore, tR = S because S is a gr-simple R-module.

(2) We prove the statement by induction on n = pdimp V. If n = 0, then V = {0}
and 0 # z € h(S). By (1), xR = S # {0} and, hence, there exists a € h(R) such that
xa # 0.

Now suppose that n > 1 and that the result holds for n — 1. Let pV be a graded D-
submodule of pS with pdimp V =n and € h(S5)\ V. Let (vy, ...,v,) be a pseudo-basis
of pV. If n > 1, define

n—1
W .= @ D’Ui
i=1
and if n = 1, define W = 0. Consider

A=am,(W):={aecR: Wa=0}.
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Note that W is a graded left D-submodule of V' and A is a graded right ideal of R. We
claim that

W={seS:sA=0}.

By definition, W C {s € S : sA = 0}. Moreover, if s € h(S) \ W, then the induction
hypothesis implies the existence of a € h(R) such that sa # 0 and Wa = 0, that is,
a € A and sA # 0. Thus the claim is proved.

Since v, ¢ W, the claim implies that v, A # 0. Now v, A is a nonzero graded R-
submodule of the gr-simple R-module S and, hence, v, A = S. Finally, we prove the last
step of the induction by way of contradiction. Suppose that there does not exist a € h(R)
such that za # 0 and Va = 0. In other words,

tpa=0=—=Va=0=2a=0
for all a € A. Then the following homomorphism of R-modules is well-defined

g: 85— S

vpa— za  (a € A).

Note that g € Dgeg(a)deg(v,)-1- We also have (x — g(v,))a = 0 for all a € A. Hence,
x — g(v,) € W. But this implies that

x=(x—g(vy,)) +gv,) € W@ Dv, =V,
a contradiction. O

Now we have the following groupoid graded version of the Jacobson-Chevalley Density
Theorem.

Theorem 6.3. Let R be a I'-graded right gr-primitive ring. Let S be a faithful gr-simple
R-module and consider D := END(Sg). Then R is gr-isomorphic to gr-dense subring of
END(pS).

Proof. Define

¢: R— END(pS)
r— o.:85—=5
T xr.

Clearly, ¢ is a gr-homomorphism of rings. It is also injective because ¢, = 0 implies that
r € ann,(S) = 0. Hence, it is enough to show that im ¢ is a gr-dense subring of END(p.S5).
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Notice also that S = S(e) for some e € Ty. Let n > 0, a pseudo-linearly independent
sequence over D (uy,...,u,) € h(S)™ and (v1,...,v,) € h(S)". For i € {1,...,n}, let
n
Vi := @ Du;. Since u; ¢ V;, it follows from Lemma 6.2(2) that there exists a; € h(R)
=1
i
such that u;a; # 0 and V;a; = 0. By Lemma 6.2(1), we get u;a; R = S. Choose ¢; € h(R)
such that u;a;c; = v;. Set

ri=aicy + -+ ancp-

Note that ¢ # j implies w;a;c; € Vjajc; = 0. Hence,

n

(ug)r = uir = E UA;Cj = Ui ¢ = V;,
Jj=1

foralli=1,...,n. O

In order to obtain a graded version of the Wedderburn-Artin Theorem, we need the
next result.

Proposition 6.4. Let D be a I'-graded division ring, V be a I'-graded unital left D-module
and T be a gr-dense subring of ENDp (V).

(1) If T is a right Ty-artinian ring, then V has Ty-finite dimension.
(2) If V has To-finite dimension, then T = ENDp(V).

Proof. (1) Suppose, by way of contradiction, that T is a right T'g-artinian ring but there
exists e € I'y such that (e)V is of infinite pseudo-dimension over D. Then there exists
a pseudo-linearly independent sequence (uy,)nen of homogeneous elements in (e)V. For
each n € N, consider the following graded right ideal of T":

Ay ={teT:(u)t=0forall<i<n}

Since (uq,...,uUp+1) is pseudo-linearly independent and T is a gr-dense subring of
ENDp(V), there exists t, € T such that (u;)t, =0 for all 1 < i < n and (up41)t, =
Un+1. Clearly, we can suppose that t,, € Ty(deg(u,41)) = Te- We then have, ¢, € A, (e) \
A,+1(e). In this way, we obtain the following strictly decreasing sequence of graded
T-submodules of T'(e):

Ai(e) 2 Az(e) 2 As(e) 2+,

contradicting that T'(e) is gr-artinian.
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(2) Now suppose that pV is of finite I'g-dimension and let us prove that T =
ENDp(V). Let v € T and ¢ € ENDp(V),. Then g is totally determined by the im-
age of the elements of a pseudo-basis (vy,...,v,) of (r(7))V because (V,)g C Vo, = {0}
if d(a) # r(7). Since T is gr-dense in ENDp (V), there exists ¢ € T such that (v;)t = (v;)g
for all 1 <¢ < n. Therefore, g=t€T. O

Theorem 6.5. Let R be a I'-graded right Ug-artinian ring. The following statements are
equivalent.

(1) R is a gr-simple ring.

(2) R is a right gr-primitive ring.

(3) There exist a T'-graded division ring D, e € Ty and a T'-graded unital left D-module
V' of finite T'g-dimension over D such that supp(D) C eT'e and R =, ENDp(V).

(4) There exist e € Ty, a I'-graded division ring D with supp(D) C el'e and a d-finite
sequence T := (0;)ier € (eI')! such that R =, M[(D)(7).

Proof. (1) = (2): The facts that R is a gr-simple ring, ann;(R) is a graded ideal of R
and R? # 0, implies that ann;(R) = 0. Since R is a nonzero I'g-artinian ring, we can take
e € Ty such that R(e) # 0 and a nonzero minimal graded submodule V of R(e). Then
VR # 0 because V ¢ ann;(R) = 0. Thus V is a gr-simple R-module. Since ann,.(V) is
a proper graded ideal of R because VR # 0, it follows from the gr-simplicity of R that
ann,. (V) = 0 and, therefore, Vi is faithful. Hence, R is a right gr-primitive ring.

(2) = (3): By Theorem 6.3, R is gr-isomorphic to a gr-dense subring of END(p.S)
where S is a right faithful gr-simple R-module and D := END(Sg). Since R is a right
T'p-artinian ring, Proposition 6.4 implies that pS has finite I'y-dimension over D and
R =, END(pS).

(3) = (4): If (3) holds, it follows from Proposition 3.17(2) that R°P =,
ENDpor VP, Since D is a I'-graded division ring with supp(D°?) C el'e and VP
is a [p-finite dimensional I'-graded right D°P-module, there exists a d-finite sequence
7 := (0;)ier € (eI')! such that VP 2, @ DP(o;) and it follows from Corollary 3.14(2)

il
that

R°P 22, END poy (DP(7)) 2, M;(DP)(7).

So (4) follows from Proposition 3.17(1).
(4) = (1): This implication follows from Theorem 5.23. O

One can define I'g-simple modules in the same way as in the unital context. As a
consequence, 1ight I'g-primitive ring can be defined as a I'-graded ring for which there
exists a faithful graded I'g-simple R-module. Clearly, every right gr-primitive ring is a
right I'p-primitive ring. Note also that if R is a right I'g-primitive ring and S is a faithful
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right T'gp-simple module such that all S(e), e € I'{(S), are in the same isoshift class, then
all S(e) are faithful and, thus, R is a right gr-primitive ring.

Following the idea of Example 6.1, it can be shown that if D is a I'-graded division
ring, V is a I'-graded unital left D-module and R := ENDp(V), then V is a faithful
T'g-simple right R-module. Hence R is a right I'g-primitive ring. And if Dy is of finite
T'o-dimension, then R is a I'p-artinian gr-simple ring.

With similar proofs as the ones of the results in this section, one can prove the following
results.

Theorem 6.6. Let R be a I'-graded ring. Suppose that R is a right Tg-primitive ring. Let
S be a faithful To-simple R-module and set D := END(Sg). Then R is gr-isomorphic to
a gr-dense subring of END(pS). O

Theorem 6.7. Let R be a I'-graded right Tg-artinian ring. The following statements are
equivalent.

(1) R is a right Tg-primitive ring.

(2) There exist a I'-graded division ring D and a I'-graded unital left D-module V' of
finite T'g-dimension over D such that R =4, ENDp(V).

(3) There exist a I'-graded division ring and a d-finite sequence & := (0;)ier € I'l such
that R =4, M{(D)(7). O

Suppose that R is a I'-graded right gr-primitive ring but not right I'p-artinian ring.
Let S be a faithful gr-simple right R-module and D := END(Sg). By Theorem 6.3 and
Proposition 6.4(2), pS is not T'yp-finite dimensional, that is, there exist e € Ty and an
infinite pseudo-linear D-independent sequence (v;);en € h((e)S)N. For each n > 1, set
Ve, =@, Dv;, R, ={r e R:V,-r CV,}and I, = {r € R: V,, - = 0}. Then R,
is a I'-graded ring and I, is a graded ideal of R,. Note that, for each i > 1, we have
Dv; 2, (0, 1)D via v; — 1y(s,), Where o; := deg(v;). Then, by Proposition 3.17(4), we
have

END(V,) 2, ENDp, (@(qﬂD) =~ M,,(END(pD)) (01, ... ,00)

2

=, My (D)(o1,...,00).

By Theorem 6.3, there exists a gr-isomorphism

R, /I, — ENDp(V,,) 2 M, (D)(o1,...,0n)

for each n > 1.
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7. Pseudo free module rings

We say that the I'-graded ring R is a pseudo-free module ring, or a pfm ring for short,
if every I'-graded right R-module is pseudo-free. For example, by Theorem 4.4, I'-graded
division rings are pfm rings. The aim of this section is to study the class of pfm rings.

We begin with the next result that will be important when characterizing pfm rings.

Lemma 7.1. Let R = @ R, be a I'-graded ring. The following statements hold true.
yel

(1) If R is a pfm ring, then R is a gr-semisimple ring.
(2) Conversely, suppose that R is a gr-semisimple ring. Then R is a pfm ring if and
only if every gr-simple right R-module is pseudo-free.

Proof. (1) If every I'-graded R-module is pseudo-free, then every I'-graded R-module is
gr-projective by Corollary 3.3. By Proposition 5.9, it follows that R is a gr-semisimple
ring.

(2) Suppose that every gr-simple right R-module is pseudo-free. Since R is gr-
semisimple, it follows from Proposition 5.9 that every I'-graded right R-module is
gr-semisimple. Thus, every I'-graded right R-module is a direct sum of pseudo-free mod-
ules. O

The foregoing result implies that the following inclusion relationships hold
{ graded division rings } - { pfm rings } C { gr-semisimple rings } .
The next example shows that these inclusions are strict.

Example 7.2. Let D be a division ring.

(1) Let I' = {e} be the trivial group(oid). If n > 2, then R = M,,(D) is a gr-semisimple
ring which is not a pfm ring because E1; R is not a free R-module.

(2) Let I" be the groupoid {1,2} x {1,2}. Consider D as a I'-graded division ring with
support concentrated in (1,1). Set

R= MS(D)((17 1)’ (17 1)a (17 2))

Then
D D 0 0 0 D
Rany=|D D 0|, Rug=10 0 DJ,
0 O 0 0 O
0 0 O 0 0 O
Ron=10 0 0], Rgz=1]0 0 0
D D 0 0 D
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The identity elements of R are

1 0 0 0 0 0
]I(lyl) =10 1 0| =FE;+ Ey, 1(272) =10 0 0| = E;s3.
0 0 O 0 0 1

On the one hand, R is not a I'-graded division ring because the homogenous element
E11 € R(1,1) is not invertible. Indeed, there does not exist A € R such that E11 A =
[(1,1). On the other hand, R is a gr-semisimple ring by Theorem 5.23(2). Now, the
I-graded R-module S := Es35 = R((2,2)) is gr-simple, pseudo-free and it is such that

R

E11R® EpR® Es3R
= E13R D E23R D E33R
=, S(2,1) ® 5((2,1) © 8. (r1)

By (7.1) and Lemma 5.12(1), every gr-simple R-module is gr-isomorphic to a shift
of S. Therefore, every gr-simple graded R-module is pseudo-free. By Lemma 7.1(2),
R is a pfm ring. O

We point out that, in Example 7.2(2), B1 = {I(1,1)} and By = {E13, Eo3} are two
pseudo-bases of the I'-graded R-module S = R((1,1)). Thus, there is no uniqueness of the
cardinality of pseudo-bases of I'-graded R-modules over pfm rings, and as a consequence,
over gr-semisimple rings. Such uniqueness will characterize gr-division rings, but we will
also be able to define an invariant similar to dimension for pfm rings, see Section 7.2.

7.1. Characterization of pfm rings

We already know that pfm rings are gr-semisimple. Moreover, gr-semisimple rings are
the product of summable families of gr-simple I'y-artinian graded rings by Theorem 5.30.
The next result characterizes gr-simple pfm rings. We then will use it to provide a
characterization of pfm rings not necessarily gr-prime.

Theorem 7.3. Let R = @ Ry be a I'-graded ring. The following statements are equiva-
verl
lent.

(1) R is a gr-simple pfm ring.

(2) R is a gr-prime pfm ring.

(3) There exist eg,e € Ty, a I'-graded division ring D with supp(D) C eql'ey, a non-
empty set I and a d-finite sequence & := (0;)ier € (eoD')! such that

R =g M;(D)(7)

and I, :={i € I : d(0;) = e} has exactly one element.
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(4) R is a gr-simple ring and there exists e € Ty such that R(e) is a gr-simple R-module.

(5) There exists e € Ty such that R(e) is a gr-simple R-module and Rg is gr-isomorphic
to a direct sum of shifts of R(e).

(6) R is a gr-simple Tg-artinian ring and there exists e € Ty such that R, is a division
ring.

(7) R is a right gr-primitive right To-artinian ring and there exists e € T'g such that R,
is a division ring.

Proof. (1) = (2): It is clear.

(2) = (3): Suppose that R is a gr-prime pfm ring. By Lemma 7.1(1), R is a
gr-semisimple ring. The fact that R is gr-prime and Theorem 5.30(2) imply that there
exist eg € g, a I'-graded division ring D with supp(D) C egl'eg and a d-finite sequence
7 := (0;)ier € (eol')! such that R =, M;(D)(7). To ease the notation and without loss
of generality, we can suppose that

R =M;(D)(a).

Fix 79 € I. Since EfOOZOR has a pseudo-basis, there exist 79 € I' and a matrix (a;;)i; €
(Ei0 R)~o such that (ag;)i; - X # 0 for all 0 # X € Iy, R. We will show that Iy,
contains exactly one element. Suppose, on the contrary, that Iy, has at least two
different elements, say ji,j2. Hence, d(oj,) = d(oj,) = d(v). If a4, = 0, for some
t = 1,2, define

X = Ejlj, € Rago,,) = Ry

JeJt

and if, otherwise, a;,;, # 0 and a;,;, # 0, define

-1 -1
X = o E;Fio - aiosz;;io € ngl
Notice that (aij)ij is a matrix whose all nonzero entries are in row 7g. Thus, in both
cases, we have (a;;)i; - X = 0 where X € I4,,)R\ {0}, a contradiction.
(3) = (4): By Theorem 5.23, R is a gr-simple ring. Moreover, the fact that I,
contains exactly one element implies that R(e) = € E;°R is a gr-simple R-module by

icle
Proposition 5.17(1).
(4) = (5): Tt follows from Lemma 5.18(2).
(5) = (1): Suppose that

Ri =, D R()(o

iel

for some (0;);c; € T'!. Since R(e) is a gr-simple R-module, R is a gr-semisimple ring. By
Lemma 5.12(1), every I'-graded gr-simple right R-module is gr-isomorphic to a shift of
R(e), and therefore, pseudo-free. Now Lemma 7.1(2) implies (1).
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(4) = (6): R is a right I'g-artinian ring by Theorem 5.19. By Lemma 3.4 and Corol-
lary 5.4, the fact that R(e) is a gr-simple module implies that 1.R1. =, ENDg(R(e))
is a gr-division ring. Therefore, R, is a division ring.

(6) = (3): By Theorem 5.23, there exist eg € T'g, a I'-graded division ring D and a
d-finite sequence & := (0;)ier € (eol')! such that supp(D) C eol'eg and R 2, M;(D)(7).
Then

M;(D)(7). = R,

is a division ring. Let I. :={i € [ : d(0;) = e}. Then I, = ) E{® and I, # 0. If i, j € I,
i€l,
then, since M;(D)(7). is domain, we get that E? E? # 0. This only happens if i = j.

Therefore, I, consists of exactly one element.
(6) <= (7) Follows from Theorem 6.5. O

Before providing the general characterization of pfm rings, we would like to point out
that the product of pfm rings is not a pfm ring in general. Indeed, let I' = {e} and D
be a (I-graded) division ring. Clearly, D is a pfm ring. Set R := D x D. The (I'-graded)
ring R is not a pfm ring because D x {0} is not a free R-module. However, we have the
following result.

Proposition 7.4. Let {R;: j € J} be a family of D-graded rings. Set R := [[" R;. If R is
jeJ

a pfm ring, then R; is a pfm ring for each j € J. The converse holds if T'y(R;)NI'4(Ry) =

0 for different 3,k € J.

Proof. Suppose that R is a pfm ring. Let jo € J. Each I'-graded Rj,-module Mg, can
be regarded as a right R-module via the action

x-(rj)jes =ar;, forallze M, (rj)jes € R. (7.2)

Thus Mg must have a pseudo-basis. Because of the action (7.2), such pseudo-basis must
be a pseudo-basis of Mg, . Therefore R;, is a pfm ring.

Suppose now that R; is a pfm ring for each j € J with I'{(R;) N T{(Rx) = 0 for
different j, k € J. Observe that the fact that I'((R;) NT((Rx) = 0 for different j,k € J

implies that each (unital) right R-module M is of the form M = € M; where, for
jeJ
each j € J, M; := @ Ml. is a right Rj-module. The action is then given by
eel'((R;)
(mj)jeJ(aj)jeJ = (mjaj)jeJ for all (mj)jeJ e M, (aj)jej € R. Thus, if each Rj is a
pfm ring, then every I'-graded right R-module is pseudo-free. 0O

Now we are ready to give the characterization of pfm rings not necessarily gr-prime.
We point out that items (2) and (6) of Theorem 7.5 imply that R is a I'-graded pfm ring
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if and only if every I'-graded left R-module is pseudo-free. In other words, being “right

pfm” is synonymous with “left pfm” for I'-graded rings.

Theorem 7.5. Let R = @ R, be a I'-graded ring. The following statements are equiva-

lent.

(1)
(2)

yel’

R is a pfm ring.

There exist a family {K; : j € J} of non-empty sets, sequences (€;)jer, (fj)jecs €
(To)? and, for each j € J, there exist a T'-graded division ring D, with supp(D;) C
e;Te; and a d-finite sequence o; = (oji)vck, € (e;1)% such that the family
{Mk,(D;)(T;) : j € J} is summable,

~ ar —
Rz, [ Mk, (D))
jeJ
and, for each j € J, the set K;;, = {k € K; : d(ojx) = f;} has evactly one element
and {j' € J: Ky, # 0} = {j}.
There exists a summable family {R; : j € J} of gr-prime pfm rings and (f;)jcs €
(To)” such that

~J gT
Rz, [ R
jeJ

and, for each j € J, R(f;) is gr-simple and R;(f;) # 0.
There ezists a summable family {R; : j € J} of gr-simple rings and (f;)jcs € (To)”
such that

g”‘
R;
jeJ

RE

=gr

and, for each j € J, R(f;) is gr-simple and R;(f;) # 0.

There exists Ay C Ty(R) such that R(Ag) is T'g-simple and Rg is gr-isomorphic to
a direct sum of shifts of elements from {R(e) : e € Ag}.

There ezists a summable family {R; : j € J} of gr-simple T'g-artinian rings and
(fi)jes € (To)” such that

~J gT
R =gr Rj
jeJ

and, for each j € J, Ry, is a division ring and (R;)s, = 0 whenever j" € J \ {j}.

Proof. (1) = (2): Suppose that R is a pfm ring. By Lemma 7.1(1), R is a gr-semisimple

ring. By Theorem 5.30, we can suppose that there exist (e;);es € (I'g)” and, for each
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j € J, a I'-graded division ring D; with supp(D;) C e;I'e; and a d-finite sequence
7 = (0jk)kek,; € (e;T)% such that the family {Mg,(D;)(@;) : j € J} is summable
and

R=[[" Mk, (D))(@;).
jeJ

Fix j € J and k € Kj. Set R; := Mg, (D;)(7;) and let ¢; : R; — R be the canonical
inclusion. Since the I'-graded right R-module ¢; (E;%R]) has a pseudo-basis, there exist
v; € I and a; € (B} R;),, such that ¢j(a;)-r # 0 for all 7 € 14(,,) R\ {0}. In particular,
aj # 0 and, thus, Kj g(,,) # 0. Let j' € J be such that there exists &' € K}/ 4(+,)- Then
0+#E, € (Rj)ay,) and it follows that tj(a;)ej (Ed,.) # 0. But this is only possible
if j = j'. Hence, {j' € J : Kjiy, # 0} = {j}. Now observe that a; - r; # 0 for all
r; € Rj(d(7;)) \ {0}. Proceeding as in the proof of (2) = (3) of Theorem 7.3, we get
that K 4(,,) contains exactly one element.

(2) = (3): Fix j € J and set R; := M, (D;)(@;). Since |Kj f,| = 1, it follows from
Theorem 7.3 that R; is a gr-prime pfm ring. We have

R =2 [I" Re) =TT @ Eiwky

jreg J'€] KEK g

Since Ky, = 0 for all j* # j e |K; | = 1, then R(f;) =, R;(f;) is gr-simple by
Proposition 5.17(1).

(3) = (4): Follows from Theorem 7.3.

(4) = (5): Set Ao :={f; :j € J} CTH(R). Then R(Ay) is I'g-simple. Fix j € J.
Since R; is a gr-simple ring with a minimal graded right ideal R;(f;), it follows from
Lemma 5.18(2) that (R;)g, is gr-isomorphic to a direct sum of shifts of R;(f;). Hence
tj(Rj) is gr-isomorphic to a direct sum of shifts of R(f;), where ¢; : R; — R is the
canonical inclusion. Now (5) follows from

R =g, ng R;=EPR, =Pui(R))

jeJ jeJ jeJ
(5) = (1): Suppose that

Rp =y, @ R(Ag)(oy)

iel

for some (0;);er € I'L. Since R(e) is a gr-simple R-module for each e € Ag, R is then a
gr-semisimple ring. By Lemma 5.12(1), every I'-graded gr-simple right R-module is gr-
isomorphic to a shift of some element in the set {R(e) : e € Ag}. Hence, it is pseudo-free.
Statement (1) is now a consequence of Lemma 7.1(2).

(4) == (6): Since R(f;) is gr-simple and R;(f;) # 0 for each j € J, then
R;(f;) is gr-simple for all j € J. Thus, R; is a right I'g-artinian ring by Theo-
rem 5.19. By Lemma 3.4 and Corollary 5.4, the fact that R(f;) is gr-simple implies
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that 1y, R1;, =, ENDgr(R(f;)) is a gr-division ring. Hence, Ry, is a division ring. Since
Ry, =1y (Rj)g; and f; € T(Ry), it follows that (Rj)y, = 0 if j' # j.

(6) = (2):Let j € J. By Theorem 5.23, there exist a non-empty set K, e; € I'g, aI'-
graded division ring D; with supp(D;) C e;'e; and a d-finite sequence 7; := (0jx))kek; €
(e;1)% such that

Rj =4 Mg, (D;)(@;).

If j' € J is such that K/ y, # ), then there exists k € K/ such that d(oj) = f; and,
thus, 0 # E;g € (Rjr)s,. This implies j' = j by hypothesis. Now observe that

MKj (Dj)(ﬁj)fj = (Rj)fj = Rfj

is a division ring. Therefore, if k,k' € Kj y,, then E}}, EJ,, € Mg, (D;)(7;)y, and it
follows that E}j E;?,, # 0. This only happens if k = k’. Therefore, K ;, has exactly one
element. O

7.2. Invariance of the number of elements of pseudo-bases

Let R = @ R, be a I'-graded ring. We say that R has invariant pseudo-basis number,
yel
or IPBN for short, if any two pseudo-bases of a finitely generated I'-graded pseudo-free

(right) R-module have the same number of elements. In other words, if we have
R('Yl) DD R('Ym) gg?’ R((Sl) DD R(én)

for some ¥ = (y1,...,vm) € I™ and 6 = (d1,...,5,) € I with Ly(yi)s Loy # 0, then
m = n.

Observe that, by Lemma 2.13, IPBN implies that any two pseudo-basis of a graded
pseudo-free (right) R-module have the same number of elements.

We also remark that, by Proposition 4.8, any gr-homomorphism

can be uniquely expressed by a matrix in My, x, (R)[0][7]. Thus, R fails to have IPBN
if and only if there exist natural numbers m # n and matrices A € M,, ., (R)[5][F] and
B € My,xn(R)[H][0] such that AB = »(@3)» BA = I,() for some ¥ = (y1,...,7m) € I'™
and § = (01,...,0,) € I'™ with Ly(y)s 1r(s;) # 0 for all 4, j. Note that this formulation of
IPBN does not involve right or left R-modules. In particular, we see that “right IPBN”
is synonymous with “left IPBN”.

We now give a characterization of I'-graded division rings among I'-graded pfm rings.

Theorem 7.6. Let R = @ R, be a I'-graded ring. The following statements are equiva-
yel
lent.
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(1) R is a I'-graded division ring.
(2) R is a pfm ring that has IPBN.

Proof. By Theorem 4.4, it is enough to show (2) = (1). Suppose that R is a pfm
ring that satisfies IPBN. By Theorem 7.5, there exists Ag C I'j(R) such that R(Ap) is
Do-simple and Rp is gr-isomorphic to a direct sum of shifts of elements from {R(e) :
e € Ag}. Let (e;)ier € (Ao)! and (0i)icr € T such that Rp =, @ R(e;)(0;). By
iel
Lemma 5.12(2), for any f € I'j(R), there exists a finite subset Iy C T sEch that R(f) =
D, I R(e;)(0;). Since each R(f) is pseudo-free, with a pseudo-basis consisting of only
one element, the IPBN property implies |I¢| = 1. Thus R(f) is gr-simple for all f €
I'4(R). Therefore, Rp is I'g-simple. Hence, R =, END(Rp) is a gr-division ring by
Lemma 3.4 and Theorem 5.3(1). O

As we are going to see next, it is still possible to define an invariant for graded modules
over pfm rings similar to the pseudo-dimension and that coincides with the graded length
of a finitely generated graded module over a pfm ring. To that end, we begin by pointing
out some facts about gr-semisimple modules.

Let R be a I'-graded ring and M be a gr-semisimple R-module. Thus,

M=@PM, (73)

i€l

where M; is a gr-simple submodule of M for each i € I. If we have another decomposition
of M = @,c; Mj where M} is a gr-simple submodule of M for each j € J, then
|I] = |J| by Proposition 5.6. We will then refer to the cardinality of the set I in (7.3)
by the gr-simple dimension of M and it will be denoted by sdim(M). Furthermore, by
Proposition 5.7, if N is any graded submodule of M, then N is gr-semisimple and there
exists a graded submodule N’ of M such that M = N & N’. Therefore, we obtain that

sdimp(M) = sdimg(N) + sdimg(N') = sdimg(N) + sdimg (M /N). (7.4)

Suppose now that X is a I'-graded module. We say that a pseudo-linearly independent
sequence (x;);er of homogeneous elements of X is a gr-simple sequence if x;R is a gr-
simple R-module for all ¢ € I. If, moreover, (z;);cs is a pseudo-basis of X we say that
it is a gr-simple pseudo-basis of X. In this event, we will write spdimp(X) = |I|. We
proceed to show that spdimp(X) is a well-behaved invariant for pfm rings.

Proposition 7.7. Let R = @ R, be a pfm ring and M = @ M, be aT'-graded R-module.
~verl vel
The following assertions hold:

(1) M has a gr-simple pseudo-basis.
(2) Any two gr-simple pseudo-basis of M have the same cardinality sdimp(M).
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(3) Every pseudo-linearly independent gr-simple sequence of M extends to a gr-simple
pseudo-basis of M.
(4) If N is a graded submodule of M, then

spdimg(N) 4 spdim (M /N) = spdim g (M).

Proof. (1) By Lemma 7.1(1), R is a gr-semisimple ring. It follows from Proposition 5.9

that M is a gr-semisimple R-module. Suppose that M = @ M; where each M; is a
il

gr-simple submodule of M. Since R is a pfm ring, each M;, ¢ € I, has a pseudo-basis

consisting of exactly one element, say x; € M;. Thus (x;);cs is a gr-simple pseudo-basis

of M.

(2) Let By := (2;)icr and By := (y;)jes two gr-simple pseudo-bases of M. Then

M=@zr=yR

iel jeJ

are two decompositions of M as direct sum of gr-simple R-modules. Then |I| = |J| by
Proposition 5.6.
(3) Let (x;);cr be a pseudo-linearly independent gr-simple sequence of homogeneous

elements of M. Then N := @ ;R is a graded submodule of the gr-semisimple module
i€l
M. Hence there exists a gr-submodule N’ of M such that M = N @& N'. By (1), N’
has a gr-simple pseudo basis. Then the union of this pseudo-basis with (z;);c; forms a
gr-simple pseudo-basis of M.
(4) follows from (2) and (7.4). O

7.8. More on gr-division rings

Our aim now is to give more characterizations of graded division rings. This first
result will follow from our version of the Wedderburn-Artin Theorem. Furthermore, the
comparison of Theorem 7.8(5) and Theorem 7.5(2) enlightens the difference between
gr-division rings and pfm rings.

Theorem 7.8. Let R = @ R, be a I'-graded ring. The following statements are equiva-
yel
lent.

1
2

(1) R is a gr-division ring.

(2)

(3) R is a gr-semisimple ring and 1. R1. is an el'e-graded division ring for all e € T((R).
(4)

()

Rpg is I'g-simple R-module.

4) R is a gr-semisimple ring and R, is a division ring for all e € T{(R).
5) There ezist a set J, a family of non-empty subsets {K; : j € J}, a sequence of

idempotents (e;)jes € (Lo)? such that
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Rz, [ Mx,(D))@;),

jeJ

where D; is a T'-graded division ring with supp(D;) C e;l'e; and 7 := (0ji)rek,; €
(e;T)Ki for each j € J, and the sets K. :={k € K; : d(oji) = e} and J. :== {j €
J: Kj.# 0} have at most one element for all j € J and e € Ty.

(6) There exists a family {R; : j € J} of gr-prime gr-division rings such that supp(R;)N
supp(Rj/) = 0 for all different j,j' € J and

R=PR,

jeJ

Proof. (1) = (2): For each e € T'j(R), every nonzero element in R(e) has an inverse
and, therefore, R(e) is gr-simple.

(2) = (3): Foreach e € T'((R), R(e) is a gr-simple R-module. Thus, R = @ R(e) is
ecly
a gr-semisimple ring. Moreover, for each e € I'{(R), every nonzero homogeneous element

of the ring 1.R1. C R(e) has a right inverse. Hence, 1.R1. is an el'e-graded division
ring for each e € T'{(R).

(3) = (4): Straightforward.

(4) = (5): By Theorem 5.30, there exist families {K; : j € J} and {e; : j € J} of
non-empty sets and idempotents of I', respectively, and there exist, for each j € J, a I'-
graded division ring D; with supp(D;) C e;'e; and a d-finite sequence G; := (0jx )kek,; €
(e;1)%5, such that the family {Mx, (D;)(7;) : j € J} is summable and

R =y, H MK D)( J)
JjeJ

Fix e € I'((R). Then

R = H MKj(Dj)(Ej)e
J€Je

is a division ring. Thus |J.| = 1, say J. = {jo}. Given k,l € Kj, ., then E;° E;/° # 0
and, therefore, k = [. Hence, |Kj, .| = 1.

(5) = (6): For each j € J, RJ := Mk, (D;)(7@;) is a gr-prime gr-division ring, by
Theorem 4.2. Suppose now that j,j’ € J and v € supp(R;) Nsupp(R,). Since |Kj | =1
for all e € T'((R), there exists a unique p € K such that d(c;,) = r(7). Analogously,
there exists a unique p’ € Kjs such that d(cj,r) = (). Thus, we obtain non-empty
K (v) and Kj/ .y, hence j, j' € J,(,) and, therefore, j' = j.

(6) = (1): Since supp(R;) Nsupp(R;/) = 0 for all different j, ' € J, it follows that,
for each v € T', there exists a unique j € J such that R, = (R;),. Hence, R is a I'-graded

division ring because all R; are. O
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The next result shows that to be a pfm ring is equivalent to be a gr-division ring for
object crossed products.

Proposition 7.9. Let (AT, a, 3) be an object crossed system. The following assertions
are equivalent.

(1) A xg I' is a pfm ring.
(2) A is a division ring for all e € Ty.
(3) AxG T is a gr-division ring.

Proof. (1) = (2): Suppose that A x§ I' is a pfm ring. By Theorem 7.5, there exists a

summable family {R; : j € J} of gr-simple ['p-artinian rings and (f;)jcs € (I'o)” such

that A xg T' =, ng Rj and, for each j € J, Ay, = (A %G Ty, is a division ring and
jeJ

(Rj)g; =0 Whenejver j € J\ {j}. Let e € . Since (4 X I'). # 0, there exists j € J

such that (Rj;). # 0. The gr-primeness of R; implies that 1.R;1y, # 0 and there exists

o € el'fj. Then A. = a,(Ay;) = Ay, is a division ring.

(2) = (3): If (2) holds, then Ax§ I is a gr-semisimple ring by Proposition 5.37 and
(A X I'). = A, is a division ring for all e € T'y. By Theorem 7.8, A xg I' is a gr-division
ring.

(3) = (1): It follows from Theorem 4.4. O

Recall that a (group graded) ring is a (group graded) division ring if and only if all
its (graded) right modules are (graded) free. The next result is a generalization of such
fact for groupoid graded rings. Indeed, if I' is a group and e is the identity of I', then
el'e =T and 1.R1. = R. Thus, Proposition 7.10(2) implies that R is a I'-graded division
ring.

Proposition 7.10. Let R = @ R, be a I'-graded ring. The following statements are
yel
equivalent.

(1) R is a gr-division ring.

(2) R is a pfm ring and every ele-graded right 1.R1.-module is gr-free (as a group
graded module) for all e € T{(R).

(3) R is a pfm ring and every right R.-module is free for all e € T{(R).

Proof. Implications (1) = (2) and (1) = (3) hold by Theorem 4.4(1) and because, by
Theorem 7.8, (1) implies that 1.R1, is an e['e-graded division ring and R, is a division
ring for all e € T'((R).

(2) = (1) (resp. (3) = (1)) holds because of Theorem 7.8, since every pfm ring is
gr-semisimple by Lemma 7.1(1). O
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As Example 7.2(2) shows, the hypothesis about 1.R1.-modules or R.-modules are
necessary in Proposition 7.10. Moreover, as we are going to see next, the hypothesis of
R being a pfm ring in Proposition 7.10 cannot be dropped either. We proceed to present
some cases where some of these conditions are not necessary.

Proposition 7.11. Consider the following statements.

(I) R is aT'-graded division ring if and only if every I'-graded right R-module is pseudo-
free.
(II) R is a I'-graded division ring if and only if, for each e € T'{(R), every el'e-graded
right 1. R1.-module is gr-free.
(ITII) R is a T'-graded division ring if and only if, for each e € T'((R), every right R.-
module is free.

The following assertions hold:

(1) Statement (I) holds true for every I'-graded ring R if and only if T = |J ele, that
ecly
is, I is a disjoint union of groups.

(2) Statement (II) holds true for every I'-graded ring R if and only if T = |J ele.
eclp

(3) Statement (III) holds true for every I'-graded ring R if and only if T = T\.

Proof. (1) Suppose that I' = |J ele, that is, el'f = @ for all different e, f € T'g. Let
eclp
R be a pfm ring. Then, by Theorem 7.5, there exist a summable family of I'-graded

gr-simple rings {R; : j € J} and (f;)jes € (T'o)” such that

~Y gT
R, R,
jeJ

and, for each j € J, R(f;) is gr-simple and R;(f;) # 0. Since R;(f;) # 0 and 15, R;1y, is
a nonzero graded ideal of R;, it follows that supp R; C f;I'f;. Since R;(f;) is gr-simple,
Theorem 7.8 implies that R; = 17, R;1y, is a ['-graded division ring. Furthermore, if
j # 7', then R;/(f;) = 0 and f; # f;;. Thus, Theorem 7.8(6) is satisfied and it follows
that R is a I-graded division ring. Therefore, statement (I) holds for all I'-graded rings
R.

Conversely, suppose that T' # | cer, ¢l'e. Inspired by Example 7.2(2), we are going
to construct a I'-graded ring for which statement (I) does not hold. Let D be a division
ring and o € T be such that (o) # d(o). Consider D as a I'-graded division ring with
support concentrated in {r(o)}. Set

R =Mj3(D)(r(o),r(0),0).
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Then Theorem 7.3(3) holds and it follows that every I'-graded right R-module is pseudo-
free. But R is not a gr-division ring because Eﬁa) € R, () is not invertible.

(2) f T = | el'e, then R = € 1.R1. for any I'-graded ring R. Hence, R is
eely eclo
a I'-graded division ring if and only if 1.R1. is an el'e-graded division ring for each

e € T{(R). But this last condition amounts to say that every el'e-graded right 1.R1.-
module is gr-free for each e € T'{(R). Therefore, statement (II) holds for all I'-graded
rings R.

Conversely, suppose that I' # | el'e and let o € T" be such that r(o) # d(o). Let D
eclp
be a division ring and

we[2 ]

We make of R an object unital I'-graded ring via

D 0 0 D 0 0
Rr(a):|:0 0:|7 Ra:[o 0:|7 Rd(o):|:0 D]

Then R,y and Rgy) are division rings with identity element 1,,) := FE1; and
lae) := Faa, respectively. Thus, 1, Rl = Ry, is a r(o)I'r(o)-graded division
ring and 14,y R1gs) = Ry(o) is a d(0)I'd(o)-graded division ring. But R is not a T'-

graded division ring because Fi5 = [8 (ﬂ € R, is not invertible. Therefore such R

contradicts statement (II).
(3) ' =Ty, then R = & R, for any I'-graded ring. In this event, R is a I'-graded
ecl’
division ring if and only if %: is a division ring for each e € I'j(R). This amounts to
say that every right R.-module is free for each e € T'{(R). Therefore, (IIT) holds for all
I'-graded rings R.

Conversely, suppose that I' # I'g. Thus, there exists o € I' such that either o2 is not
defined or o2 is defined but o2 # 0. If 7(0) # d(o), then the ring R used in (2) shows
that statement (III) does not hold. Hence suppose that r(c) = d(o) and 0% # 0. Let D
be a division ring and consider the ring

endowed with a I'-grading via
R,y =D+ (x?), R, := Dz + (z?).
Then R, (,) is a division ring and, therefore, every right R, ,)-module is free. But R is

not a I'-graded division ring because x+ (z2) € R, is not invertible. Therefore, statement
(IIT) does not hold for all I'-graded rings. O
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8. Semisimple categories

Throughout this section, we fix a small preadditive category C. We will use the follow-
ing notation: Cy is the set of objects of C, Ix is the identity morphism of X € Cy and
C(A, B) :== Hom¢ (A, B) for all A, B € Cy.

We denote by Ab the category of abelian groups (in which we will always adopt additive
notation,).

We alert the reader that, in this section, the letter f will denote a morphism in a
category and not an idempotent in a groupoid as in previous sections.

There are some concepts in Ring Theory that are also defined in Category Theory. For
example, definitions of semisimple category, artinian category, free functor and others
can be found in [18,32]. In this section, we explore some of these notions, relate them
to the concepts of foregoing sections and show how they are related via the ring of the
category when considered as a groupoid graded ring as in Example 2.3(1).

Many of the results in this section can be proved in a more general context. The
authors have been working on a paper in which they introduce the concept of groupoid
graded categories, which generalize group graded categories, and results are obtained for
such more general categories.

8.1. (Bi)functors are graded (bi)modules

Let Fun(C, Ab) be the category of additive covariant functors C — Ab. By Fun(C°?, Ab),
we denote the category of additive contravariant functors C — Ab.
For each A € Cy, we consider the following functors C — Ab

C(A,—):=hom¢(A,—) and C(—,A):=home(—,A).

A right sieve on A in C is an additive subfunctor (a subobject in the category of additive
functors) of C(—, A) and a left sieve on A in C is an additive subfunctor of C(4, —).

In [32], C(A,—) and C(—, A) are denoted by C4 and C4*, respectively. In [32, p. 18], a
right (left) ideal of C is defined as a subfunctor of C4 (of C4*) for some A € Cy. We point
out that we are using the opposite notation because our composition of morphisms in
the category C is the usual from right to left, while [32, p. 7] composes morphisms of C
from left to right.

In what follows, inspired by [18, Proposition 2 (p. 347)], we present a possible moti-
vation for the previous definitions.

Let R[C] be the ring of the category C as defined in Example 2.3(1). Recall that R|C]
is graded by the groupoid G := Cy x Cp, see Example 2.1(2), whose idempotents are of
the form

cai= (A, A), AeC.
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Let M = @4 pjeg M(a,p) be a G-graded right R[C]-module. We build an additive
contravariant functor M(—,Cy) : C — Ab as follows: for each X € Cy, we define

AMXJM::AHX::GBAQ&M
A€Cy

and for each morphism f: X — Y in C we define

M(f,CO) : Z\l(}/7 Co) — M(X, Co)

m— mf.

If M = M(e4) for some A € Cp, then we will write M (—, A) instead of M (—,Co).

Consider the G-graded ring Z(9) and the G-graded abelian groups as left Z(%)-
modules as in Remark 2.5(2). Note that, for each X, Y € Cy and f € C(X,Y), M(X,Cop)
is a G-graded left Z(90)-module with support contained in Gex and M(f,Cy) is a homo-
morphism of degree (Y, X) € G.

We denote by Fung, (C°?, Ge — Z(go)—mod) the category whose objects are the additive
contravariant functors F : C — Ge — Z(9)-mod such that, if X,Y € Cy and f € C(X,Y),
then F'(f) € HOM(F(Y), F(X))(v,x)- The morphisms between two functors F,G €
Fung, (C°P, G — Z(%)-mod) are the natural transformations (ax : F(X) — G(X))xec,
such that ax € Homg, (F(X),G(X)). Note that if F' € Fung, (C°?, Ge — Z(9%)-mod), then
for each X € Cy we have supp F(X) C Gex, because F(Ix) is the unity of the ring
END(F(X))(x,x) and therefore

O#GGF(X)(yz) — O#GZ(Q)F(I)()EF(X)(Y,Z)(XJ() = Z =X.

Now, let F': C — Ab be an additive contravariant functor and consider the additive
group

M[F]:= @ F(X).

X€eCo

Given X,Y,Z € Co, m € F(Z) and f € R[C]y,x) = C(X,Y), we define

mf = L EDNm) € FX), i 2 =Y
o, fZAY

It is easy to see that this makes M[F] a unital right R[C]-module. Thus, if we fix A € Cy,
then M[F] is a G-graded right R[C]-module via

MI[F](a,x) = F(X)

for each X € Cp. If F' € Fung, (C°P, Ge—Z(90)-mod), then we consider M[F] as a G-graded
right R[C]-module via
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MI[F)y,x) = F(X)y,x)

for each (Y, X) € G.

The next result links the constructions of the previous paragraphs. Recall that, by
Remark 2.5(1), every unital right R[C]-module M can be regarded as a G-graded R[C]-
module making M = M (e 4) for some €4 € Gy. Therefore, Theorem 8.1(1) is a rephrasing
of [18, Proposition 2 (p. 347)].

Theorem 8.1. Let G := Cy xCqy. The following functors define an equivalence of categories

G — gr-R[C] = Fung, (C%, Ge — Z99) -mod)
M — M(_,CQ)
MI[F] = F.

Moreover, if A € Cy, then such equivalence induces

(1) an equivalence of categories

€4G — gr-R[C] < Fun(CP, Ab)
Mw— M(—,A)
MI[F] - F;

(2) a bijection between the sets
{graded right ideals of R[C] contained in R[C|(¢a)} — {right sieves on A in C}
sending R[C](ea) to C(—, A).

Proof. Let M and N be objects of G — gr-R[C]. If @ € Homg,.(M, N), then a(MIx) C
NIx for all X € Cy. Thus, « induces a natural transformation M(—,Cy) — N(—,Co)

given by restriction of «, that is, (M(X, Co) =5 N(X, Co))X c where ax = a|piry-
€Co

Indeed, if X,Y € Cp and f € C(X,Y), then ax(mf) = ay(m)f for all m € My, ie.,

the following diagram commutes

M(f,Co)
MIy = M(X,Co) =— M(Y,Co) = MIy

axl \Lay
N(f,Co)
NIx = N(X,Co) <— N(Y,Co) = NIy

Conversely, let F,G € Fung, (C°?, Ge — Z90)-mod) and (aX: F(X) — G(X))X o
€Co

where each ax € Homg, (F(X),G(X)), be a natural transformation F — G. By the
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universal property of direct sums, we can define a homomorphism of I'-graded additive
groups a =Yy ax : M[F] — M|[G]. Moreover, if A, B, X,Y € Co, f € C(X,Y) and
m € M[F|a,p), then

a(m)f

almf) = {ax“m)”f ), EB=Y _ {(ay(m»G(f), it B =Y

a(0), ifB£Y |0, fB£Y

by the commutativity of the diagrams in a natural transformation.

It is straightforward to check that M[M(—,Cy)] =4 M for each object M of
G — gr-R[C], and M[F)(—,Cy) = F for each object F of Fung, (C,Ge — Z(9)-mod).
Furthermore, such isomorphisms are natural.

(1) Fix A € Cy. For F € Fun(C°, Ab), consider M[F| as an object of 4G — gr-R|[C]
via M[F]a, x) := F(X) for each X € Cy. Then the assignments M +— M(—, A) and
F — M|[F] define an equivalence between the categories £ 4G — gr-R|[C] and Fun(C?, Ab).

(2) Note that if M is a graded right ideal of R[C] with M = M(e4) for some A € Cy,
then M (—, A) is a subfunctor of C(—, A), i.e., a right sieve on A in C. And, if F is a right
sieve on A in C, then M[F] is naturally gr-isomorphic to a graded right ideal of RIC]
contained in R[C](g4). Thus, (2) follows from (1). O

Remark 8.2. Analogously, we define the category Fung, (C, ¢G fmod—Z(gf’)) whose objects
are the additive covariant functors F : C — G — mod-Z(%) such that, if X,Y € Cy and
[ € C(X,Y), then F(f) € HOM(F(X), F(Y))(y,x). Then, for a G-graded left R[C]-
module M we can build functors M (Co, —) and M (A, —). In this way, we prove that
there exists an equivalence of categories

G — R[C]-gr < Fung, (C, €G — mod-Z(9"))
M — M(Co, —)
MIF] & F,

where M[F]x vy := F(X)x,y) for each (X,Y) € G. If A € Co, then we get
(1) an equivalence of categories

Gea — R[C]-gr — Fun(C, Ab)
M~ M(A,-).

(2) a bijection
{graded left ideals of R[C] contained in (¢4)R[C]} — {left sieves on A in C}

that sends (e4)R|[C] to C(A,—). O
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Now we turn our attention to bimodules and bifunctors.
Let M be a G-graded (R|C], R[C])-bimodule. We define a bifunctor

M(—,—):CP?xC — Ab
as follows. For each X,Y € Cy, we put
M(X,Y) := My,x)
and, for morphisms f: Z — X and g : Y — W in C, we define

M(fP g): M(X,Y) = M(Z,W)

m+— gmf.
Conversely, let F' be an additive bifunctor C°? x C — Ab. Consider the additive group

M[F]:== @ F(X,Y).
X,YeCy

For A,B,X, Y, Z, W € Cy, m € F(A,B), f S R[C](X,Z) = C(Z,X) and g c R[C](W7y) =
C(Y, W), we define

o [FU ) € FEZW), it (A.B) = (X.Y)
0, it (A, B) £ (X,Y)

It is not difficult to verify that M[F] is a G-graded (R|C], R[C])-bimodule via
M[F]xy) = F(Y,X)

for each (X,Y) € G.

The next theorem links the two previous constructions. Before stating the result, we
need some definitions. Following [32, p. 18], we define an ideal of C as an additive sub-
functor of the bifunctor C(—, —) : C°? x C — Ab. We denote the category of additive
bifunctors C°? xC — Ab by Bifun(C, .Ab). We also define the category R[C]-gr-R[C]| whose
objects are the G-graded (R[C], R[C])-bimodules and the morphisms are the homomor-
phisms of bimodules g : M — N such that g(M,) C N, for all o € T". Note that, by
Remark 2.5(1), the second part of the following theorem contains a characterization of
ideals of R[C].

Theorem 8.3. Let G := Cy xCy. The following functors define an equivalence of categories

RI[C]-gr-R|C] < Bifun(C, .Ab)
M- M(—,—-)
MIF] < F;
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Moreover, such equivalence induces a bijection
{graded ideals of R[C]} — {ideals of C}
that sends R[C] to C(—, —).

Proof. The verification that M +— M(—,—) and F +— M[F] define an equivalence is
similar to the proof of Theorem 8.1.

For the second part of the statement, it suffices to note that if M is a graded ideal
of R[C], then M(—,—) is a subfunctor of C(—, —) and, conversely, if F' is an ideal of C,
then M[F] is naturally gr-isomorphic to a graded ideal of R[C]. O

8.2. Semisimple categories

Recall that a nonzero object A in an abelian category A is simple if it has no proper,
nonzero subobjects, and A is semisimple if it is a coproduct of simple objects.

Following [32, p. 18], we will say that C is a (right) semisimple category if C(—, A) is
a semisimple object in the category Fun(C°P, Ab) for all A € Cy.

The next proposition follows immediately from Theorem 8.1.

Proposition 8.4. Let G := Cy x Cy and A € Cy. Then C(—,A) is a semisimple object
in the category Fun(CP, Ab) if and only if R[C](ca) is a G-graded gr-semisimple RIC]-
module. O

For the next result, we need some definitions.

If R is a ring, not necessarily unital, then f.g.-mod-R will denote the category of
finitely generated unital right R-modules.

Let {C; : j € J} be a family of preadditive categories with at least a zero object.
Following [16, p. 133], let er, Cj be the full subcategory of [, ; C; whose objects are
of the form (A;);es, where A, is a zero object of C; for every j € J except for finitely
many indices j.

We have the following characterization of semisimple categories. The equivalence of
items (1) and (8) was first proved in [32, pp. 19-20].

Theorem 8.5. Let G := Cy x Cy. The following assertions are equivalent:

(1) C is a semisimple category.

(2) R[C] is a gr-semisimple ring.

(3) Every object of the category Fung, (C°?, Ge — 7,(C0)-mod) is semisimple.
(4) FEvery object of the category Fun(C?, Ab) is semisimple.

(5) Every object of the category Fung,(C,eG — mod-Z(€0)) is semisimple.
(6) Ewvery object of the category Fun(C,.Ab) is semisimple.

(7) For all A € Cy, C(A,—) is a semisimple object in Fun(C, Ab).
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(8) There exist a family {D; : j € J} of division rings and a functionn : J xCo — Z>g
such that, for each A, B € Cy, > n(j, A) < oo and there exists an isomorphism of
jeJ
additive groups

¢, :C(A,B) — H My, (5,B)xn(j,4) (Dj)
jeg

so0 that all these isomorphisms are compatible with products, i.c., ©a p)(fg) =
ec,B)(f) - a,c)(9), for each f € C(C,B), g € C(A,C).
(9) There exists a family {D; : j € J} of division rings such that C is isomorphic to a
small full subcategory of f. g.-mod-&@ D;.
j€J
(10) There exists a family {D; : j € Jf of division rings such that C is isomorphic to a
small full subcategory of H;-ceJ f.g.-mod-Dj.

Proof. (1) <= (2): By Proposition 8.4, C is a semisimple category if and only if
R[C](£4) is a gr-semisimple G-graded R[C]-module for all A € Cy. By Lemma 5.12(2),
this last condition is equivalent to the gr-semisimplicity of R[C] as a G-graded ring.

(2) = (3): If R[C] is a gr-semisimple G-graded ring, then, by Proposition 5.9, all
objects of G — gr-R|C] are gr-semisimple. By Theorem 8.1, we obtain (3).

(3) = (4): It follows from Theorem 8.1.

(4) = (1): It is clear.

The equivalence between (7), (2), (5) and (6) follows by the same argument as above,
using Remark 8.2 and the fact that the concepts of right gr-semisimplicity and left gr-
semisimplicity coincide for groupoid graded rings.

(2) = (8): Suppose that R|C] is a gr-semisimple G-graded ring. By Theorem 5.30,
there exist a set J, a family {K;: j € J} of non-empty sets, a sequence (A;),cs € C{,
a summable family of G-graded rings {M;(D;)(S;): j € J} and an gr-isomorphism of
G-graded rings

p: RIC) — T]” Mk, (D))
jed

where D; is a G-graded division ring with supp(D;) C €4,Gea; and $; = (G )rek,; €
(e4,G)% is a d-finite sequence for each j € J.

Fix j € J. For each k € K}, let Bj;, € Cy such that ¢;, = (A;, Bjx). For each A € Cy,
consider the sets K; 4 :=={k € K; : Bj, = A} and Jy :={j € J : K; a4 # 0}. Note that
Kja={k € K; :d(sjx) = ca}. It follows that K; 4 and J, are finite for all j € J and
A € Cy.

For each j € J, supp(D;) C €4,Ge; implies supp(D;) = {e4,} and therefore Dj is a
division ring. We also have that the function
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n:JxC0—>ZZU

(ja A) — |Kj,A|

is such that {j € J : n(j,A) # 0} = Jy is finite for all A € Cy. In order to obtain
the isomorphism ¢4, p) it suffices to compose p|¢(a,5) With the isomorphism given by
Lemma 3.21 noting that, for each j € J and A, B € Cy, we have

Mk, plx|K;.41(Di)(55,8)(Sj.4)(B,4) = Mn(,B)xn(j,4) (Dy)-

(8) = (2): Suppose that (8) holds. Fix j € J. For each A € Cy, define the following
finite subset of J x Cy x N:

o oo dtGAp) i 1<p<n(]A)} ifn4)#0
S '} it n(j, A) =0

Consider the disjoint union

Kj = U Kj’A
A€eCy

and, for each k € Kj, define Bj, = Aif k € K 4. Take A; € Cy and consider D; as a
G-graded division ring via (D;)(a,,4,) = D;. For each k € K; and A € Cy, let ¢j;, :=
(Aj, Bjr), S = (Sjk)rek,; and S5 4 == (Sjr)kek, 4- Note that $; is d-finite. Therefore we
can consider the G-graded ring Mg, (D;)(S;).

Since >, ;n(j, A) < oo forall A € Co, the family {Mg; (D;)(S;): j € J} is summable.
Therefore the G-graded ring

T Mx, (D))

jeJ

can be considered and it is gr-semisimple by Theorem 5.30.
For each j € J and A, B € Cy, Lemma 3.21 gives us an isomorphism of additive groups

Mg, (D5)(55)(B,a) — Mk, pix |k, (D})(55.8)(5),4) (B, 4)

= M,.(j,B)xn(j,4) (Dj)-

Now the compatibility of the isomorphisms ¢4, 5y induces the gr-isomorphism R[C] —
e M, (D;)(S5)-
(8) = (9): It suffices to consider the functor F': C — f.g.-mod-@ D; defined on
jeJ
objects by F'(A) = @D, D;(J’A) and defined on morphisms using the maps (4, g)-
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(9) = (8): Let M and N be objects of . g.-mod- € D;,. It is easy to see that there
JEJ
exist sequences (n(j, M));jes and (n(j, N))jes of non-negative integers with n(j, M) =0
and n(j, N) = 0 for almost all j such that M = D;L(j’M) and N = P D;L(j’N).
Then

jeJ jeJ

Hom(M, N) 2= P Homp, (D}, DY) = @ My eaioan (D))
JjeJ jedJ

and we obtain (8).
8) = (10): It suffices to consider the functor F : C — f.g.-mod-D; defined
]EJ J

on objects by F(A) = (Dj n(,A ))jej and on morphisms using the maps ¢4, ).

(10) = (8): Let (M;);jes and (N;)jes be objects of H]elf g.-mod-D;. For each
j € J, take n(j, M),n(j,N) € Z>q such that M; = D?(J’ and N; & D;(j’N). Then,
the morphisms from (M;),cs to (N;);es in H;ceJ f.g-mod-D; are

H HomD H HOIH n(] M) Dn(j N) H Mn(j,N)Xn(j,M) (D])
JjeJ jEJT jeJ

and (8) follows. O

Remark 8.6. Let R be a unital ring and let {S; : j € J} be a complete set of representa-
tives of the isomorphism classes of simple right R—modules. Set D; := Hompg(Sj, S;) for
all j € J.

Suppose that C is a small full subcategory of f. g.-mod-R whose objects are semisimple
modules. Given objects M and N of C, there exist sequences (n(j, M));es, (n(j, N))jes €
N such that

ME@sIM N =@,

JjeJ jeJ

>on(j,M) <ocoand > n(j, N) < co. Then Homg(M, N) is naturally identified with
JjeJ jeJ

T Maionysnionn) (D)
jeJ

as in Theorem 8.5(8). Hence, C is a semisimple category. O
8.3. Simple artinian categories

Following [32, p. 18-19], we will say that C is a right artinian category if C(—, A) is an
artinian object of the category Fun(C°P, Ab) for each A € Cy. That is, the subobjects of
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C(—, A) satisfy the descending chain condition. We will say that C is a simple category
if the only nonzero ideal of C is C(—, —).
The following result follows from Theorems 8.1(2) and 8.3.

Proposition 8.7. Let G := Cy x Cy. The following statements hold true.

(1) Foreach A € Cy, C(—, A) is an artinian object of Fun(C°?, Ab) if and only if R[C](c4)
is a gr-artinian G-graded R|[C]-module.

(2) C is a right artinian category if and only if R[C] is a right Go-artinian ring.

(3) C is a simple category if and only if R[C] is a gr-simple G-graded ring. O

Ttems (2) and (3) of the previous result lead us to define that C is a simple artinian
category if C is right artinian and simple.

It is easy to see that R[C] is a gr-simple ring if and only if C is a simple category in the
sense of [16, Section 7.2]. Therefore, it follows from Proposition 8.7(3) that our concept
of simple category coincides with that of [16]. In [16, Section 7.2], it was proved that if R
is a simple (unital) ring, then the category proj-R of finitely generated projective right
R-modules is a simple category [16, Proposition 7.6] and that a preadditive category P
is a simple category if and only if there exists a simple ring R such that P is equivalent
to a full subcategory of proj-R [16, Theorem 7.5]. The following result characterizes the
simple artinian categories.

Theorem 8.8. Let G := Cy x Cy. The following assertions are equivalent.

(1) C is a simple artinian category.

(2) C is a simple and semisimple category.

(3) RIC] is a gr-simple Go-artinian ring.

(4) There exist a division ring D and a function n : Co — Z>o such that, for each

A, B € Cy, there exists an isomorphism of additive groups

¢a.B) : C(A, B) — My(B)xn(a)(D)

and all these gr-isomorphisms are compatible with products, i.e., v p)(fg) =
vc,B)(f) - pac)(g), for each f € C(C, B), g € C(A,C).

(5) There exists a division ring D such that C is isomorphic to a small full subcategory
of f.g.-mod-D.

(6) There exists a simple artinian ring R such that C is isomorphic to a small full
subcategory of f. g.-mod-R.

Proof. (1) <= (3): It follows from Proposition 8.7.

(2) < (3): It follows from Proposition 8.7 and Theorem 5.19.

(3) < (4): The equivalence is obtained by repeating the proof of (2) < (8) in
Theorem 8.5 for |J| = 1.
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(4) (5): It suffices to consider the functor F': C — f.g.-mod-D defined on objects
by F(A) = D" and defined on morphisms using the maps ©(A,B)-

(5) = (6): It is clear.

(6) = (4): Suppose C be a small full subcategory of f.g.-mod-R, where R is a
simple artinian ring. Fix a simple R-module S and for each M € Cy an isomorphism
M = S(m) for a unique ny; € Z>o. For any M, N € Cy,

Hompg (M, N) = Homp(S™¥) )Y 2 M,, - son., (D),
where D := End(Sg). O
8.4. Free functors

In this subsection, we explore when RIC]|, the ring of the small preadditive category
C, is a pfm ring and relate this fact with the concept of free functors defined in [32,
p. 17-18]. We proceed to recall the definition of that notion. Let F' : C — Ab be an
additive contravariant functor. We say that (z;)ier € [[;c; F(Ai), where (4;)icr € CE,
is a sequence of generators of F if, for all A € Cy and = € F(A), there exists (\;)ier €
D, C(A, A;) such that

z =Y (F(\))(@:).

i€l

If, for all A € Cy and = € F(A), the sequence (\;);e;s is unique, then we say that (x;);er
is a basis of F' and that F' is free.

The next result associates free functors with pseudo-free R|C]-modules. The equiva-
lence of (1) and (3) was given in [32, p. 18].

Proposition 8.9. Let F' : C — Ab be an additive contravariant functor and A € Cy.

Consider the Co x Co-graded right R[C]-module M[F]| with M[F] s gy = F(B) for each
B € Cy. The following statements are equivalent:

(1) F is a free functor with basis (z;)icr € [] F(As).

iel
(2) MI[F] is a pseudo-free right R[C]-module with pseudo-basis (x;)icr € [ M[F](a,a,)-
i€l
(3) The natural transformation
Del-
iel
Ia, — x;

1

is an isomorphism in Fun(CP, Ab).
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Proof. (1) < (2): It suffices to note that x = Y F(\;)(z;) for some B € Cy, x € F(B)
i€l
and (\;)ier € @,c;C(B, A;) is equivalent, by Theorem 8.1(1), to = »_ x; - A; for some

i€l
Be(Cy, ze M[F](A,B) and ()\i)ie[ € @ R[C](A“B).
iel
(2) < (3): It follows from Proposition 3.1(7) and Theorem 8.1(1). O

We have the following characterizations of small preadditive categories where all func-
tors are free.

Theorem 8.10. Let G := Cy x Cy. The following statements are equivalent:

(1) All additive contravariant functors C — Ab are free.

(2) All additive covariant functors C — Ab are free.

(3) RIC] is a pfm G-graded ring.

(4) There exist a set J, a sequence (A;)jes € Cf, a family {D; : j € J} of division
rings, a map n: J x Co — Zxo with 3, ;n(j, A) < oo for all A € Co, n(j, 4;) =1
and C(A;,A;) = Dj for all j € J, and there exist isomorphisms of additive groups

P(A,B) * C(A,B) — H M,,.(5,B)xn(5,A) (Dy)
jeJ

for each A, B € Cy. Moreover, all such isomorphisms are compatible with products,
that is, o(a,B)(f9) = ¢c.B)(f) - Pa.c)(9), for each f € C(C, B), g € C(A,C).
(5) There exists a family F :={Dj : j € J} of division rings such that C is isomorphic

to a small full subcategory of f.g.-mod-@ D; whose set of objects contains F.
jeJ
(6) There exists a family F :={D; : j € J} of division rings such that C is isomorphic

to a small full subcategory of H;EJ f.g.-mod-D; whose set of objects contains F.

Proof. (1) = (3): By Proposition 8.9 and Theorem 8.1(1), we have that (1) implies
that all G-graded right R[C]-modules M of the form M(ea), A € Cp, are pseudo-free.
Now, (3) follows from Corollary 3.2.

(3) = (1): Tt follows immediately from Proposition 8.9.

(2) < (3): It follows in the same way as (1) <= (3), using Remark 8.2.

(3) = (4) Proceed as in the proof of (2) = (8) in Theorem 8.5 and note that
there exists a sequence (A;)je; € Cf such that n(j, A;) = |Kja,| =1 and n(j’, A;) =
| K a,| = 0 for all distinct j, j* € J by Theorem 7.5(2).

(4) = (3) Proceed as in the proof of (8) = (2) in Theorem 8.5 and note that
there exists a sequence (A;)jes € Cf such that |Kj 4,| = n(j,A;) = 1 and |Kj a,| =
n(j’, A;) = 0 for all distinct j, 7* € J. By Theorem 7.5(2), this implies that R[C] is a pfm
G-graded ring.
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(4) = (5): It suffices to consider the functor F': C — f.g.-mod-@ D; defined by
jedg
F(A) =@jes D;L(j’A) and to note that F(A;) = D, for each j € J.

(5) = (4): It follows the same idea of the proof of (9) = (8) in Theorem 8.5,

noting that if C is a full subcategory of f.g.-mod-@ D; and D; € Cy, then C(Dj, D;) =
JjeJ
Dj is a division ring.

(4) = (6): It suffices to consider the functor F' : C — erjf.g.—mod—Dj defined
by F(A) = (D;(j’A))jEJ and to note that, for each j € J, F(A;) is the copy of D, in
erJ f.g.-mod-Dj.

(6) = (4): It is similar to (5) = (4). O

Let R be a unital ring and let C be a small full subcategory of f.g.-mod-R. Suppose
that there exists a subset S C Cy of simple right R-modules such that all the objects of C
are isomorphic to finite direct sums of elements of S. Then R|C], the ring of the category
C, satisfies Theorem 8.10(4). Thus, R[C] is a pfm ring. Therefore, suppose that B is a
small preadditive category such that R[B] is not pfm. Then B cannot be equivalent to
the category of finitely generated semisimple modules of a ring.

The category of all finitely generated semisimple modules of a ring is an example of an
amenable semisimple category [32, p. 20]. A characterization of such categories is given
in [16, Theorem 4.55]. We observe that small amenable semisimple categories satisfy the
conditions of Theorem 8.10.

For small preadditive simple categories, we have the following result, which follows
from Proposition 8.7(3) and Theorems 8.10 and 7.3.

Theorem 8.11. Suppose that C is a simple category and G := Cy x Cy. The following
statements are equivalent:

(1) Ewvery additive contravariant functor C — Ab is free.

(2) There exists A € Cy such that C(—, A) is a simple object of Fun(C°P, Ab).

(3) C is a right artinian category and there exists A € Co such that C(A, A) is a division
ring.

(4) There exist A € Cy, a division ring D, a map n: Co — Z>¢ with n(A) =1 and there
exist isomorphisms of additive groups

P(A,B) * C(A7B> — Mn(B)Xn(A)(D)

for each A, B € Cy. Moreover, all such isomorphisms are compatible with products,

that is, @(A,B)(fg) = W(C,B)(f) ’ @(A,C')(g); fO’F each f € C(Ca B); g€ C(Aa C)
(5) There exists a division ring D such that C is isomorphic to a small full subcategory
D of f.g.-mod-D with Dp € Dy. O
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8.5. Division categories

Suppose that a preadditive category D has a nonzero object. We say that D is a
division category if each nonzero morphism in D is an isomorphism. By Schur’s Lemma,
an example of a division category is the category of simple modules over a ring. We
characterize small division categories in the next result.

Proposition 8.12. Let G := Cy x Cy. The following statements are equivalent:

(1) C is a division category.

(2) RI[C] is a G-graded division ring.

(3) Ewvery functor F' € Fun(C°P, Ab) is free and all basis of F' have the same cardinality.
(4) C is a semisimple category and C(A, A) is a division ring for each nonzero object
A€ Cy.

(5) There exists a family {C; : j € J} of simple division categories such that C =

HjeJCj~

Proof. (1) < (2): it is clear.

(2) < (3): By Theorem 7.6, (2) holds if and only if R[C] is a pfm G-graded ring
and, for each G-graded R[C]-module M all pseudo-basis of M have the same cardinality.
By Theorem 8.10 and Proposition 8.9, this is equivalent to (3).

(2) < (4): By Theorem 7.8, (2) holds if and only if R[C] is a gr-semisimple G-
graded ring and R[C](4, 4) is a division ring for all nonzero A € Cy. By Theorem 8.5, this
is equivalent to C being a semisimple category and C(A, A) being a division ring for all
A such that C(A, A) # 0.

(2) = (5): By Theorem 7.8, there exists a family {R; : j € J} of gr-simple gr-
division rings such that R[C] = @, ; R; and supp(R;) Nsupp(L2;:) =  for all different
J,j" € J. It suffices take, for each j € J, the full subcategory C; OfC whose set of objects
is {A €Cy:e4 € Q()(RJ)}

(5) = (2): For each j € J, consider R; := R|C,] as a G-graded ring. Then R[C] =
@D,c, R is a decomposition as in item (6) of Theorem 7.8. O

Corollary 8.13. If C is a division category, then every additive contravariant functor
C — Ab is free. O

We comment on the decomposition in item (5) of Proposition 8.12. Let C be a division
category and C{) the set of nonzero objects of C. Similarly to Proposition 4.1, we can define
in Cj the equivalence relation A ~ B <= C(A,B) # 0. Let {A; : j € J} be a family
of all representatives of this relation. For each j € J, let C; be the full subcategory of C
whose set of objects is {A € Cy : C(A;, A) # 0}. Each C; is a simple division category

and C = [[,¢;C;. In particular, C is snnple if and only if C(A4, B) # 0 for all A, B € CJ.

Proposition 8.14. Let G := Cy X Cy. The following assertions are equivalent:
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(1) C is a simple division category.

(2) RIC] is a gr-simple G-graded division ring.

(3) There exists a division ring D such that C is isomorphic to a small full subcategory
of f. g.-mod-D whose objects have dimension 0 or 1.

(4) There exists a ring with unity R such that C is isomorphic to a small full subcategory
of f. g.-mod-R whose objects are null or simple modules.

Proof. (1) <= (2): It follows from Proposition 8.12 and Proposition 8.7(3).

(2) = (3): By Theorem 8.8, there exists a division ring D such that C is isomorphic
to a small full subcategory of f.g.-mod-D. If M and N are nonzero D-modules, then
the invertibility of all nonzero elements of Homp (M, N) is equivalent to M and N have
dimension 1. Thus, (3) follows.

(3) = (4): It is clear.

(4) = (1): It follows from Schur’s Lemma. 0O

By Proposition 8.12, R[C] is a G-graded division ring if and only if for each A, B € Cy,
all nonzero morphism in C(A, B) is invertible. On the other hand, Theorem 8.10 tells us
that if R[C] is a pfm ring, then there exists a family {A; : j € J} of objects in C, a family
{D:je J} of division rings, a map n: J x Cg — Z>o with Y .. ;n(j, A) < oo for all
A€ Cy, n(j,A;) =1and C(4;,A;) = D; for all j € J, and

jEJ

B) = [ Mugyr.5yxn(.a,) (D) = Mg yx1(D;);
jled

C(B, 4;) = [ Mu(ir.a,)xn(ir.8)(Dsr) = Misn(.5)(D)).
j'ed

That is, in this case we just know that, for each j € J, the nonzero morphisms with
domain Aj; are left invertible and the nonzero morphisms with codomain A; are right
invertible.
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