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We develop the theory of groupoid graded semisimple rings. 
Our rings are neither unital nor one-sided artinian. Instead, 
they exhibit a strong version of having local units and 
being locally artinian, and we call them Γ0-artinian. One 
of our main results is a groupoid graded version of the 
Wedderburn-Artin Theorem, where we characterize groupoid 
graded semisimple rings as direct sums of graded simple Γ0
artinian rings and we exhibit the structure of this latter class 
of rings. In this direction, we also prove a groupoid graded 
version of Jacobson-Chevalley density theorem. We need to 
define and study properties of groupoid gradings on matrix 
rings (possibly of infinite size) over groupoid graded rings, 
and specially over groupoid graded division rings. Because 
of that, we study groupoid graded division rings and their 
graded modules. We consider a natural notion of freeness 
for groupoid graded modules that, when specialized to group 
graded rings, gives the usual one, and show that for a groupoid 
graded division ring all graded modules are free (in this 
sense). Contrary to the group graded case, there are groupoid 
graded rings for which all graded modules are free according 
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to our definition, but they are not graded division rings. We 
exhibit an easy example of this kind of rings and characterize 
such class among groupoid graded semisimple rings. We also 
relate groupoid graded semisimple rings with the notion of 
semisimple category defined by B. Mitchell. For that, we 
show the link between functors from a preadditive category 
to abelian groups and graded modules over the groupoid 
graded ring associated to this category, generalizing a result 
of P. Gabriel. We characterize simple artinian categories and 
categories for which every functor from them to abelian groups 
is free in the sense of B. Mitchell.

© 2025 Elsevier Inc. All rights are reserved, including those 
for text and data mining, AI training, and similar 

technologies.
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1. Introduction

Semisimple rings and the Wedderburn-Artin Theorem lie at the basis of classical 
Ring Theory. Later, the study of group graded structures became important for the 
development of different branches of Mathematics [34], [20], [14]. Many classical concepts 
and results in Ring and Module Theory have a group graded version, for example the 
Wedderburn-Artin Theorem [27], [34, Theorem 2.10.10] or [13, Theorem 2.12]. Nowadays, 
groupoids [21] play an important role in Mathematics [36], [31], [15], and groupoid graded 
structures have already appeared in different contexts such as partial actions [4], [5], [33] 
and Leavitt path algebras [19].

A groupoid, together with a zero, can be regarded as a semigroup. Thus, some results 
about group graded rings might be shrouded in the theory of semigroup graded rings. 
To knowledge of the authors, the first work that began the study of groupoid graded 
rings and modules as a separate class was [29]. Usually, first results in the theory were 
obtained supposing that either the graded ring has an identity element and/or that the 
groupoid has a finite number of objects [28], [30], [37]. A systematic study of groupoid 
graded rings and modules that do not satisfy these conditions began in [11] where the 
first results about groupoid graded semisimple modules were also given. In that work, 
graded rings are supposed to have a good set of local units. They refer to such rings as 
object unital rings, a term that we adopt in this work (see Subsection 2.3). This concept 
was already used in [35] under the name of locally unital ring.

The general purpose of this work is twofold: to continue the systematic study of object 
unital groupoid graded rings and to offer an application of such objects to the study of 
(small) preadditive categories. A more precise description of our aim is given in the 
following paragraphs.

Naturally, in the groupoid graded context, rings do not necessarily have a unity. In fact, 
imposing the existence of an identity element implies that there is only a finite number of 
idempotents of the groupoid inside the support of the graded ring [29, Proposition 2.1.1]. 
The possibility of an infinite number of idempotents in a groupoid does not allow some 
classical definitions to be generalized as directly as they do in the group graded case. 
For instance, many interesting examples of groupoid graded rings are decomposed as an 
infinite direct sum of nonzero graded right modules. The usual definition of artinianity 
does not apply in this case, but another descending chain condition is useful. It is the 
natural generalization of the notion of a categorically artinian ring, introduced in [2, 
Definition 1.1] and [1, Section 4.2], to the setting of groupoid graded rings. We will talk 
about Γ0-artinian rings, see Subsection 5.2. In other cases, the natural generalization of 
certain concepts lead to unexpected properties. For example, groupoid graded division 
rings are not necessarily graded prime rings. Other definitions are not useful in the 
groupoid graded context. Also, if a module is graded by a groupoid but not by a group, 
then no element is linearly independent. For this reason, we define pseudo-free modules 
instead of free modules, see Subsection 3.1 for more details.
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Another difficulty that appears when dealing with rings R graded by a groupoid Γ is 
how to induce Γ-gradings on matrix rings with entries in R. In the group graded context, 
a finite sequence of n elements of the group is enough to produce a group grading on 
the matrix ring (of finite size n × n). In our case, we will require sequences of suitable 
subsets of the groupoid in order to obtain groupoid gradings on matrix rings with entries 
in a groupoid graded ring. On the other hand, these graded matrix rings have similar 
properties to those that appear in the group graded context.

One of our main results is a groupoid graded version of the Wedderburn-Artin the
orem. We prove that groupoid graded semisimple rings are precisely certain (may be 
infinite) direct products of gr-simple Γ0-artinian rings, see Theorem 5.30. These rings 
are the groupoid graded generalization of simple artinian rings and we characterize them 
as graded matrix rings (perhaps of infinite size) over graded prime division rings, see 
Theorem 5.23.

It is a well-known result in Ring Theory that every unital right (left) module over 
a division ring has a basis (see, for example, [22, Theorem 2.4]). One can use the 
Wedderburn-Artin theorem to prove the converse. In fact, suppose that R is a ring 
with unity such that every unital right (left) R-module is free. This implies that every 
unital right (left) R-module is projective. By [24, Theorem 2.8], R is a semisimple ring 
and it follows that R must be a finite product of matrix rings over division rings. But 
all modules over such ring are free if and only if the ring is a division ring. Analogous 
arguments show the correspondent characterization of group graded division rings (cf. 
[7, Theorem 3.3] for one implication). We were surprised to build a non-sophisticated 
example of a groupoid graded ring (a 3 × 3 matrix ring with a suitable grading) over 
which all graded right modules are pseudo-free, but that is not a graded division ring. 
With this example in mind and using our graded Wedderburn-Artin Theorem, we are 
able to characterize graded rings whose modules are all pseudo-free.

One of our main examples of groupoid graded ring is the ring obtained from a small 
preadditive category. In small preadditive categories, one can define ideals, simplicity 
[16], semisimplicity and artinianity [32]. This suggests that concepts of ring theory can 
be defined in category theory and that graded results about the ring of the category can 
be used to get results about the category. We show that semisimplicity, artinianity and 
simplicity of the category are equivalent to the graded semisimplicity, graded artinianity 
and graded simplicity, respectively, of the ring of a small preadditive category.

In Section 2, we present the basic definitions, examples and results about groupoids 
and groupoid graded rings and modules that will be needed in the paper. In addition, 
we fix the conventions that will be adopted throughout the text.

Section 3 is dedicated to study groupoid gradings on matrix rings, homomorphisms be
tween groupoid graded modules and the identification of graded matrix rings with graded 
endomorphism rings of certain graded modules. We begin this section by presenting 
pseudo-free modules. Next, we define and prove some results about gr-homomorphisms 
and homomorphisms with degree. Then, we describe a key method to obtain groupoid 
gradings in matrix rings over graded rings. One of the main results of this section is the 
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expression of homomorphisms with degree as matrices. Later, in order to obtain results 
about left modules from those about right modules, we consider the opposite ring of a 
graded ring as a graded ring. These techniques are useful to get isomorphisms between 
categories of graded left modules over a graded ring and graded right modules over the 
opposite ring. We also show other isomorphisms between categories of graded modules 
that are obtained when the groupoid is connected. We finish this third section with 
groupoid gradings in additive groups of rectangular matrices.

In Section 4, we deal with properties of groupoid graded division rings. The first main 
result is the decomposition of a graded division ring as a sum of graded prime (simple) 
division rings. Another important result is the fact that all graded modules over a graded 
division ring are pseudo-free. We finish proving some results about graded division rings 
that are similar to the ones in basic linear algebra.

We study groupoid graded semisimple rings in Section 5. We begin with basic re
sults about graded simple modules, such as graded Schur’s Lemma, and about graded 
semisimple modules and rings. Then we find the structure of graded prime semisimple 
rings as certain graded matrix rings over graded division rings and prove that graded 
semisimple rings are direct sums of these. We end the section studying the uniqueness 
of this matrix representation.

In Section 6, we get another proof of the structure of gr-simple Γ0-artinian rings, 
proving a groupoid graded version of the Jacobson-Chevalley density theorem.

Section 7 is devoted to study pseudo-free module (pfm) rings, that is, those graded 
rings over which all graded modules are pseudo free. The main result of this section is the 
characterization of such rings. This theorem is obtained from the one that characterizes 
graded prime (simple) pfm rings. We also find an invariant for pfm rings: the gr-simple 
dimension. In the final part of the section, we study some relations between pfm rings 
and graded division rings.

Example 2.3 tells us how to obtain a groupoid graded ring from a small preadditive 
category. This example and [32,18] motivate us to apply the concepts discussed in pre
vious sections to the categorical context. This is the main objective of Section 8. We 
begin by showing that additive contravariant functors from a small preadditive category 
to abelian groups can be regarded as graded modules over the ring of the category. After 
that, we obtain new characterizations of semisimple categories. We also define and char
acterize simple artinian categories and division categories. We show that the concept of 
free functors given in [32] is linked with our concept of pseudo-free modules and we use 
this to get a characterization of categories for which all functors to abelian groups are 
free.

2. Preliminaries

In this section we collect some known definitions and results that will be used through
out the paper, sometimes without reference.
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2.1. Groupoids

A groupoid Γ is a small category in which every morphism is invertible. In other words, 
every morphism of Γ is an isomorphism. We will denote the set of objects of Γ by Γ0. 
The identity morphism of e ∈ Γ0 will be denoted again by e. In this way, we identify 
the groupoid with its set of morphisms and sometimes we will refer to Γ0 as the set of 
idempotents of Γ. If e, f ∈ Γ0 and γ is a morphism from e to f , we will write d(γ) = e

and r(γ) = f . Notice that d(γ−1) = r(γ) = f and r(γ−1) = d(γ) = e. If, moreover, 
d(δ) = f , then δγ ∈ Γ with d(δγ) = d(γ) = e and r(δγ) = r(δ) = f . If d(δ) ̸= f , we will 
say that δγ is not defined in Γ. For a detailed study of groupoids the interested reader 
is referred to [21] or [23].

Groupoids with a unique object can be identified with groups. Some other important 
examples of groupoids that we will deal with are the following.

Example 2.1. 

(1) Let {Gi : i ∈ I} be a family of groups where eGi
is the identity element of Gi for 

each i ∈ I. Let Γ be the disjoint union of {Gi : i ∈ I}. Then Γ is a groupoid with 
Γ0 = {eGi

: i ∈ I} if we define the inverse of each element in the natural way and 
the composition only for elements in the same group. Thus r(gi) = d(gi) = eGi

for 
all i ∈ I and gi ∈ Gi.

(2) Let X be a non-empty set. We endow Γ := X × X with a structure of groupoid 
in the following way. For (y, x) ∈ Γ, define d(y, x) = (x, x), r(y, x) = (y, y) and 
(y, x)−1 = (x, y). Thus Γ0 = {(x, x) : x ∈ X} and it can be identified with X in 
the natural way. Note that there exists a unique morphism between two objects in 
Γ0. For each (y, x), (z, w) ∈ Γ, the composition (z, w)(y, x) is defined if and only if 
w = y. In that case, (z, y)(y, x) = (z, x).

(3) Generalizing the previous example, let X be a non-empty set and G be a group with 
identity element e. We endow Γ := X ×G ×X with a structure of groupoid in the 
following way. For each (y, g, x) ∈ Γ, define d(y, g, x) = (x, e, x), r(y, g, x) = (y, e, y)
and (y, g, x)−1 = (x, g−1, y). Thus Γ0 = {(x, e, x) : x ∈ X} and it can be identified 
with X. Note that the morphisms between two objects in Γ0 can be identified with 
the elements of G. For each (z, h, w), (y, g, x) ∈ Γ, the composition (z, h, w)(y, g, x)
is defined if and only if w = y. In that case, (z, h, y)(y, g, x) = (z, hg, x). Notice that 
we obtain the foregoing example when G is the trivial group.
This example is important because any groupoid is the disjoint union of subgroupoids 
isomorphic (in a non-canonical way) to the groupoid presented in this example, see 
for example [9, p. 125]. □

Now we introduce some more notation on groupoids. Let Γ be a groupoid. For X,Y ⊆
Γ and γ, δ ∈ Γ, we define the following subsets of Γ:
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X−1 := {α−1 : α ∈ X},
γX := {γα : α ∈ X with d(γ) = r(α)},
Xδ := {αδ : α ∈ X with d(α) = r(δ)},

XY := {αβ | α ∈ X,β ∈ Y and d(α) = r(β)},
γXδ := {γαδ : α ∈ X with d(γ) = r(α) and d(α) = r(δ)}.

We say that the groupoid Γ is connected if eΓf ̸= ∅ for all e, f ∈ Γ0. In other words, 
given e, f ∈ Γ0, there exists σ ∈ Γ such that r(σ) = e and d(σ) = f .

Note that if e ∈ Γ0, then eΓe = {γ ∈ Γ : d(γ) = r(γ) = e} is a group with identity 
element e. While Γ(e) is the standard notation for this group in the literature, we choose 
the more suggestive notation eΓe to better serve our purposes and to avoid potential 
confusion with other concepts.

2.2. Groupoid graded additive groups

Let Γ be a groupoid. An additive group G is Γ-graded if there exists a family {Gγ :
γ ∈ Γ} of subgroups of G such that G =

⨁︁
γ∈Γ Gγ . Graded rings and graded modules 

(which we define below) are examples of graded additive groups.
We continue fixing some general notation. Let X =

⨁︁
γ∈Γ Xγ be a Γ-graded additive 

group. For each γ ∈ Γ, Xγ is called the homogeneous component of degree γ of X, its 
nonzero elements are said to be homogeneous of degree γ and we write deg(x) = γ ∈ Γ
when 0 ̸= x ∈ Xγ . For each γ ∈ Γ and x ∈ X, we write x =

∑︁
γ∈Γ xγ with xγ ∈ Xγ

(with all but finitely many xγ nonzero) and we call xγ the homogeneous component of 
degree γ of x. The set of the homogeneous elements of X is h(X) :=

⋃︁
γ∈Γ Xγ . We 

define the support of X as supp(X) := {γ ∈ Γ : Xγ ̸= 0} and the support of x ∈ X

as supp(x) := {γ ∈ Γ : xγ ̸= 0}. When σ, τ ∈ Γ are such that d(σ) ̸= r(τ), that is, στ
is not defined, we adopt the convention Xστ := {0}. If Y is a Γ-graded additive group, 
then a homomorphism of groups g : X → Y it is said to be a gr-homomorphism of 
groups if g(Xσ) ⊆ Yσ for all σ ∈ Γ. If, moreover, g is bijective, then we say that g is a 
gr-isomorphism of groups, that X is gr-isomorphic to Y as groups and we will denote it 
by X ∼ = gr Y .

2.3. Groupoid graded rings

Throughout this work, rings are assumed to be associative but not necessarily unital.
Let R be a ring. We say that R is a Γ-graded ring if there is a family {Rγ}γ∈Γ of 

additive subgroups of R such that R =
⨁︁
γ∈Γ

Rγ and RγRδ ⊆ Rγδ, for each γ, δ ∈ Γ. 

Following [10], we say that R is object unital if, for all e ∈ Γ0, the ring Re is unital with 
identity element 1e, and for all γ ∈ Γ and r ∈ Rγ , we have 1r(γ)r = r1d(γ) = r. This 
concept has received other names in the semigroup graded context, see [3]. It follows 
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from [29, Proposition 2.1.1] that the object unital Γ-graded ring R =
⨁︁

γ∈Γ Rγ is unital 
if and only if Γ′

0 = {e ∈ Γ0 : 1e ̸= 0} is finite. In this event, 1R =
∑︁

e∈Γ′
0
1e.

Now we present some examples of (object unital) groupoid graded rings.

Example 2.2. 

(1) If R is a group graded (unital) ring, then R is a (object unital) groupoid graded 
ring. More generally, if I is a non-empty set and, for each i ∈ I, Ri is a (unital) 
ring graded by the group Gi, then R :=

⨁︁
i∈I Ri is (object unital) graded by the 

groupoid obtained as the disjoint union of the groups Gi, i ∈ I, via Rgi := (Ri)gi if 
gi ∈ Gi.

(2) Suppose that a ring R has enough idempotents, i.e., there exists a set {ei : i ∈ I}
of pairwise orthogonal idempotents of R such that R =

⨁︁
i∈I Rei =

⨁︁
i∈I eiR [17]. 

Then R is an object unital I × I-graded ring via R(i,j) := eiRej for all i, j ∈ I. Note 
that ei is the unity of the ring R(i,i) for each i ∈ I.

(3) An object crossed system (A,Γ, α, β) consists of a family A = {Ae : e ∈ Γ0} of 
nonzero unital rings, a family α = {ασ : Ad(σ) → Ar(σ)} of isomorphisms of rings 
(respecting identity elements) and a family β = {βσ,τ ∈ U(Ar(σ)) : σ, τ ∈ Γ, d(σ) =
r(τ)} of invertible elements, satisfying
(i) αe = idAe

for all e ∈ Γ0.
(ii) βσ,d(σ) = βr(σ),σ = 1Ar(σ) for all σ ∈ Γ.
(iii) ασ(ατ (a)) = βσ,ταστ (a)β−1

σ,τ for all σ, τ ∈ Γ with d(σ) = r(τ) and a ∈ Ad(τ).
(iv) βσ,τβστ,ρ = ασ(βτ,ρ)βσ,τρ for all σ, τ, ρ ∈ Γ with d(σ) = r(τ) and d(τ) = r(ρ).
Given an object crossed system (A,Γ, α, β) and a copy {uσ : σ ∈ Γ} of Γ, consider 
the set of formal sums

A⋊α
β Γ :=

{︄∑︂
σ∈Γ

aσuσ : (aσ)σ∈Γ ∈
⨁︂
σ∈Γ

Ar(σ)

}︄
.

The sum in A⋊α
β Γ is defined by∑︂

σ∈Γ
aσuσ +

∑︂
σ∈Γ

a′σuσ :=
∑︂
σ∈Γ

(aσ + a′σ)uσ

and the product is defined to be the natural extension of

(aσuσ) · (bτuτ ) :=
{︄
aσασ(bτ )βσ,τuστ , if d(σ) = r(τ)
0, if d(σ) ̸= r(τ).

By [10, Proposition 16], A⋊α
β Γ is an (object unital) groupoid graded ring via (A⋊α

β

Γ)σ := Ar(σ)uσ.
(4) Given a partial action α = ({Dγ}γ ∈ Γ, {αγ}γ∈Γ) of a groupoid Γ on a ring R as in 

[5, Section 3], the skew groupoid ring R ∗α Γ is defined. It is Γ-graded, associative 
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and object unital. See also [4, Section 3] for mild conditions under which R ∗α Γ is 
associative and object unital.

(5) In [19], a free groupoid grading on Leavitt path algebras is presented. □
Now we provide what we believe is the most important class of examples of groupoid 

graded rings. As far as we know, this family of examples has not been studied as graded 
rings until now. The first example will be very important in Section 8.

Example 2.3. 

(1) Let 𝒞 be a small preadditive category, i.e., Obj(𝒞) is a set and every morphism set has 
an additive group structure such that the composition of morphisms is Z-bilinear. 
We define the ring of the category 𝒞 as 4

R[𝒞] :=
⨁︂

A,B∈Obj(𝒞)

Hom𝒞(A,B)

where, given morphisms f and g, the product fg is defined by f ◦g if the composition 
is possible and 0 otherwise. The ring (possibly without unity) R[𝒞] has a natural 
structure of ring graded by the groupoid Obj(𝒞)×Obj(𝒞) via

R[𝒞](A,B) := Hom𝒞(B,A),

for each A,B ∈ Obj(𝒞). Considering the identity morphisms IA ∈ Hom𝒞(A,A), 
A ∈ Obj(𝒞), it is easy to show that R[𝒞] is object unital.

(2) Let 𝒞 be a small preadditive category and G be a group. In the literature, the 
category 𝒞 is G-graded if every morphism set is given the structure of a G-graded 
additive group and for A,B,C ∈ Obj(𝒞) the composition is Z-bilinear and induces 
a homomorphism

Hom𝒞(B,C)⊗Hom𝒞(A,B)→ Hom𝒞(A,C)

of G-graded abelian groups (i.e., preserving degrees). Then R[𝒞] is also graded by 
the groupoid Obj(𝒞)×G×Obj(𝒞) via

R[𝒞](A,g,B) := Hom𝒞(B,A)g,

for each A,B ∈ Obj(𝒞) and g ∈ G. Again, considering the identity morphisms 
IA ∈ Hom𝒞(A,A), A ∈ Obj(𝒞), it is easy to show that R[𝒞] is object unital.

4 Our definition of preadditive category is called additive category in [32, p. 9]. Our definition of ring of 
a category is the Gabriel functor ring of [16, p. 123] and is denoted by Z[𝒞] in [18, p. 346]. We point out 
that our ring of a category is not the same as the one in [32, Section 7].
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Conversely, if X is a non-empty set and G is a group, then every X ×G×X-graded 
ring R is the ring of some G-graded small preadditive category. In fact, it suffices 
to consider the category 𝒞 whose set of objects is X and, given x, y ∈ X, we set 
Hom𝒞(x, y) :=

⨁︁
g∈G R(y,g,x). In particular, the X ×X-graded rings are exactly the 

rings of small preadditive categories with set of objects X. Thus, to study the rings 
graded by groupoids of the form X×X and X×G×X (X a set, G a group) means 
to study rings of categories. □

In this work, unless otherwise stated (Section 6), all groupoid graded rings are supposed 
to be object unital.

Given Γ-graded rings R and S, a gr-homomorphism of rings is a homomorphism of 
rings φ : R → S which is also a gr-homomorphism of Γ-graded abelian groups and 
satisfies φ(1Re ) = 1Se for all e ∈ Γ0, where 1Re (resp. 1Se ) denotes the unity of the ring 
Re (resp. Se). A gr-isomorphism of Γ-graded rings is a bijective gr-homomorphism of 
Γ-graded rings. When there exists a gr-isomorphism of Γ-graded rings φ : R → S, we 
say that R is gr-isomorphic to S as rings and we write R ∼ = gr S.

Let R be a Γ-graded ring and S ⊆ R. We will say that S is a graded subring of R if 
S is closed under sums and products, S =

⨁︁
γ∈Γ(S ∩Rγ) and, for all e ∈ Γ0, if Se ̸= 0, 

then 1e ∈ Se.
A way to produce a new Γ-graded ring from other Γ-graded rings is the graded direct 

product that we proceed to define. Let {Rj : j ∈ J} be a family of Γ-graded rings. We 
denote by

∏︂gr

j∈J 
Rj

the Γ-graded ring whose homogeneous component of degree γ ∈ Γ is the additive group

∏︂
j∈J

(Rj)γ .

It is easy to see that this defines a direct product in the category of Γ-graded rings and 
it coincides with the usual direct product of rings if J is finite.

2.4. Groupoid graded modules

In this section, most of our definitions and results are formulated for modules on the 
right. For modules on the left, they can be stated in the natural way.

Throughout this section, let Γ be a groupoid and R =
⨁︁

γ∈Γ Rγ be a Γ-graded ring.
If M is a right R-module, we say that M is Γ-graded if there exists a family {Mγ :

γ ∈ Γ} of additive subgroups of M such that M =
⨁︁

γ∈Γ Mγ and, for each σ, τ ∈ Γ,
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MσRτ ⊆
{︄
Mστ , if στ is defined
{0}, if στ is not defined

.

The support of M is the subset of Γ defined by supp(M) := {γ ∈ Γ : Mγ ̸= 0}.
A submodule N of M is a graded submodule if N =

⨁︁
γ∈Γ Nγ where Nγ := N ∩Mγ

for each γ ∈ Γ. Equivalently, if nγ1 + · · · + nγt
∈ N with nγi

∈ Mγi
and γi ̸= γj for 

different i, j = 1, ..., t, then nγi
∈ N for all i = 1, ..., t.

Clearly RR is a Γ-graded right R-module. A right ideal U of R is a graded right ideal 
if UR is a graded submodule of RR. A graded ideal of R is a bilateral ideal of R that is, 
simultaneously, a graded right ideal and a graded left ideal of R.

Let R and S be Γ-graded rings and M be an (S,R)-bimodule. We say that M is a Γ
graded (S,R)-bimodule if M is a Γ-graded right R-module and a Γ-graded left S-module 
such that (sx)r = s(xr) for all s ∈ S, r ∈ R and x ∈M .

Let M , N be Γ-graded right R-modules. A homomorphism of modules g : M → N

it is said to be a gr-homomorphism of modules if g(Mσ) ⊆ Nσ for all σ ∈ Γ. We denote 
by Homgr-R(M,N) the abelian group consisting of the gr-homomorphisms of modules 
g : M → N . We also define the ring Endgr-R(M) := Homgr-R(M,M). It is easy to show 
that if g ∈ Homgr-R(M,N), then ker g is a graded submodule of M and im g is a graded 
submodule of N . A bijective gr-homomorphism of modules g : M → N is called a gr
isomorphism of modules. We say that M is gr-isomorphic to N as modules (denoted by 
M ∼ = gr N) if there exists a gr-isomorphism of modules g : M → N .

If {Mj : j ∈ J} is a family of Γ-graded right R-modules, then the direct sum 
⨁︁

j∈J Mj

is also a Γ-graded right R-module via (
⨁︁

j∈J Mj)γ :=
⨁︁

j∈J (Mj)γ for each γ ∈ Γ.
Let M be a Γ-graded right R-module and N be a graded submodule of M . The 

quotient module M/N is Γ-graded via (M/N)γ := Mγ+N
N for each γ ∈ Γ. We say that N

is a graded direct summand of M if there exists a graded submodule X of M such that 
M = N ⊕X. In this event, M/N ∼ = gr X.

A right R-module M is unital if MR = M . In other words, for each m ∈ M , there 
exist m1, . . . ,mn ∈M and a1, . . . , an ∈ R such that m1a1 + · · ·+ mnan = m.

Proposition 2.4. [11, Proposition 5] Let R be a Γ-graded ring and let M be a Γ-graded 
right R-module. Then M is unital if and only if the equality mσ1d(σ) = mσ holds for all 
σ ∈ Γ and mσ ∈Mσ. □

In this work, unless otherwise stated (Section 6), all groupoid graded modules are 
supposed to be unital. Moreover, in expressions such as ``let M be a Γ-graded R-module'' 
we assume that M is a Γ-graded right R-module.

Remark 2.5. 

(1) Let I be a set. Endow I × I with the groupoid structure of Example 2.1(2). Let R
be an I× I-graded R-module. For each i ∈ I, recall that 1(i,i) is the identity element 



12 Z. Cristiano et al. / Journal of Algebra 687 (2026) 1--116 

of R(i,i). Fix i0 ∈ I. Then every unital right R-module M can be regarded as an 
I × I-graded R-module via M(i0,i) := M1(i,i) for each i ∈ I. Notice that supp(M) ⊆
{i0} × I. Furthermore, any unital (R,R)-bimodule (i.e. R ·M = M = M · R) can 
be regarded as an I × I-graded (R,R)-bimodule via M(i,j) := 1(i,i)M1(j,j), for each 
i, j ∈ I. In particular this applies to the ring R[𝒞] of a small preadditive category 𝒞. 
In this case, every ideal of R[𝒞] is 𝒞0 × 𝒞0-graded.

(2) Consider the commutative ring Z(Γ0) :=
⨁︁

e∈Γ0
Z with the obvious Γ-grading with 

support Γ0. Every Γ-graded abelian group is a Γ-graded right and left Z(Γ0)-module 
and vice-versa. In fact, let X be a Γ-graded abelian group. Then, considering X as 
a right (resp. left) Z-module, we make X a Γ-graded right (resp. left) Z(Γ0)-module 
via

xγ · (ne)e∈Γ0 := xγnd(γ) (resp. (ne)e∈Γ0 · xγ := nr(γ)xγ),

for each γ ∈ Γ, xγ ∈ Xγ and (ne)e∈Γ0 ∈ Z(Γ0). □
Let M be a Γ-graded right R-module and σ ∈ Γ. For each γ ∈ Γ, define M(σ)γ := Mσγ , 

where we follow the convention Mσγ = {0} if d(σ) ̸= r(γ). The shift of M by σ is 
the Γ-graded right R-module M(σ) :=

⨁︁
γ∈Γ M(σ)γ . Note that supp(M(σ)) ⊆ d(σ)Γ. 

Analogously, if M is a Γ-graded left R-module and γ ∈ Γ, set ((σ)M)γ := Mγσ. The 
shift of M by σ is the Γ-graded left R-module (σ)M :=

⨁︁
γ∈Γ((σ)M)γ . Notice that 

supp((σ)M) ⊆ Γr(σ). The following property of shifts of modules will be very useful. 
For a left version, see [11, Proposition 10(a)].

Lemma 2.6. Let M be a Γ-graded R-module and σ ∈ Γ. Then M(σ) equals M(r(σ)) as 
R-modules. More precisely, M(σ) and M(r(σ)) have the same homogeneous components 
(albeit labeled with a different degree).

Proof. If γ ∈ supp(M(σ)), then r(γ) = d(σ) and M(σ)γ = Mσγ = M(r(σ))σγ is a 
homogeneous component of M(r(σ)). On the other hand, if γ ∈ supp(M(r(σ))) then 
r(γ) = r(σ) and it follows that M(r(σ))γ = Mγ = Mσσ−1γ = M(σ)σ−1γ is a homoge
neous component of M(σ). □

Note that if R is a Γ-graded ring and M is a Γ-graded right R-module, then M =⨁︁
e∈Γ0

M(e). This decomposition will be important, so we define

Γ′
0(M) := {e ∈ Γ0 : M(e) ̸= 0}.

The next result gives two more ways of expressing Γ′
0(RR) and shows that Γ′

0(RR) =
Γ′

0(RR). Thus we can write Γ′
0(R) or simply Γ′

0, when the Γ-graded ring R is clear, 
instead of Γ′

0(RR) or Γ′
0(RR).
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Lemma 2.7. Let R be a Γ-graded ring. Then

1e ̸= 0 ⇐⇒ Re ̸= {0} ⇐⇒ R(e) ̸= {0} ⇐⇒ (e)R ̸= {0}

for each e ∈ Γ0.

Proof. It suffices to note that, for each e ∈ Γ0, Re is a ring with unity 1e and R(e) (resp. 
(e)R) is a right (resp. left) R-module generated by 1e. □

Given γ ∈ Γ, we say that a homomorphism of right R-modules g : M → N is a 
homomorphism of degree γ if g(Mσ) ⊆ Nγσ for each σ ∈ Γ, where we understand that 
Nγσ = {0} whenever γσ is not defined in Γ. For all γ ∈ Γ, HOMR(M,N)γ will denote 
the additive group of the homomorphisms g : M → N of degree γ. Hence, we can define 
the Γ-graded additive group HOMR(M,N) :=

⨁︁
γ∈Γ HOMR(M,N)γ .

A word of caution is needed for graded left modules. If M,N,P are Γ-graded left 
R-modules and g : M → N , h : N → P are homomorphisms of Γ-graded modules, g will 
act on the right. Thus, the image of x ∈M will be denoted by (x)g, and the composition 
g ◦ h means that g acts first. Now, given γ ∈ Γ, we say that the homomorphism of left 
R-modules g : M → N is a homomorphism of degree γ if (Mσ)g ⊆ Nσγ for each σ ∈ Γ. 
For all γ ∈ Γ, HOMR(M,N)γ will denote the additive group of the homomorphisms g :
M → N of degree γ. Hence, we can define the Γ-graded additive group HOMR(M,N) :=⨁︁

γ∈Γ HOMR(M,N)γ .
The following results follow immediately from the definition (see [11, Proposition 

13(c)]).

Lemma 2.8. Let R be a Γ-graded ring and γ, σ ∈ Γ.

(1) Let M , N and P be Γ-graded right R-modules and consider homomorphisms g ∈
HOMR(M,N)γ, h ∈ HOMR(N,P )σ. If σγ is defined, then h ◦ g : M → P is a 
homomorphism of degree σγ, and h ◦ g = 0 otherwise.

(2) Let M , N and P be Γ-graded left R-modules and consider homomorphisms g ∈
HOMR(M,N)γ, h ∈ HOMR(N,P )σ. If γσ is defined, then h ◦ g : M → P is a 
homomorphism of degree γσ, and h ◦ g = 0 otherwise. □

Lemma 2.9. Let R be a Γ-graded ring, M and N be Γ-graded R-modules and σ ∈ Γ. 
If g ∈ HOMR(M,N)σ, then 

⨁︁
e∈Γ0

e ̸=d(σ)

M(e) ⊆ ker g and im g ⊆ N(r(σ)). In particular, 

HOMR(M,N)σ = HOMR(M,N(r(σ)))σ. □
Let M be a Γ-graded right (resp. left) R-module and e ∈ Γ0. Considering the de

composition M =
⨁︁

e∈Γ0
M(e) (resp. M =

⨁︁
e∈Γ0

(e)M), we denote by 1e the canonical 
projection M →M(e) (resp. M → (e)M). It is easy to see that 1e ∈ ENDR(M)e.
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Proposition 2.10. Let R be a Γ-graded ring and M be a Γ-graded R-module. Then 
ENDR(M) is an object unital Γ-graded ring with g · h := g ◦ h for all g, h ∈ ENDR(M). 
Moreover, the ring ENDR(M)e has unity 1e for each e ∈ Γ0.

Proof. We know that ENDR(M) =
⨁︁

γ∈Γ ENDR(M)γ and, by Lemma 2.8, we have 
ENDR(M)γ ENDR(M)δ ⊆ ENDR(M)γδ for each γ, δ ∈ Γ. In particular, ENDR(M) is a 
ring. It follows easily from Lemma 2.9 that 1r(γ) ◦ g = g = g ◦ 1d(γ) for each γ ∈ Γ and 
g ∈ ENDR(M)γ . Thus, ENDR(M) is an object unital Γ-graded ring in which 1e is the 
unity of the ring ENDR(M)e for each e ∈ Γ0. □

A graded module and its endomorphism ring END are linked by the following impor
tant relation.

Lemma 2.11. Let R be a Γ-graded ring and M be a Γ-graded R-module. Then Γ′
0(M) =

Γ′
0(ENDR(M)).

Proof. By definition of Γ′
0(M), e ∈ Γ′

0(M) if and only if M(e) ̸= 0. By definition of 1e, 
M(e) ̸= 0 if and only if 1e ̸= 0. By Proposition 2.10 and Lemma 2.7, 1e ̸= 0 if and only if 
ENDR(M)e ̸= 0. Again by Lemma 2.7, ENDR(M)e ̸= 0 if and only if e ∈ Γ′

0(ENDR(M)), 
as desired. □

Note that if M , N are Γ-graded R-modules such that φ : M → N is a gr-isomorphism 
of modules, then ENDR(M) ∼ = gr ENDR(N) as graded rings via g ↦→ φ ◦ g ◦ φ−1 for all 
g ∈ ENDR(M).

Remark 2.12. It is easy to show that if R is a Γ-graded ring and M,N are Γ-graded 
R-modules, then
(1)

Homgr-R(M,N) ↪→
∏︂
e∈Γ0

HOMR(M,N)e

via h ↦→ (he)e∈Γ0 where he = h on M(e) and he = 0 on M(f) for all e ̸= f ∈ Γ0.
(2)

Homgr-R(M,N) ∼ = 
∏︂
e∈Γ0

Homgr-R(M(e), N(e))

via the homomorphism of additive groups h ↦→ (h|M(e))e∈Γ0 , where h|M(e) denotes 
the restriction of the gr-homomorphism h : M → N to the graded submodule M(e)
for each e ∈ Γ0. Notice that h(M(e)) ⊆ N(e) because h is a gr-homomorphism. 
Thus, h|M(e) ∈ Homgr-R(M(e), N(e)) for each e ∈ Γ0. □
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The following result is a graded version of the generation Lemma [25, (1.1)]. If R
is a Γ-graded ring, M is a Γ-graded R-module and {mi : i ∈ I} ⊆ h(M) is a set 
of homogeneous generators of M , we will say that {mi : i ∈ I} is a minimal set of 
generators if, for each i0 ∈ I, mi0 does not belong to the graded submodule of M
generated by {mi : i ∈ I \ {i0}}.

Lemma 2.13. Let R be a Γ-graded ring, M be a Γ-graded R-module and {mi : i ∈ I} ⊆
h(M) a minimal set of homogeneous generators of M where I is infinite. Then M cannot 
be generated by a set of homogeneous elements with cardinality less than |I|. In particular, 
every minimal set of homogeneous generators of M has cardinality |I|.

Proof. Suppose that {xj : j ∈ J} is another set of homogeneous generators of M . Each 
xj is a linear combination of mi’s. Then, let I0 be a minimal subset of I such that 
{xj : j ∈ J} ⊆ {mi : i ∈ I0}R. Thus, M = {xj : j ∈ J}R ⊆ {mi : i ∈ I0}R and it 
follows that I0 = I. If J is a finite set, then I0 is also a finite set, contradicting that |I|
is infinite. Therefore, |J | is infinite and it follows that |I| = |I0| ≤ |J | · ℵ0 = |J |. □
Corollary 2.14. Let R be a Γ-graded ring, M be a Γ-graded R-module and {mi : i ∈
I}, {m′

j : j ∈ J} be subsets of h(M) \ {0} such that M =
⨁︁
i∈I

miR =
⨁︁
j∈J

m′
jR. If I or J

is infinite, then |I| = |J |.

Proof. It suffices to note that {mi : i ∈ I} and {m′
j : j ∈ J} are minimal set of 

homogeneous generators of M . Now the result follows from Lemma 2.13. □

2.5. Conventions

Throughout this work, rings are assumed to be associative but not necessarily unital.
Unless otherwise stated (Section 6), all groupoid graded rings are supposed to be 

object unital.
Unless otherwise stated (Section 6), all groupoid graded modules are supposed to be 

unital.
In expressions such as ``let M be a Γ-graded R-module,'' we assume that M is a 

Γ-graded right R-module.
We will consider left modules. In this event, we will make explicit the word left. If 

M,N,P are left modules and g : M → N , h : N → P are homomorphisms of modules, 
g will act on the right. Thus, the image of x ∈ M will be denoted by (x)g, and the 
composition g ◦ h means that g acts first.

Let X =
⨁︁

γ∈Γ Xγ be a Γ-graded additive group; for instance, X could be a Γ-graded 
ring or a Γ-graded (right or left) module. When σ, τ ∈ Γ are such that d(σ) ̸= r(τ) (that 
is, στ is not defined) we adopt the convention Xστ := {0}.



16 Z. Cristiano et al. / Journal of Algebra 687 (2026) 1--116 

3. Gr-homomorphisms and rings of matrices

Throughout this section, let Γ be a groupoid and R =
⨁︁
γ∈Γ

Rγ be a Γ-graded ring.

3.1. Pseudo-free modules

Let M be a Γ-graded R-module. Consider a sequence of homogeneous elements 
(xi)i∈I ∈

∏︁
i∈I

Mγi
where (γi)i∈I is a sequence of elements of Γ. A homogeneous el

ement x ∈ Mσ is said to be a genuine linear combination of (xi)i∈I if there exists 
(ai) ∈

⨁︁
i∈I

Rγ−1
i σ such that x =

∑︁
i∈I

xiai. We say that (xi)i∈I is pseudo-linearly indepen

dent if the only sequence (ai)i∈I ∈
⨁︁
i∈I

1d(γi)R such that 
∑︁
i∈I

xiai = 0 is (ai)i∈I = 0. 

Equivalently, the only sequence (ai)i∈I ∈
⨁︁
i∈I

1d(γi)R, with ai ∈ h(1d(γi)R) for all i ∈ I, 

for which 
∑︁
i∈I

xiai = 0 is (ai)i∈I = 0. Analogously, the only genuine linear combination of 

(xi)i∈I that equals 0 ∈M is with ai = 0 for all i ∈ I. The sequence (xi)i∈I is a pseudo
basis of M if (xi)i∈I generates M as an R-module and it is pseudo-linearly independent. 
If M has a pseudo-basis, we say that M is a pseudo-free module.

It is worth noting that the R-module RR =
⨁︁
e∈Γ0

R(e) is pseudo-free, with pseudo-basis 

{1e}e∈Γ′
0(R). Furthermore, for each σ ∈ Γ such that r(σ) ∈ Γ′

0(R), R(σ) is pseudo-free 
with the pseudo-basis formed by 1r(σ) ∈ (R(σ))σ−1 .

Modules of the form 
⨁︁
i∈I

R(σi) were called free in [29] and free by suspension in [11]. 

In the next result, we show the universal property of these modules and that they are 
(gr-isomorphic to) what we have just called pseudo-free modules.

Proposition 3.1. Let M be a Γ-graded R-module. Consider a sequence of homogeneous 
elements (xi)i∈I ∈

∏︁
i∈I

Mγi
where (γi)i∈I is a sequence of elements of Γ. The following 

statements are equivalent.

(1) (xi)i∈I is a pseudo-basis of M
(2) For each x ∈M , there exists a unique sequence (ai)i∈I ∈

⨁︁
i∈I

1d(γi)R such that

x =
∑︂
i∈I 

xiai.

(3) Every homogenous element x ∈ M can be uniquely expressed as a genuine linear 
combination of (xi)i∈I . That is, for each σ ∈ Γ and x ∈ Mσ, there exists a unique 
sequence (ai)i∈I ∈

⨁︁
i∈I

Rγi
−1σ such that

x =
∑︂
i∈I 

xiai.
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(4) For any R-module N and sequence (yi)i∈I ∈
∏︁
i∈I

N1d(γi), there exists a unique ho

momorphism of R-modules f : M → N such that f(xi) = yi for all i ∈ I.
(5) For any Γ-graded R-module N and sequence (yi)i∈I ∈

∏︁
i∈I

Nγi
, there exists a unique 

f ∈ Homgr-R(M,N) such that f(xi) = yi for all i ∈ I.
(6) For any σ ∈ Γ, Γ-graded R-module N and sequence (yi)i∈I ∈

∏︁
i∈I

Nσγi
, there exists 

a unique f ∈ HOM(M,N)σ such that f(xi) = yi for all i ∈ I.
(7) There exists a unique gr-isomorphism φ : M −→ ⨁︁

i∈I

R(γi−1) such that φ(xi) = 1d(γi)

for all i ∈ I.

Proof. (1) =⇒ (2) Since (xi)i∈I ∈
∏︁
i∈I

Mγi
generates M , x =

∑︁
i∈I

xidi for some (di)i∈I ∈⨁︁
i∈I

R. If we (uniquely) express each di as di = ai + a′i where ai ∈ 1d(γi)R and a′i ∈⨁︁
e∈Γ0\d(γi)

1eR, then

x =
∑︂
i∈I 

xidi =
∑︂
i∈I 

xi(ai + a′i) =
∑︂
i∈I 

xiai

because, for all i ∈ I, xia
′
i = 0 due to the fact that Mγi

·
(︄ ⨁︁

e∈Γ0\d(γi)
1eR
)︄

= {0}.
Now suppose that there exists (bi)i∈I ∈

⨁︁
i∈I

1d(γi)R such that x =
∑︁

i∈I xibi. Then

0 =
∑︂
i∈I 

xi(ai − bi).

Since ai−bi ∈ 1d(γi)R and (xi)i∈I is pseudo-linearly independent, we obtain that ai = bi
for all i ∈ I.

(2) =⇒ (4) Let x ∈ M . By (2), there exists a unique sequence (ai)i∈I ∈
⨁︁
i∈I

1d(γi)R

such that

x =
∑︂
i∈I 

xiai.

Define f(x) = f(
∑︁

i∈I xiai) :=
∑︁

i∈I yiai. Now it is routine to see that f is a homomor
phism of R-modules.

(4) =⇒ (1): First, we show that (xi)i∈I generates M . Let M ′ be the graded submod
ule of M generated by (xi)i∈I and consider N := M/M ′. By (4) there exists a unique 
homomorphism of R-modules f : M → N such that f(xi) = 0 for all i ∈ I. Thus, f is 
the canonical projection and it follows that N = 0, i.e., M ′ = M . Now we prove that 
(xi)i∈I is pseudo-linearly independent. Suppose that a sequence (ai)i∈I ∈

⨁︁
i∈I

1d(γi)R is 

such that 
∑︁
i∈I

xiai = 0. For each i ∈ I, let fi : M → 1d(γi)R be the unique homomorphism 
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of R-modules such that fi(xi) = 1d(γi) and fi(xj) = 0 for all j ∈ I \ {i}. So, for all i ∈ I, 
we have

0 = fi

⎛⎝∑︂
j∈I 

xjaj

⎞⎠ =
∑︂
j∈I 

fi(xj)aj = ai.

(2) =⇒ (3) is clear.
(3) =⇒ (5) is shown in the same way that (2) implies (4) and observing that the 

homomorphism f so defined is a gr-homomorphism.
(5) =⇒ (7) Set N =

⨁︁
i∈I

R(γ−1
i ). First note that 1d(γi) ∈ Nγi

for each i ∈ I. 

By (5), there exists a unique gr-homomorphism of R-modules φ : M → N such that 
φ(xi) = 1d(γi) for each i ∈ I. Now observe that the sequence (1d(γi))i∈I ∈

∏︁
i∈I

Nγi
is a 

pseudo-basis of N . Hence φ is a gr-isomorphism.
(7) =⇒ (1) follows because 

⨁︁
i∈I R(γ−1

i ) is pseudo-free.
(5) =⇒ (6) For each i ∈ I, yi ∈ Nσγi

= N(σ)γi
. By (5), there exists a f ∈

Homgr-R(M,N(σ)) such that f(xi) = yi for all i ∈ I. Now f can be regarded as a 
homomorphism of R-modules from M to N such that f(Mγ) ⊆ Nσγ for all γ ∈ Γ.

(6) =⇒ (5) Let Δ0 = {r(γi) | i ∈ I}. Let e ∈ Δ0. By (6), there exists a unique 
fe ∈ HOM(M,N)e such that

fe(xi) =
{︄

yi if r(γi) = e

0 if r(γi) ̸= e

Notice that f(M(e)) ⊆ N(e) and fe(M(e′)) = {0} for all e′ ∈ Δ0, e′ ̸= e. Define also 
fe : M → N as zero for all e ∈ Γ0 \ Δ0. Now set f ∈ Homgr-R(M,N) as the unique 
R-module homomorphism such that f = fe when restricted to M(e) for all e ∈ Γ0. By 
Remark 2.12, (5) follows. □
Corollary 3.2. Let M be a Γ-graded R-module. Then M is a pseudo-free module if and 
only if M(e) is a pseudo-free module for every e ∈ Γ0.

Proof. It follows from condition (7) in Proposition 3.1. □
In order to state the next result, we will say that a Γ-graded R-module P is gr

projective if, for each Γ-graded R-modules M,N , a surjective g ∈ Homgr-R(M,N) and 
h ∈ Homgr-R(P,N), there exists f ∈ Homgr-R(P,M) such that h = gf [11, Proposition 
35]. Now we give a direct proof of [11, Lemma 37] for object unital graded rings.

Corollary 3.3. Let P be a Γ-graded R-module. If P is pseudo-free module, then P is 
gr-projective.
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Proof. Let M,N be Γ-graded R-modules. Suppose we are given a surjective g ∈
Homgr-R(M,N) and h ∈ Homgr-R(P,N). Let (xi)i∈I ∈

∏︁
i∈I Pγi

, where (γi)i∈I ∈ ΓI , 
be a pseudo-basis of P . Let (mi)i∈I ∈

∏︁
i∈I Mγi

be such that g(mi) = h(xi) for all i ∈ I. 
By Proposition 3.1(5), there exists f ∈ Homgr-R(P,M) such that f(xi) = mi for all 
i ∈ I. Then h = gf , as desired. □
3.2. Technical results on homomorphisms of modules with degree

In this section, we study in more detail some aspects of the graded objects END(M)
and HOM(M,N) for Γ-graded modules M,N .

We begin with the regular R-module RR. In future sections, it will be useful to regard 
the graded ring R as a ring of endomorphisms with degree.

Lemma 3.4. The map

R −→ END(RR), a ↦→ ma,

where ma is the homomorphism given by multiplication on the left by a, is a gr
isomorphism of Γ-graded rings. Moreover, gr-isomorphisms of Γ-graded rings

1eR1e ∼ = gr ENDR(R(e))

are induced by restriction for each e ∈ Γ0.

Proof. Consider ϕ : R → END(RR), a ↦→ ma, with ma as defined in the statement. 
Note that if a ∈ Rγ for some γ ∈ Γ, then ma is a homomorphism of degree γ. Clearly, 
mab = ma ◦mb for a, b ∈ R. Now we prove that ϕ is an isomorphism. If ma = 0, then 
a1e = ma(1e) = 0 for all e ∈ Γ0 and it follows that a = 0. Let γ ∈ Γ and g ∈ END(RR)γ . 
Then g(Rα) ⊆ Rγα, for all α ∈ Γ. Hence g(x) ̸= 0 implies x ∈ R(d(γ)). In this event, 
g(x) = g(1d(γ)x) = g(1d(γ))x. Therefore, g = ϕ(g(1d(γ))).

Let e ∈ Γ0. If a ∈ 1eR1e, then ma(R(e)) ⊆ R(e). Thus,

ϕ′ : 1eR1e → ENDR(R(e)), a ↦→ ma|R(e),

is well-defined. Let now be 0 ̸= g ∈ ENDR(R(e))γ . As before, g = mg(1e), where g(1e) =
g(1e)1e ∈ R(e)1e = 1eR1e. □

Let M be a Γ-graded R-module. Denote by 𝒫(Γ) the power set of Γ and consider a 
subset Σ ∈ 𝒫(Γ).

Following [29, Section 2.2], we define M(Σ) :=
⨁︁

σ∈Σ M(σ). When M = R we write 
R(Σ) := RR(Σ). Notice that if r(σ) = f for some σ ∈ Σ and f ∈ Γ0 \ Γ′

0(M), then 
M(σ) = {0}. Thus, if Σ′ = {σ ∈ Σ : r(σ) ∈ Γ′

0(M)}, then M(Σ) = M(Σ′).
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We say that Σ is r-unique for M if {r(σ) : σ ∈ Σ} ⊆ Γ′
0(M) and, for each e ∈ Γ′

0(M), 
there exists at most one σ ∈ Σ with r(σ) = e. This condition implies that, for σ, τ, ρ, λ ∈
Σ, the equality σγτ−1 = ρδλ−1 holds in Γ if and only if

σ = ρ, τ = λ and γ = δ.

Indeed, if σγτ−1 = ρδλ−1, then r(σ) = r(σγτ−1) = r(ρδλ−1) = r(ρ). Since Σ is r
unique, then σ = ρ. This implies that γτ−1 = δλ−1. Thus, r(τ) = d(τ−1) = d(γτ−1) =
d(δλ−1) = d(λ−1) = r(λ). Since Σ is r-unique, then τ = λ. As a consequence, we also 
have γ = δ.

We say that Σ is fully r-unique for M if the correspondence σ ↦→ r(σ) defines a 
bijective function Σ → Γ′

0(M). In other words, Σ is an r-unique subset for M that 
satisfies the following condition: for each e ∈ Γ′

0(M) there exists σ ∈ Σ such that 
r(σ) = e.

We say that Σ ∈ 𝒫(Γ) is d-unique if, for each e ∈ Γ0(M) (different from e ∈ Γ′
0(M)!), 

there exists at most one σ ∈ Σ with d(σ) = e.
Let H be a Γ-graded additive group and Σ,Δ ∈ 𝒫(Γ) d-unique subsets. Given γ ∈ Γ, 

if there are (unique) σ ∈ Σ and δ ∈ Δ such that r(γ) = d(δ) and d(γ) = d(σ), we denote 
HΔγΣ−1 := Hδγσ−1 . Otherwise, HΔγΣ−1 := {0}.

The following technical result is concerned with shifts of modules and their gr
homomorphisms. It will be very useful in the sequel and some aspects of it can be 
regarded as an improvement of [11, Proposition 13]. The equality of Proposition 3.5(1) 
was given in [11, Proposition 13(a)]. We include a proof for completion.

Proposition 3.5. Let M,N be Γ-graded R-modules. The following assertions hold:

(1) For each γ ∈ Γ,

Homgr-R(M,N(γ)) = HOMR(M,N)γ ∼ = Homgr-R(M(γ−1), N)

and the isomorphism above is the identity if M = M(γ−1) as sets.
(2) Let Σ,Δ ∈ 𝒫(Γ) be such that Σ is r-unique for M , Δ is r-unique for N and both 

Σ,Δ are d-unique. Then, for each γ ∈ Γ,

HOMR(M(Σ), N(Δ))γ ∼ = HOMR(M,N)ΔγΣ−1 ,

and such isomorphism is the identity if there exists σ ∈ Σ such that M = M(σ) as 
sets.

Proof. (1) If g : M −→ N is a homomorphism of R-modules then, for each α ∈ Γ, 
we have g(Mα) ⊆ N(γ)α if and only if g(Mα) ⊆ Nγα. Therefore, the equality of the 
statement follows.
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If g ∈ HOMR(M,N)γ then, for all α ∈ Γ,

g
(︁
M(γ−1)α

)︁
= g(Mγ−1α) ⊆ Nγγ−1α ⊆ Nα.

Thus, we can consider the function

φ : HOMR(M,N)γ −→ Homgr-R(M(γ−1), N)

g ↦−→ g|M(γ−1)

By Lemma 2.6, M(γ−1) = M(d(γ)) as R-modules. Thus

M = M(γ−1)⊕
⨁︂
e∈Γ0
e ̸=d(γ)

M(e)

as R-modules. Hence, if g, g′ ∈ HOMR(M,N)γ coincide in M(γ−1), then g = g′ by 
Lemma 2.9. That is, φ is injective. Furthermore, every g ∈ Homgr-R(M(γ−1), N) can 
be extended to a gr-homomorphism of R-modules g : M → N by defining g(M(e)) = 0
for all e ∈ Γ0 \ {d(γ)}. Such g has degree γ because, for all α ∈ Γ, if r(α) ̸= d(γ), 
then g(Mα) ⊆ g(M(r(α))) = 0, and if r(α) = d(γ), then g(Mα) = g(Mγ−1γα) =
g(M(γ−1)γα) ⊆ Nγα. Thus, φ is surjective, and therefore an isomorphism. Clearly φ
is the identity function if M = M(γ−1) as sets.

(2) Suppose there exist (unique) σ ∈ Σ and δ ∈ Δ such that d(σ) = d(γ) and 
d(δ) = r(γ). Using (1), we obtain

HOM(M(Σ), N(Δ))γ = Homgr-R (M(Σ), N(Δ)(γ))
(∗)= Homgr-R (M(Σ), N(δγ))

= HOM(M(Σ), N)δγ
∼ = Homgr-R

(︁
M(Σ)(γ−1δ−1), N

)︁
(∗)= Homgr-R

(︁
M(σγ−1δ−1), N

)︁
∼ = HOM(M,N)δγσ−1

= HOM(M,N)ΔγΣ−1 .

Notice that, if σ or δ as before do not exist, then (∗) equals zero. Hence,

HOM (M(Σ), N(Δ))γ ∼ = HOM(M,N)ΔγΣ−1

and the first part of (2) follows. And, again by (1), if there exists σ ∈ Γ such that 
M = M(σ) as sets (in this case, Γ′

0(M) = {r(σ)} and Σ = {σ}), then the isomorphisms 
above are the identity. □
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3.3. Graded matrix rings

Now we turn our attention to the representation of homomorphisms with degree of 
pseudo-free modules as matrices. For this purpose, given a ring R and a set I, we consider 
two rings of I × I matrices with entries in R. The first one is CFMI(R), consisting of 
the column finite I × I matrices with entries in R. The second one is MI(R), consisting 
of the I × I matrices with only a finite number of nonzero entries in R. In the ungraded 
context, if R is a unital ring these matrix rings can be identified with certain rings of 
endomorphisms of free R-modules, as the next example shows.

Example 3.6. Let R be a unital ring and let M be a free right R-module with basis 
ℬ = {ei : i ∈ I}. Let f ∈ EndR(M). We can associate to f the matrix [f ]ℬ ∈ CFMI(R), 
whose i-th column consists of the coordinates of f(ei) with respect to the basis ℬ for 
each i ∈ I. Then the map EndR(M) → CFMI(R), given by f ↦→ [f ]ℬ, defines a ring 
isomorphism. Under this isomorphism, the subring MI(R) of CFMI(R) is then identified 
with the subring of EndR(M) consisting of the endomorphisms f such that the set 
If = {i ∈ I : f(ei) ̸= 0} is finite. Notice that if I is finite, then CFMI(R) = MI(R). □

In this subsection, we aim to generalize Example 3.6 to the groupoid graded context. 
To this end, we have to define first the graded objects that will play the role of CFMI(R)
and MI(R).

Let I be a non-empty set and Σ = (Σi)i∈I ∈ 𝒫(Γ)I be a sequence of non-empty 
subsets. We say that Σ is dfinite if, for each e ∈ Γ0, the set

{i ∈ I : d(σ) = e for some σ ∈ Σi}

is finite.
We say that the sequence Σ = (Σi)i∈I ∈ 𝒫(Γ)I is cf-matricial for R if Σi is d-unique 

and r-unique for R for each i ∈ I. If, moreover, Σ is dfinite, we say that Σ is matricial 
for R. Notice that if I is finite, then Σ is cf-matricial for R if and only if it is matricial 
for R. The sequence Σ is called fully matricial for R if it is matricial for R and Σi is 
fully r-unique for R for all i ∈ I.

Suppose that Σ = (Σi)i∈I ∈ 𝒫(Γ)I is cf-matricial for R. Let CFMI(R) be the set 
of column finite I × I matrices with entries in R. For each γ ∈ Γ, consider the subset 
CFMI(R)(Σ)γ of CFMI(R) where

CFMI(R)(Σ)γ =
{︂

(aij) ∈ CFMI(R) | aij ∈ RΣiγΣ−1
j

}︂
.

Note that each CFMI(R)(Σ)γ is an additive subgroup of CFMI(R). Thus

CFMI(R)(Σ) :=
∑︂
γ∈Γ

CFMI(R)(Σ)γ
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is an additive subgroup of CFMI(R).
Let i, j ∈ I. If a ∈ Rσiγτ

−1
j

for some γ ∈ Γ, σi ∈ Σi and τj ∈ Σj with d(σi) = r(γ)
and d(γ) = d(τj), then the matrix whose (i, j)-entry is a and all its other entries are 
zero will be denoted by aEij . Note that aEij ∈ CFMI(R)(Σ)γ . As an important special 
case, we define the matrix units Ee

ij as follows. Suppose that e ∈ Γ′
0 and there exist 

σi ∈ Σi, τj ∈ Σj such that r(σi) = r(τj) = e. Then Ee
ij := 1eEij ∈ CFMI(R)(Σ)σ−1

i τj
.

Lemma 3.7. Let Σ = (Σi)i∈I ∈ 𝒫(Γ)I be a cf-matricial sequence for R.

(1) CFMI(R)(Σ) =
⨁︁

γ∈Γ CFMI(R)(Σ)γ .
(2) The product in CFMI(R) induces a product in CFMI(R)(Σ) that endows 

CFMI(R)(Σ) with a natural structure of Γ-graded ring with identity elements 
Ie :=

∑︁
i∈Ie

σi∈Σie

E
r(σi)
ii ∈ CFMI(R)(Σ)e, where Ie := {i ∈ I : Σie ̸= ∅}, for each e ∈ Γ0.

Proof. (1) It is enough to prove that 
∑︁
γ∈Γ

RΣiγΣ−1
j

is direct for each i, j ∈ I. Let i, j ∈ I

and γ, δ ∈ Γ such that RΣiγΣ−1
j

and RΣiδΣ−1
j

are nonzero. Let σi, σ
′
i ∈ Σi be the unique 

elements in Σi such that d(σi) = r(γ) and d(σ′
i) = r(δ), and let τj , τ ′j ∈ Σj be the unique 

elements in Σj such that d(τj) = d(γ) and d(τ ′j) = d(δ). Then, since Σi and Σj are 
r-unique for R and d-unique, it follows that

RΣiγΣ−1
j

= RΣiδΣ−1
j
⇐⇒ Rσiγτ

−1
j

= Rσ′
iδτ

′
j
−1

⇐⇒ σiγτ
−1
j = σ′

iδτ
′
j
−1

⇐⇒ σi = σ′
i, τj = τ ′j and γ = δ

⇐⇒ γ = δ .

(2) Fix γ, δ ∈ Γ. Let A ∈ CFMI(R)(Σ)γ and B ∈ CFMI(R)(Σ)δ. Then AB = (cij) ∈
CFMI(R), where

cij ∈
∑︂
k∈I 

RΣiγΣ−1
k
·RΣkδΣ−1

j
.

Let k ∈ I be such that RΣiγΣ−1
k

and RΣkδΣ−1
j

are nonzero. Then RΣiγΣ−1
k

= Rσiγρ
−1
k

and RΣkδΣ−1
j

= Rρ′
kδτ

−1
j

for certain σi ∈ Σi, ρk, ρ′k ∈ Σk and τj ∈ Σj , where ρk is 
the unique element in Σk with d(ρk) = d(γ) and ρ′k is the unique element in Σk with 
d(ρ′k) = r(δ).

Suppose first that γδ is defined in Γ. Now, since d(γ) = r(δ), we get that d(ρk) = d(ρ′k)
which implies ρk = ρ′k because Σk is d-unique. Hence

RΣiγΣ−1
k
RΣkδΣ−1

j
= Rσiγρ

−1
k
Rρkδτ

−1
j
⊆ Rσiγδτ

−1
j

= RΣiγδΣ−1
j
.



24 Z. Cristiano et al. / Journal of Algebra 687 (2026) 1--116 

This implies AB ∈ CFMI(R)(Σ)γδ.
Suppose now that γδ is not defined in Γ. Thus, d(γ) ̸= r(δ). This implies d(ρk) ̸= d(ρ′k). 

Since Σk is r-unique for R, we obtain that r(ρk) ̸= r(ρ′k). Thus

RΣiγΣ−1
k
RΣkδΣ−1

j
= Rσiγρ

−1
k
Rρ′

kδσ
−1
j

= 0.

This implies AB = 0 ∈ CFMI(R)(Σ)γδ.
Now we prove that the ring is object unital. Let e ∈ Γ0. Consider the matrix

Ie =
∑︂
i∈Ie

σi∈Σie

E
r(σi)
ii ∈ CFMI(R)(Σ)e,

consisting of 1r(σi) ∈ Rr(σi) = Rσieσ
−1
i

in the (i, i)-entry, i ∈ Ie, and zero everywhere 

else. Let A = (akl) ∈ CFMI(R)(Σ)γ where r(γ) = e. If k / ∈ Ie, then there is no element 
σ ∈ Σk with d(σ) = e. Thus, akl ∈ RΣkγΣ−1

l
= {0}. If k ∈ Ie, then, taking σk ∈ Σk such 

that d(σk) = e, we obtain akl ∈ RΣkγΣ−1
l

= RσkγΣ−1
l

. Thus, 1r(σk)akl = akl. Then, it is 
routine to show that IeA = A. In the same way, one can show that BIe = B for any 
B ∈ CFMI(R)(Σ)δ with d(δ) = e. □

Let MI(R) be the set of I× I matrices with only a finite number of nonzero entries in 
R. Let Σ = (Σi)i∈I ∈ 𝒫(Γ)I be a cf-matricial sequence for R. For each γ ∈ Γ, consider 
the subset MI(R)(Σ)γ of MI(R) ⊆ CFMI(R) where

MI(R)(Σ)γ =
{︂

(aij) ∈ MI(R) | aij ∈ RΣiγΣ−1
j

}︂
⊆ CFMI(R)γ .

Note that each MI(R)(Σ)γ is an additive subgroup of MI(R) and CFMI(R)γ . Thus

MI(R)(Σ) :=
⨁︂
γ∈Γ 

MI(R)(Σ)γ

is an additive subgroup of MI(R) and a Γ-graded additive group, by Lemma 3.7(1).

Proposition 3.8. Let Σ = (Σi)i∈I ∈ 𝒫(Γ)I be a matricial sequence for R. Then 
CFM(R)(Σ) = MI(R)(Σ), and therefore the following statements hold true. 

(1) The product in MI(R) induces a product in MI(R)(Σ) that endows MI(R)(Σ) with 
a natural structure of Γ-graded ring with identity elements Ie :=

∑︁
i∈Ie

σi∈Σie

E
r(σi)
ii ∈

MI(R)(Σ)e, where Ie := {i ∈ I : d(σ) = e for some σ ∈ Σi}, for each e ∈ Γ0.
(2) If Σ is fully matricial for R, then MI(R) = MI(R)(Σ) as rings. Thus, MI(R) can 

be endowed with a Γ-graded ring structure.
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Proof. In order to prove CFMI(R)(Σ) = MI(R)(Σ), it is enough to show that 
CFM(R)(Σ)γ = MI(R)(Σ)γ for each γ ∈ Γ.

For each γ ∈ Γ, since Σ is dfinite, Ir(γ) and Id(γ) are finite and therefore RΣiγΣ−1
j
̸= 0

for only a finite number of i, j ∈ I. Thus, CFM(R)(Σ)γ ⊆ MI(R)(Σ)γ .
(1) follows from Lemma 3.7(2). Note that, since the sequence Σ is dfinite, it follows 

that the sets Ie are finite and, therefore, the matrices Ie =
∑︁
i∈Ie

σ∈Σie

E
r(σi)
ii ∈ MI(R)(Σ)e for 

all e ∈ Γ0.
(2) Let 0 ̸= a ∈ Rγ for some γ ∈ Γ. Since Σ is fully matricial for R, there exist σi ∈ Σi

and τj ∈ Σj such that r(σi) = r(γ) and r(τj) = d(γ). Then a ∈ Rγ = Rσi(σ−1
i γτj)τ−1

j
. This 

shows that aEij ∈ MI(R)(Σ)σ−1
i γτj

. Therefore any matrix in MI(R) can be expressed as 
sum of a finite number of homogeneous elements in MI(R)(Σ). □
Remark 3.9. 

(1) In Proposition 3.8(1), if the sequence Σ is cf-matricial for R, but not matricial for 
R, then MI(R) is a Γ-graded ring which is not object unital.

(2) In Proposition 3.8(2), if the sequence Σ is matricial for R, but not fully matricial for 
R, then MI(R) ̸= MI(R)(Σ).

(3) Assume that Σ is cf-matricial for R and all Σi are fully r-unique for R. Then
(a) If I is finite, then CFMI(R)(Σ) = MI(R)(Σ) = MI(R) = CFMI(R).
(b) If suppR is finite, then MI(R)(Σ) = MI(R). □

3.4. Graded endomorphism rings as graded matrix rings

Now we want to show that the matrix rings just defined correspond to rings of en
domorphisms with degree. For that, we need Proposition 3.10 that will be useful in 
Section 5 too.

Let I, J be non-empty sets and {Mj : j ∈ J}, {Ni : i ∈ I} be families of Γ-graded 
R-modules. Set M =

⨁︁
j∈J

Mj and N =
⨁︁
i∈I

Ni.

For each γ ∈ Γ, we will denote by HI×J(M,N)γ the set of I×J column finite matrices 
(fij) where fij ∈ HOM(Mj , Ni)γ for each (i, j) ∈ I × J . Clearly each HI×J (M,N)γ is 
an additive group. Thus

HI×J(M,N) =
⨁︂
γ∈Γ 

HI×J (M,N)γ

is a Γ-graded additive group. Moreover, HJ×J(M,M) is a Γ-graded ring with the usual 
product of matrices.

That is, given F = (fij) ∈ HJ×J(M,M)γ and G = (gij) ∈ HJ×J(M,M)δ, then

FG = (hij) ∈ HJ×J(M,M)γδ
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where hij =
∑︁
k∈J

fikgkj . Note that, if e ∈ Γ0, then the matrix whose (j, j)-entry is 1je, 

the identity element of END(Mj)e, for each j and zero any other entry is the identity 
element of HJ×J(M,M)e.

Proposition 3.10. Let I, J be non-empty sets, {Mj : j ∈ J} and {Ni : i ∈ I} be families 
of Γ-graded R-modules and M =

⨁︁
j∈J

Mj, N =
⨁︁
i∈I

Ni. Suppose that, for all j ∈ J and 

g ∈ h(HOM(Mj , N)), there exists a finite Ig ⊆ I such that im g ⊆ ⨁︁
i∈Ig

Ni. Consider the 

natural inclusions ρj : Mj →M , ρ′i : Ni → N and the natural projections πj : M →Mj, 
π′
i : N → Ni for all i ∈ I, j ∈ J . The following statements hold true. 

(1) The natural map

HOM(M,N)→ HI×J(M,N), f ↦→ (π′
ifρj)ij ,

is a gr-isomorphism of Γ-graded additive groups.
(2) The natural map

END(M)→ HJ×J(M,M), f ↦→ (πifρj)ij ,

is a gr-isomorphism of Γ-graded rings.
(3) If, moreover, for all e ∈ Γ0 there exists a finite Je ⊆ J such that M(e) =

⨁︁
j∈Je

Mj(e), 

then HI×J(M,N) consists of matrices with only a finite number of nonzero entries.

Proof. Let

Φ : HOMR(M,N)→ HI×J(M,N), f ↦→ (π′
ifρj)ij .

First we prove that Φ is well-defined. For that it is enough to show that Φ is well defined 
for homogeneous elements. Let γ ∈ Γ and f ∈ HOMR(M,N)γ . For each i ∈ I, j ∈ J we 
have that π′

ifρj ∈ HOMR(Mj , Ni)γ . Fix now j ∈ J . By hypothesis, there exists a finite 
Ifρj

⊆ I such that im(fρj) ⊆
⨁︁

i∈Ifρj

Ni. Hence, π′
ifρj ̸= 0 implies i ∈ Ifρj

and it follows 

that the sequence (π′
ifρj)i∈I is almost zero.

Clearly, Φ is a gr-homomorphism of Γ-graded abelian groups. Thus, in order to prove 
(1), it is enough to show that Φ is bijective. First we show the injectivity of Φ. Suppose 
that f ∈ ker Φ. Then, π′

ifρj = 0, for all i ∈ I, j ∈ J . It implies

f(m) =
∑︂
i∈I 

ρ′iπ
′
if(m) =

∑︂
i∈I 

ρ′iπ
′
if

⎛⎝∑︂
j∈J 

ρjπj(m)

⎞⎠ =
∑︂
i∈I 

∑︂
j∈J 

ρ′iπ
′
ifρjπj(m) = 0,

for all m ∈ M , that is, f = 0. Now we prove that Φ is onto. Let γ ∈ Γ and (gij) ∈
HI×J(M,N)γ . Since (gij) is a column finite matrix, it follows that, for all l ∈ J , the sum 
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∑︁
k∈I

ρ′kgklπl is finite and, therefore, it is an element of HOMR(M,N)γ . Since, for each 

m ∈M =
⨁︁
j∈J

Mj , we have πl(m) ̸= 0 only for a finite number of l ∈ J , we can define

f =
∑︂
l∈J 

(︄∑︂
k∈I 

ρ′kgklπl

)︄
∈ HOMR(M,N)γ .

Then

Φ(f) = (π′
ifρj)ij =

(︄∑︂
l∈J 

∑︂
k∈I 

π′
iρ

′
kgklπlρj

)︄
ij

= (π′
iρ

′
igijπjρj)ij = (gij)ij ,

which shows (1).
For the proof of (2), changing N for M , it is enough to show that Φ respects products. 

Indeed, if f, g ∈ ENDR(M) then

Φ(fg) = (πifgρj)ij =
(︄
πif

(︄∑︂
l∈J 

ρlπl

)︄
gρj

)︄
ij

=
(︄∑︂

l∈J 
πifρlπlgρj

)︄
ij

= (πifρj)ij · (πigρj)ij = Φ(f)Φ(g).

(3) Since HI×J (M,N)γ consists of column finite matrices, to prove this statement 
it is enough to show that, for each γ ∈ Γ, if F = (fij) ∈ HI×J (M,N)γ , then only a 
finite number of columns of F is nonzero. There exists only a finite number of j’s such 
that Mj(d(γ)) ̸= 0, say j1, j2 . . . , jr. Fix j ∈ J different from j1, . . . , jr. Let α ∈ Γ. If 
r(α) ̸= d(γ), then fij((Mj)α) ⊆ (Ni)γα = {0}. And if r(α) = d(γ), then Mj(r(α)) = 0
and fij((Mj)α) ⊆ fij(Mj(r(α)) = {0}. This shows that fij = 0 if j is not one of 
j1, . . . , jr. □

We say that a Γ-graded R-module M is Γ0finitely generated if the R-module M(e) is 
finitely generated for all e ∈ Γ0. This concept will play an important role in the sequel.

Remark 3.11. 

(1) In the statement of Proposition 3.10, the following hypotheses are equivalent:
(a) For all j ∈ J and g ∈ h(HOM(Mj , N)), there exists a finite Ig ⊆ I such that 

im g ⊆ ⨁︁
i∈Ig

Ni.

(b) For all j ∈ J and g ∈ HOM(Mj , N), there exists a finite Ig ⊆ I such that 
im g ⊆ ⨁︁

i∈Ig

Ni.
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(2) The foregoing hypotheses are satisfied when Mj is Γ0finitely generated. This holds 
because if g ∈ HOM(Mj , N)τ for some τ ∈ Γ, then g(Mj(e)) = 0 for all e ∈
Γ0 \ {d(τ)}, and g(Mj(d(τ))) is fully determined by the values of g in the generators 
of the finitely generated R-module Mj(d(τ)). □

Below we present a series of results that are consequence of Proposition 3.10.

Corollary 3.12. Let I be a non-empty set and {Mi : i ∈ I} be a family of Γ-graded R
modules such that HOM(Mj ,Mi) = 0 for different i, j ∈ I. Consider M =

⨁︁
i∈I

Mi. Then

END(M) ∼ = gr
∏︂gr

i∈I 
END(Mi).

Proof. For each j ∈ I and g ∈ HOM(Mj ,M), we have im g ⊆ Mj because πi ◦ g ∈
HOM(Mj ,Mi) = 0 for all i ∈ I \ {j} (where πi : M → Mi denotes the canoni
cal projection). It follows from Proposition 3.10 that END(M) ∼ = gr HI×I(M,M). But 
HI×I(M,M) consists of diagonal matrices and therefore

HI×I(M,M) ∼ = gr
⨁︂
γ∈Γ 

∏︂
i∈I 

ENDR(Mi)γ =
∏︂gr

i∈I 
ENDR(Mi),

as desired. □
Let M be a Γ-graded R-module and Σ = (Σi)i∈I ∈ 𝒫(Γ)I be a sequence of non-empty 

subsets of Γ. We will denote

M(Σ) :=
⨁︂
i∈I 

M(Σi).

Corollary 3.13. Let M be a Γ-graded R-module and Σ = (Σi)i∈I ∈ 𝒫(Γ)I be a sequence 
of subsets of Γ. The following statements hold true. 

(1) If Σ is cf-matricial for END(M) and each M(Σi) is Γ0finitely generated, then 
END(M(Σ)) ∼ = gr CFMI(END(M))(Σ).

(2) If Σ is matricial for END(M), then END(M(Σ)) ∼ = gr MI(END(M))(Σ). If, 
moreover, Σ is fully matricial for END(M), then END(M(Σ)) is isomorphic to 
MI(END(M)) as graded rings (with the induced grading from MI(END(M))(Σ)).

(3) If Σ is cf-matricial for R, then END(R(Σ)) ∼ = gr CFMI(R)(Σ).
(4) If Σ is matricial for R, then END(R(Σ)) ∼ = gr MI(R)(Σ). If, moreover, Σ is fully 

matricial for R, then END(R(Σ)) is isomorphic to MI(R) as graded rings (with the 
induced grading from MI(R)(Σ)).
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Proof. (1) By Proposition 3.10(2) and Remark 3.11, END(M(Σ))∼ = HI×I(M(Σ),M(Σ)). 
For each (i, j) ∈ I × I and γ ∈ Γ, the (i, j)-entry of a matrix in HI×I(M(Σ),M(Σ))γ is 
an element of HOM(M(Σj),M(Σi))γ . But by Proposition 3.5(2),

HOM(M(Σj),M(Σi))γ ∼ = END(M)ΣiγΣ−1
j
.

(2) For each e ∈ Γ0, as Σ is dfinite, we have M(Σi)(e) ̸= 0 only for the elements of 
the finite set

Ie := {i ∈ I : d(σ) = e for some σ ∈ Σi}.

So, for each e ∈ Γ0 we have

M(Σ)(e) =
⨁︂
i∈I 

M(Σi)(e) =
⨁︂
i∈Ie

M(Σi)(e).

In particular, if γ ∈ Γ and g ∈ HOM(M(Σj),M(Σ))γ , then

im g ⊆M(Σ)(r(γ)) =
⨁︂

i∈Ir(γ)

M(Σi)(r(γ)) ⊆
⨁︂

i∈Ir(γ)

M(Σi).

By Proposition 3.10, END(M(Σ)) ∼ = HI×I(M(Σ),M(Σ)) and this ring consists of ma
trices with only a finite number of nonzero entries. Finally, for each (i, j) ∈ I × I

and γ ∈ Γ, the (i, j)-entry of a matrix in HI×I(M(Σ),M(Σ))γ is an element of 
HOM(M(Σj),M(Σi))γ ∼ = END(M)ΣiγΣ−1

j
. The second part of the statement is a conse

quence of Proposition 3.8(2).
(3) Let e ∈ Γ0. Then, for each i ∈ I, R(Σi)(e) =

⨁︁
σ∈Σi

R(σe) is a cyclic R-module 

because Σi is d-unique. Thus, R(Σi) is Γ0finitely generated. Now apply (1) to the R
module M = R and recall that END(R) ∼ = gr R by Lemma 3.4.

(4) By Lemma 3.4, R ∼ = gr END(RR). Thus, if we make M = RR in (2), we obtain 
END(R(Σ)) ∼ = gr MI(END(RR))(Σ) ∼ = gr MI(R)(Σ) and the first part of the statement is 
proved.

Suppose now that Σ is fully matricial for R. Again, if we make M = RR in (2), we get 
END(R(Σ)) is isomorphic to MI(END(RR)) as graded rings (with the induced grading 
from MI(END(RR))(Σ)). Therefore, END(R(Σ)) is isomorphic to MI(R) as graded rings 
(with the induced grading from MI(R)(Σ)). □

Before stating the next results we will need some notation.
Let Σ = (Σi)i∈I ∈ 𝒫(Γ)I be a sequence of subsets. When Σi = {σi} for all i ∈ I, 

that is, when each Σi, i ∈ I, consists of a unique element, we will denote the sequence 
by σ = (σi)i∈I . If Σ is finite, suppose Σ = (Σ1,Σ2, . . . ,Σn), then we will usually write 
Mn(R)(Σ1, . . . ,Σn) instead of MI(R)(Σ). Likewise, when σ = (σ1, . . . , σn), we will write 
Mn(R)(σ1, . . . , σn).
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Corollary 3.14. Let I be a non-empty set, e ∈ Γ0 and σ = (σi)i∈I ∈ (eΓ)I . The following 
statements hold true. 

(1) Let M be a Γ-graded R-module with M = M(e). If σ is dfinite, then σ is fully 
matricial for END(M) and therefore

END(M(σ)) ∼ = gr CFMI(END(M))(σ) = MI(END(M))(σ) = MI(END(M)),

where the last equality is as rings.
(2) Suppose supp(R) ⊆ eΓe. If σ is dfinite, then σ is fully matricial for R and therefore

END(R(σ)) ∼ = gr CFMI(R)(σ) = MI(R)(σ) = MI(R),

where the last equality is as rings.

Proof. (1) As Γ′
0(END(M)) = Γ′

0(M) = {e}, since σ is dfinite, it is fully matricial for 
END(M). Then the result follows from Proposition 3.8 and Corollary 3.13.

(2) Follows from (1) and Lemma 3.4. □
Corollary 3.15. Let Σ = (Σ1, . . . ,Σn) ∈ 𝒫(Γ)n be a sequence of subsets. 

(1) If Σi is d-unique and r-unique for M for all i = 1, . . . , n, then Σ is matricial for 
END(M) and

END(M(Σ)) ∼ = gr CFMn(END(M))(Σ1, . . . ,Σn) = Mn(END(M))(Σ1, . . . ,Σn).

If, moreover, Σi is fully r-unique for M for all i = 1, . . . , n, then we also have the 
equality as rings Mn(END(M)) = Mn(END(M))(Σ1, . . . ,Σn).

(2) If Σi is d-unique and r-unique for R for all i = 1, . . . , n, then Σ is matricial for R
and

END(R(Σ)) ∼ = gr CFMn(R)(Σ1, . . . ,Σn) = Mn(R)(Σ1, . . . ,Σn).

If, moreover, Σi is fully r-unique for R for all i = 1, . . . , n, then we also have the 
equality as rings Mn(R) = Mn(R)(Σ1, . . . ,Σn).

Proof. Clearly, Σ is dfinite. Now (1) follows from Proposition 3.8 and Corollary 3.13.
(2) follows from (1) together with Lemma 3.4. □
We end this subsection with the following remark.

Remark 3.16. If Γ′
0 := Γ′

0(R), then 
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(1) R ∼ = gr M1(R)(Γ′
0) via a ↦→ (a);

(2) R ∼ = gr MΓ′
0
(R)(e), where e := (e)e∈Γ′

0
, via 

∑︁
e,f∈Γ′

0

aef ← ⫞ (aef )e,f∈Γ′
0
.

3.5. Some results concerning the opposite ring

The aim of this section is to present techniques for deriving results about gr-semisimple 
left R-modules from those obtained for gr-semisimple right R-modules.

The opposite ring Rop equals the ring R as an additive group, but it is endowed with 
a new operation given by

a ·op b = ba

for all a, b ∈ R. It is not difficult to show that if we define (Rop)γ := Rγ−1 for all γ ∈ Γ, 
then Rop becomes a Γ-graded ring.

If RL is a Γ-graded left R-module, we denote by Lop the right Rop-module whose 
underlying additive group equals L, but with multiplication defined by

x ·op a = ax

for all a ∈ R, x ∈ L. Moreover, we endow Lop with a structure of Γ-graded right Rop
module defining (Lop)γ = Lγ−1 for all γ ∈ Γ.

Let g : L → L′ be a homomorphism of left R-modules. Recall that, since L is a left 
R-module, the homomorphism g acts on elements of L from the right by convention. We 
define ĝ : Lop → (L′)op by ĝ(x) = (x)g for all x ∈ L. Since

ĝ(x ·op a) = (ax)g = a(x)g = ĝ(x) ·op a

for all x ∈ L and a ∈ R, we get that ĝ is a homomorphism of right Rop-modules.

Proposition 3.17. Let L be a Γ-graded left R-module and Σ = (Σi)i∈I ∈ 𝒫(Γ)I be a 
sequence of d-unique sets. The following assertions hold: 

(1) If Σ is matricial for R, then Σ is matricial for Rop and

MI(R)(Σ)op ∼ = gr MI(Rop)(Σ)

via the homomorphism defined by transposition of matrices.
(2) (ENDR L)op ∼ = gr ENDRop(Lop) via the map g ↦→ ĝ.
(3) Lop(Σ) =

(︂(︂
Σ−1)︂

L
)︂op

, where Σ−1 :=
(︁
Σ−1

i

)︁
i∈I

.

(4) If Σ is matricial for ENDR(L), then ENDR

(︂(︂
Σ−1)︂

L
)︂ ∼ = gr MI(ENDR(L))(Σ).

(5) Suppose that there exists a family {Rj : j ∈ J} of Γ-graded rings such that R =∏︂gr

j∈J 
Rj. Then Rop =

∏︂gr

j∈J 
(Rj)op.
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Proof. (1) The first part follows from Γ′
0(R) = Γ′

0(Rop). Let

Φ : MI(R)(Σ)op −→ MI(Rop)(Σ)

A ↦−→ At,

where At denotes the transpose matrix of A. Let γ ∈ Γ and A = (aij) ∈ (MI(R)(Σ)op)γ . 
Then A ∈ MI(R)(Σ)γ−1 , that is, aij ∈ RΣiγ−1Σ−1

j
for all i, j ∈ I. Thus, the (i, j)-entry 

of At is

aji ∈ RΣjγ−1Σ−1
i

= (Rop)ΣiγΣ−1
j
.

Hence, At ∈ MI(Rop)(Σ)γ . Therefore, Φ is well-defined and it is also a gr-homomorphism 
of additive groups. Given A,B ∈ MI(R)(Σ)op, we have

Φ(A ·op B) = Φ(BA) = (BA)t (∗)= AtBt = Φ(A)Φ(B),

where, in (∗), we have used that the (i, j)-entry of (BA)t is∑︂
k∈I 

bjkaki =
∑︂
k∈I 

aki ·op bjk.

Furthermore, since Φ fixes diagonal matrices, it follows that Φ(Ie) = Ie for all e ∈
Γ0. Therefore, Φ is a gr-homomorphism of rings. In order to prove that Φ is bijective, 
it is enough to show that matrix transposition also defines a map MI(Rop)(Σ) −→
MI(R)(Σ)op. Let γ ∈ Γ e B = (bij) ∈ MI(Rop)(Σ)γ . Then, for all i, j ∈ I we have

bij ∈ (Rop)ΣiγΣ−1
j

= RΣjγ−1Σ−1
i
.

Thus, the (i, j)-entry of Bt is bji ∈ RΣiγ−1Σ−1
j

and Bt ∈ MI(R)(Σ)γ−1 = (MI(R)(Σ)op)γ
as desired.

(2) First note that if h : Lop → Lop is a homomorphism of right Rop-modules, the map 
h̃ : L→ L defined by (x)h̃ = h(x) is a homomorphism of left R-modules. Indeed,

(ax)h̃ = h(x ·op a) = h(x) ·op a = ah(x) = a(x)h̃

for all x ∈ L and a ∈ R. Moreover, ˜̂g = g for each endomorphism of left R-modules 
g : L → L and ˆ̃h = h for each endomorphism of right Rop-modules h : Lop → Lop. 
Furthermore

g ∈ ((ENDR L)op)γ ⇐⇒ g ∈ (ENDR L)γ−1

⇐⇒ (Lα−1)g ⊆ Lα−1γ−1 ,∀α ∈ Γ

⇐⇒ ĝ((Lop)α) ⊆ (Lop)γα,∀α ∈ Γ

⇐⇒ ĝ ∈ ENDRop(Lop)γ .
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This implies that the map (ENDR L)op → ENDRop(Lop), g ↦→ ĝ, is well-defined and it 
is bijective. Finally, observe that if g1, g2 ∈ ENDR(L), then ˆ︂g2 ◦op g1 = ˆ︃g1g2 = ĝ2ĝ1, as 
desired.

(3) For each γ ∈ Γ, we have

Lop(Σ)γ =
⨁︂
i∈I 

(Lop)Σiγ

=
⨁︂
i∈I 

Lγ−1Σ−1
i

=
⨁︂
i∈I 

((Σ−1
i )L)γ−1

= ((Σ−1)L)γ−1

= (((Σ−1)L)op)γ .

(4) If Σ is matricial for ENDR(L), then, from the previous items and Corollary 3.13(2), 
we get (︂

ENDR

(︂
Σ−1)︂

L
)︂op ∼ = gr ENDRop(((Σ−1)L)op)

= ENDRop(Lop(Σ))
∼ = gr MI(ENDRop(Lop))(Σ)
∼ = gr MI((ENDR(L))op)(Σ)
∼ = gr MI(ENDR(L))(Σ)op.

Therefore, ENDR((Σ−1)L) ∼ = gr MI(ENDR(L))(Σ).
(5) Just notice that for each γ ∈ Γ we have

(Rop)γ = Rγ−1 =
∏︂
j∈J

(Rj)γ−1 =
∏︂
j∈J

((Rj)op)γ =

⎛⎝∏︂gr

j∈J 
(Rj)op

⎞⎠
γ

. □

3.6. Some isomorphisms between categories of graded modules

Throughout this subsection, let Γ be a groupoid.
Let R be a Γ-graded ring. The category whose objects are the Γ-graded right (resp. 

left) R-modules and morphisms are gr-homomorphisms will be denoted by Γ − gr-R
(resp. Γ−R-gr). If e ∈ Γ0 is fixed, then the full subcategory of Γ− gr-R (resp. Γ−R-gr) 
whose objects are the Γ-graded right (resp. left) R-modules M such that suppM ⊆ eΓ
(resp. suppM ⊆ Γe) will be denoted by eΓ − gr-R (resp. Γe − R-gr). We denote by 
εΓ−mod--R (resp. Γε−R-mod) the category whose objects are the Γ-graded right (resp. 
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left) R-modules M for which there exists εM ∈ Γ0 satisfying suppM ⊆ εMΓ (resp. 
suppM ⊆ ΓεM ) and, for objects M and N , the set of morphisms from M to N is 
HOMR(M,N). Note that if M = M(e) for some e ∈ Γ0, then 1e is the unity of the 
ring HOMR(M,M). In some cases, we will refer to objects of eΓ − gr-R as eΓ-graded 
R-modules.

We aim to describe categories of left modules using categories of right modules. One 
way to proceed is to induce gradings on opposite rings and modules using Γ as in the 
previous subsection. An alternative approach, which we adopt here, is to work with Γop, 
the opposite category of Γ, which is again a groupoid and is called the opposite groupoid 
of Γ. It comes equipped with a natural bijection Γ → Γop, given by γ ↦→ γo, where 
d(γo) = r(γ)o and r(γo) = d(γ)o. Furthermore, if γ, δ ∈ Γ are such that γδ is defined in 
Γ, then (γδ)o = δoγo and (γ−1)o = (γo)−1.

Let R be a Γ-graded ring. The next result considers the ring Rop as a Γop-graded ring 
via the grading (Rop)γo := Rγ . In this context, if L is a Γ-graded left R-module, then 
Lop will be regarded as a Γop-graded right Rop-module via (Lop)γo := Lγ . Note that

(Lop)γo ·op (Rop)δo = RδLγ ⊆ Lδγ = (Lop)(δγ)o = (Lop)γoδo .

Proposition 3.18. Let R be a Γ-graded ring. We have the following category isomor
phisms: 

(1) Γ−R-gr ∼ = Γ− gr-Rop ∼ = Γop − gr-Rop.
(2) Γe−R-gr ∼ = eΓ− gr-Rop ∼ = eoΓop − gr-Rop.
(3) Γε−R-mod ∼ = εΓ−mod--Rop ∼ = εΓop−mod--Rop.

Proof. In all three cases, we define a functor from the corresponding category of Γ
graded left R-modules to the category of Γ-graded (or Γop-graded) right R-modules. 
This functor is defined on objects by L ↦→ Lop, and sends any morphism g : L → L′ to 
the morphism ĝ : Lop → (L′)op defined on Section 3.5. In the third case, observe that if 
g is of degree γ in Γε−R-mod, then ĝ is of degree γo in εΓop−mod--Rop and of degree 
γ−1 in εΓ−mod--Rop. □

Now, we turn our attention to categories of modules graded by connected groupoids. 
In view of Proposition 3.18, we will focus on right modules.

Lemma 3.19. Let R be a Γ-graded ring. Let e, f ∈ Γ0 such that there exists σ ∈ Γ with 
d(σ) = f , r(σ) = e. Then the categories eΓ−gr-R and fΓ−gr-R are isomorphic. Hence, 
if Γ is connected, eΓ− gr-R and fΓ− gr-R are isomorphic for all e, f ∈ Γ0.

Proof. Let M,N ∈ eΓ − gr-R. Then M(σ), N(σ) ∈ fΓ − gr-R. If h ∈ Homgr(M,N), 
then hσ : M(σ) → N(σ) defined by hσ(x) = h(x) for all x ∈ M(σ)δ = Mσδ, δ ∈ fΓ, is 
such that hσ ∈ Homgr(M(σ), N(σ)). Hence
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Tσ : eΓ− gr-R → fΓ− gr-R
M ↦→ M(σ)

h ∈ Homgr(M,N) ↦→ hσ ∈ Homgr(M(σ), N(σ))

is a functor with inverse Tσ−1 . □
Let Γ be a connected groupoid and fix an idempotent e0 ∈ Γ0. Consider the group 

G := e0Γe0. Set σe0 = e0 and, for each e ∈ Γ0 \ {e0}, pick σe ∈ Γ with d(σe) = e and 
r(σe) = e0. Thus, for each γ ∈ Γ, there exists a unique g ∈ G such that γ = σ−1

r(γ)gσd(γ). 
For each γ ∈ Γ, let gγ := σr(γ)γσ

−1
d(γ) ∈ G. Then

Γ −→ Γ0 ×G× Γ0
γ ↦−→ (r(γ), gγ , d(γ))

σ−1
e gσf ←−⫞ (e, g, f)

(3.1)

is an isomorphism of groupoids, see for example [9, p. 125]. Of course, if Γ is a groupoid 
of the form I×G×I for some group G and set I, there is a natural choice of isomorphism 
in (3.1) making σe = (e0, 1G, e) for all e ∈ I ≡ Γ0. We remark on passing that we obtain 
a relation between rings graded by a connected groupoid and categories graded by a 
group from Example 2.3(2) and (3.1).

Keep in mind the context of the previous paragraph and let R =
⨁︁

γ∈Γ Rγ be a 
Γ-graded ring. We proceed to define the category of right R-modules graded by the 
group G, as well as the category of right R-modules graded by G × Γ0 (both notions 
will be explicitly defined below). We then relate these categories with eΓ − gr-R in 
Proposition 3.20. Later, in Corollary 5.42, we will use this Proposition to relate the 
gr-semisimplicity of the Γ-graded ring R with that of the objects in those categories.

The objects of the category G − gr-R are the G-graded R-modules. That is, right 
R-modules M such that MR = M and for which there exists a family {Mg : g ∈ G} of 
additive subgroups of M such that M =

⨁︁
g∈G Mg as additive groups and MgRγ ⊆Mggγ

for each γ ∈ Γ. If N is another G-graded right R-module, a homomorphism of G-graded 
modules is a homomorphism of modules p : M → N such that p(Mg) ⊆ Ng for all g ∈ G. 
An example of a G-graded R-module is R(e), where e ∈ Γ0, via R(e)g :=

⨁︁
f∈Γ0

Rσ−1
e gσf

for each g ∈ G.
The objects of the category (G× Γ0)− gr-R are the (G× Γ0)-graded R-modules M . 

That is, right R-modules M such that MR = M and for which there exists a family 
of additive subgroups {M(g,e) : (g, e) ∈ G × Γ0} such that M =

⨁︁
(g,e)∈G×Γ0

M(g,e) as 

additive groups and, for each γ ∈ Γ, M(g,e)Rγ ⊆M(ggγ ,d(γ)) if r(γ) = e and M(g,e)Rγ = 0
otherwise. Given (G×Γ0)-graded R-modules M,N , a homomorphism of (G×Γ0)-graded 
modules is a homomorphism of R-modules p : M → N such that p(M(g,e)) ⊆ N(g,e) for 
all (g, e) ∈ G × Γ0. An example of a (G × Γ0)-graded R-module is R(e), where e ∈ Γ0, 
via R(e)(g,f) := Rσ−1

e gσf
for each (g, f) ∈ G× Γ0.
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Proposition 3.20. Let Γ be a connected groupoid and R =
⨁︁

γ∈Γ Rγ be a Γ-graded ring. 
Then the categories G − gr-R, (G × Γ0) − gr-R and eΓ − gr-R are isomorphic for any 
e ∈ Γ0 and any e0 ∈ Γ0, G := e0Γe0 and {σe}e∈Γ0 as in (3.1).

Proof. Fix e0 ∈ Γ0, G := e0Γe0 and {σe}e∈Γ0 as in (3.1).
First we show that G− gr-R and (G× Γ0)− gr-R are isomorphic.
A G-graded right R-module M =

⨁︁
g∈G Mg has a natural structure of (G×Γ0)-graded 

module. Indeed, for each g ∈ G and f ∈ Γ0, consider the identity element 1f ∈ Rf and 
define

M(g,f) = Mg1f .

Note that M(g,f) = Mg1f ⊆Mggf = Mge0 = Mg, for all g ∈ G, f ∈ Γ0. Let x ∈Mg. Since 
MR = M , then x =

∑︁t
s=1 xsas for some xs ∈Mgs , as ∈ Rγs

such that gsgγs
= g for each 

s = 1, . . . , t. Note that xsas ∈ MgsRγs
1d(γs) ⊆ Mg1d(γs) = M(g,d(γs)) for each s. Hence 

Mg =
∑︁

f∈Γ0
M(g,f). Moreover, since {1f}f∈Γ0 is an orthogonal set of idempotents, we 

get Mg =
⨁︁

f∈Γ0
M(g,f). Therefore M =

⨁︁
(g,f)∈G×Γ0

M(g,f). Moreover

M(g,f)Rγ = Mg1fRγ ⊆Mggγ1d(γ) = M(ggγ ,d(γ))

if r(γ) = f and zero otherwise. Also, it is not difficult to realize that any homomorphism 
of G-graded R-modules is in fact a homomorphism of (G× Γ0)-graded R-modules.

Conversely, any (G × Γ0)-graded right R-module M =
⨁︁

(g,f)∈G×Γ0

M(g,f) can be re

garded as a G-graded module defining Mg =
⨁︁

f∈Γ0
M(g,f). And any homomorphism of 

(G× Γ0)-graded R-modules is a homomorphism of G-graded modules.
Now we fix an e ∈ Γ0 and show that (G× Γ0)− gr-R and eΓ− gr-R are isomorphic.
Let M =

⨁︁
(g,f)∈G×Γ0

M(g,f) be a (G × Γ0)-graded R-module. Set ˜︂M :=
⨁︁

γ∈eΓ
˜︂Mγ

where ˜︂Mγ = M(gγ ,d(γ)) for each γ ∈ eΓ. Since for each (g, f) ∈ G×Γ0 there exists a unique 

γ ∈ eΓf such that (g, f) = (gγ , f), then ˜︂M = M as additive groups. Define the product 
of elements of ˜︂M by elements of R in the natural way, that is, if x ∈ ˜︂Mγ = M(gγ ,d(γ))
and a ∈ Rδ for some γ ∈ eΓ and δ ∈ Γ, then xa is the product given by action of R
in M . Thus, xa ∈ M(gγgδ,d(δ)) = ˜︂Mγδ if d(γ) = r(δ) and xa = 0 otherwise. Thus ˜︂M is 
an eΓ-graded right R-module. Moreover, if h : M → N is a homomorphism of (G× Γ0)
graded right R-modules, then h̃ : ˜︂M → ˜︁N , where h̃ = h as maps, is a homomorphism of 
eΓ-graded right R-modules.

Conversely, given an eΓ-graded right R-module ˜︁X =
⨁︁

γ∈eΓ
˜︁Xγ , then X =⨁︁

(g,f)∈G×Γ0
X(g,f) where X(g,f) = ˜︁Xγ , where γ is the unique element in eΓf such 

that g = gγ , is a (G × Γ0)-graded right R-module. Also, any homomorphism of eΓ
graded right R-modules ˜︁X → ˜︁Y can be regarded as a homomorphism of (G×Γ0)-graded 
R-modules X → Y . □
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3.7. Gradings on rectangular matrix groups

Let I, J be non-empty sets. We denote by MI×J (R) the additive group consisting of 
the I×J matrices with entries in R and with at most a finite number of nonzero entries. 
Suppose, moreover, that supp(R) ⊆ eΓe for some e ∈ Γ0. If σ = (σi)i∈I ∈ (eΓ)I , τ =
(τj)j∈J ∈ (eΓ)J . We will denote by MI×J(R)(σ)(τ) the Γ-graded additive group whose 
homogeneous component of degree γ ∈ Γ, MI×J (R)(σ)(τ)γ , is the subset of MI×J (R)
consisting of the matrices whose (i, j)-entry belongs to Rσiγτ

−1
j

for all i ∈ I, j ∈ J . Note 

that 
∑︁

γ∈Γ MI×J(R)(σ)(τ)γ is, in fact, a direct sum because, for each i ∈ I and j ∈ J , 
the sum 

∑︁
γ∈Γ Rσiγτ

−1
j

is direct. Furthermore, if γ ∈ Γ and 0 ̸= a ∈ Rγ , then, for each 

i ∈ I and j ∈ J , aEij ∈ MI×J(R)(σ)(τ)σ−1
i γτj

. Therefore, this indeed defines a grading 
of MI×J (R) by Γ. Note that

MI×I(R)(σ)(σ) = MI(R)(σ).

If I and J are finite with |I| = m, |J | = n ∈ Z>0, we will also write Mm×n(R), and 
Mm×n(R)(σ)(τ). If K is a non-empty subset of I, we will write σK to denote the sequence 
(σi)i∈K ∈ (eΓ)K .

Lemma 3.21. Let I be a non-empty set, e0 ∈ Γ0 such that supp(R) ⊆ e0Γe0 and σ =
(σi)i∈I ∈ (e0Γ)I be a dfinite sequence. For each e ∈ Γ0, consider the finite set Ie := {i ∈
I : d(σi) = e}. Then, for all e, f, g ∈ Γ0, γ ∈ eΓf and δ ∈ fΓg, there exist isomorphisms 
of additive groups

ϕγ : MI(R)(σ)γ −→ M|Ie|×|If |(R)(σIe)(σIf )γ

such that the following diagram is commutative

MI(R)(σ)γ ×MI(R)(σ)δ
(ϕγ ,ϕδ)

M|Ie|×|If |(R)(σIe)(σIf )γ ×M|If |×|Ig|(R)(σIf )(σIg )δ

MI(R)(σ)γδ
ϕγδ

M|Ie|×|Ig|(R)(σIe)(σIg )γδ

where vertical arrows indicate matrix multiplication. In particular, there exist gr
isomorphisms of Γ-graded additive groups

ϕe,f :
⨁︂

γ∈eΓf

MI(R)(σ)γ −→ M|Ie|×|If |(R)(σIe)(σIf ).

Proof. For each e, f ∈ Γ0 and γ ∈ eΓf , MI(R)(σ)γ = (Rσiγσ
−1
j

)ij . Moreover, Rσiγσ
−1
j
̸=

0 implies that σiγσ
−1
j is defined, and thus, i ∈ Ie and j ∈ If . Therefore, we obtain a 

natural isomorphism of additive groups
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ϕγ : MI(R)(σ)γ −→ M|Ie|×|If |(R)(σIe)(σIf )γ

that associates to a matrix of degree γ, the matrix obtained considering just the entries 
in Ie × If because all other entries are zero. Then ϕe,f :=

⨁︁
γ∈eΓf ϕγ is well-defined 

and a gr-isomorphism of Γ-graded additive groups. The commutativity of the diagram 
follows by the way matrices are multiplied. □
4. Graded division rings

Throughout this section, let Γ be a groupoid.

4.1. General facts on graded division rings

Let D =
⨁︁
γ∈Γ

Dγ be a Γ-graded ring.

We say that D is a gr-domain or a graded domain if D ̸= {0} and for all γ, δ ∈ Γ
with d(γ) = r(δ) and nonzero elements a ∈ Dγ , b ∈ Dδ, we have ab ̸= 0. We say that 
D is a gr-division ring or a graded division ring if D ̸= {0} and for all γ ∈ suppD

and nonzero a ∈ Dγ , there exists an element a−1 ∈ Dγ−1 such that aa−1 = 1r(γ) and 
a−1a = 1d(γ). In [37, Section 2], the element a−1 is called the Γ-inverse of a, but we 
prefer to say that a−1 is the inverse of a. We will also write that a is invertible (with 
inverse a). Note that no confusion will arise with the usual concept of invertibility in 
ring theory because we will not deal with it. A gr-division ring is a gr-domain. Indeed, 
given γ, δ ∈ Γ with d(γ) = r(δ) and elements a ∈ Dγ , b ∈ Dδ, suppose that ab = 0. If 
b ̸= 0, then 0 = abb−1 = a1d(γ) = a.

It is important to note that if D is a gr-division ring and a, b ∈ h(D) are such that 
ab ̸= 0, then (ab)−1 = b−1a−1.

We say that D is a gr-prime ring if for all nonzero graded ideals I and J of D, we 
have IJ ̸= 0. Equivalently, D is a gr-prime ring if and only if, for all a, b ∈ h(D) \ {0}, 
we have aDb ̸= 0. D will be called a gr-simple ring if D ̸= {0} and its only graded ideals 
are {0} and D. Clearly, every gr-simple ring is a gr-prime ring.

In general, a gr-division ring can have nonzero graded ideals different from D, even if 
Γ is connected. For example, let Γ = {1, 2, 3, 4} × {1, 2, 3, 4} and F be a field. Then

D =

⎛⎜⎝F F 0 0
F F 0 0
0 0 F F
0 0 F F

⎞⎟⎠
is a Γ-graded division ring, via D(i,j) := EiiDEjj for all 1 ≤ i, j ≤ 4, but

I =

⎛⎜⎝F F 0 0
F F 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠ , J =

⎛⎜⎝0 0 0 0
0 0 0 0
0 0 F F
0 0 F F

⎞⎟⎠



Z. Cristiano et al. / Journal of Algebra 687 (2026) 1--116 39

are graded ideals of D such that IJ = 0. Note that D is not strongly graded because 
D(1,3)D(3,1) = {0} ̸= D(1,1). Also notice that I and J are Γ-graded division rings.

Let D =
⨁︁
γ∈Γ

Dγ be a gr-division ring. We define the gr-primality relation on Γ′
0 :=

Γ′
0(D) in the following way. For e, f ∈ Γ′

0

e ∼ f if and only if 1eD1f ̸= 0.

Equivalently, e ∼ f if and only if eΓf ∩ supp(D) ̸= ∅ if and only if supp(1eD1f ) ̸= ∅.

Proposition 4.1. Let D be a Γ-graded division ring. The following assertions hold:

(1) ∼ is an equivalence relation.
(2) If we define

Γ[e] = {γ ∈ Γ | d(γ), r(γ) ∈ [e]} , D[e] =
⨁︂

γ∈Γ[e]

Dγ

for each equivalence class [e] ∈ Γ′
0/ ∼, then D[e] is a nonzero graded ideal of D and 

D[e]D[f ] = {0} for [e] ̸= [f ] ∈ Γ′
0/ ∼.

(3) D =
⨁︁

[e]∈Γ0/∼
D[e] and D[e] is a gr-simple gr-division ring for each equivalence class 

[e] ∈ Γ′
0/ ∼

(4) The following assertions are equivalent about D.
(a) D is gr-simple
(b) D is gr-prime
(c) Γ′

0/ ∼ possesses only one equivalence class.

Proof. (1) The relation ∼ is reflexive because 1e ∈ 1eD1e for all e ∈ Γ′
0. It is also 

symmetric. Indeed, suppose that 1eD1f ̸= 0 for e, f ∈ Γ′
0, then there exists a nonzero 

element a ∈ Dγ for some γ ∈ eΓf . Now a−1 ∈ Dγ−1 belongs to 1fD1e. Suppose that 
e, f, g ∈ Γ′

0 are such that e ∼ f and f ∼ g. Then there exist nonzero homogeneous 
elements a ∈ 1eD1f , b ∈ 1fD1g. Since D is a gr-domain, we obtain that the relation ∼
is transitive.

(2) It is enough to show that D[e]D[e] ⊆ D[e] and D[e]D[f ] = 0 for all e, f ∈
Γ′

0 with [e] ̸= [f ]. Thus, fix different [e], [f ] ∈ Γ′
0/∼. Given γ, γ′ ∈ Γ such that 

r(γ), d(γ), r(γ′), d(γ′) ∈ [e], we have DγDγ′ ⊆ Dγγ′ ⊆ D[e]. This shows D[e]D[e] ⊆ D[e]. 
Now let δ ∈ Γ be such that r(δ), d(δ) ∈ [f ]. If we had DγDδ ̸= 0, we would have Dγδ ̸= 0
and therefore, 1r(γ)D1d(δ) ̸= 0 and consequently e ∼ r(γ) ∼ d(δ) ∼ f , a contradiction. 
Hence, DγDδ = 0 for all γ, δ ∈ Γ such that r(γ), d(γ) ∈ [e] and r(δ), d(δ) ∈ [f ]. That is, 
D[e]D[f ] = 0.

(3) Since Γ[e] ∩ Γ[f ] = ∅ if e ≁ f , and suppD ⊆ ⋃︁
[e]∈Γ′

0/∼
Γ[e], we obtain that D =⨁︁

[e]∈Γ′
0/∼

D[e]. Fix e ∈ Γ′
0. Since ∼ is an equivalence relation, if γ ∈ Γ[e], then γ−1 ∈ Γ[e]. 
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Thus, D[e] is a Γ-graded (or even a Γ[e]-graded) division ring. We now show that D[e] is 
gr-simple. Let γ, δ ∈ Γ[e] and a ∈ Dγ , b ∈ Dδ with a ̸= 0. We will prove that any graded 
ideal containing a must contain b too. First note that d(γ) ∼ r(δ). Hence there exists a 
nonzero homogeneous element u ∈ 1d(γ)D1r(δ). Then b = (au)−1a(ub), as desired.

(4) (a) =⇒ (b): It was observed above right after the definition of gr-simple ring.
(b) =⇒ (c): This implication follows from (2).
(c) =⇒ (a): This implication follows from (3). □
There exists a way of describing gr-prime components of a gr-division ring as crossed 

products. It can be done as in [37, Proposition 2.7] with maps

α : suppD[e] × suppD[e] → De \ {0} and σ : suppD[e] → Aut(De)

satisfying the properties in that paper. In the next result, we describe the gr-prime 
components of a gr-division ring using a group graded division ring and the rings of 
matrices introduced in Section 3.

Theorem 4.2. Let D be a Γ-graded division ring which is gr-prime. Fix e ∈ Γ′
0(D) and 

set H = 1eD1e. Then H is a eΓe-graded division ring and D ∼ = gr MΓ′
0(D)(H)(σ) where 

σ = (σf )f∈Γ′
0(D) ∈

∏︁
f∈Γ′

0(D)
supp(1eD1f ).

Conversely, let e ∈ Γ0, H be an eΓe-graded division ring and σ ∈ ∏︁
f∈Δ0

eΓf for some 

Δ0 ⊆ Γ0. Then D := MΔ0(H)(σ) is a gr-prime Γ-graded division ring with Γ′
0(D) = Δ0.

Proof. H is clearly an eΓe-graded division ring. For each f ∈ Γ′
0(D), fix σf ∈ eΓf such 

that Dσf
̸= {0} and 0 ̸= uf ∈ Dσf

. Notice that σ = (σf )f∈Γ′
0(D) is dfinite because 

for each e0 ∈ Γ0 there exists at most one f ∈ Γ′
0(D) such that d(σf ) = e0. Thus σ is 

matricial for H and MΓ′
0(D)(H)(σ) is a Γ-graded ring by Proposition 3.8.

Let γ ∈ suppD. Then d(γ), r(γ) ∈ Γ′
0(D). If a ∈ Dγ , set

ha = ur(γ)au
−1
d(γ) ∈ Dσr(γ)γσ

−1
d(γ)

⊆ H.

Thus, haEr(γ)d(γ) ∈ MΓ′
0(D)(H)(σ)γ . We define Φ(a) = haEr(γ)d(γ) for each a ∈ Dγ , 

γ ∈ suppD. Extending Φ by additivity, we obtain a gr-homomorphism of Γ-graded 
additive groups Φ : D → MΓ′

0(D)(H)(σ). If a ∈ Dγ , b ∈ Dδ with γ, δ ∈ suppD, then

Φ(a)Φ(b) = haEr(γ)d(γ)hbEr(δ)d(δ)

=
{︄

0 if d(γ) ̸= r(δ)
hahbEr(γ)d(δ) if d(γ) = r(δ)

(∗)= 

{︄
0 if d(γ) ̸= r(δ)
habEr(γδ)d(γδ) if d(γ) = r(δ)
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= Φ(ab),

where we have used that, when d(γ) = r(δ),

hahb = ur(γ)au
−1
d(γ)ur(δ)bu

−1
d(δ)

= ur(γ)abu
−1
d(δ)

= ur(γδ)abu
−1
d(γδ)

= hab.

Moreover, for each f ∈ Γ′
0(D), Φ(1f ) = uf1fu−1

f Eff = 1eEff = If , the identity element 
of MΓ′

0(D)(H)(σ)f . Therefore Φ is a gr-homomorphism of rings. It remains to show that 
Φ is bijective. For that, we construct an inverse Ψ : MΓ′

0(D)(H)(σ) → D as follows. Note 
that if γ ∈ suppMΓ′

0(D)(H)(σ), then σfγσ
−1
f ′ is defined in Γ for some f, f ′ ∈ Γ′

0(D). 
But this happens if and only if f = r(γ) and f ′ = d(γ), i.e., r(γ), d(γ) ∈ Γ′

0(D). 
If h ∈ Dσr(γ)γσ

−1
d(γ)

, then hEr(γ)d(γ) ∈ MΓ′
0(D)(H)(σ)γ and we define Ψ(hEr(γ)d(γ)) =

u−1
r(γ)hud(γ) ∈ Dγ .
Conversely, let e ∈ Γ0, Δ0 ⊆ Γ0, H be an eΓe-graded division ring and

σ = (σf )f∈Δ0 ∈
∏︂

f∈Δ0

eΓf.

By construction, σ is (fully) matricial for H and, by Proposition 3.8, D := MΔ0(H)(σ)
is a Γ-graded ring. Notice that if γ ∈ Γ with either d(γ) / ∈ Δ0 or r(γ) / ∈ Δ0, then 
Hσf1γσ

−1
f2

= 0 for all f1, f2 ∈ Δ0. This implies Dγ = 0. Now, if γ ∈ suppD, there exist 
unique f1 = r(γ), f2 = d(γ) ∈ Δ0 such that σf1γσ

−1
f2

is defined. Thus the homogeneous 
matrices of D have at most one nonzero entry. In particular, if f ∈ Γ0, we have If = 0 if 
f / ∈ Δ0 and, if f ∈ Δ0, If = 1eEff , that is the matrix with 1e in the (f, f)-entry and zero 
everywhere else. From this we obtain Γ′

0(D) = Δ0. Now if A ∈ Dγ \{0}, then A = aEf1f2

where f1 = r(γ), f2 = d(γ) and 0 ̸= a ∈ Hσf1γσ
−1
f2

. This homogeneous matrix is invertible 

with A−1 = a−1Ef2f1 . Indeed, A−1A = 1eEf2f2 = Id(γ) and AA−1 = 1eEf1f1 = Ir(γ). 
Now D is gr-prime because, for all a, b ∈ h(H) \ {0} and f1, f2, f3, f4 ∈ Δ0, we have 
0 ̸= Ee

f1f4
= (aEf1f2)(a−1b−1Ef2f3)(bEf3f4) ∈ (aEf1f2)D(bEf3f4). □

More generally than the converse in Theorem 4.2 one can show, with a similar proof, 
the following result.

Remark 4.3. If H is a (gr-prime) gr-division ring and Σ := (Σi)i∈I ∈ 𝒫(Γ)I is a matricial 
sequence for H such that, for all f ∈ Γ0 there exists at most one σ ∈ ⋃︁i∈I Σi satisfying 
d(σ) = f , then D := MI(H)(Σ) is a (gr-prime) Γ-graded division ring with Γ′

0(D) =⋃︁
i∈I{d(σi) : σi ∈ Σi}. □



42 Z. Cristiano et al. / Journal of Algebra 687 (2026) 1--116 

4.2. Graded modules over gr-division rings

In this subsection, our aim is to show that the behavior of graded modules over 
groupoid graded division rings is similar to the one graded modules over group graded 
division rings.

The proofs of Theorem 4.4 and Corollary 4.6 follow very much the pattern for group 
graded division rings [20, Section 1.4].

Theorem 4.4. Let D be a Γ-graded division ring and M be a Γ-graded D-module. The 
following assertions hold: 

(1) M is pseudo-free.
(2) Any pseudo-linearly independent sequence of M can be extended to a pseudo-basis of 

M .
(3) Any two pseudo-basis of M have the same cardinality.

Proof. First we show (2). Let (xi)i∈I ∈
∏︁
i∈I

Mγi
be a pseudo-linearly independent se

quence of homogeneous elements in M . Consider the set

ℱ =

⎧⎨⎩(xi)i∈Q ∈
∏︂
i∈Q

Mγi
| I ⊆ Q, (xi)i∈Q is pseudo-linearly independent

⎫⎬⎭ .

Clearly ℱ is not empty and it is a partially ordered set with inclusion and every chain 
has an upper bound. By Zorn’s lemma, ℱ has a maximal element. Let (xi)i∈K ∈

∏︁
i∈K

Mγi

be one such maximal element. Let N be the graded D-submodule of M generated by 
{xi : i ∈ K}. Suppose that N ̸= M . Thus there exists x0 ∈ Mγ0 \ N for some γ0 ∈ Γ. 
We claim that the sequence (xi)i∈K∪{0} is pseudo-linearly independent. Indeed, suppose 
that there exists a sequence of homogeneous elements (ai)i∈K∪{0} ∈

⨁︁
i∈K∪{0}

1d(γi)D such 

that x0a0 +
∑︁
i∈K

xiai = 0. If a0 ̸= 0, then x0 = − ∑︁
i∈K

xiaia
−1
0 ∈ N , a contradiction. Thus, 

a0 = 0. Hence ai = 0 for all i ∈ K, and the claim is proved. But the claim contradicts 
the maximality of (xi)i∈K in ℱ . Therefore M = N and (xi)i∈K is a pseudo-basis of M , 
as desired.

(1) Suppose that M ̸= {0}. There exist γ ∈ Γ and x ∈ Mγ such that x ̸= 0. If there 
exists a homogeneous element a ∈ 1d(γ)D such that xa = 0, then a ̸= 0 would imply that 
x = x1d(γ) = xaa−1 = 0. Thus {x} is a pseudo-linearly independent sequence and we 
can extend it to obtain a pseudo-basis of M by (2). Hence, M is a pseudo-free D-module.

(3) If M has a pseudo-basis consisting on an infinite number of elements, then 
Lemma 2.13 implies the result. Thus, we can suppose that the pseudo-bases of M have 

a finite number of elements. Let (xi)ni=1 ∈
n ∏︁

i=1
Mγi

and (yj)pj=1 ∈
p ∏︁

j=1
Mδj be two pseudo
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bases of M . We will show that n = p. Let (ai)ni=1 be the unique sequence in 
n ⨁︁

i=1
Dγ−1

i δ1

such that

y1 = x1a1 + · · ·+ xnan.

Since y1 ̸= 0, there exists 1 ≤ i1 ≤ n such that ai1 ̸= 0. Then

xi1 = y1a
−1
i1
− (x1a1 + · · ·+ xi1−1ai1−1 + xi1+1ai1+1 + · · ·+ xnan)a−1

i1
,

and therefore (y1)∪ ((xi)ni=1 \{xi1}) generates M . If p = 1, then we have p ≤ n. If p > 1, 
there exist b1 ∈ Dγ−1

1 δ2
, . . . , bi1 ∈ Dδ−1

1 δ2
, . . . , bn ∈ Dγ−1

n δ2
such that

y2 = y1bi1 + x1b1 + · · ·+ xi1−1bi1−1 + xi1+1bi1+1 + · · ·+ xnbn.

Since (y1, y2) is pseudo-linearly independent, there exists i2 ∈ {1, . . . , n}\{i1} such that 
bi2 ̸= 0. As before, xi2 is a D-linear combination of {y1, y2, x1, . . . , xn} \ {xi1 , xi2}. 
After the k-th step of this process of changing one xij by one yj , we obtain that 
{y1, . . . , yk, x1 . . . , xn}\{xi1 , . . . , xik} generates M . Thus, n < p implies that {y1, . . . , yn}
generates M . But this contradicts the fact that {y1, . . . , yp} is a pseudo-basis of M . 
Therefore p ≤ n. An analogous argument shows that n ≤ p. □

If D is a Γ-graded division ring, then every Γ-graded D-module has a pseudo-basis 
by Theorem 4.4(1). Unlike in the group graded context [7, Theorem 3.3], the converse is 
not true. We will deal with this situation in Section 7.

Corollary 4.5. Let D be a Γ-graded division ring and M , N be Γ-graded D-modules. 
For all (γi)i∈I ∈ ΓI , pseudo-linear independent sequence (xi)i∈I ∈

∏︁
i∈I

Mγi
, σ ∈ Γ and 

(yi)i∈I ∈
∏︁
i∈I

Nσγi
, there exists g ∈ HOMD(M,N)σ such that g(xi) = yi for each i ∈ I.

Proof. Follows from Theorem 4.4(2) and Proposition 3.1(6). □
By Theorem 4.4, every graded module M over a Γ-graded division ring D has a pseudo

basis and any two pseudo-basis have the same number of elements. Such cardinality will 
be called the pseudo-dimension of M and it will be denoted by pdimD(M).

Corollary 4.6. Let D be a Γ-graded division ring and M be a Γ-graded D-module. If N
is a graded submodule of M , then

pdimD(N) + pdimD(M/N) = pdimD(M).

Proof. Let (xi)i∈I ∈
∏︁
i∈I

Nγi
be a pseudo-basis of N , which exists by Theorem 4.4(1). By 

Theorem 4.4(2), it can be extended to a pseudo-basis (xi)i∈I∪J ∈
∏︁

i∈I∪J

Mγi
of M with 
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I and J disjoint sets. It is enough to show that (xi + N)i∈J is a pseudo-basis of M/N . 
Since (xi)i∈I∪J generates M , (xi + N)i∈J generates M/N . If a sequence of elements 
(ai)i∈J ∈

⨁︁
1d(γi)D is such that 

∑︁
i∈J

(xi + N)ai = 0, then 
∑︁
i∈J

xiai ∈ N . But then, there 

exists a sequence of elements (bi)i∈I ∈
⨁︁

1d(γi)D such that 
∑︁
i∈J

xiai =
∑︁
i∈I

xibi ∈ N . If 

(ai)i∈J ̸= 0, this is a contradiction with the fact that (xi)i∈I∪J is a pseudo-basis of M .
Now clearly, pdimD(M) = |I ∪ J | = |I|+ |J | = pdimD(N) + pdimD(M/N). □

Remark 4.7. Let D be a Γ-graded division ring and M be a Γ-graded D-module. It can be 
shown that if a sequence o homogeneous elements (xi)i∈I ∈

∏︁
i∈I

Mγi
generates M , there 

exists a subset J ⊆ I such that (xi)i∈J is a pseudo-basis of M . Indeed, any subsequence 
(xi)i∈J maximal among the subsequences of (xi)i∈I that are pseudo-linearly independent 
works. □
4.3. Graded linear algebra over gr-division rings

Now we turn our attention to gr-homomorphisms of finitely generated pseudo-free 
modules. We showed in Proposition 3.1 that each finitely generated pseudo-free R-module 

is gr-isomorphic to a graded module of the form 
m ⨁︁
i=1

R(αi).

Let R be a Γ-graded ring. Set α = (α1, . . . , αm) ∈ Γm, β = (β1, . . . , βn) ∈ Γn, 
M =

n ⨁︁
j=1

R(βj) and N =
m ⨁︁
i=1

R(αi). Set also

Mm×n(R)[α][β] =

⎧⎨⎩
⎛⎝ a11 · · · a1n

...
. . .

...
am1 · · · amn

⎞⎠ ∈ Mm×n(R) 
⃓⃓⃓⃓
aij ∈ Rαiβ

−1
j

⎫⎬⎭ ,

where we follow the convention Rαiβ
−1
j

= {0} if d(αi) ̸= r(β−1
j ) = d(βj).

It is important to note that if A ∈ Mm×n(R)[α][β] and B ∈ Mn×p(R)[β][τ ] for some 
τ ∈ Γp, then AB ∈ Mm×p(R)[α][τ ].

One can show as in the proof of Proposition 3.10 and Corollary 3.15(2) that 
Homgr-R(M,N) is isomorphic to the additive group of matrices Mm×n(R)[α][β]. More
over, if α = β, one obtains the isomorphism of rings Endgr-R(M) ∼ = Mn×n(R)[β][β]. But 
we will prove this in a more traditional way.

Let M be a Γ-graded R-module. Suppose that M is a finitely generated pseudo
free module with pseudo-basis ℬ = (uj)nj=1 ∈

n ∏︁
j=1

Mβ−1
j

for some β1, β2, . . . , βn ∈ Γ. If 

x ∈Mδ, there exists a unique (aj)nj=1 ∈
n ⨁︁

j=1
Rβjδ such that

x = u1a1 + u2a2 + · · ·+ unan.
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We will write

(x)ℬ =

⎛⎜⎜⎝
a1
a2
...
an

⎞⎟⎟⎠ .

Note that (a1, . . . , an) ∈ (R(β1)⊕ · · · ⊕R(βn))δ. Furthermore, the map

M −→ R(β1)⊕ · · · ⊕R(βn), x ↦→ (x)ℬ,

defines a gr-isomorphism of modules.
Let N be a Γ-graded pseudo-free R-module with pseudo-basis 𝒞 = (vi)mi=1 ∈

m ∏︁
i=1

Nα−1
i

for some α1, α2, . . . , αm ∈ Γ. Suppose that f ∈ Homgr-R(M,N). Then

(f(uj))𝒞 =

⎛⎜⎜⎝
a1j
a2j
...

amj

⎞⎟⎟⎠ ∈ (R(α1)⊕ · · · ⊕R(αm))β−1
j

= Rα1β
−1
j
⊕ · · · ⊕Rαmβ−1

j
.

Define [f ]ℬ𝒞 ∈ Mm×n(R)[α][β] as the matrix

[f ]ℬ𝒞 =
[︂
(f(u1))𝒞 (f(u2))𝒞 · · · (f(un))𝒞

]︂
=

⎛⎜⎜⎝
a11 a12 . . . a1n
a21 a22 . . . a2n
...

. . . . . .
...

am1 am2 . . . amn

⎞⎟⎟⎠ .

Then it is routine to show that

[f ]ℬ𝒞 · (x)ℬ = (f(x))𝒞 for all x ∈ h(M) (4.1)

and that [f ]ℬ𝒞 is the unique matrix in Mm×n(R)[α][β] that satisfies (4.1).
Conversely, if A ∈ Mm×n(R)[α][β], then there exists a unique f ∈ Homgr-R(M,N)

such that A = [f ]ℬ𝒞 .

Moreover, if L is a pseudo-free module with pseudo-basis 𝒜 = (tk)pk=1 ∈
p ∏︁

k=1
Lγ−1

k
and 

g ∈ Homgr-R(L,M), then

[f ]ℬ𝒞 · [g]𝒜ℬ = [f ◦ g]𝒜𝒞 .

All in all, we have proved

Proposition 4.8. Let R be a Γ-graded ring. Let M and N be pseudo-free R-modules with 
corresponding pseudo-bases
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ℬ = (uj)nj=1 ∈
n ∏︂

j=1
Mβ−1

i
and 𝒞 = (vi)mi=1 ∈

m ∏︂
i=1

Nα−1
i

for some β1, β2, . . . , βn, α1, α2, . . . , αm ∈ Γ, respectively. Then the map f ↦→ [f ]ℬ𝒞 defines 
a gr-isomorphism Homgr-R(M,N) → Mm×n(R)[α][β]. Moreover, if M = N and ℬ = 𝒞, 
we obtain the gr-isomorphism of rings Endgr-R(M)→ Mn×n(R)[β][β], f ↦→ [f ]ℬℬ. □

Let now Ir(α) ∈ Mm×m(R)[α][α] be the matrix whose (i, i)-entry is 1r(αi) and whose 
(i, j)-entry, with i ̸= j, is zero for all i, j ∈ {1, . . . ,m}. Note that Ir(α)A = A for all 
A ∈ Mm×n(R)[α][β] and that the matrix Ir(α) corresponds to the identity of N :=⨁︁m

i=1 R(αi) in the gr-isomorphism Endgr-R(N) → Mm×m(R)[α][α] of Proposition 4.8. 
We say that A ∈ Mn×n(R)[α][β] is invertible if there exists B ∈ Mn×n(R)[β][α] such 
that AB = Ir(α), BA = Ir(β) and 1r(αi), 1r(βi) ̸= 0 for all i = 1, . . . ,m. Notice that 
such B corresponds to the inverse gr-homomorphism of the one represented by A in the 
gr-isomorphism Homgr-R(M,N) → Mm×n(R)[α][β] of Proposition 4.8. Because of this, 
such matrix B is unique and it will be called the inverse of A.

Corollary 4.9. Let D be a Γ-graded division ring, M and N be Γ-graded D-modules and 
f : M → N a gr-homomorphism. Then

pdim(M) = pdim(ker f) + pdim(im f).

If, moreover, pdim(M) = pdim(N) = n <∞, then f is a gr-isomorphism if and only if 
either f is surjective or f is injective.

As a consequence, if A ∈ Mn×n(D)[α][β] and B ∈ Mn×n(D)[β][α] for some α, β ∈ Γn, 
then

AB = Ir(α) ⇐⇒ BA = Ir(β).

Proof. Since M/ ker(f) ∼ = gr im f , Corollary 4.6 implies the first part.
For the second part, suppose that f is surjective. Then im f = N . Hence

n = pdim(M) = pdim(ker f) + pdim(N) = pdim(ker f) + n.

Thus, pdim(ker f) = 0 and ker f = 0. If f is injective, the proof is analogous.
For the last part, note that if α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Γn, then A ∈

Mn×n(D)[α][β] and B ∈ Mn×n(D)[β][α] can be regarded as gr-homomorphisms

R(β1)⊕ · · · ⊕R(βn)→ R(α1)⊕ · · · ⊕R(αn),
R(α1)⊕ · · · ⊕R(αn)→ R(β1)⊕ · · · ⊕R(βn),

respectively. The fact that AB = Ir(α) implies that A is surjective. Since both R-modules 
have the same pseudo-dimension n, the first part implies that A is also injective. There
fore there exists B′ ∈ Mn×n(D)[β][α] such that B′A = Ir(β). Now
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B = Ir(β)B = B′(AB) = B′Ir(α) = B′,

as desired. □
Let R be a Γ-graded ring and α = (α1, . . . , αm) ∈ Γm, β = (β1, . . . , βn) ∈ Γn. Let 

Prij(α) be the matrix obtained from Ir(α) by interchanging the rows i and j. Note that if 
A ∈ Mm×n(R)[α][β], then Prij(α)A is the matrix obtained from A by interchanging rows i
and j. Notice that Prij(α) ∈ Mm×m(R)[α′][α], where α′ is obtained from α interchanging 
αi and αj , and Prij(α)A ∈ Mm×n(R)[α′][β].

Let a ∈ Rγ with d(γ) = r(αi). Let Dri(α)(a) be the matrix that agrees with Ir(α)
except that it has an a (instead of 1r(αi)) in the (i, i)-position. Notice that Dri(α)(a)A
is the matrix obtained from A by multiplying by a the entries of the i-th row of A. 
Notice that Dri(α)(a) ∈ Mm×m(R)[α′][α] where α′ = (α1, . . . , αi−1, γαi, αi+1, . . . , αm), 
and Dri(α)(a)A ∈ Mm×n(R)[α′][β].

Let a ∈ Rγ with d(γ) = r(αi) and r(γ) = r(αj) for some i ̸= j. Let Trij(α)(a) be the 
matrix obtained from Ir(α) by replacing rowj(Ir(α)) by a · rowi(Ir(α)) + rowj(Ir(α)) and 
leaving the other rows intact. Note that Trij(α)(a)A is the matrix obtained from A by 
replacing rowj(A) by a·rowi(A)+rowj(A) and leaving the other rows intact. Notice that 
Trij(α)(a) ∈ Mm×m(R)[α′][α] and Trij(α)(a)A ∈ Mm×n(R)[α′][β], where α′ is obtained 
from α replacing αj by γαi.

In the same way, one can define the n × n matrices obtained from Ir(β) making 
elementary column operations and such that when they multiply A on the right they 
perform that same operation on the columns of A.

Let now D be a Γ-graded division ring. Fix α = (α1, . . . , αm) ∈ Γm, β = (β1, . . . , βn) ∈
Γn and A ∈ Mm×n(D)[α][β].

For each i = 1, . . . ,m, one can regard the rows of A as homogeneous elements of 
the left D-module (β−1

1 )D ⊕ · · · ⊕ (β−1
n )D. We define ρr(A), the row rank of A, as the 

pseudo-dimension of the graded left D-submodule generated by the rows of A. It can be 
computed multiplying A on the left by adequate matrices Prij(α), Dri(α)(a), Trij(α)(a).

The columns of A are homogeneous elements of the right D-module D(α1) ⊕ · · · ⊕
D(αm). We define ρc(A), the column rank of A, as the pseudo-dimension of the graded 
right D-submodule generated by the columns of A.

Consider now all possible p ≥ 0, τ ∈ Γp and matrices B ∈ Mm×p(D)[α][τ ], C ∈
Mp×n(D)[τ ][β] such that

A = BC. (4.2)

We define ρ(A), the inner rank of A, as the least p ≥ 0 for which there exist τ and 
matrices B,C as in (4.2). Note that we always have Ir(α)A = A and AIr(β) = A. Thus, 
ρ(A) ≤ min{m,n}.

Observe that (4.2) means that the columns of A are a genuine linear combination of 
the columns of B, or that the rows of A are a genuine linear combination of the rows of 
C.
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We define ρi(A) as the largest integer s such that A has an s×s invertible submatrix.
The following result, shows that all four ranks just defined are equal over a graded 

division ring. We follow very close the proof in [26, Exercises 13.13, 13.14] where the 
result is proved for (ungraded) division rings.

Proposition 4.10. Let D be a Γ-graded division ring. Let m,n be positive integers, α ∈ Γm

and β ∈ Γn. For A ∈ Mm×n(D)[α][β], we have

ρr(A) = ρc(A) = ρ(A) = ρi(A).

Proof. Suppose that ρr(A) = r and that the rows i1, . . . , ir of A form a pseudo-basis of 
the graded left D-module generated by the rows of A. Thus, all the rows of A are a genuine 
left linear combination of these rows by Proposition 3.1(3). Let α′ = (αi1 , . . . , αir ) ∈ Γr

and C ∈ Mr×n(D)[α′][β] be the submatrix of A formed by the rows i1, . . . , ir. Let 
B ∈ Mm×r(D)[α][α′] such that

A = BC. (4.3)

This equality shows that the columns of A are a genuine right D-linear combination of 
the r columns of B. Hence ρc(A) ≤ ρr(A). A similar argument shows that ρr(A) ≤ ρc(A).

By the definition of ρ(A), equality (4.3), also shows that ρ(A) ≤ ρr(A) = ρc(A). 
But, on the other hand, observe that if ρ(A) = s, then the rows of A are obtained as 
genuine left D-linear combinations of s homogeneous elements. It implies that the pseudo
dimension of the graded D-module generated by the rows of A has pseudo-dimension at 
most s. Thus ρ(A) = ρr(A).

Now we prove that ρi(A) equals the other ranks. Suppose first that A is of size n×n. If 
ρc(A) = n, this means that the columns of A form a pseudo-basis of R(α1)⊕· · ·⊕R(αn). 
Hence the homogeneous elements⎛⎜⎜⎝

1r(α1)
0
...
0

⎞⎟⎟⎠ , 

⎛⎜⎜⎝
0

1r(α2)
...
0

⎞⎟⎟⎠ , . . . ,

⎛⎜⎜⎝
0
0
...

1r(αn)

⎞⎟⎟⎠
which are of degrees β−1

1 , β−1
2 , . . . , β−1

n , respectively, can be obtained as genuine linear 
combinations of the columns of A. That implies the existence of B ∈ Mn×n(R)[β][α]
such that AB = Ir(α). By Corollary 4.9, it implies that A is invertible and therefore 
ρi(A) = n. Conversely, suppose that ρi(A) = n. Thus, A is invertible. Hence, there 
exists B ∈ Mn×n(R)[β][α] such that BA = Ir(β). This implies that the columns of A are 
pseudo-linearly independent. Therefore, ρc(A) = n.

Suppose now that ρi(A) = s < n. Let M be an s×s submatrix of A that is invertible. 
Suppose it is formed by the entries in the i1 < · · · < is rows and j1 < · · · < js columns. 
Let C be the submatrix of A formed by the j1, j2, . . . , js columns of A. Then its columns 
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are pseudo-right linearly independent. This implies ρc(A) ≥ s = ρi(A). If ρc(A) > s, 
then we can add one more column to C to produce a new matrix C ′ with s+ 1 pseudo
linearly independent columns of A. Since s+ 1 = ρc(C ′) = ρr(C ′), we can add one more 
row to the unique s × (s + 1) submatrix of C ′ containing the s rows of M to produce 
an (s + 1)× (s + 1) submatrix C ′′ of A such that ρc(C ′′) = s + 1. But this is equivalent 
to C ′′ being invertible by what we have already proved. This contradicts the fact that 
ρi(A) = s. Therefore, ρc(A) = s, as desired. □

We end this section with the following observation. Let A ∈ Mm×n(D)[α][β] for some 
α ∈ Γm and β ∈ Γn. Notice that there could exist other α′ ∈ Γm and β′ ∈ Γn such that 
A ∈ Mm×n(D)[α′][β′]. Thus, it could seem that the inner rank of A, ρ(A), depends on 
α and β. By Proposition 4.10, if D is a gr-division ring, then it does not depend on α
and β. Indeed, ρ(A) = ρr(A) and ρr(A) can be computed multiplying on the left by the 
matrices that define elementary row operations that can be performed in the same way 
if A is considered to belong to either Mm×n(D)[α][β] or Mm×n(D)[α′][β′].

5. Structure of gr-semisimple rings

Throughout this section, let Γ be a groupoid and R =
⨁︁
γ∈Γ

Rγ be a Γ-graded ring.

5.1. Gr-simple modules and Schur’s lemma

Given a Γ-graded R-module S, we say that S is gr-simple if S ̸= 0 and its only graded 
submodules are {0} and S.

An immediate consequence of the definition and Lemma 2.6 is the following.

Lemma 5.1. If S is a gr-simple R-module, then there exists e ∈ Γ0 such that S = S(e). 
Furthermore, S(σ) is gr-simple for each σ ∈ eΓ. □

This suggests that the definition of gr-simple module may be too restrictive. So we 
say that the Γ-graded R-module S is Γ0-simple if S(e) is a gr-simple R-module for each 
e ∈ Γ′

0(S).
When considering rings and modules without a grading, it is useful to study simple 

modules up to isomorphism. In the graded context, one has to take into account the 
shifts of the simple modules. Inspired by the idea of [13, p. 395], we say that two Γ
graded R-modules M and N are in the same isoshift class if there exists Σ ⊆ Γ such 
that Σ is fully r-unique for N , Σ−1 is fully r-unique for M and M ∼ = gr N(Σ). Note that 
this defines an equivalence relation for Γ-graded modules. The next proposition helps to 
understand how gr-simple isoshift classes are. Note that, by Lemma 5.1, two gr-simple 
modules M and N are in the same isoshift class if and only if there exists σ ∈ Γ such 
that M ∼ = gr N(σ).
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Lemma 5.2. Let S, S′ be two gr-simple R-modules. The following assertions are equiva
lent. 

(1) S and S′ are not in the same isoshift class.
(2) HOM(S, S′) = 0.

(3) HOMR

⎛⎝⨁︂
j∈J 

S(σj),
⨁︂
i∈I 

S′(σ′
i)

⎞⎠ = {0} for all (σj)j∈J ∈ ΓJ and (σ′
i)i∈I ∈ ΓI .

Proof. (1) =⇒ (2): Suppose there exists σ ∈ Γ and nonzero h ∈ HOMR(S, S′)σ. So 
0 ̸= h ∈ Homgr-R(S, S′(σ)) by Proposition 3.5(1). In particular, S′(σ) ̸= 0. Therefore, 
it follows from Lemma 5.1 that S′ = S′(r(σ)) and S′(σ) is gr-simple. Since kerh is 
a proper graded submodule of S and im h is a nonzero graded submodule of S′(σ), it 
follows that kerh = 0 and imh = S′(σ). Hence, h is a gr-isomorphism between S and 
S′(σ), contradicting (1).

(2) =⇒ (1): Suppose that S and S′ are in the same isoshift class and let σ ∈ Γ such 
that S ∼ = gr S′(σ). By Proposition 3.5(1), we have HOMR(S, S′)σ ∼ = Homgr-R(S, S′(σ)) ̸=
0.

(2) =⇒ (3): Using Proposition 3.10 and Remark 3.11 (since gr-simple modules are 
generated by a single element) we have

HOMR

⎛⎝⨁︂
j∈J 

S(σj),
⨁︂
i∈I 

S′(σ′
i)

⎞⎠ ∼ = gr HI×J

⎛⎝⨁︂
j∈J 

S(σj),
⨁︂
i∈I 

S′(σ′
i)

⎞⎠
So it suffices to show that HOMR(S(σj), S′(σ′

i))γ = {0} for all i ∈ I, j ∈ J and γ ∈ Γ. 
In fact, Proposition 3.5(2) and (2) give us

HOMR(S(σj), S′(σ′
i))γ = HOMR(S, S′)σ′

iγσ
−1
j

= 0.

(3) =⇒ (2): It is clear. □
Notice that it follows from Lemma 5.2 that two gr-simple R-modules S and S′ are in 

the same isoshift class if and only if HOMR(S, S′) ̸= 0.
Next we present a result analogous to Schur’s Lemma in the groupoid graded context.

Theorem 5.3. Let S be a Γ0-simple R-module, D := ENDR(S) and Γ′
0 := Γ′

0(D) = Γ′
0(S). 

The following assertions hold: 

(1) D is a gr-division ring.
(2) Consider the gr-primality relation ∼ defined on Γ′

0. Then e ∼ f in Γ′
0 if and only if 

S(e) and S(f) are in the same isoshift class.
(3) There exists a bijection between Γ′

0/ ∼ and the isoshift classes of {S(e) : e ∈ Γ′
0}

that sends each [e] ∈ Γ′
0/ ∼ to the isoshift class of S(e).
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(4) D is a gr-prime (resp. gr-simple) ring if and only if all S(e) are in the same isoshift 
class for each e ∈ Γ′

0.

Proof. (1) Let σ ∈ supp(D) (in particular, r(σ), d(σ) ∈ Γ′
0) and 0 ̸= g ∈ Dσ. Then 

g′ := g|S(σ−1) ∈ Homgr-R(S(σ−1), S(r(σ))) because

g
(︁
S(σ−1)γ

)︁
= g
(︁
Sσ−1γ

)︁ ⊆ Sσσ−1γ = S(r(σ))γ ,

for all γ ∈ Γ such that r(γ) = r(σ). We have that ker g′ is a proper graded submodule 
of S(σ−1) and im g′ is a nonzero graded submodule of S(r(σ)). Since S is Γ0-simple, 
it follows that S(σ−1) and S(r(σ)) are gr-simple R-modules. Therefore, ker g′ = 0 and 
im g′ = S(r(σ)), i.e., g′ is a gr-isomorphism. Let h′ ∈ Homgr-R(S(r(σ)), S(σ−1)) be 
the inverse of g′. Extend h′ to a h ∈ Homgr-R(S, S(σ−1)) defining h(x) = 0 for all 
x ∈ S(e) when e ∈ Γ0 \ {r(σ)}. Thus, g ◦ h : S → S is the zero function on S(e), for all 
e ∈ Γ0\{r(σ)} and it is the identity on S(r(σ)), that is, g◦h = 1r(σ). On the other hand, 
g (and therefore h ◦ g) is the zero function on S(e), for all e ∈ Γ0 \ {d(σ)} and h ◦ g is 
the identity on S(σ−1) (= S(d(σ)), as R-modules, by Lemma 2.6). Hence, h ◦ g = 1d(σ).

(2) Let e, f ∈ Γ′
0. Assume e ∼ f . So there exists γ ∈ eΓf ∩ suppD. By Proposi

tion 3.5(2), we get

0 ̸= Dγ = HOMR(S, S)eγf ∼ = HOMR(S(f), S(e))γ .

This implies that S(e) and S(f) are in the same isoshift class, by Lemma 5.2. Conversely, 
suppose that S(e) and S(f) are in the same isoshift class. Take σ ∈ Γ such that S(f) ∼ = gr
S(e)(σ). Again, by Proposition 3.5, we obtain

Deσf = HOMR(S, S)eσf ∼ = HOMR(S(f), S(e))σ = Homgr-R(S(f), S(e)(σ)) ̸= 0.

Therefore, σ ∈ eΓf ∩ suppD and it follows that e ∼ f .
(3) It follows from (2).
(4) It is immediate from (3) and Proposition 4.1(4). □

Corollary 5.4. If S is a gr-simple R-module, then D := ENDR(S) is a gr-division ring 
with supp(D) ⊆ eΓe, where e ∈ Γ0 is such that S = S(e). □

Gr-simple modules also have the following interesting property that will be used later.

Proposition 5.5. Let M be a Γ-graded R-module. Suppose M = S1 ⊕ · · · ⊕ Sn = T1 ⊕
· · · ⊕ Tm where n,m ∈ Z>0 and S1, ..., Sn, T1, ..., Tm are gr-simple graded submodules of 
M . Then n = m and there exists a permutation π of {1, ..., n} such that Si

∼ = gr Tπ(i) for 
each i = 1, ..., n.

Proof. We proceed by induction on n.
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If M = S1 = T1 ⊕ · · · ⊕ Tm as in the statement, it is clear that m = 1 and T1 = S1.
Let n > 1 and assume that the result is valid for n− 1. Suppose M = S1⊕ · · ·⊕Sn =

T1⊕ · · · ⊕Tm as in the statement. Note that m > 1. Given 1 ≤ i ≤ n and 1 ≤ j ≤ m, let 
pi : M → Si, p′j : M → Tj be the canonical projections and ιi : Si →M , ι′j : Tj →M be 
the canonical inclusions. Then

idT1 = p′1ι
′
1 = p′1idM ι′1 = p′1

(︄
n ∑︂

i=1 
ιipi

)︄
ι′1 =

n ∑︂
i=1 

p′1ιipiι
′
1.

Hence, there exists 1 ≤ k ≤ n such that pkι′1 ̸= 0. Therefore, pkι′1 : T1 → Sk is a gr
isomorphism since T1 and Sk are gr-simple. On the other hand, note that pkι′1 = pk|T1 . 
The injectivity of this function is equivalent to T1 ∩ ker pk = 0, that is,

T1 ∩ (S1 ⊕ · · · ⊕ˆ︂Sk ⊕ · · · ⊕ Sn) = 0. (5.1)

The surjectivity of pk|T1 is equivalent to pk(T1) = Sk. Thus, given t1 ∈ T1, we have 

pk(t1) = t1 −
n ∑︁

i=1
i̸=k

pi(t1) and it follows that

Sk ⊆ T1 + (S1 ⊕ · · · ⊕ˆ︂Sk ⊕ · · · ⊕ Sn). (5.2)

By (5.2), M = S1 ⊕ · · · ⊕ Sn ⊆ T1 + (S1 ⊕ · · · ⊕ˆ︂Sk ⊕ · · · ⊕ Sn). So, from (5.1), we get

M = T1 ⊕ (S1 ⊕ · · · ⊕ˆ︂Sk ⊕ · · · ⊕ Sn).

Hence,

S1 ⊕ · · · ⊕ˆ︂Sk ⊕ · · · ⊕ Sn
∼ = gr T2 ⊕ · · · ⊕ Tm.

By the induction hypothesis, n − 1 = m − 1 and there exists a bijection π : {1, ..., k −
1, k + 1, ..., n} → {2, ...,m} such that Si

∼ = gr Tπ(i) for each i = 1, ..., k − 1, k + 1, ..., n. 
Now just define π(k) = 1. □

By Corollary 2.14 for the case |I| or |J | are infinite and Proposition 5.5 for the case 
|I| and |J | are finite, we obtain

Proposition 5.6. Let M be a Γ-graded R-module. Suppose M =
⨁︁
i∈I

Si =
⨁︁
j∈J

Tj where 

Si, Tj are gr-simple graded submodules of M for all i ∈ I, j ∈ J . Then |I| = |J |. □
5.2. General results about gr-semisimple rings and modules

A Γ-graded R-module M is said to be gr-semisimple if M is a sum of gr-simple graded 
submodules. That is, there exists a family of gr-simple submodules {Si}i∈I such that 
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M =
∑︁

i∈I Si. In the same way, one can define left gr-semisimple modules. We say that 
the Γ-graded ring R is a right gr-semisimple ring if RR is a gr-semisimple module. That 
R is a left gr-semisimple ring if RR is a gr-semisimple module.

Let M be a Γ-graded R-module. We say that M is a gr-artinian R-module if M
satisfies the descending chain condition on graded submodules. Note that if M is gr
artinian, then M(e) ̸= 0 only for a finite number of e ∈ Γ0. Thus, as in the case 
of gr-simplicity of modules, this motivates us to define that M is a Γ0-artinian R
module if M(e) is a gr-artinian R-module for all e ∈ Γ0. We say that R is a right 
Γ0-artinian ring if RR is a Γ0-artinian R-module. Analogously, we define when R is a 
left Γ0-artinian ring. We observe that if R is a right Γ0-artinian ring, Δ0 ⊆ Γ0 and 
Δ = {γ ∈ Γ : d(γ), r(γ) ∈ Δ0}, then RΔ :=

⨁︁
γ∈Δ Rγ is a right Δ0-artinian ring. Indeed 

an infinite strict descending chain of graded right ideals of RΔ contained in RΔ(e) for 
some e ∈ Δ0

I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ · · ·

implies the existence of the infinite strict descending chain of graded right ideals of R
contained in R(e)

I1R ⊃ I2R ⊃ · · · ⊃ InR ⊃ · · · .

We also note that if R is right Γ0-artinian, then R is right gr-artinian if and only if Γ′
0(R)

is finite. Thus, being Γ0-artinian implies being gr-locally artinian in the following sense: 
if R =

⨁︁
γ∈Γ Rγ is a right Γ0-artinian ring, then, for any finite subset Δ0 ⊆ Γ′

0(R), the 
Δ-graded ring RΔ =

⨁︁
γ∈Δ Rγ is right gr-artinian. On the other hand, if R is locally 

artinian in the foregoing sense, it does not imply that R is Γ0-artinian. For example, 
consider the ring R := UTN(D) of countably infinite upper triangular matrices over a 
division ring D with only a finite number of nonzero entries endowed with its natural 
N × N grading. Then R is locally artinian, because for any finite subset Δ0 ⊆ N we 
have RΔ ∼ = gr UTn(D), where n = |Δ0|. However, we have the strict descending chain of 
graded right ideals

E11R ⊃ E12R ⊃ · · · ⊃ E1nR ⊃ · · · .

The first results of this section are basic facts on gr-semisimple modules. The following 
result will be used throughout the paper and its proof can be found in [11, Lemma 51 
and Propositions 52-53].

Proposition 5.7. Let M be a gr-semisimple module and N be a graded submodule of M . 
Suppose that M =

∑︁
i∈I Si where Si is a gr-simple submodule of M for all i ∈ I. The 

following statements hold true. 
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(1) There exists I ′ ⊆ I such that M = N ⊕
(︃⨁︁

i∈I′
Si

)︃
. Hence N is a graded direct 

summand of M .
(2) There exists I0 ⊆ I such that M =

⨁︁
i∈I0

Si.

(3) There exists I ′′ ⊆ I such that N ∼ = gr
⨁︁
i∈I′′

Si. □

Proposition 5.8. [11, Proposition 57] Let M be a Γ-graded R-module. If M is a semisim
ple R-module, then M is a gr-semisimple R-module. □

In order to state the next result, we need a definition. We say that a Γ-graded R
module Q is gr-injective if, for all gr-homomorphisms j : M → N and g : M → Q between 
Γ-graded R-modules with j injective, there exists a gr-homomorphism h : N → Q such 
that g = hj [11, Propositions 42 and 44].

Proposition 5.9. [11, Proposition 59] The following assertions are equivalent: 

(1) R is a right gr-semisimple ring.
(2) Every graded right ideal of R is a graded direct summand of RR.
(3) Every Γ-graded R-module is gr-injective.
(4) Every Γ-graded R-module is gr-projective.
(5) Every Γ-graded R-module is gr-semisimple. □

Now we proceed in a similar way to [8, Section 4.6], [24, p. 35--36] and [13, Section 2]. 
Let M be a Γ-graded R-module and S be a gr-simple R-module. The isoshiftical compo
nent of type S of M , denoted by MS, is the sum of the graded submodules T of M that 
are in the same isoshift class of S. If S′ is another gr-simple submodule of M in the same 
isoshift class of S, then MS = MS′ . Thus MS depends only on the isoshift class of S. 
We denote by 𝒮(R) the set of isoshift classes of gr-simple R-modules. Thus, if j ∈ 𝒮(R)
is the isoshift class of S, we can write Mj instead of MS .

Lemma 5.10. Let M be a gr-semisimple R-module. The following statements hold true. 

(1) M =
⨁︁

j∈𝒮(R) Mj.
(2) Let {Si}i∈I be a family of gr-simple submodules of M such that M =

⨁︁
i∈I Si. For 

each j ∈ 𝒮(R), let I(j) = {i ∈ I : Si ∈ j}. Then Mj =
⨁︁

i∈I(j) Si.

Proof. (1) Since M is gr-semisimple, M =
∑︁

j∈𝒮(R) Mj . We must show that this sum is 
direct. Let j ∈ 𝒮(R) and S ∈ j.

Set M ′
j :=

∑︁
k∈𝒮(R)\{j} Mk and consider Mj∩M ′

j . On the one hand Mj∩M ′
j is a graded 

submodule of the gr-semisimple module Mj . By Proposition 5.7(3), Mj ∩M ′
j =
⨁︁

l∈L Sl

where Sl ∈ j. On the other hand, Mj ∩M ′
j is a graded submodule of the gr-semisimple 

module M ′
j . By Proposition 5.7(3), Mj ∩M ′

j =
⨁︁

i∈I′′ Si is a direct sum of gr-simple 
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submodules Si not isomorphic to a shift of S for each i ∈ I ′′. If Mj ∩M ′
j ̸= 0, pick 

l0 ∈ L. By Proposition 5.7(3), Sl0
∼ = gr

⨁︁
i∈I′′′ Si for some I ′′′ ⊆ I ′′. Since, Sl0 is gr

simple, Sl0
∼ = gr Si0 for some i0 ∈ I ′′′, a contradiction.

(2) By construction, Mj ⊇
⨁︁

i∈I(j) Si. Let S be a gr-simple submodule of M that 
belongs to j. Since S is a cyclic R-module, S ⊆⨁︁n

t=1 Sit for some i1, . . . , in ∈ I. Note 

that if the composition S
ι 
↪→⨁︁n

t=1 Sit

pit→ Sit is not zero, where ι and pit are the natural 
inclusion and projection, respectively, then S ∼ = gr Sit . Thus, i1, . . . , in can be chosen to 
belong to I(j). Hence S ⊆∑︁i∈I(j) Si. Therefore, Mj ⊆

⨁︁
i∈I(j) Si. □

Although the next result applies for general graded rings, we turn our attention to 
gr-semisimple rings.

Lemma 5.11. Let S be a minimal graded ideal of the Γ-graded ring R. Suppose that S
belongs to j ∈ 𝒮(R). 

(1) Rj is a graded ideal of R.
(2) Let S′ be a minimal graded right ideal of R that belongs to j′ ∈ 𝒮(R). If j ̸= j′, then 

Rj ·Rj′ = 0.

Proof. Notice that S = S(e) for some e ∈ Γ0 by Lemma 5.1. Consider the family

ℱ := {T graded right ideal of R : there exists σ ∈ eΓ such that TR
∼ = gr S(σ)}.

Note that ℱ ̸= ∅ because S ∈ ℱ , and, by definition,

Rj =
∑︂
T∈ℱ

T,

which is a graded right ideal of R. Let us see that Rj is a graded ideal of R. Let 
δ ∈ Γ, a ∈ Rδ and take T ∈ ℱ . If aT = 0, we already have aT ⊆ Rj . So assume aT ̸= 0
and consider the following gr-homomorphism of Γ-graded right R-modules

φ : T (δ−1) −→ R

x ↦−→ ax

Since aT ̸= 0, it follows that T (d(δ)) = T is gr-simple. Therefore, by Lemma 5.1, we 
have that T (δ−1) is gr-simple. Thus, φ is injective, as it is nonzero. Therefore aT ∼ = gr
T (δ−1) ∼ = gr S(σ)(δ−1) = S(σδ−1) for some σ ∈ eΓ. It follows that aT ∈ ℱ and aT ⊆ Rj . 
Hence

aRj =
∑︂
T∈ℱ

aT ⊆ Rj .
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Since a was an arbitrary homogeneous element of R, it follows that Rj is also a left ideal 
and therefore it is a graded ideal of R.

(2) It is enough to show that S · S′ = 0. Assume, on the contrary, that s′S ̸= 0 for 
some homogeneous element s′ ∈ S′. Since S′ is a minimal graded right ideal, the nonzero 
graded right ideal s′S equals S′. Moreover, if δ = deg(s′), then φ : S → S′, s ↦→ s′s, is 
such that 0 ̸= φ ∈ HOM(S, S′)δ, a contradiction by Lemma 5.2. □
Lemma 5.12. Let R be a right gr-semisimple ring and suppose that {Si : i ∈ I} is a 
family of gr-simple graded right R-submodules of R such that R =

⨁︁
i∈I

Si. The following 

statements hold true. 

(1) Each gr-simple R-module is gr-isomorphic to a shift of some Si.
(2) For each e ∈ Γ0, there exists a finite subset Ie ⊆ I such that R(e) =

⨁︁
i∈Ie

Si.

(3) R is a right Γ0-artinian ring.

Proof. (1) Let S′ be a gr-simple R-module. Taking σ ∈ supp(S′) and 0 ̸= x ∈ S′
σ, we 

have the surjective gr-homomorphism

φ : R −→ S′(σ)

r ↦−→ xr

and thus S′(σ) ∼ = gr R
kerφ . On the other hand, since R =

⨁︁
i∈I

Si, there exists i ∈ I such 

that the projection π : Si −→ R
kerφ is nonzero. Therefore, π is a gr-isomorphism because 

it is a gr-homomorphism between gr-simple modules. Since S′ is gr-simple, we have 
S′ = S′(r(σ)) = S′(σ)(σ−1) and therefore

S′ ∼ = gr
R

kerφ (σ−1) ∼ = gr Si(σ−1).

(2) Set e ∈ Γ0. We have R(e) =
⨁︁
i∈I

Si(e). For each i ∈ I, since Si is gr-simple and 

Si(e) is a graded submodule of Si, we have Si(e) = 0 or Si(e) = Si. Therefore, there 
exists I ′ ⊆ I such that R(e) =

⨁︁
i∈I′

Si. So there exists a finite subset Ie ⊆ I ′ such that 

1e =
∑︁
i∈Ie

si, for certain si ∈ (Si)e \ {0}, i ∈ Ie. Hence

R(e) = 1eR ⊆
⨁︂
i∈Ie

siR =
⨁︂
i∈Ie

Si ⊆ R(e).

(3) It follows from (2). □
Our aim is now to express a gr-semisimple ring as a graded direct product of gr

simple rings. In the non-graded case, a finite direct product of semisimple rings is also 
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semisimple. Also, a direct product of a family of rings equals their direct sum if and only 
if the family is finite. In the groupoid-graded context this equivalence is not true as the 
following example shows.

Example 5.13. Let {Ri : i ∈ I} be an infinite family of rings with unity. Each Ri is a 
I × I-graded ring via Ri = (Ri)(i,i) and we have

∏︂gr

k∈I 
Rk =

⨁︂
(i,l)∈I×I

(︄∏︂
k∈I

(Rk)(i,l)

)︄
=
⨁︂
i∈I 

(︄∏︂
k∈I

(Rk)(i,i)

)︄
=
⨁︂
k∈I 

Rk. □

Motivated by this, we will say that a family {Rj : j ∈ J} of Γ-graded rings is summable 
if 
∏︂gr

j∈J 
Rj =

⨁︁
j∈J

Rj . The following characterization of summable families will be useful.

Proposition 5.14. Let {Rj : j ∈ J} be a family of Γ-graded rings. The following state
ments are equivalent.

(1) The family {Rj : j ∈ J} is summable.
(2) The set {j ∈ J : (Rj)σ ̸= 0} is finite for all σ ∈ Γ.
(3) The set {j ∈ J : (Rj)e ̸= 0} is finite for all e ∈ Γ0.
(4) The set {j ∈ J : Rj(e) ̸= 0} is finite for all e ∈ Γ0.

Proof. For each σ ∈ Γ, we have⎛⎝∏︂gr

j∈J 
Rj

⎞⎠
σ

=
∏︂
j∈J

(Rj)σ and

⎛⎝⨁︂
j∈J 

Rj

⎞⎠
σ

=
⨁︂
j∈J 

(Rj)σ .

Thus, {Rj : j ∈ J} is summable if and only if {j ∈ J : (Rj)σ ̸= 0} is finite for all σ ∈ Γ. 
Therefore, we obtain (1) ⇐⇒ (2).

(2) =⇒ (3) is clear.
(3) ⇐⇒ (4) follows from Lemma 2.7 which gives us (Rj)e ̸= 0 ⇐⇒ Rj(e) ̸= 0, for all 

e ∈ Γ0.
Finally, if Je := {j ∈ J : Rj(e) ̸= 0} is finite for all e ∈ Γ0, then given σ ∈ Γ we have 

that (Rj)σ ̸= 0 implies Rj(r(σ)) ̸= 0, i.e., j ∈ Jr(σ). Thus, (4) =⇒ (2). □
Now we are ready to show the main result of this subsection. We follow very close the 

proof of the ungraded case given in [24, p. 35-36].

Theorem 5.15. Suppose that R is a right gr-semisimple ring. The following statements 
hold true.

(1) Rj is a nonzero graded ideal of R for each j ∈ 𝒮(R).



58 Z. Cristiano et al. / Journal of Algebra 687 (2026) 1--116 

(2) {Rj : j ∈ 𝒮(R)} is a summable family of Γ-graded rings and R =
∏︁gr

j∈𝒮(R) Rj.
(3) Rj is a gr-simple right Γ0-artinian ring for each j ∈ 𝒮(R).

Proof. (1) By Lemma 5.11(1), Rj is a graded ideal of R for each j ∈ 𝒮(R). By 
Lemma 5.12(1), Rj ̸= 0 for each j ∈ 𝒮(R).

(2) By Lemma 5.10(1),

R =
⨁︂

j∈𝒮(R)

Rj . (5.3)

For each e ∈ Γ0, 1e =
∑︁

j∈𝒮(R) 1je where 1je ∈ (Rj)e and 1je ̸= 0 for only a finite 
number of j ∈ 𝒮(R). By Lemma 5.11(2), 1je is an idempotent such that 1jex = x and 
y1je = y for each x ∈ (Rj)γ , y ∈ (Rj)δ such that r(γ) = e and d(δ) = e. Hence Rj is 
object unital for each j ∈ 𝒮(R). Since 1je ̸= 0 for only a finite number of j ∈ 𝒮(R), 
Rj(e) ̸= 0 for only a finite number of j ∈ 𝒮(R). Thus, {Rj : j ∈ 𝒮(R)} is a summable 
family of Γ-graded rings by Proposition 5.14.

(3) Let j ∈ 𝒮(R). By Lemma 5.12(3), R is a Γ0-artinian right R-module, thus Rj is 
too because Rj(e) ⊆ R(e) for each e ∈ Γ0. By Lemma 5.11(2), this implies that Rj is a 
Γ0-artinian ring.

Let now I ̸= 0 be a graded ideal of Rj . Observe that I is also a graded ideal of R
by Lemma 5.11(2). Since R is a right Γ0-artinian ring, I contains a minimal graded 
right ideal T of R. By Lemma 5.10(2), T ∈ j. It is enough to show that I ⊇ Rj . Let 
S = S(e) for some e ∈ Γ′

0(R) be a gr-simple submodule of RR such that S ∈ j. There 
exists σ ∈ Γ with r(σ) = e and a gr-isomorphism φ : T → S(σ). Since T is a graded 
direct summand of RR by Proposition 5.7(1), T = aR for some homogeneous idempotent 
a ∈ R. Then aT = a(aR) = a2R = T . Now S(σ) = φ(T ) = φ(aT ) = φ(a)T . Moreover, 
S(σ) = S(r(σ)) = S(e) = S as sets. Since I is an ideal of R, S = φ(a)T ⊆ φ(a)I ⊆ I, as 
desired. □
5.3. Structure of gr-simple Γ0-artinian rings

As we have just shown in Theorem 5.15, a right gr-semisimple ring is the product 
of gr-simple right Γ0-artinian rings. Our objective is to characterize this latter class of 
graded rings as certain matrix rings over gr-division rings. Proposition 5.17 describes 
such matrix rings over gr-division rings and characterizes when they are gr-simple right 
Γ0-artinian rings. For that, we will need the following result first.

Lemma 5.16. Let D be a Γ-graded ring and let Σ = (Σi)i∈I ∈ 𝒫(Γ)I be a matricial 
sequence for D. Consider the Γ-graded ring R := MI(D)(Σ). Given i, j ∈ I, σi ∈ Σi and 
τj ∈ Σj we have that

HOMR(Er(τj)
jj R,E

r(σi)
ii R) ∼ = gr M1×1(D)(σi)(τj).
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Moreover,

ENDR(Er(σi)
ii R) ∼ = gr M1(D)(σi)

as graded rings.

Proof. It is well-known that if e is an idempotent of a ring X and M is a right X
module, then HomR(eR,M) → Me, f ↦→ f(e), is an isomorphism of additive groups 
and HomR(eR, eR) → eRe, f ↦→ f(e), is an isomorphism of rings. We apply this to the 
idempotent Er(τj)

jj of the ring R.
For each γ ∈ Γ, a homomorphism f ∈ HOMR(Er(τj)

jj R,E
r(σi)
ii R)γ is uniquely deter

mined by the element f(Er(τj)
jj ) ∈ (Er(σi)

ii RE
r(τj)
jj )γd(τj) because Er(τj)

jj ∈ Rd(τj). This 
means that

HOMR(Er(τj)
jj R,E

r(σi)
ii R) ∼ = gr E

r(σi)
ii RE

r(τj)
jj

∼ = gr M1×1(D)(σi)(τj). □
Proposition 5.17. Let D be a gr-division ring and Σ = (Σi)i∈I ∈ 𝒫(Γ)I a matricial 
sequence for D. Consider the Γ-graded ring R := MI(D)(Σ). The following assertions 
hold:

(1) ℱ := {Er(σi)
ii R : i ∈ I, σi ∈ Σi} is a family of gr-simple Γ-graded R-modules. 

Analogously, ℱ ′ := {RE
r(σi)
ii : i ∈ I, σi ∈ Σi} is a family of gr-simple left R-modules.

(2) Given i, j ∈ I, σi ∈ Σi and τj ∈ Σj we have that Er(σi)
ii R and Er(τj)

jj R are in the 
same isoshift class if and only if 1r(σi)D1r(τj) ̸= 0.

(3) For each i ∈ I and σ ∈ Σi we have

ENDR((Er(σ)
ii R)(σ−1)) ∼ = gr 1r(σ)D1r(σ).

(4) R =
⨁︁
S∈ℱ

S =
⨁︁

T∈ℱ ′
T .

(5) R is a right and left gr-semisimple ring.
(6) If D is a gr-prime ring, then R is a gr-simple ring.
(7) R is a gr-simple right (left) Γ0-artinian ring if and only if D is a gr-prime ring.

Proof. (1) Let i ∈ I and σi ∈ Σi. Consider the nonzero Γ-graded right R-module

S :=
(︂
E

r(σi)
ii

)︂
R

generated by the homogeneous element Er(σi)
ii ∈ Rd(σi). Let γ ∈ supp(S) and 0 ̸= s ∈ Sγ

(that is, s = (skl)kl where sil ∈ DσiγΣ−1
l

and skl = 0 if k ̸= i). Then there exists j ∈ I

such that sij ̸= 0. So, for each α ∈ Γ and x = (xkl)kl ∈ Sα, since xkl = skl = 0 for all 
k ̸= i, we have
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x =
∑︂
t∈I 

s · (︁s−1
ij xitEjt

)︁ ∈ sR.

Thus, S is gr-simple. For ℱ ′ we have a similar proof.
(2) By (1) and Lemma 5.2, we have that Er(τj)

jj R and Er(σi)
ii R are in the same 

isoshift class if and only if HOMR(Er(τj)
jj R,E

r(σi)
ii R) ̸= 0. But this is equivalent to 

M1×1(D)(σi)(τj) ̸= 0 by Lemma 5.16. Now, note that 1r(σi)D1r(τj) and M1×1(D)(σi)(τj)
are naturally identified.

(3) Using Proposition 3.5(2) and Lemma 5.16, we obtain that

HOMR(Er(σ)
ii R(σ−1), Er(σ)

ii R(σ−1))γ ∼ = HOM(Er(σ)
ii R,E

r(σ)
ii R)σ−1γσ

∼ = M1(D)(σ)σ−1γσ

∼ = Dσ(σ−1γσ)σ−1 = Dγ

for all γ ∈ r(σ)Γr(σ). If γ / ∈ r(σ)Γr(σ), HOMR(Er(σ)
ii R(σ−1), Er(σ)

ii R(σ−1))γ = 0. Thus, 
it is induced a gr-isomorphism of graded rings as in the statement.

(4) It is clear that

⨁︂
i∈I 

(︄ ⨁︂
σi∈Σi

E
r(σi)
ii R

)︄
= R =

⨁︂
i∈I 

(︄ ⨁︂
σi∈Σi

RE
r(σi)
ii

)︄
.

(5) It follows from (1) and (4).
(6) Suppose that D is a gr-prime ring and let U be a nonzero graded ideal of R. Then 

there is 0 ̸= x ∈ Uγ for some γ ∈ Γ. Thus, there exists i, j ∈ I such that the (i, j)-entry 
of x is xij ∈ Dσiγτ

−1
j
\ {0}, where σi ∈ Σi and τj ∈ Σj are (the unique) such that 

d(σi) = r(γ) and d(τj) = d(γ). So,

xijEij =
(︂
E

r(σi)
ii

)︂
x
(︂
E

r(τj)
jj

)︂
∈ U =⇒ E

r(σi)
ii = (xijEij)

(︁
x−1
ij Eji

)︁ ∈ U.

Take any k ∈ I and σ ∈ Σk. Since D is a gr-prime gr-division ring and r(σi), r(σ) ∈
Γ′

0(D), it follows from Proposition 4.1 that there exists 0 ̸= yik ∈ h(1r(σi)D1r(σ)). So

yikEik =
(︂
E

r(σi)
ii

)︂
(yikEik) ∈ U =⇒ E

r(σ)
kk =

(︁
y−1
ik Eki

)︁
(yikEik) ∈ U.

Therefore, for each a = (akl)kl ∈ h(R), we have

a =
∑︂
k,l∈I

aklEkl =
∑︂
k,l∈I

(︂
E

r(deg akl)
kk

)︂
(aklEkl) ∈ U

and it follows that U = R.
(7) By Proposition 4.1, D =

⨁︁
[e]∈Γ′

0/∼
D[e] where each D[e] is a graded ideal of D which 

is a gr-simple gr-division ring and D is not gr-prime if and only if Γ′
0/ ∼ possesses 
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more than one class. This implies that R is not gr-simple if D is not gr-prime because 
MI(D[e])(Σ) is an ideal of R for each e ∈ Γ0/ ∼.

Suppose D is gr-prime. By (6), R is gr-simple. By (5), R is left and right gr-semisimple. 
Now, R is a right and left Γ0-artinian ring by Lemma 5.12(3). □

Now we proceed to give some results with different characterizations of gr-simple right 
(left) Γ0-artinian rings in view.

Lemma 5.18. The following assertions hold:

(1) If R is a right Γ0-artinian ring, then, for each e ∈ Γ0, either R(e) = 0 or R(e)
contains a minimal graded right ideal of R.

(2) If R is a gr-simple ring and it has a minimal graded right ideal S = S(e) for some e ∈
Γ0, then there exists a dfinite sequence (σi)i∈I ∈ (eΓ)I such that RR

∼ = gr
⨁︁
i∈I

S(σi). 

In particular, R is a right gr-semisimple ring.

Proof. (1) Assume R is a right Γ0-artinian ring and take e ∈ Γ′
0(R). Since R(e) is a gr

artinian right R-module, R(e) contains a minimal graded right R-submodule S, which 
is a minimal graded right ideal of R.

(2) Suppose that R is a gr-simple ring and it has a minimal graded right ideal S. Then 
S = S(e) for some e ∈ Γ0 by Lemma 5.1. Consider the family

ℱ := {T graded right ideal of R : there exists σ ∈ eΓ such that TR
∼ = gr S(σ)}.

By Lemma 5.11(1),

RS =
∑︂
T∈ℱ

T

is a graded ideal of R. Since R is gr-simple and RS ̸= 0, we have

R =
∑︂
T∈ℱ

T ∼ = gr
∑︂
T∈ℱ

S(σT ),

where (σT )T∈ℱ ∈ (eΓ)ℱ is such that TR
∼ = gr S(σT ) for each T ∈ ℱ . By Proposi

tion 5.7(2), there exists I ⊆ ℱ such that

RR
∼ = gr

⨁︂
i∈I 

S(σi). (5.4)

Now note that (5.4) gives us

R(f) ∼ = gr
⨁︂
i∈I 

S(σi)(f) =
⨁︂
i∈I

d(σi)=f

S(σi)
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for each f ∈ Γ0. On the other hand, Lemma 5.12(2) tells us that R(f) is a direct sum of 
a finite number of S(σi). Therefore {i ∈ I : d(σi) = f} is a finite set for all f ∈ Γ0, that 
is, (σi)i∈I ∈ (eΓ)I is dfinite. □
Theorem 5.19. Suppose that R is a gr-simple ring. The following assertions are equiva
lent.

(1) R is a right gr-semisimple ring.
(2) R is a right Γ0-artinian ring.
(3) R has a minimal Γ-graded right ideal.

The equivalence of the left version of the foregoing statements holds true.

Proof. (1) =⇒ (2) it follows from 5.12(3).
(2) =⇒ (3) =⇒ (1) is Lemma 5.18.
In order to get the left versions of the statements, it suffices to note that R is a 

gr-simple ring if and only if Rop is a gr-simple ring. □
We give now the main step towards obtaining the structure of gr-simple right (left) 

Γ0-artinian rings.

Proposition 5.20. If R is a gr-simple right (resp. left) Γ0-artinian ring, then there exist 
e ∈ Γ0, a Γ-graded division ring D with supp(D) ⊆ eΓe and a dfinite sequence σ =
(σi)i∈I ∈ (eΓ)I such that

R ∼ = gr MI(D)(σ).

Furthermore, if R has unity, then I is finite.

Proof. Suppose that R is a gr-simple right Γ0-artinian ring. By Lemma 5.18, there 
exist e ∈ Γ0, a minimal graded right ideal S = S(e) of R and a dfinite sequence 
σ = (σi)i∈I ∈ (eΓ)I such that

RR
∼ = gr

⨁︂
i∈I 

S(σi) = S(σ).

By Corollary 5.4, D := ENDR(S) is a Γ-graded division ring and supp(D) ⊆ eΓe. By 
Lemma 3.4 and Corollary 3.14(1), we have gr-isomorphisms of Γ-graded rings

R ∼ = gr END(RR) ∼ = gr ENDR(S(σ)) ∼ = gr MI(D)(σ).

If R is a gr-simple left Γ0-artinian ring, then Rop is a gr-simple right Γ0-artinian 
ring. As we have just proved, there exist e ∈ Γ0, a Γ-graded division ring D with 
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supp(D) ⊆ eΓe and dfinite sequence σ = (σi)i∈I ∈ (eΓ)I such that Rop ∼ = gr MI(D)(σ). 
Then we get form Proposition 3.17(1) that

R ∼ = gr MI(D)(σ)op ∼ = gr MI(Dop)(σ).

Finally, note that if R has unity, then R(f) ̸= 0 only for a finite number of f ∈ Γ0. 
Then Lemma 5.12(2) guarantees the existence of finite subsets If ⊆ I, f ∈ Γ′

0(R), such 
that I =

⋃︁
f∈Γ′

0(R)
If is finite. □

Note that, in Proposition 5.20, D is graded by the isotropy group eΓe and we have 
r(σi) = e for all i ∈ I. But the Γ-grading on MI(D)(σ) may not be realized as a group 
grading (in the sense of [14, Definition 1.8]). In fact, if there exist i ̸= j such that 
d(σi) ̸= d(σj), then Ee

ii ∈ MI(D)(σ)d(σi) and Ee
jj ∈ MI(D)(σ)d(σj). Therefore, Ee

ii and 
Ee

jj are in distinct homogeneous components. This cannot occur in a group grading 
because Ee

ii and Ee
jj are nonzero homogeneous idempotents and thus both should be in 

the component corresponding to the unity of the group.
On the other hand, the Γ-grading on MI(D)(σ) is a refinement of a group grading, 

see [12, Corollary 2 of Section 4]. Indeed, for each f ∈ Γ′
0 := Γ′

0(MI(D)(σ)), take if ∈ I

such that d(σif ) = f . Then MI(D)(σ) is a eΓe-graded ring if we define the component 
of degree g ∈ eΓe as 

⨁︁
f,f ′∈Γ′

0

MI(D)(σ)σ−1
if

gσi
f′

. More generally, suppose that R =
⨁︁
γ∈Γ

Rγ

is a Γ-graded ring such that there is e ∈ Γ′
0(R) with the property that for all f ∈ Γ′

0(R)
there exists σf ∈ eΓf . In other words, the groupoid Γ′ := {γ ∈ Γ : 1r(γ), 1d(γ) ̸= 0} is 
connected. Then R is a eΓe-graded ring if we define the component of degree g ∈ eΓe as ⨁︁
f,f ′∈Γ′

0(R)
Rσ−1

f gσf′ . This is a coarsening of the Γ-grading of R.

Corollary 5.21. Let R be a gr-simple ring. Then R is a right Γ0-artinian ring if and only 
if R is a left Γ0-artinian ring.

Proof. By Proposition 5.20, if R is either a right or a left Γ0-artinian ring, then there 
exist e ∈ Γ0, a Γ-graded division ring D with supp(D) ⊆ eΓe and a dfinite sequence 
σ = (σi)i∈I ∈ (eΓ)I such that R ∼ = gr MI(D)(σ). But MI(D)(σ) is a right and left gr
semisimple ring by Proposition 5.17(5). It follows from Theorem 5.19 that MI(D)(σ) is 
a right and left Γ0-artinian ring. □
Remark 5.22. From now on, in view of Corollary 5.21, we shall be at liberty to drop the 
adjectives ``left'' and ``right'' and just talk about gr-simple Γ0-artinian rings. □

For a Γ-graded division ring D and Γ-graded right D-module V , we say that V is 
Γ0finite dimensional over D if V (e) has finite pseudo-dimension for each e ∈ Γ0.

Combining the previous results, we obtain the following characterization of gr-simple 
Γ0-artinian rings which is the main result of this section.
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Theorem 5.23. The following statements are equivalent.

(1) R is a gr-simple Γ0-artinian ring.
(2) There exist e ∈ Γ0, a Γ-graded division ring D with supp(D) ⊆ eΓe and a dfinite 

sequence σ := (σi)i∈I ∈ (eΓ)I such that

R ∼ = gr MI(D)(σ).

(3) There exist a gr-prime Γ-graded division ring D and a matricial sequence Σ :=
(Σi)i∈I ∈ 𝒫(Γ)I for D such that

R ∼ = gr MI(D)(Σ).

(4) There exist a Γ-graded division ring D with supp(D) ⊆ eΓe for some e ∈ Γ0 and a 
Γ-graded right D-module V which is Γ0finite dimensional over D such that

R ∼ = gr ENDD(V ).

(5) There exist a gr-prime Γ-graded division ring D and a Γ-graded right D-module V
which is Γ0finite dimensional over D such that

R ∼ = gr ENDD(V ).

Proof. Proposition 5.20 gives (1) =⇒ (2) and it is clear that (2) =⇒ (3).
Proposition 5.17(7) gives (3) =⇒ (1).
Let us see that (3) ⇐⇒ (5). If (3) holds, then just take V := D(Σ). Note that 

V has Γ0finite dimension because Σ is dfinite. So, applying Corollary 3.13(4), we 
get ENDD(V ) = END(D(Σ)) ∼ = gr MI(D)(Σ) ∼ = gr R. Conversely, if (5) holds, then 
Theorem 4.4(1) and Proposition 3.1(7) imply that V ∼ = gr

⨁︁
i∈I

D(σi) for a certain 

σ := (σi)i∈I ∈ ΓI with r(σi) ∈ Γ′
0(D) for each i ∈ I. Since V is Γ0finite dimen

sional, it follows that σ is dfinite and therefore matricial for D. Then Corollary 3.13(4) 
gives MI(D)(σ) ∼ = gr END(D(σ)) ∼ = gr ENDD(V ) ∼ = gr R.

The equivalence (2) ⇐⇒ (4) is proved analogously to (3) ⇐⇒ (5) using Corol
lary 3.14(2). □

In Section 6, we present another proof of Theorem 5.23 using a groupoid graded 
version of the Chevalley-Jacobson Density Theorem. In fact, we will obtain a slightly 
stronger result, for graded rings that are not necessarily object unital.

We end this subsection with some consequences of Theorem 5.23 about some impor
tant graded subrings.
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Proposition 5.24. Let R be a gr-simple Γ0-artinian ring. For each Δ0 ⊆ Γ0, the ring 
1Δ0R1Δ0 :=

⨁︁
e,f∈Δ0

1eR1f is also gr-simple Γ0-artinian. In particular, if e ∈ Γ0, then 
1eR1e is a gr-simple gr-artinian ring (as a group graded ring).

Proof. By Theorem 5.23, there exist e0 ∈ Γ0, a Γ-graded division ring D with supp(D) ⊆
e0Γe0 and a dfinite sequence σ = (σi)i∈I ∈ (e0Γ)I such that R ∼ = gr MI(D)(σ).

If Δ0 ⊆ Γ0, then

IΔ0 := {i ∈ I : d(σi) ∈ Δ0}

is such that

1Δ0R1Δ0
∼ = gr MIΔ0

(D)(σIΔ0
)

is a gr-simple Γ0-artinian ring, by Theorem 5.23. □
Inspired by [20, Subsection 1.4.1], the next example shows that there does not exist a 

full version of Proposition 5.24 for the subrings Re, e ∈ Γ0. In Proposition 5.26, we give 
a characterization of when the subrings Re are simple artinian.

Example 5.25. Let K be a division ring and G be a nontrivial group. Consider K with 
the trivial G-grading and take σ, τ ∈ G such that σ ̸= τ . Then M2(K)(σ, τ) is a gr-simple 
gr-artinian ring, but

M2(K)(σ, τ)eG =
(︃
K 0
0 K

)︃
is not a simple ring. □
Proposition 5.26. Let R be a Γ-graded ring. If R is a gr-simple Γ0-artinian ring, then Re

is a semisimple ring for all e ∈ Γ0. More precisely, suppose that R ∼ = gr MI(D)(σ) where 
e0 ∈ Γ0, D is a Γ-graded division ring with supp(D) ⊆ e0Γe0 and σ := (σi)i∈I ∈ (e0Γ)I
is a dfinite sequence. Fix e ∈ Γ′

0(R) and consider the finite set Ie := {i ∈ I : d(σi) = e}. 
The following statements hold true:

(1) There exist positive integers n1, ..., nk such that n1 + · · · + nk = |Ie| and Re
∼ = ∏︁n

k=1 Mnk
(De0).

(2) Re is a simple artinian ring if and only if Dσiσ
−1
j
̸= 0 for all i, j ∈ I with d(σi) =

d(σj) = e. In this case, Re
∼ = M|Ie|(De0).

Proof. Suppose that R is a gr-simple Γ0-artinian ring. The fact that Re is a semisimple 
ring for all e ∈ Γ0 will follow from (1) and Proposition 5.20.
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(1) Consider the following equivalence relation in Ie:

i ∼ j ⇐⇒ σiσ
−1
j ∈ suppD.

Let I1, ..., In be the equivalence classes of this relation. For each k = 1, ..., n and i, j ∈ Ik, 
we have, by Proposition 3.5(2),

Homgr-D(D(σj), D(σi)) ∼ = HOMD(D,D(σi))σ−1
j

= Homgr-D(D,D(σi)(σ−1
j ))

= HOMD(D,D)σiσ
−1
j

∼ = Dσiσ
−1
j
̸= 0

and it follows that D(σj) ∼ = gr D(σi). For each k = 1, ..., n, fix ik ∈ Ik and let nk := |Ik|. 
Set σ′ := (σ′

i)i∈I ∈ (e0Γ)I where σ′
i = σik if i ∈ Ik and σ′

i = σi if i / ∈ Ie. Then

D(σ) =
⨁︂
i/ ∈Ie

D(σi)⊕
⨁︂
i∈Ie

D(σi)

=
⨁︂
i/ ∈Ie

D(σi)⊕
n ⨁︂

k=1 

⨁︂
i∈Ik

D(σi)

∼ = gr
⨁︂
i/ ∈Ie

D(σi)⊕
n ⨁︂

k=1 
D(σik)(nk)

= D(σ′).

Thus, by Corollary 3.14(2), we obtain

R ∼ = gr ENDD(D(σ)) ∼ = gr ENDD(D(σ′)) ∼ = gr MI(D)(σ′).

Now, note that if (aij)ij ∈ MI(D)(σ′)e, then

aij ̸= 0 =⇒ Dσ′
iσ

′−1
j
̸= 0 =⇒ i ∼ j.

Therefore

Re
∼ = MI(D)(σ′)e ∼ = 

n ∏︂
k=1

Mnk
(De0). (5.5)

(2) follows from (5.5). □



Z. Cristiano et al. / Journal of Algebra 687 (2026) 1--116 67

5.4. Structure of gr-semisimple rings

In this subsection, we obtain a version of Wedderburn-Artin Theorem for gr
semisimple rings. For that, we begin with some technical results.

Proposition 5.27. Let {Rj : j ∈ J} be a summable family of Γ-graded right (left) gr
semisimple rings. Then R :=

∏︂gr

j∈J 
Rj is a right (resp. left) gr-semisimple ring.

Proof. We begin with the right case. For each j ∈ J , we can write Rj =
⨁︁

k∈Kj

Sjk for 

some family {Sjk : k ∈ Kj} of gr-simple Γ-graded right Rj-modules.
Fix j′ ∈ J and k ∈ Kj′ . We can make Sj′k a Γ-graded right R-module via s·(rj)j∈J :=

srj′ for all s ∈ Sj′k and (rj)j∈J ∈ R. Let us see that Sj′k is a gr-simple R-module. Let 
0 ̸= s ∈ h(Sj′k) and take any x ∈ Sj′k. Since sRj′ = Sj′k, there exists r′ ∈ Rj′ such that 
sr′ = x. Therefore, (rj)j∈J ∈ R, where rj′ = r′ and rj = 0 for all j ̸= j′, is such that 
s · (rj)j∈J = x. Thus, sR = Sj′k. From this we conclude that

R =
∏︂gr

j∈J 
Rj =

⨁︂
j∈J 

Rj =
⨁︂
j∈J 

⨁︂
k∈Kj

Sjk

is a direct sum of gr-simple right R-modules. Hence, R is a right gr-semisimple ring.
Suppose now that {Rj : j ∈ J} is a summable family of left gr-semisimple rings. So 

{(Rj)op : j ∈ J} is a summable family of right gr-semisimple rings. From what we have 

just proved, 
∏︂gr

j∈J 
(Rj)op is a right gr-semisimple ring. By Proposition 3.17(5), we have 

that Rop is right gr-semisimple. It follows that R is left gr-semisimple. □
Corollary 5.28. The Γ-graded ring R is a right gr-semisimple ring if and only if it is a 
left gr-semisimple ring.

Proof. If R is a right gr-semisimple ring, it follows from Theorem 5.15 that there exists 
a summable family {Rj : j ∈ J} of gr-simple Γ0-artinian rings such that R ∼ = gr

∏︂gr

j∈J 
Rj . 

By Corollary 5.21 and Theorem 5.19, each Rj is a left gr-semisimple ring. It follows from 
Proposition 5.27 that R is a left gr-semisimple ring.

Conversely, if R is a left gr-semisimple ring, then Rop is a right gr-semisimple ring. So, 
as we have just proved, Rop is a left gr-semisimple ring, that is, R is a right gr-semisimple 
ring. □
Remark 5.29. From now on, in view of Corollary 5.28, we shall be at liberty to drop the 
adjectives ``left'' and ``right'' and just talk about gr-semisimple ring. □

Combining previous results, we obtain the following characterization of gr-semisimple 
rings that can be seen as a version of the Wedderburn-Artin Theorem.
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Theorem 5.30. The following statements are equivalent for the Γ-graded ring R.

(1) R is a gr-semisimple ring.
(2) There exist (ej)j∈J ∈ (Γ0)J and, for each j ∈ J , a Γ-graded division ring Dj with 

supp(Dj) ⊆ ejΓej and a dfinite sequence σj := (σjk)k∈Kj
∈ (ejΓ)Kj such that the 

family {MKj
(Dj)(σj) : j ∈ J} is summable and

R ∼ = gr
∏︂gr

j∈J 
MKj

(Dj)(σj).

(3) There exists a set J and, for each j ∈ J , a gr-prime Γ-graded division ring Dj

and a matricial sequence Σj := (Σjk)k∈Kj
∈ 𝒫(Γ)Kj for Dj such that the family 

{MKj
(Dj)(Σj) : j ∈ J} is summable and

R ∼ = gr
∏︂gr

j∈J 
MKj

(Dj)(Σj).

(4) There exists a summable family {Rj : j ∈ J} of gr-simple Γ0-artinian rings such 
that

R ∼ = gr
∏︂gr

j∈J 
Rj .

Proof. (1) =⇒ (2): By Theorem 5.15, the summable family {Rj}j∈𝒮(R) of gr-simple 
Γ0-artinian rings is such that R =

∏︁gr
j∈𝒮(R) Rj . By Theorem 5.23, for each j ∈ 𝒮(R), 

Rj
∼ = gr MKj

(Dj)(σj) where Dj is a Γ-graded division ring with supp(Dj) ⊆ ejΓej for 
some ej ∈ Γ0 and σj = (σjk)k∈Kj

∈ (ejΓ)Kj is a dfinite sequence.
(2) =⇒ (3): It is clear.
(3) =⇒ (4): By Proposition 5.17(7), Rj := MKj

(Dj)(Σj) is a gr-simple Γ0-artinian 
ring for all j ∈ J .

(4) =⇒ (1): Theorem 5.19 tells us that each Rj is gr-semisimple. Therefore, R is 
gr-semisimple by Proposition 5.27. □

Note that if R is a gr-semisimple ring with unity, then Γ′
0(R) is finite and it follows 

that, in Theorem 5.30(2), we have that

Kj =
⋃︂

e∈Γ′
0(R)

{k ∈ Kj : d(σjk) = e}

is finite for all j ∈ J and

J =
⋃︂

e∈Γ′
0(R)

{j ∈ J : MKj
(Dj)(σj)e ̸= 0}

is finite.
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Remark 5.31. One can prove (1) =⇒ (2) in Theorem 5.30, using a more traditional 
argument. Suppose that {Ti : i ∈ I} is a family of gr-simple graded right R-submodules 
of R such that R =

⨁︁
i∈I

Ti. Let {Sj : j ∈ J} be a subset of {Ti : i ∈ I} formed by 

exactly one representative of each isoshift class. For each j ∈ J , let ej ∈ Γ0 be such 
that Sj = Sj(ej). Grouping together the modules that are in the same class, we obtain 
a sequence σj := (σjk)k∈Kj

∈ (ejΓ)Kj for each j ∈ J such that

RR
∼ = gr

⨁︂
j∈J 

Sj(σj). (5.6)

From Lemma 5.2, we have that HOMR (Sj(σj), Sj′(σj′)) = {0}, for distinct j, j′ ∈ J . 
So we can apply Corollary 3.12 which, together with Lemma 3.4, gives us the following 
gr-isomorphisms of Γ-graded rings:

R ∼ = gr END(RR) ∼ = gr
∏︂gr

j∈J 
ENDR(Sj(σj)). (5.7)

By Lemma 5.12(2), for each e ∈ Γ0, we have that R(e) is gr-isomorphic to a direct sum 
of a finite number of Sj(σjk). Thus, it follows from (5.6) that, for all j ∈ J , Kj,e := {k ∈
Kj : d(σjk) = e} and Je := {j ∈ J : Kj,e ̸= ∅} are finite sets. The finiteness of the sets 
Kj,e implies that each σj is dfinite and therefore we can use Corollary 3.14(1). Hence, 
(5.7) gives us R ∼ = gr

∏︂gr

j∈J 
MKj

(Dj)(σj), where, for each j ∈ J , Dj := ENDR(Sj). The 

fact that {MKj
(Dj)(σj) : j ∈ J} is a summable family follows from Proposition 5.14, 

the finiteness of Je (e ∈ Γ0) and the equality

Je = {j ∈ J : MKj
(Dj)(σj)e ̸= 0},

for all e ∈ Γ0. If MKj
(Dj)(σj)e ̸= 0, e ∈ Γ0, then there exist k, l ∈ Kj such that 

(Dj)σjkeσ
−1
jl
̸= 0. In particular, σjkeσ

−1
jl is defined. Thus, we obtain k ∈ Kj,e and there

fore j ∈ Je. Conversely, if j ∈ Je, then taking k ∈ Kj,e, i.e., d(σjk) = e, we have that 
0 ̸= E

ej
kk ∈ MKj

(Dj)(σj)e. □
The following results are about the relation between the gr-semisimplicity of a 

groupoid graded ring and certain important graded subrings.

Proposition 5.32. Let R be a Γ-graded gr-semisimple ring. The following statements hold 
true.

(1) If Δ0 ⊆ Γ0, then 1Δ0R1Δ0 :=
⨁︁

e,f∈Δ0
1eR1f is a gr-semisimple ring.

(2) If e ∈ Γ0, then 1eR1e is a gr-semisimple ring.
(3) If e ∈ Γ0, then Re is a semisimple ring.
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Proof. By Theorem 5.30, there exists a summable family {Rj : j ∈ J} of gr-simple 
Γ0-artinian rings such that

R ∼ = gr
∏︂gr

j∈J 
Rj .

(1) Let Δ0 ⊆ Γ0. By Proposition 5.24, 1Δ0Rj1Δ0 is a gr-simple Γ0-artinian ring, in 
particular gr-semisimple, for all j ∈ J . It is clear from Proposition 5.14, that {1Δ0Rj1Δ0 :
j ∈ J} is a summable family. Then

1Δ0R1Δ0
∼ = gr

∏︂gr

j∈J 
1Δ0Rj1Δ0

is a gr-semisimple ring, by Proposition 5.27.
(2) Set Δ0 = {e}. Since 1Δ0R1Δ0 = 1eR1e, the result follows from (1).
(3) Let e ∈ Γ0. By Proposition 5.26, (Rj)e is a semisimple ring for all j ∈ J . By 

Proposition 5.14, the set Je := {j ∈ J : (Rj)e ̸= 0} is finite and it follows that Re
∼ = ∏︁

j∈Je
(Rj)e is a semisimple ring. □

In general, the converse of items (1)--(3) in Proposition 5.32 are not true as the fol
lowing example shows.

Example 5.33. Let K be a division ring and Γ := {1, 2} × {1, 2}. Consider the ring 

R :=
(︃
K K
0 K

)︃
Γ-graded via R(i,j) := EiiREjj for each 1 ≤ i ≤ j ≤ 2. Then R(1,1) and 

R(2,2) are semisimple rings. However, R is not a gr-semisimple ring because E12R is not 
a direct summand of RR. □

Before obtaining some important cases where the converse of items (1)--(3) in Propo
sition 5.32 hold, we need some definitions. Let e ∈ Γ0. For a Γ-graded ring R, we say 
that R is right e-faithful if, for each, γ ∈ eΓ and 0 ̸= a ∈ Rγ , there exists r ∈ Rγ−1 such 
that 0 ̸= ar ∈ Re. We will say that R(e) is {e}-faithful if, for each 0 ̸= a ∈ h(R(e)), there 
exists r ∈ h(R) such that 0 ̸= ar ∈ 1eR1e. Clearly, if R is right e-faithful, then R(e) is 
{e}-faithful. We also say that R is strongly Γ-graded if RγRδ = Rγδ for all γ, δ ∈ Γ. It is 
not difficult to see that if R is strongly Γ-graded, then R is right e-faithful for all e ∈ Γ0. 
The previous concepts generalize items (2) and (3) of [6, Definition 7 (p. 536)].

Proposition 5.34. Let R be a Γ-graded ring.

(1) If, for all e ∈ Γ0, Re is a semisimple ring and R is right e-faithful, then R is a 
gr-semisimple ring.

(2) If, for all e ∈ Γ0, 1eR1e is a gr-semisimple ring and R(e) is {e}-faithful, then R is 
a gr-semisimple ring.
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Proof. (1) Suppose that e ∈ Γ0, R is right e-faithful and 1e = s1 + · · · + sn, where 
s1, ..., sn ∈ Re and siRe is a simple Re-module for each i = 1, ..., n. We will show that 
each siR is a gr-simple R-module. Fix i = 1, ..., n and 0 ̸= a ∈ siR. By e-faithfulness, 
there exists r ∈ h(R) such that 0 ̸= ar ∈ Re. Since 0 ̸= ar ∈ (siR)e = siRe, it follows 
from simplicity that arRe = siRe. In particular, si ∈ arRe ⊆ aR and thus aR = siR. 
Hence R(e) = 1eR =

∑︁n
i=1 siR is a gr-semisimple R-module.

(2) Suppose that e ∈ Γ0, R(e) is {e}-faithful and 1e = s1+· · ·+sn, where s1, ..., sn ∈ Re

and si(1eR1e) is a gr-simple 1eR1e-module for all i = 1, ..., n. It suffices to show that 
each siR is a gr-simple R-module. Fix i = 1, ..., n and 0 ̸= a ∈ siR. Take r ∈ h(R)
such that 0 ̸= ar ∈ 1eR1e. Then 0 ̸= ar ∈ 1e(siR)1e = si(1eR1e) and it follows that 
ar(1eR1e) = si(1eR1e). Thus, si ∈ aR and therefore aR = siR. □
Corollary 5.35. For a strongly Γ-graded ring R, the following assertions are equivalent:

(1) R is a gr-semisimple ring.
(2) 1eR1e is a gr-semisimple ring for all e ∈ Γ0.
(3) Re is a semisimple ring for all e ∈ Γ0. □
Corollary 5.36. For a gr-prime strongly Γ-graded ring R, the following assertions are 
equivalent:

(1) R is a gr-simple Γ0-artinian ring.
(2) 1eR1e is a gr-simple gr-artinian ring for all e ∈ Γ0.

Proof. The result follows from Corollary 5.35, noting that each 1eR1e, e ∈ Γ0, is a 
gr-prime ring. □

Following [10, Definition 12], we will say that the Γ-graded ring R is an object crossed 
product if, for each γ ∈ Γ, there exists an invertible element in Rγ . Object crossed 
products are strongly graded. In fact, for each σ, τ ∈ Γ with d(σ) = r(τ), taking an 
invertible element u ∈ Rτ , we have

Rστ = Rστ1d(τ) = Rστu
−1u ⊆ RσRτ .

Furthermore, [10, Proposition 16], says that the object crossed products are precisely 
the Γ-graded rings of the form A⋊α

β Γ, where (A,Γ, α, β) is an object crossed system as 
in Example 2.2(3). In this context, we have:

Proposition 5.37. Let (A,Γ, α, β) be an object crossed system. Then A ⋊α
β Γ is a gr

semisimple ring if and only if Ae is a semisimple ring for all e ∈ Γ0.

Proof. The result follows from Corollary 5.35, because (A⋊α
β Γ)e ∼ = Ae for all e ∈ Γ0. □
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Corollary 5.38. Let (A,Γ, α, β) be an object crossed system. The following assertions 
hold:

(1) If Γ is connected and Ae is a prime ring for all e ∈ Γ0, then A ⋊α
β Γ is a gr-prime 

ring. The converse holds if, for each e ∈ Γ0 and σ ∈ eΓe, we have ασ = idAe
.

(2) If Γ is connected and Ae is a simple artinian ring for all e ∈ Γ0, then A ⋊α
β Γ is a 

gr-simple Γ0-artinian ring. The converse holds if, for each e ∈ Γ0 and σ ∈ eΓe, we 
have ασ = idAe

.

Proof. (1) Suppose that Γ is connected and Ae is a prime ring for all e ∈ Γ0. Let σ, τ ∈ Γ, 
0 ̸= a ∈ Ar(σ) and 0 ̸= b ∈ Ar(τ). Take γ ∈ d(σ)Γr(τ). Then 0 ̸= ασ(αγ(b)) ∈ Ar(σ). 
Since Ar(σ) is prime, there exists x ∈ Ar(σ) such that axασ(αγ(b)) ̸= 0. Then α−1

σ (x) ∈
Ad(σ) = Ar(γ) and

(auσ)(α−1
σ (x)uγ)(buτ ) = (axβσ,γuσγ)(buτ ) = axβσ,γασγ(b)βσγ,τuσγτ

= axασ(αγ(b))βσ,γβσγ,τuσγτ

is nonzero because axασ(αγ(b)) ̸= 0 and βσ,γ , βσγ,τ are invertible in Ar(σ). Thus A⋊α
β Γ

is a gr-prime ring.
Now suppose that A ⋊α

β Γ is a gr-prime ring and, for each e ∈ Γ0 and σ ∈ eΓe, we 
have ασ = idAe

. Γ is connected because

(1Ae
ue)A⋊α

β Γ(1Af
uf ) ̸= 0 =⇒ eΓf ̸= ∅

for all e, f ∈ Γ0. Fix e ∈ Γ0 and let a, b ∈ Ae \ {0}. Since A⋊α
β Γ is gr-prime, there exist 

σ ∈ eΓe and x ∈ Ae such that (aue)(xuσ)(bue) ̸= 0. Then

0 ̸= (aue)(xuσ)(bue) = (axuσ)(bue) = axbuσ

because ασ = idAe
, and it follows that axb ̸= 0. Hence, Ae is a prime ring.

(2) If Γ is connected and Ae is a simple artinian ring for all e ∈ Γ0, it follows from 
(1) and Proposition 5.37 that A ⋊α

β Γ is a gr-prime gr-semisimple ring. Conversely, if 
A ⋊α

β Γ is a gr-simple Γ0-artinian ring and, for each e ∈ Γ0 and σ ∈ eΓe, we have 
ασ = idAe

, it follows from (1) and Proposition 5.37 that Ae is a prime semisimple ring 
for all e ∈ Γ0. □

We observe that Corollary 5.38 applies for object twisted groupoid rings [10, Definition 
22].

If D is a Γ-graded division ring and Σ = (Σi)i∈I ∈ 𝒫(Γ)I is a matricial sequence for 
D, then R := MI(D)(Σ) is a gr-semisimple ring by Proposition 5.17(5). On the other 
hand, R can also be described as in Theorem 5.30(2). The next result gives an explicit 
way of passing from the former to the latter description of R.
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Proposition 5.39. Let D be a Γ-graded division ring, Σ := (Σi)i∈I ∈ 𝒫(Γ)I be a matricial 
sequence for D and let R := MI(D)(Σ). Consider

Ξ :=
{︄

[r(σ)] ∈ Γ′
0(D)/ ∼ : σ ∈

⋃︂
i∈I

Σi

}︄

where ∼ is the gr-primality relation on Γ′
0(D). Let Σ :=

⋃︁
i∈I

{i} ×Σi. For each ξ ∈ Ξ, let 

Σξ := {(i, σ) ∈ Σ : r(σ) ∈ ξ} and fix (iξ, σξ) ∈ Σξ. Then, for each ξ ∈ Ξ, there exists 
(γi,σi

)(i,σi)∈Σξ
∈ ∏︁

(i,σi)∈Σξ

supp(1r(σξ)D1r(σi)) such that

R ∼ = gr
∏︂gr

ξ∈Ξ 
MΣξ

(1r(σξ)D1r(σξ))(γξ),

where γξ := (γi,σi
σi)(i,σi)∈Σξ

∈ (r(σξ)Γ)Σξ .

Proof. First notice that Σ =
⋃︁
ξ∈Ξ

Σξ and this is a union of disjoint sets. Let (i, σi) ∈ Σ

and take (the unique) ξ ∈ Ξ such that r(σi) ∈ ξ. Thus, [r(σξ)] = [r(σi)], i.e., there exists 
γi,σi

∈ (suppD) ∩ r(σξ)Γr(σi). Then, taking 0 ̸= ui,σi
∈ Dγi,σi

we have that

E
r(σi)
ii R −→ E

r(σξ)
iξiξ

R

x ↦−→ (ui,σi
Eiξi)x

is an isomorphism of degree σ−1
ξ γi,σi

σi = deg(ui,σi
Eiξi). Therefore,

RR =
⨁︂
i∈I

σi∈Σi

E
r(σi)
ii R =

⨁︂
ξ∈Ξ 

⎛⎝ ⨁︂
(i,σi)∈Σξ

E
r(σi)
ii R

⎞⎠ ∼ = gr
⨁︂
ξ∈Ξ 

Sξ(γξ),

where Sξ :=
(︂
E

r(σξ)
iξiξ

R
)︂

(σ−1
ξ ) and γξ := (γi,σi

σi)(i,σi)∈Σξ
∈ (r(σξ)Γ)Σξ . By Propo

sition 5.17(2), the gr-simple R-module 
(︂
E

r(σξ)
iξiξ

R
)︂

(σ−1
ξ ) is in the same isoshift class 

of 
(︂
E

r(σξ′ )
iξ′ iξ′

R
)︂

(σ−1
ξ′ ) if and only if 1r(σξ)D1r(σξ′ ) ̸= 0, and this is equivalent to 

ξ = [r(σξ)] = [r(σξ′)] = ξ′. From Lemma 5.2, we have that HOMR(Sξ(γξ), Sξ′(γξ′)) =
{0} for distinct ξ, ξ′ ∈ Ξ. So we can apply Corollary 3.12 which, together with Lemma 3.4, 
gives us the following gr-isomorphisms of Γ-graded rings

R ∼ = gr END(RR) ∼ = gr
∏︂gr

ξ∈Ξ 
ENDR(Sξ(γξ)). (5.8)

Now note that ENDR(Sξ) = ENDR((Er(σξ)
iξiξ

R)(σ−1
ξ )) ∼ = gr 1r(σξ)D1r(σξ) by Proposi

tion 5.17(3). Hence, (5.8) and Corollary 3.14(1) give
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R ∼ = gr
∏︂gr

ξ∈Ξ 
MΣξ

(1r(σξ)D1r(σξ))(γξ). □

As a consequence, we have the following result, which shows how to decompose graded 
division rings as a product of matrix rings.

Corollary 5.40. Let D be a Γ-graded division ring and consider the gr-primality relation 
∼ defined on Γ′

0 := Γ′
0(D). Then, for each [e] ∈ Γ′

0/ ∼, there exists γ[e] := (γf )f∈[e] ∈∏︁
f∈[e]

supp(1eD1f ) such that

D ∼ = gr
∏︂gr

[e]∈Γ′
0/∼

M[e](1eD1e)(γ[e]).

Proof. By Remark 3.16(1), D ∼ = gr M1(D)(Γ′
0). Now apply Proposition 5.39 for Ξ =

Γ′
0/ ∼, Σ = {1} × Γ′

0
∼ = Γ′

0, Σ[e] = {1} × [e] ∼ = [e] and σ[e] = e for each [e] ∈ Γ′
0/ ∼. □

Corollary 5.41. Let D be a gr-prime Γ-graded division ring, Σ := (Σi)i∈I ∈ 𝒫(Γ)I be a 
matricial sequence for D and consider R := MI(D)(Σ). Set Σ :=

⋃︁
i∈I

{i} × Σi and fix 

(i0, σ) ∈ Σ. Then there exists (γi,σi
)(i,σi)∈Σ ∈

∏︁
(i,σi)∈Σ

supp(1r(σ)D1r(σi)) such that

R ∼ = gr MΣ(1r(σ)D1r(σ))(γ),

where γ := (γi,σi
σi)(i,σi)∈Σ ∈ (r(σ)Γ)Σ.

Proof. It follows from Proposition 5.39, noting that, by Proposition 4.1(4), the gr
primality relation on Γ′

0(D) has a unique equivalence class. □
Corollaries 5.40 and 5.41 provide another proof of Theorem 4.2. Indeed, let D be a 

gr-prime Γ-graded division ring. By Remark 3.16(1), D ∼ = gr M1(D)(Γ′
0). Fix e ∈ Γ′

0 :=
Γ′

0(D). By Corollary 5.40 or Corollary 5.41, there exists (γf )f∈Γ′
0
∈ ∏︁

f∈Γ′
0

supp(1eD1f )

such that

D ∼ = gr M1(D)(Γ′
0) ∼ = gr MΓ′

0
(1eD1e) (γ) ,

where γ := (γf )f∈Γ′
0
.

We end this subsection with a consequence of the results in Section 3.6. We need 
some definitions first. Suppose that Γ is a connected groupoid and let R be a Γ-graded 
ring. Let e0 ∈ Γ0, G := e0Γe0 and {σe}e∈Γ0 as in (3.1). A (G × Γ0)-graded R-module 
M is gr-simple if M ̸= {0} and the only graded submodules of M are {0} and M . The 
(G× Γ0)-graded module M is gr-semisimple if it is a sum of (G× Γ0)-graded gr-simple 
submodules. A G-graded R-module M is gr-simple if M ̸= {0} and the only graded 
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submodules of M are {0} and M . The G-graded module M is gr-semisimple if it is a 
sum of G-graded gr-simple submodules.

Corollary 5.42. Suppose that Γ is a connected groupoid and let R be a Γ-graded ring. Let 
e0 ∈ Γ0, G := e0Γe0 and {σe}e∈Γ0 as in (3.1). The following statements are equivalent.

(1) R is a gr-semisimple Γ-graded ring.
(2) There exists e ∈ Γ0 such that any graded right R-module in the full subcategory 

eΓ− gr-R of Γ− gr-R is gr-semisimple.
(3) Any G-graded right R-module is gr-semisimple (as a G-graded module).
(4) Any (G×Γ0)-graded right R-module is gr-semisimple (as a (G×Γ0)-graded module).

Proof. The equivalence of (1) and (2) follows from Proposition 5.9 and Lemma 3.19, 
upon observing that a Γ-graded right R-module M is gr-semisimple if and only if M(e)
is gr-semisimple for every e ∈ Γ0.

The equivalence of (2), (3) and (4) follows from Proposition 3.20. □
5.5. On the uniqueness of the representation as matrix rings

The main aim of this subsection is to prove a kind of uniqueness of the decomposition 
in Theorem 5.30(2) for a gr-semisimple ring. The following general result, together with 
Theorem 5.45, provides such result.

Theorem 5.43. Let {Rj : j ∈ J} and {Tj : j ∈ J ′} be summable families of gr-simple 

rings. Then 
∏︂gr

j∈J 
Rj
∼ = gr

∏︂gr

j∈J ′
Tj if and only if there exists a bijection π : J → J ′ such 

that Rj
∼ = gr Tπ(j) for each j ∈ J .

Proof. Assume that Φ :
∏︂gr

j∈J 
Rj −→

∏︂gr

j∈J ′
Tj is a gr-isomorphism of rings. We denote 

R :=
∏︂gr

j∈J 
Rj and T :=

∏︂gr

j∈J ′
Tj . Given j ∈ J and k ∈ J ′, let pj : R→ Rj , p′k : T → Tk

be the canonical projections and ιj : Rj → R, ι′k : Tk → T be the canonical inclusions. 
Fix j0 ∈ J . We have that ιj0(Rj0) is a graded ideal of R and therefore Φ(ιj0(Rj0)) is a 
graded ideal of T =

⨁︁
j∈J ′

Tj . It is easy to see that

Φ(ιj0(Rj0)) =
⨁︂
j∈J ′

p′j(Φ(ιj0(Rj0))).

Since Φ ◦ ιj0 is an injective gr-homomorphism and Rj0 is gr-simple, it follows that 
Φ(ιj0(Rj0)) is a gr-simple ring and a graded ideal of T . Thus, there exists a unique 
π(j0) ∈ J ′ such that p′π(j0)(Φ(ιj0(Rj0))) ̸= {0}. Then p′π(j0)(Φ(ιj0(Rj0))) is a nonzero 
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graded ideal of the gr-simple ring Tπ(j0) and it follows that p′π(j0)(Φ(ιj0(Rj0))) = Tπ(j0). 
Hence

Φ(ιj0(Rj0)) = ι′π(j0)(Tπ(j0)). (5.9)

In particular, Rj0
∼ = gr Tπ(j0). It also follows from (5.9) that the function π : J → J ′ is 

injective. Finally, note that

∏︂gr

j∈J ′
Tj = Φ

⎛⎝∏︂gr

j∈J 
Rj

⎞⎠ = Φ

⎛⎝⨁︂
j∈J 

ιj(Rj)

⎞⎠ =
⨁︂
j∈J 

Φ(ιj(Rj)) =
⨁︂
j∈J 

ι′π(j)(Tπ(j))

and it follows that π is surjective as well. □
Proposition 5.44. Let H be a Γ-graded ring and Σ := (Σi)i∈I ∈ 𝒫(Γ)I be a fully matricial 
sequence for H. Let R := MI(H)(Σ). Fix i0 ∈ I and consider M :=

⨁︁
σ∈Σi0

(Er(σ)
i0i0

R)(σ−1). 

The following assertions hold:

(1) E
r(σi)
ii R ∼ = gr M(σi) for each i ∈ I and σi ∈ Σi.

(2) H ∼ = gr ENDR(M) as Γ-graded rings.
(3) For each δ, δ′ ∈ Γ with r(δ), r(δ′) ∈ Γ′

0(H), if M(δ) ∼ = gr M(δ′), then δ′δ−1 ∈
supp(H). And the converse holds if H is a Γ-graded division ring.

Proof. (1) Let i ∈ I, σi ∈ Σi and take σ ∈ Σi0 such that r(σ) = r(σi). So it is easy to 
see that

E
r(σi)
ii R −→

(︂
E

r(σ)
i0i0

R
)︂

(σ−1σi) = M(σi)

x ↦−→ E
r(σi)
i0i

x

is an isomorphism of right R-modules and it is graded since Er(σi)
i0i

∈ Rσ−1σi
.

(2) Consider

Φ : H −→ ENDR(M)

x ↦−→ Φ(x) : M →M

m ↦→ xm.

Let us see that Φ is well-defined and is graded. Let γ ∈ Γ and x ∈ Hγ . Let α ∈ Γ
and 0 ̸= m = (mkl)kl ∈ Mα =

(︂
E

r(σ)
i0i0

R
)︂

(σ−1)α ⊆ Rσ−1α where σ ∈ Σi0 is such 

that r(σ) = r(α). For each j ∈ I, we have mi0j ∈ HΣi0σ
−1αΣ−1

j
= HαΣ−1

j
. Therefore, 

xmi0j ∈ HγαΣ−1
j

= HΣi0τ
−1γαΣ−1

j
where τ ∈ Σi0 is such that r(τ) = r(γ). Since mkl = 0

for all k ̸= i0, it follows that xm ∈
(︂
E

r(τ)
i0i0

R
)︂
τ−1γα

= Mγα. Thus, Φ(x) ∈ ENDR(M)γ . 
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Clearly Φ respects sums, products and units. Hence, Φ is a gr-homomorphism of rings. 
It is injective because if x ∈ (ker Φ)γ with r(γ), d(γ) ∈ Γ′

0(H), then Ed(γ)
i0i0

∈ M and it 
follows that xEd(γ)

i0i0
= Φ(x)(Ed(γ)

i0i0
) = 0 from where x = 0. Finally, let us see that Φ is 

surjective. Suppose that γ ∈ Γ and 0 ̸= g ∈ ENDR(M)γ . Then

r(γ), d(γ) ∈ Γ′
0(ENDR M) = Γ′

0(M) = {r(σ) : σ ∈ Σi0} = Γ′
0(H).

Let σ, τ ∈ Σi0 such that r(σ) = d(γ) and r(τ) = r(γ). Since Er(σ)
i0i0

∈ Mσ and im g ⊆
M(r(γ)) =

(︂
E

r(τ)
i0i0

R
)︂

(τ−1), we have g(Er(σ)
i0i0

) ∈Mγσ =
(︂
E

r(τ)
i0i0

R
)︂
τ−1γσ

and

g(Er(σ)
i0i0

) = E
r(τ)
i0i0

g(Er(σ)
i0i0

)Er(σ)
i0i0

= xEi0i0

for some x ∈ HΣi0τ
−1γσΣ−1

i0
= Hγ . If m ∈M(d(γ)) =

(︂
E

r(σ)
i0i0

R
)︂

(σ−1), we have

g(m) = g(Er(σ)
i0i0

m) = g(Er(σ)
i0i0

)m = xm = Φ(x)(m).

Since g and Φ(x) have degree γ, it follows that they vanish on M(e) for all e ∈ Γ0\{d(γ)}. 
Thus g = Φ(x).

(3) First notice that, using Proposition 3.5(1) and the previous item, we get

Homgr-R(M(δ),M(δ′)) ∼ = HOMR(M,M(δ′))δ−1

= Homgr-R(M,M(δ′)(δ−1))

= HOMR(M,M)δ′δ−1

∼ = Hδ′δ−1

for all δ, δ′ ∈ Γ. Furthermore, if r(δ), r(δ′) ∈ Γ′
0(H) = Γ′

0(ENDR(M)) = Γ′
0(M), then 

M(δ),M(δ′) ̸= 0. Thus, if M(δ) ∼ = gr M(δ′), then 0 ̸= Homgr-R(M(δ),M(δ′)) ∼ = Hδ′δ−1

and therefore δ′δ−1 ∈ supp(H). If H is a Γ-graded division ring, then M is Γ0-simple 
by Proposition 5.17(1). In this case, if δ′δ−1 ∈ supp(H), then Homgr-R(M(δ),M(δ′)) ∼ = 
Hδ′δ−1 ̸= 0. But since M(δ) and M(δ′) are gr-simple, it follows that every nonzero 
element of Homgr-R(M(δ),M(δ′)) is a gr-isomorphism. □
Theorem 5.45. Let e, e′ ∈ Γ0, D,D′ be Γ-graded division rings with supp(D) ⊆ eΓe, 
supp(D′) ⊆ e′Γe′ and σ := (σi)i∈I ∈ (eΓ)I , δ := (δi)i∈I′ ∈ (e′Γ)I′ be dfinite sequences. 
Then MI(D)(σ) ∼ = gr MI′(D′)(δ) if and only if there exist a bijection π : I → I ′ and 
τ ∈ e′Γe such that D′ ∼ = gr M1(D)(τ−1) and δπ(i) ∈ τ(suppD)σi for each i ∈ I.

Proof. Let R := MI(D)(σ) and suppose that R ∼ = gr MI′(D′)(δ). Fix i0 ∈ I and let 
S :=

(︂
E

r(σi0 )
i0i0

R
)︂

(σ−1
i0

) which is a gr-simple R-module by Proposition 5.17(1). By Propo
sition 5.44, we have
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RR =
⨁︂
i∈I 

E
r(σi)
ii R ∼ = gr

⨁︂
i∈I 

S(σi) and D ∼ = gr ENDR(S).

Since R ∼ = gr MI′(D′)(δ), we similarly obtain a gr-simple R-module T such that

RR
∼ = gr

⨁︂
i∈I′

T (δi) and D′ ∼ = gr ENDR(T ).

Fix f ∈ Γ0 and consider the finite sets

If := {i ∈ I : d(σi) = f} and I ′f := {i ∈ I ′ : d(δi) = f}.

We have then

R(f) ∼ = gr
⨁︂
i∈If

S(σi) ∼ = gr
⨁︂
i∈I′

f

T (δi).

Since S and T are gr-simple, it follows from Proposition 5.5 that |If | = |I ′f | and there 
exists a bijection πf : If → I ′f such that S(σi) ∼ = gr T (δπf (i)) for each i ∈ If . Since 
I =

⋃︁
f∈Γ0

If and I ′ =
⋃︁

f∈Γ0

I ′f are disjoint unions it follows that we have a bijection 

π : I → I ′ given by π(i) = πf (i) when i ∈ If . Now notice that, for each i ∈ I, we have 
T = T (δπ(i))(δ−1

π(i)) ∼ = gr S(σiδ
−1
π(i)) and it follows that

S(σiδ
−1
π(i)) ∼ = gr S(σi0δ

−1
π(i0)).

By Proposition 5.44(3), we have σi0δ
−1
π(i0)δπ(i)σ

−1
i ∈ suppD for all i ∈ I. That is, taking

τ := δπ(i0)σ
−1
i0
∈ e′Γe

we have δπ(i) ∈ τ(suppD)σi for all i ∈ I. Finally, we have

D′ ∼ = gr ENDR(T ) ∼ = gr ENDR(S(σi0δ
−1
π(i0))) = ENDR(S(τ−1)) ∼ = gr M1(D)(τ−1),

where the last gr-isomorphism follows from Corollary 3.14(1).
Conversely, assume that there exist a bijection π : I → I ′, τ ∈ e′Γe, a gr-isomorphism 

of rings φ : M1(D)(τ−1) → D′ and we have δπ(i) ∈ τ(suppD)σi for all i ∈ I. For each 
i ∈ I, let γi ∈ suppD such that δπ(i) = τγiσi and fix ui ∈ Dγi

\ {0}. Define the following 
isomorphism of additive groups

Φ : MI(D)(σ) −→ MI′(D′)(δ)

dEij ↦−→ φ(uidu
−1
j )Eπ(i)π(j).

Φ is graded because, for each γ ∈ Γ, we have
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dEij ∈ MI(D)(σ)γ =⇒ d ∈ Dσiγσ
−1
j

=⇒ uidu
−1
j ∈ Dγiσiγσ

−1
j γ−1

j
= Dτ−1δπ(i)γδ

−1
π(j)τ

=⇒ (uidu
−1
j ) ∈ M1(D)(τ−1)δπ(i)γδ

−1
π(j)

=⇒ φ(uidu
−1
j ) ∈ D′

δπ(i)γδ
−1
π(j)

=⇒ φ(uidu
−1
j )Eπ(i)π(j) ∈ MI′(D′)(δ)γ .

Let us see now that Φ respects products. For this, let d, d̃ ∈ D and i, j, k, l ∈ I. If j ̸= k, 
then π(j) ̸= π(k) and we have

Φ((dEij)(d̃Ekl)) = Φ(0) = 0 = φ(uidu
−1
j )Eπ(i)π(j)φ(ukd̃u

−1
l )Eπ(k)π(l)

= Φ(dEij)Φ(d̃Ekl).

If j = k, then

Φ((dEij)(d̃Ekl)) = Φ(dd̃Eil)

= φ(uidd̃u
−1
l )Eπ(i)π(l)

= φ(uidu
−1
j ukd̃u

−1
l )Eπ(i)π(l)

= φ(uidu
−1
j )Eπ(i)π(j)φ(ukd̃u

−1
l )Eπ(k)π(l)

= Φ(dEij)Φ(d̃Ekl).

Finally, note that if f ∈ Γ0, then δπ(i) = τγiσi for all i ∈ I implies π(If ) = I ′f . Thus,

Φ(If ) = Φ

⎛⎝∑︂
i∈If

Ee
ii

⎞⎠ =
∑︂
i∈If

φ(1e)Eπ(i)π(i) =
∑︂
i∈If

1e′Eπ(i)π(i) =
∑︂
i∈I′

f

Ee′
ii = If .

Hence, Φ is a gr-isomorphism of rings. □
Remark 5.46. When Γ is a group, Theorem 5.45 can be stated as follows: Let G be a group, 
D,D′ be G-graded division rings and σ := (σ1, ..., σn) ∈ Gn, δ := (δ1, ..., δm) ∈ Gm. 
Then Mn(D)(σ) ∼ = gr Mm(D′)(δ) if and only if n = m and there exist a permutation 
π of {1, ..., n} and τ ∈ G such that D′ ∼ = gr M1(D)(τ−1) and δπ(i) ∈ τ(suppD)σi for 
each i = 1, ..., n. This is essentially what was achieved in [14, p. 32-33]. Therefore, 
Theorem 5.45 generalizes the group graded case and we believe that our proof here, 
when adapted to Γ being a group, provides a more elementary proof (or at least based 
on more elementary facts) of the result of [14]. □

Next we present a generalization of Theorem 5.45. As its proof has a more complicated 
notation, it follows the same idea of Theorem 5.45 and the main results of this section 
have already been proved, we present only a sketch of the proof.
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Theorem 5.47. Let D,D′ be Γ-graded division rings and Σ := (Σi)i∈I ∈ 𝒫(Γ)I , Δ :=
(Δi)i∈I′ ∈ 𝒫(Γ)I′ be fully matricial sequences for D e D′, respectively. Consider Σ :=⋃︁
i∈I

{i} × Σi and Δ :=
⋃︁
i∈I′
{i} × Δi. Then MI(D)(Σ) ∼ = gr MI′(D′)(Δ) if and only if 

there exist a bijection π : Σ → Δ and τ := (τe′)e′∈Γ′
0(D′) ∈

∏︁
e′∈Γ′

0(D′)
e′Γ(Γ′

0(D)) such 

that D′ ∼ = gr MΓ′
0(D′)(D)(τ−1) for τ−1 := (τ−1

e′ )e′∈Γ′
0(D′), and δ ∈ τr(δ)(suppD)σ for all 

(i, σ) ∈ Σ and (i′, δ) = π(i, σ).

Proof. Set R := MI(D)(Σ) and suppose that R ∼ = gr MI′(D′)(Δ). Fix i0 ∈ I and let 
S :=

⨁︁
σ∈Σi0

(Er(σ)
i0i0

R)(σ−1) which is a Γ0-simple R-module by Proposition 5.17(1). By 

Proposition 5.44, RR
∼ = gr

⨁︁
i∈I

S(Σi) and D ∼ = gr ENDR(S). Analogously, since R ∼ = gr

MI′(D′)(δ), we obtain and Γ0-simple R-module T such that RR
∼ = gr

⨁︁
i∈I′

T (Δi) and 

D′ ∼ = gr ENDR(T ). Set f ∈ Γ0 and consider the finite sets

Σf := {(i, σi) ∈ Σ : d(σi) = f} e Δf := {(i, δi) ∈ Δ : d(δi) = f}.

Then

R(f) ∼ = gr
⨁︂

(i,σi)∈Σf

S(σi) ∼ = gr
⨁︂

(i,δi)∈Δf

T (δi).

Since S and T are Γ0-simple, it follows from Proposition 5.5 that |Σf | = |Δf | and there 
exists a bijection πf : Σf → Δf such that S(σi) ∼ = gr T (δi′) for all (i, σi) ∈ Σf , where 
(i′, δi′) = πf (i, σi). Since the unions Σ =

⋃︁
f∈Γ0

Σf and Δ =
⋃︁

f∈Γ0

Δf are disjoint, we 

obtain a bijection π : Σ → Δ given by π(i, σi) = πd(σi)(i, σi). Fix e′ ∈ Γ′
0(D′), i′0 ∈ I ′

and δi′0 ∈ Δi′0 such that r(δi′0) = e′. Take (i0, σi0) ∈ Σ such that (i′0, δi′0) = π(i0, σi0). 
Now note that, for each i ∈ I, σi ∈ Σi and (i′, δi′) := π(i, σi).

T (r(δi′)) ∼ = gr S(σiδ
−1
i′ ).

It follows that S(σiδ
−1
i′ ) ∼ = gr T (e′) ∼ = gr S(σi0δ

−1
i′0

) whenever r(δi′) = e′. In this event, by 

Proposition 5.44(3), σi0δ
−1
i′0

δi′σ
−1
i ∈ suppD. That is,

τe′ := δi′0σ
−1
i0
∈ e′Γ(Γ′

0(D))

is such that δi′ ∈ τe′(suppD)σi. Therefore, we have

D′ ∼ = gr ENDR T = ENDR

⎛⎝ ⨁︂
e′∈Γ′

0(D′)

T (e′)

⎞⎠
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∼ = gr ENDR

⎛⎝ ⨁︂
e′∈Γ′

0(D′)

S(τ−1
e′ )

⎞⎠
= ENDR(S(τ−1))
∼ = gr MΓ′

0(D′)(D)(τ−1),

where the last gr-isomorphism follows from Corollary 3.13(2).
Conversely, suppose that there exist τ := (τe′)e′∈Γ′

0(D′) ∈
∏︁

e′∈Γ′
0(D′)

e′Γ(Γ′
0(D)) and 

a bijection π : Σ → Δ, together with a gr-isomorphism φ : MΓ′
0(D′)(D)(τ−1) → D′

and δ ∈ τr(δ)(suppD)σ whenever (i, σ) ∈ Σ and (i′, δ) = π(i, σ). For each (i, σ) ∈ Σ, 
let γi,σ ∈ suppD be such that δ = τr(δ)γi,σσ where (i′, δ) = π(i, σ). Fix also ui,σ ∈
Dγi,σ

\ {0}. It can be shown in the same way as in the proof of Theorem 5.45 that the 
map Φ : MI(D)(Σ) −→ MI′(D′)(Δ) defined by

Φ(dEij) = φ(ui,σi
du−1

j,σj
Er(δi′ )r(δj′ ))Ei′j′

for all i, j ∈ I and d ∈ 1r(σi)D1r(σj) and where (i′, δi′) = π(i, σi) and (j′, δj′) =
π(j, σj). □
6. The graded Jacobson-Chevalley density theorem

In this section, in contrast to the other sections of this paper, Γ-graded rings need not 
be object unital and Γ-graded modules need not be unital.

We begin by extending the definitions of gr-simple rings and modules for not neces
sarily object unital rings. Let R be a Γ-graded ring and M be a Γ-graded R-module. We 
say that M is gr-simple if MR ̸= 0 and the only graded submodules of M are {0} and 
M . And M is said to be faithful if its right annihilator is zero, that is,

annr(M) := {a ∈ R : Ma = 0} = {0}.

We say that R is a right gr-primitive ring if there exists a Γ-graded (right) R-module 
which is gr-simple and faithful. The graded ring R is a gr-simple ring if R2 ̸= 0 and the 
only graded ideals of R are {0} and R. The concepts of Γ0-artinian graded rings and 
modules are defined in the same way as in the object unital context. We observe that 
Theorem 5.3 is still valid for gr-simple R-modules not necessarily unital over Γ-graded 
rings not necessarily object unital.

Example 6.1. Let D be a Γ-graded division ring such that supp(D) ⊆ eΓe for some 
e ∈ Γ0 and V be a Γ-graded unital left D-module. Set R := ENDD(V ). Then V is a 
Γ-graded right R-module via x · t := (x)t for all x ∈ V e t ∈ R. Note that V = V (e). 
Moreover, if x, y ∈ h(V ) with x ̸= 0, then, extending (x) to a pseudo-basis of V , there 
exists g ∈ R such that (x)g = y. Since xR ̸= 0, it follows that VR is gr-simple and 
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faithful. Hence R is a right gr-primitive ring. If DV is Γ0finite dimensional, then it 
follows from Theorem 5.23 that ENDDop(V op) is a gr-simple Γ0-artinian ring. And from 
Proposition 3.17(2), we get that Rop is a gr-simple Γ0-artinian ring. Therefore R is a 
gr-simple Γ0-artinian ring. □

The aim of this section is to show, via a graded version of the Density Theorem, that 
all right gr-primitive rings which are right Γ0-artinian are described in Theorem 6.1.

Let D be a Γ-graded division ring and V be a Γ-graded unital left D-module. A graded 
subring T of ENDD(V ) is said to be a gr-dense subring of ENDD(V ) if for all n > 0, 
γ1, ..., γn ∈ Γ, pseudo-linearly independent sequence (u1, ..., un) ∈ Vγ1 × · · · × Vγn

and 
(v1, ..., vn) ∈ Vδ1 × · · · × Vδn with r(δi) = r(γi) for all i = 1, ..., n there exists t ∈ T such 
that (ui)t = vi for all i = 1, ..., n. By Corollary 4.5, ENDD(V ) is a gr-dense subring 
of ENDD(V ). In fact, if (u1, ..., un) ∈ Vγ1 × · · · × Vγn

is a pseudo-linearly independent 
sequence and (v1, ..., vn) ∈ Vδ1 × · · · × Vδn with r(δi) = r(γi) for all i = 1, ..., n, then, for 
each i = 1, ..., n, there exists ti ∈ ENDD(V )γ−1

i δi
such that (ui)ti = vi and (uj)ti = 0 for 

every j ̸= i. It suffices to take t := t1 + · · ·+ tn.

Lemma 6.2. Let R be a Γ-graded ring, S be a gr-simple R-module and D := ENDR(S). 
The following statements hold true.

(1) S = xR for all 0 ̸= x ∈ h(S).
(2) If DV is a graded D-submodule of DS with pdimD(V ) <∞ and x ∈ h(S) \ V , then 

there exists a ∈ h(R) such that xa ̸= 0 and V a = 0.

Proof. (1) Let 0 ̸= x ∈ h(S). Consider the graded R-submodule of S

X := {s ∈ S : sR = 0}.

Since SR ̸= 0, we have that X ̸= S and, thus, X = 0 because S is a gr-simple module. 
In particular, xR ̸= 0 and, therefore, xR = S because S is a gr-simple R-module.

(2) We prove the statement by induction on n = pdimD V . If n = 0, then V = {0}
and 0 ̸= x ∈ h(S). By (1), xR = S ̸= {0} and, hence, there exists a ∈ h(R) such that 
xa ̸= 0.

Now suppose that n ≥ 1 and that the result holds for n− 1. Let DV be a graded D
submodule of DS with pdimD V = n and x ∈ h(S) \V . Let (v1, ..., vn) be a pseudo-basis 
of DV . If n > 1, define

W :=
n−1⨁︂
i=1 

Dvi

and if n = 1, define W = 0. Consider

A = annr(W ) := {a ∈ R : Wa = 0}.
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Note that W is a graded left D-submodule of V and A is a graded right ideal of R. We 
claim that

W = {s ∈ S : sA = 0}.

By definition, W ⊆ {s ∈ S : sA = 0}. Moreover, if s ∈ h(S) \W , then the induction 
hypothesis implies the existence of a ∈ h(R) such that sa ̸= 0 and Wa = 0, that is, 
a ∈ A and sA ̸= 0. Thus the claim is proved.

Since vn / ∈ W , the claim implies that vnA ̸= 0. Now vnA is a nonzero graded R
submodule of the gr-simple R-module S and, hence, vnA = S. Finally, we prove the last 
step of the induction by way of contradiction. Suppose that there does not exist a ∈ h(R)
such that xa ̸= 0 and V a = 0. In other words,

vna = 0 =⇒ V a = 0 =⇒ xa = 0

for all a ∈ A. Then the following homomorphism of R-modules is well-defined

g : S −→ S

vna ↦−→ xa (a ∈ A).

Note that g ∈ Ddeg(x) deg(vn)−1 . We also have (x − g(vn))a = 0 for all a ∈ A. Hence, 
x− g(vn) ∈W . But this implies that

x = (x− g(vn)) + g(vn) ∈W ⊕Dvn = V,

a contradiction. □
Now we have the following groupoid graded version of the Jacobson-Chevalley Density 

Theorem.

Theorem 6.3. Let R be a Γ-graded right gr-primitive ring. Let S be a faithful gr-simple 
R-module and consider D := END(SR). Then R is gr-isomorphic to gr-dense subring of 
END(DS).

Proof. Define

φ : R −→ END(DS)

r ↦−→ φr : S → S

x ↦→ xr.

Clearly, φ is a gr-homomorphism of rings. It is also injective because φr = 0 implies that 
r ∈ annr(S) = 0. Hence, it is enough to show that imφ is a gr-dense subring of END(DS). 
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Notice also that S = S(e) for some e ∈ Γ0. Let n > 0, a pseudo-linearly independent 
sequence over D (u1, ..., un) ∈ h(S)n and (v1, ..., vn) ∈ h(S)n. For i ∈ {1, ..., n}, let 
Vi :=

n ⨁︁
j=1
j ̸=i

Duj . Since ui / ∈ Vi, it follows from Lemma 6.2(2) that there exists ai ∈ h(R)

such that uiai ̸= 0 and Viai = 0. By Lemma 6.2(1), we get uiaiR = S. Choose ci ∈ h(R)
such that uiaici = vi. Set

r := a1c1 + · · ·+ ancn.

Note that i ̸= j implies uiajcj ∈ Vjajcj = 0. Hence,

(ui)φr = uir =
n ∑︂

j=1 
uiajcj = uiaici = vi,

for all i = 1, ..., n. □
In order to obtain a graded version of the Wedderburn-Artin Theorem, we need the 

next result.

Proposition 6.4. Let D be a Γ-graded division ring, V be a Γ-graded unital left D-module 
and T be a gr-dense subring of ENDD(V ).

(1) If T is a right Γ0-artinian ring, then V has Γ0finite dimension.
(2) If V has Γ0finite dimension, then T = ENDD(V ).

Proof. (1) Suppose, by way of contradiction, that T is a right Γ0-artinian ring but there 
exists e ∈ Γ0 such that (e)V is of infinite pseudo-dimension over D. Then there exists 
a pseudo-linearly independent sequence (un)n∈N of homogeneous elements in (e)V . For 
each n ∈ N, consider the following graded right ideal of T :

An := {t ∈ T : (ui)t = 0 for all 1 ≤ i ≤ n}.

Since (u1, ..., un+1) is pseudo-linearly independent and T is a gr-dense subring of 
ENDD(V ), there exists tn ∈ T such that (ui)tn = 0 for all 1 ≤ i ≤ n and (un+1)tn =
un+1. Clearly, we can suppose that tn ∈ Td(deg(un+1)) = Te. We then have, tn ∈ An(e) \
An+1(e). In this way, we obtain the following strictly decreasing sequence of graded 
T -submodules of T (e):

A1(e) ⊋ A2(e) ⊋ A3(e) ⊋ · · · ,

contradicting that T (e) is gr-artinian.
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(2) Now suppose that DV is of finite Γ0-dimension and let us prove that T =
ENDD(V ). Let γ ∈ Γ and g ∈ ENDD(V )γ . Then g is totally determined by the im
age of the elements of a pseudo-basis (v1, ..., vn) of (r(γ))V because (Vα)g ⊆ Vαγ = {0}
if d(α) ̸= r(γ). Since T is gr-dense in ENDD(V ), there exists t ∈ T such that (vi)t = (vi)g
for all 1 ≤ i ≤ n. Therefore, g = t ∈ T . □
Theorem 6.5. Let R be a Γ-graded right Γ0-artinian ring. The following statements are 
equivalent.

(1) R is a gr-simple ring.
(2) R is a right gr-primitive ring.
(3) There exist a Γ-graded division ring D, e ∈ Γ0 and a Γ-graded unital left D-module 

V of finite Γ0-dimension over D such that supp(D) ⊆ eΓe and R ∼ = gr ENDD(V ).
(4) There exist e ∈ Γ0, a Γ-graded division ring D with supp(D) ⊆ eΓe and a dfinite 

sequence σ := (σi)i∈I ∈ (eΓ)I such that R ∼ = gr MI(D)(σ).

Proof. (1) =⇒ (2): The facts that R is a gr-simple ring, annl(R) is a graded ideal of R
and R2 ̸= 0, implies that annl(R) = 0. Since R is a nonzero Γ0-artinian ring, we can take 
e ∈ Γ0 such that R(e) ̸= 0 and a nonzero minimal graded submodule V of R(e). Then 
V R ̸= 0 because V ⊈ annl(R) = 0. Thus V is a gr-simple R-module. Since annr(V ) is 
a proper graded ideal of R because V R ̸= 0, it follows from the gr-simplicity of R that 
annr(V ) = 0 and, therefore, VR is faithful. Hence, R is a right gr-primitive ring.

(2) =⇒ (3): By Theorem 6.3, R is gr-isomorphic to a gr-dense subring of END(DS)
where S is a right faithful gr-simple R-module and D := END(SR). Since R is a right 
Γ0-artinian ring, Proposition 6.4 implies that DS has finite Γ0-dimension over D and 
R ∼ = gr END(DS).

(3) =⇒ (4): If (3) holds, it follows from Proposition 3.17(2) that Rop ∼ = gr
ENDDop V op. Since Dop is a Γ-graded division ring with supp(Dop) ⊆ eΓe and V op

is a Γ0finite dimensional Γ-graded right Dop-module, there exists a dfinite sequence 
σ := (σi)i∈I ∈ (eΓ)I such that V op ∼ = gr

⨁︁
i∈I

Dop(σi) and it follows from Corollary 3.14(2) 

that

Rop ∼ = gr ENDDop(Dop(σ)) ∼ = gr MI(Dop)(σ).

So (4) follows from Proposition 3.17(1).
(4) =⇒ (1): This implication follows from Theorem 5.23. □
One can define Γ0-simple modules in the same way as in the unital context. As a 

consequence, right Γ0-primitive ring can be defined as a Γ-graded ring for which there 
exists a faithful graded Γ0-simple R-module. Clearly, every right gr-primitive ring is a 
right Γ0-primitive ring. Note also that if R is a right Γ0-primitive ring and S is a faithful 
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right Γ0-simple module such that all S(e), e ∈ Γ′
0(S), are in the same isoshift class, then 

all S(e) are faithful and, thus, R is a right gr-primitive ring.
Following the idea of Example 6.1, it can be shown that if D is a Γ-graded division 

ring, V is a Γ-graded unital left D-module and R := ENDD(V ), then V is a faithful 
Γ0-simple right R-module. Hence R is a right Γ0-primitive ring. And if DV is of finite 
Γ0-dimension, then R is a Γ0-artinian gr-simple ring.

With similar proofs as the ones of the results in this section, one can prove the following 
results.

Theorem 6.6. Let R be a Γ-graded ring. Suppose that R is a right Γ0-primitive ring. Let 
S be a faithful Γ0-simple R-module and set D := END(SR). Then R is gr-isomorphic to 
a gr-dense subring of END(DS). □
Theorem 6.7. Let R be a Γ-graded right Γ0-artinian ring. The following statements are 
equivalent.

(1) R is a right Γ0-primitive ring.
(2) There exist a Γ-graded division ring D and a Γ-graded unital left D-module V of 

finite Γ0-dimension over D such that R ∼ = gr ENDD(V ).
(3) There exist a Γ-graded division ring and a dfinite sequence σ := (σi)i∈I ∈ ΓI such 

that R ∼ = gr MI(D)(σ). □
Suppose that R is a Γ-graded right gr-primitive ring but not right Γ0-artinian ring. 

Let S be a faithful gr-simple right R-module and D := END(SR). By Theorem 6.3 and 
Proposition 6.4(2), DS is not Γ0finite dimensional, that is, there exist e ∈ Γ0 and an 
infinite pseudo-linear D-independent sequence (vi)i∈N ∈ h((e)S)N . For each n ≥ 1, set 
Vn =

⨁︁n
i=1 Dvi, Rn = {r ∈ R : Vn · r ⊆ Vn} and In = {r ∈ R : Vn · r = 0}. Then Rn

is a Γ-graded ring and In is a graded ideal of Rn. Note that, for each i ≥ 1, we have 
Dvi ∼ = gr (σ−1

i )D via vi ↦→ 1r(σi), where σi := deg(vi). Then, by Proposition 3.17(4), we 
have

ENDD(Vn) ∼ = gr ENDD

(︄
n ⨁︂

i=1 
(σ−1

i )D
)︄
∼ = gr Mn(END(DD))(σ1, . . . , σn)

∼ = gr Mn(D)(σ1, . . . , σn).

By Theorem 6.3, there exists a gr-isomorphism

Rn/In −→ ENDD(Vn) ∼ = Mn(D)(σ1, . . . , σn)

for each n ≥ 1.
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7. Pseudo free module rings

We say that the Γ-graded ring R is a pseudo-free module ring, or a pfm ring for short, 
if every Γ-graded right R-module is pseudo-free. For example, by Theorem 4.4, Γ-graded 
division rings are pfm rings. The aim of this section is to study the class of pfm rings.

We begin with the next result that will be important when characterizing pfm rings.

Lemma 7.1. Let R =
⨁︁
γ∈Γ

Rγ be a Γ-graded ring. The following statements hold true.

(1) If R is a pfm ring, then R is a gr-semisimple ring.
(2) Conversely, suppose that R is a gr-semisimple ring. Then R is a pfm ring if and 

only if every gr-simple right R-module is pseudo-free.

Proof. (1) If every Γ-graded R-module is pseudo-free, then every Γ-graded R-module is 
gr-projective by Corollary 3.3. By Proposition 5.9, it follows that R is a gr-semisimple 
ring.

(2) Suppose that every gr-simple right R-module is pseudo-free. Since R is gr
semisimple, it follows from Proposition 5.9 that every Γ-graded right R-module is 
gr-semisimple. Thus, every Γ-graded right R-module is a direct sum of pseudo-free mod
ules. □

The foregoing result implies that the following inclusion relationships hold{︂
graded division rings

}︂
⊂
{︂

pfm rings
}︂
⊂
{︂

gr-semisimple rings
}︂
.

The next example shows that these inclusions are strict.

Example 7.2. Let D be a division ring.

(1) Let Γ = {e} be the trivial group(oid). If n ≥ 2, then R = Mn(D) is a gr-semisimple 
ring which is not a pfm ring because E11R is not a free R-module.

(2) Let Γ be the groupoid {1, 2} × {1, 2}. Consider D as a Γ-graded division ring with 
support concentrated in (1, 1). Set

R = M3(D)((1, 1), (1, 1), (1, 2)).

Then

R(1,1) =
[︄
D D 0
D D 0
0 0 0

]︄
, R(1,2) =

[︄0 0 D
0 0 D
0 0 0

]︄
,

R(2,1) =
[︄ 0 0 0

0 0 0
D D 0

]︄
, R(2,2) =

[︄0 0 0
0 0 0
0 0 D

]︄
.
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The identity elements of R are

I(1,1) =
[︄1 0 0

0 1 0
0 0 0

]︄
= E11 + E22, I(2,2) =

[︄0 0 0
0 0 0
0 0 1

]︄
= E33.

On the one hand, R is not a Γ-graded division ring because the homogenous element 
E11 ∈ R(1,1) is not invertible. Indeed, there does not exist A ∈ R such that E11A =
I(1,1). On the other hand, R is a gr-semisimple ring by Theorem 5.23(2). Now, the 
Γ-graded R-module S := E33 = R((2, 2)) is gr-simple, pseudo-free and it is such that

R = E11R⊕E22R⊕ E33R

= E13R⊕E23R⊕ E33R

∼ = gr S((2, 1))⊕ S((2, 1))⊕ S. (7.1)

By (7.1) and Lemma 5.12(1), every gr-simple R-module is gr-isomorphic to a shift 
of S. Therefore, every gr-simple graded R-module is pseudo-free. By Lemma 7.1(2), 
R is a pfm ring. □

We point out that, in Example 7.2(2), ℬ1 = {I(1,1)} and ℬ2 = {E13, E23} are two 
pseudo-bases of the Γ-graded R-module S = R((1, 1)). Thus, there is no uniqueness of the 
cardinality of pseudo-bases of Γ-graded R-modules over pfm rings, and as a consequence, 
over gr-semisimple rings. Such uniqueness will characterize gr-division rings, but we will 
also be able to define an invariant similar to dimension for pfm rings, see Section 7.2.

7.1. Characterization of pfm rings

We already know that pfm rings are gr-semisimple. Moreover, gr-semisimple rings are 
the product of summable families of gr-simple Γ0-artinian graded rings by Theorem 5.30. 
The next result characterizes gr-simple pfm rings. We then will use it to provide a 
characterization of pfm rings not necessarily gr-prime.

Theorem 7.3. Let R =
⨁︁
γ∈Γ

Rγ be a Γ-graded ring. The following statements are equiva

lent.

(1) R is a gr-simple pfm ring.
(2) R is a gr-prime pfm ring.
(3) There exist e0, e ∈ Γ0, a Γ-graded division ring D with supp(D) ⊆ e0Γe0, a non

empty set I and a dfinite sequence σ := (σi)i∈I ∈ (e0Γ)I such that

R ∼ = gr MI(D)(σ)

and Ie := {i ∈ I : d(σi) = e} has exactly one element.
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(4) R is a gr-simple ring and there exists e ∈ Γ0 such that R(e) is a gr-simple R-module.
(5) There exists e ∈ Γ0 such that R(e) is a gr-simple R-module and RR is gr-isomorphic 

to a direct sum of shifts of R(e).
(6) R is a gr-simple Γ0-artinian ring and there exists e ∈ Γ0 such that Re is a division 

ring.
(7) R is a right gr-primitive right Γ0-artinian ring and there exists e ∈ Γ0 such that Re

is a division ring.

Proof. (1) =⇒ (2): It is clear.
(2) =⇒ (3): Suppose that R is a gr-prime pfm ring. By Lemma 7.1(1), R is a 

gr-semisimple ring. The fact that R is gr-prime and Theorem 5.30(2) imply that there 
exist e0 ∈ Γ0, a Γ-graded division ring D with supp(D) ⊆ e0Γe0 and a dfinite sequence 
σ := (σi)i∈I ∈ (e0Γ)I such that R ∼ = gr MI(D)(σ). To ease the notation and without loss 
of generality, we can suppose that

R = MI(D)(σ).

Fix i0 ∈ I. Since Ee0
i0i0

R has a pseudo-basis, there exist γ0 ∈ Γ and a matrix (aij)ij ∈
(Ee0

i0i0
R)γ0 such that (aij)ij · X ̸= 0 for all 0 ̸= X ∈ Id(γ0)R. We will show that Id(γ0)

contains exactly one element. Suppose, on the contrary, that Id(γ0) has at least two 
different elements, say j1, j2. Hence, d(σj1) = d(σj2) = d(γ0). If ai0jt = 0, for some 
t = 1, 2, define

X = Ee0
jtjt

∈ Rd(σjt ) = Rd(γ0)

and if, otherwise, ai0j1 ̸= 0 and ai0j2 ̸= 0, define

X = a−1
i0j1

Ee0
j1i0

− a−1
i0j2

Ee0
j2i0

∈ Rγ−1
0

.

Notice that (aij)ij is a matrix whose all nonzero entries are in row i0. Thus, in both 
cases, we have (aij)ij ·X = 0 where X ∈ Id(γ0)R \ {0}, a contradiction.

(3) =⇒ (4): By Theorem 5.23, R is a gr-simple ring. Moreover, the fact that Ie
contains exactly one element implies that R(e) =

⨁︁
i∈Ie

Ee0
ii R is a gr-simple R-module by 

Proposition 5.17(1).
(4) =⇒ (5): It follows from Lemma 5.18(2).
(5) =⇒ (1): Suppose that

RR
∼ = gr

⨁︂
i∈I 

R(e)(σi)

for some (σi)i∈I ∈ ΓI . Since R(e) is a gr-simple R-module, R is a gr-semisimple ring. By 
Lemma 5.12(1), every Γ-graded gr-simple right R-module is gr-isomorphic to a shift of 
R(e), and therefore, pseudo-free. Now Lemma 7.1(2) implies (1).
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(4) =⇒ (6): R is a right Γ0-artinian ring by Theorem 5.19. By Lemma 3.4 and Corol
lary 5.4, the fact that R(e) is a gr-simple module implies that 1eR1e ∼ = gr ENDR(R(e))
is a gr-division ring. Therefore, Re is a division ring.

(6) =⇒ (3): By Theorem 5.23, there exist e0 ∈ Γ0, a Γ-graded division ring D and a 
dfinite sequence σ := (σi)i∈I ∈ (e0Γ)I such that supp(D) ⊆ e0Γe0 and R ∼ = gr MI(D)(σ). 
Then

MI(D)(σ)e ∼ = Re

is a division ring. Let Ie := {i ∈ I : d(σi) = e}. Then Ie =
∑︁
i∈Ie

Ee0
ii and Ie ̸= ∅. If i, j ∈ Ie

then, since MI(D)(σ)e is domain, we get that Ee0
ii E

e0
jj ̸= 0. This only happens if i = j. 

Therefore, Ie consists of exactly one element.
(6) ⇐⇒ (7) Follows from Theorem 6.5. □
Before providing the general characterization of pfm rings, we would like to point out 

that the product of pfm rings is not a pfm ring in general. Indeed, let Γ = {e} and D
be a (Γ-graded) division ring. Clearly, D is a pfm ring. Set R := D×D. The (Γ-graded) 
ring R is not a pfm ring because D× {0} is not a free R-module. However, we have the 
following result.

Proposition 7.4. Let {Rj : j ∈ J} be a family of Γ-graded rings. Set R :=
∏︂gr

j∈J 
Rj. If R is 

a pfm ring, then Rj is a pfm ring for each j ∈ J . The converse holds if Γ′
0(Rj)∩Γ′

0(Rk) =
∅ for different j, k ∈ J .

Proof. Suppose that R is a pfm ring. Let j0 ∈ J . Each Γ-graded Rj0-module MRj0
can 

be regarded as a right R-module via the action

x · (rj)j∈J = xrj0 for all x ∈M, (rj)j∈J ∈ R. (7.2)

Thus MR must have a pseudo-basis. Because of the action (7.2), such pseudo-basis must 
be a pseudo-basis of MRj0

. Therefore Rj0 is a pfm ring.
Suppose now that Rj is a pfm ring for each j ∈ J with Γ′

0(Rj) ∩ Γ′
0(Rk) = ∅ for 

different j, k ∈ J . Observe that the fact that Γ′
0(Rj) ∩ Γ′

0(Rk) = ∅ for different j, k ∈ J

implies that each (unital) right R-module M is of the form M =
⨁︁
j∈J

Mj where, for 

each j ∈ J , Mj :=
⨁︁

e∈Γ′
0(Rj)

M1e is a right Rj-module. The action is then given by 

(mj)j∈J (aj)j∈J = (mjaj)j∈J for all (mj)j∈J ∈ M, (aj)j∈J ∈ R. Thus, if each Rj is a 
pfm ring, then every Γ-graded right R-module is pseudo-free. □

Now we are ready to give the characterization of pfm rings not necessarily gr-prime. 
We point out that items (2) and (6) of Theorem 7.5 imply that R is a Γ-graded pfm ring 
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if and only if every Γ-graded left R-module is pseudo-free. In other words, being ``right 
pfm'' is synonymous with ``left pfm'' for Γ-graded rings.

Theorem 7.5. Let R =
⨁︁
γ∈Γ

Rγ be a Γ-graded ring. The following statements are equiva

lent.

(1) R is a pfm ring.
(2) There exist a family {Kj : j ∈ J} of non-empty sets, sequences (ej)j∈J , (fj)j∈J ∈

(Γ0)J and, for each j ∈ J , there exist a Γ-graded division ring Dj with supp(Dj) ⊆
ejΓej and a dfinite sequence σj := (σjk)k∈Kj

∈ (ejΓ)Kj such that the family 
{MKj

(Dj)(σj) : j ∈ J} is summable,

R ∼ = gr
∏︂gr

j∈J 
MKj

(Dj)(σj)

and, for each j ∈ J , the set Kj,fj := {k ∈ Kj : d(σjk) = fj} has exactly one element 
and {j′ ∈ J : Kj′,fj ̸= ∅} = {j}.

(3) There exists a summable family {Rj : j ∈ J} of gr-prime pfm rings and (fj)j∈J ∈
(Γ0)J such that

R ∼ = gr
∏︂gr

j∈J 
Rj

and, for each j ∈ J , R(fj) is gr-simple and Rj(fj) ̸= 0.
(4) There exists a summable family {Rj : j ∈ J} of gr-simple rings and (fj)j∈J ∈ (Γ0)J

such that

R ∼ = gr
∏︂gr

j∈J 
Rj

and, for each j ∈ J , R(fj) is gr-simple and Rj(fj) ̸= 0.
(5) There exists Δ0 ⊆ Γ′

0(R) such that R(Δ0) is Γ0-simple and RR is gr-isomorphic to 
a direct sum of shifts of elements from {R(e) : e ∈ Δ0}.

(6) There exists a summable family {Rj : j ∈ J} of gr-simple Γ0-artinian rings and 
(fj)j∈J ∈ (Γ0)J such that

R ∼ = gr
∏︂gr

j∈J 
Rj

and, for each j ∈ J , Rfj is a division ring and (Rj′)fj = 0 whenever j′ ∈ J \ {j}.

Proof. (1) =⇒ (2): Suppose that R is a pfm ring. By Lemma 7.1(1), R is a gr-semisimple 
ring. By Theorem 5.30, we can suppose that there exist (ej)j∈J ∈ (Γ0)J and, for each 
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j ∈ J , a Γ-graded division ring Dj with supp(Dj) ⊆ ejΓej and a dfinite sequence 
σj := (σjk)k∈Kj

∈ (ejΓ)Kj such that the family {MKj
(Dj)(σj) : j ∈ J} is summable 

and

R =
∏︂gr

j∈J 
MKj

(Dj)(σj).

Fix j ∈ J and k ∈ Kj . Set Rj := MKj
(Dj)(σj) and let ιj : Rj → R be the canonical 

inclusion. Since the Γ-graded right R-module ιj(E
ej
kkRj) has a pseudo-basis, there exist 

γj ∈ Γ and aj ∈ (Eej
kkRj)γj

such that ιj(aj) · r ̸= 0 for all r ∈ 1d(γj)R\{0}. In particular, 
aj ̸= 0 and, thus, Kj,d(γj) ̸= ∅. Let j′ ∈ J be such that there exists k′ ∈ Kj′,d(γj). Then 
0 ̸= E

ej′
k′k′ ∈ (Rj′)d(γj) and it follows that ιj(aj)ιj′(E

ej′
k′k′) ̸= 0. But this is only possible 

if j = j′. Hence, {j′ ∈ J : Kj′,fj ̸= ∅} = {j}. Now observe that aj · rj ̸= 0 for all 
rj ∈ Rj(d(γj)) \ {0}. Proceeding as in the proof of (2) =⇒ (3) of Theorem 7.3, we get 
that Kj,d(γj) contains exactly one element.

(2) =⇒ (3): Fix j ∈ J and set Rj := MKj
(Dj)(σj). Since |Kj,fj | = 1, it follows from 

Theorem 7.3 that Rj is a gr-prime pfm ring. We have

R(fj) ∼ = gr
∏︂gr

j′∈J 
Rj′(fj) =

∏︂gr

j′∈J 

⨁︂
k′∈Kj′,fj

E
ej′
k′k′Rj′ .

Since Kj′,fj = ∅ for all j′ ̸= j e |Kj,fj | = 1, then R(fj) ∼ = gr Rj(fj) is gr-simple by 
Proposition 5.17(1).

(3) =⇒ (4): Follows from Theorem 7.3.
(4) =⇒ (5): Set Δ0 := {fj : j ∈ J} ⊆ Γ′

0(R). Then R(Δ0) is Γ0-simple. Fix j ∈ J . 
Since Rj is a gr-simple ring with a minimal graded right ideal Rj(fj), it follows from 
Lemma 5.18(2) that (Rj)Rj

is gr-isomorphic to a direct sum of shifts of Rj(fj). Hence 
ιj(Rj) is gr-isomorphic to a direct sum of shifts of R(fj), where ιj : Rj → R is the 
canonical inclusion. Now (5) follows from

R ∼ = gr
∏︂gr

j∈J 
Rj =

⨁︂
j∈J 

Rj =
⨁︂
j∈J 

ιj(Rj)

(5) =⇒ (1): Suppose that

RR
∼ = gr

⨁︂
i∈I 

R(Δ0)(σi)

for some (σi)i∈I ∈ ΓI . Since R(e) is a gr-simple R-module for each e ∈ Δ0, R is then a 
gr-semisimple ring. By Lemma 5.12(1), every Γ-graded gr-simple right R-module is gr
isomorphic to a shift of some element in the set {R(e) : e ∈ Δ0}. Hence, it is pseudo-free. 
Statement (1) is now a consequence of Lemma 7.1(2).

(4) =⇒ (6): Since R(fj) is gr-simple and Rj(fj) ̸= 0 for each j ∈ J , then 
Rj(fj) is gr-simple for all j ∈ J . Thus, Rj is a right Γ0-artinian ring by Theo
rem 5.19. By Lemma 3.4 and Corollary 5.4, the fact that R(fj) is gr-simple implies 
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that 1fjR1fj ∼ = gr ENDR(R(fj)) is a gr-division ring. Hence, Rfj is a division ring. Since 
Rfj

∼ = 
∏︁

j′∈J(Rj′)fj and fj ∈ Γ′
0(Rj), it follows that (Rj′)fj = 0 if j′ ̸= j.

(6) =⇒ (2): Let j ∈ J . By Theorem 5.23, there exist a non-empty set Kj , ej ∈ Γ0, a Γ
graded division ring Dj with supp(Dj) ⊆ ejΓej and a dfinite sequence σj := (σjk)k∈Kj

∈
(ejΓ)Kj such that

Rj
∼ = gr MKj

(Dj)(σj).

If j′ ∈ J is such that Kj′,fj ̸= ∅, then there exists k ∈ Kj′ such that d(σj′k) = fj and, 
thus, 0 ̸= E

ej′
kk ∈ (Rj′)fj . This implies j′ = j by hypothesis. Now observe that

MKj
(Dj)(σj)fj ∼ = (Rj)fj ∼ = Rfj

is a division ring. Therefore, if k, k′ ∈ Kj,fj , then Eej
kk, E

ej
k′k′ ∈ MKj

(Dj)(σj)fj and it 
follows that Eej

kkE
ej
k′k′ ̸= 0. This only happens if k = k′. Therefore, Kj,fj has exactly one 

element. □
7.2. Invariance of the number of elements of pseudo-bases

Let R =
⨁︁
γ∈Γ

Rγ be a Γ-graded ring. We say that R has invariant pseudo-basis number, 

or IPBN for short, if any two pseudo-bases of a finitely generated Γ-graded pseudo-free 
(right) R-module have the same number of elements. In other words, if we have

R(γ1)⊕ · · · ⊕R(γm) ∼ = gr R(δ1)⊕ · · · ⊕R(δn)

for some γ = (γ1, . . . , γm) ∈ Γm and δ = (δ1, . . . , δn) ∈ Γn with 1r(γi), 1r(δj) ̸= 0, then 
m = n.

Observe that, by Lemma 2.13, IPBN implies that any two pseudo-basis of a graded 
pseudo-free (right) R-module have the same number of elements.

We also remark that, by Proposition 4.8, any gr-homomorphism

R(γ1)⊕ · · · ⊕R(γm) −→ R(δ1)⊕ · · · ⊕R(δn)

can be uniquely expressed by a matrix in Mn×m(R)[δ][γ]. Thus, R fails to have IPBN 
if and only if there exist natural numbers m ̸= n and matrices A ∈ Mn×m(R)[δ][γ] and 
B ∈ Mm×n(R)[γ][δ] such that AB = Ir(δ), BA = Ir(γ) for some γ = (γ1, . . . , γm) ∈ Γm

and δ = (δ1, . . . , δn) ∈ Γn with 1r(γi), 1r(δj) ̸= 0 for all i, j. Note that this formulation of 
IPBN does not involve right or left R-modules. In particular, we see that ``right IPBN'' 
is synonymous with ``left IPBN''.

We now give a characterization of Γ-graded division rings among Γ-graded pfm rings.

Theorem 7.6. Let R =
⨁︁
γ∈Γ

Rγ be a Γ-graded ring. The following statements are equiva

lent.
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(1) R is a Γ-graded division ring.
(2) R is a pfm ring that has IPBN.

Proof. By Theorem 4.4, it is enough to show (2) =⇒ (1). Suppose that R is a pfm 
ring that satisfies IPBN. By Theorem 7.5, there exists Δ0 ⊆ Γ′

0(R) such that R(Δ0) is 
Γ0-simple and RR is gr-isomorphic to a direct sum of shifts of elements from {R(e) :
e ∈ Δ0}. Let (ei)i∈I ∈ (Δ0)I and (σi)i∈I ∈ ΓI such that RR

∼ = gr
⨁︁
i∈I

R(ei)(σi). By 

Lemma 5.12(2), for any f ∈ Γ′
0(R), there exists a finite subset If ⊆ I such that R(f) =⨁︁

i∈If
R(ei)(σi). Since each R(f) is pseudo-free, with a pseudo-basis consisting of only 

one element, the IPBN property implies |If | = 1. Thus R(f) is gr-simple for all f ∈
Γ′

0(R). Therefore, RR is Γ0-simple. Hence, R ∼ = gr END(RR) is a gr-division ring by 
Lemma 3.4 and Theorem 5.3(1). □

As we are going to see next, it is still possible to define an invariant for graded modules 
over pfm rings similar to the pseudo-dimension and that coincides with the graded length 
of a finitely generated graded module over a pfm ring. To that end, we begin by pointing 
out some facts about gr-semisimple modules.

Let R be a Γ-graded ring and M be a gr-semisimple R-module. Thus,

M =
⨁︂
i∈I 

Mi (7.3)

where Mi is a gr-simple submodule of M for each i ∈ I. If we have another decomposition 
of M =

⨁︁
j∈J M ′

j where M ′
j is a gr-simple submodule of M for each j ∈ J , then 

|I| = |J | by Proposition 5.6. We will then refer to the cardinality of the set I in (7.3)
by the gr-simple dimension of M and it will be denoted by sdim(M). Furthermore, by 
Proposition 5.7, if N is any graded submodule of M , then N is gr-semisimple and there 
exists a graded submodule N ′ of M such that M = N ⊕N ′. Therefore, we obtain that

sdimR(M) = sdimR(N) + sdimR(N ′) = sdimR(N) + sdimR(M/N). (7.4)

Suppose now that X is a Γ-graded module. We say that a pseudo-linearly independent 
sequence (xi)i∈I of homogeneous elements of X is a gr-simple sequence if xiR is a gr
simple R-module for all i ∈ I. If, moreover, (xi)i∈I is a pseudo-basis of X we say that 
it is a gr-simple pseudo-basis of X. In this event, we will write spdimR(X) = |I|. We 
proceed to show that spdimR(X) is a well-behaved invariant for pfm rings.

Proposition 7.7. Let R =
⨁︁
γ∈Γ

Rγ be a pfm ring and M =
⨁︁
γ∈Γ

Mγ be a Γ-graded R-module. 

The following assertions hold:

(1) M has a gr-simple pseudo-basis.
(2) Any two gr-simple pseudo-basis of M have the same cardinality sdimR(M).



Z. Cristiano et al. / Journal of Algebra 687 (2026) 1--116 95

(3) Every pseudo-linearly independent gr-simple sequence of M extends to a gr-simple 
pseudo-basis of M .

(4) If N is a graded submodule of M , then

spdimR(N) + spdimR(M/N) = spdimR(M).

Proof. (1) By Lemma 7.1(1), R is a gr-semisimple ring. It follows from Proposition 5.9
that M is a gr-semisimple R-module. Suppose that M =

⨁︁
i∈I

Mi where each Mi is a 

gr-simple submodule of M . Since R is a pfm ring, each Mi, i ∈ I, has a pseudo-basis 
consisting of exactly one element, say xi ∈Mi. Thus (xi)i∈I is a gr-simple pseudo-basis 
of M .

(2) Let B1 := (xi)i∈I and B2 := (yj)j∈J two gr-simple pseudo-bases of M . Then

M =
⨁︂
i∈I 

xiR =
⨁︂
j∈J 

yjR

are two decompositions of M as direct sum of gr-simple R-modules. Then |I| = |J | by 
Proposition 5.6.

(3) Let (xi)i∈I be a pseudo-linearly independent gr-simple sequence of homogeneous 
elements of M . Then N :=

⨁︁
i∈I

xiR is a graded submodule of the gr-semisimple module 

M . Hence there exists a gr-submodule N ′ of M such that M = N ⊕ N ′. By (1), N ′

has a gr-simple pseudo basis. Then the union of this pseudo-basis with (xi)i∈I forms a 
gr-simple pseudo-basis of M .

(4) follows from (2) and (7.4). □
7.3. More on gr-division rings

Our aim now is to give more characterizations of graded division rings. This first 
result will follow from our version of the Wedderburn-Artin Theorem. Furthermore, the 
comparison of Theorem 7.8(5) and Theorem 7.5(2) enlightens the difference between 
gr-division rings and pfm rings.

Theorem 7.8. Let R =
⨁︁
γ∈Γ

Rγ be a Γ-graded ring. The following statements are equiva

lent.

(1) R is a gr-division ring.
(2) RR is Γ0-simple R-module.
(3) R is a gr-semisimple ring and 1eR1e is an eΓe-graded division ring for all e ∈ Γ′

0(R).
(4) R is a gr-semisimple ring and Re is a division ring for all e ∈ Γ′

0(R).
(5) There exist a set J , a family of non-empty subsets {Kj : j ∈ J}, a sequence of 

idempotents (ej)j∈J ∈ (Γ0)J such that
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R ∼ = gr
∏︂gr

j∈J 
MKj

(Dj)(σj),

where Dj is a Γ-graded division ring with supp(Dj) ⊆ ejΓej and σj := (σjk)k∈Kj
∈

(ejΓ)Kj for each j ∈ J , and the sets Kj,e := {k ∈ Kj : d(σjk) = e} and Je := {j ∈
J : Kj,e ̸= ∅} have at most one element for all j ∈ J and e ∈ Γ0.

(6) There exists a family {Rj : j ∈ J} of gr-prime gr-division rings such that supp(Rj)∩
supp(Rj′) = ∅ for all different j, j′ ∈ J and

R =
⨁︂
j∈J 

Rj .

Proof. (1) =⇒ (2): For each e ∈ Γ′
0(R), every nonzero element in R(e) has an inverse 

and, therefore, R(e) is gr-simple.
(2) =⇒ (3): For each e ∈ Γ′

0(R), R(e) is a gr-simple R-module. Thus, R =
⨁︁
e∈Γ0

R(e) is 

a gr-semisimple ring. Moreover, for each e ∈ Γ′
0(R), every nonzero homogeneous element 

of the ring 1eR1e ⊆ R(e) has a right inverse. Hence, 1eR1e is an eΓe-graded division 
ring for each e ∈ Γ′

0(R).
(3) =⇒ (4): Straightforward.
(4) =⇒ (5): By Theorem 5.30, there exist families {Kj : j ∈ J} and {ej : j ∈ J} of 

non-empty sets and idempotents of Γ, respectively, and there exist, for each j ∈ J , a Γ
graded division ring Dj with supp(Dj) ⊆ ejΓej and a dfinite sequence σj := (σjk)k∈Kj

∈
(ejΓ)Kj , such that the family {MKj

(Dj)(σj) : j ∈ J} is summable and

R ∼ = gr
∏︂gr

j∈J 
MKj

(Dj)(σj).

Fix e ∈ Γ′
0(R). Then

Re
∼ = 
∏︂
j∈Je

MKj
(Dj)(σj)e

is a division ring. Thus |Je| = 1, say Je = {j0}. Given k, l ∈ Kj0,e, then E
ej0
kk E

ej0
ll ̸= 0

and, therefore, k = l. Hence, |Kj0,e| = 1.
(5) =⇒ (6): For each j ∈ J , Rj := MKj

(Dj)(σj) is a gr-prime gr-division ring, by 
Theorem 4.2. Suppose now that j, j′ ∈ J and γ ∈ supp(Rj)∩ supp(Rj′). Since |Kj,e| = 1
for all e ∈ Γ′

0(R), there exists a unique p ∈ Kj such that d(σjp) = r(γ). Analogously, 
there exists a unique p′ ∈ Kj′ such that d(σj′p′) = r(γ). Thus, we obtain non-empty 
Kj,r(γ) and Kj′,r(γ), hence j, j′ ∈ Jr(γ) and, therefore, j′ = j.

(6) =⇒ (1): Since supp(Rj)∩ supp(Rj′) = ∅ for all different j, j′ ∈ J , it follows that, 
for each γ ∈ Γ, there exists a unique j ∈ J such that Rγ = (Rj)γ . Hence, R is a Γ-graded 
division ring because all Rj are. □
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The next result shows that to be a pfm ring is equivalent to be a gr-division ring for 
object crossed products.

Proposition 7.9. Let (A,Γ, α, β) be an object crossed system. The following assertions 
are equivalent.

(1) A⋊α
β Γ is a pfm ring.

(2) Ae is a division ring for all e ∈ Γ0.
(3) A⋊α

β Γ is a gr-division ring.

Proof. (1) =⇒ (2): Suppose that A⋊α
β Γ is a pfm ring. By Theorem 7.5, there exists a 

summable family {Rj : j ∈ J} of gr-simple Γ0-artinian rings and (fj)j∈J ∈ (Γ0)J such 

that A ⋊α
β Γ ∼ = gr

∏︂gr

j∈J 
Rj and, for each j ∈ J , Afj

∼ = (A ⋊α
β Γ)fj is a division ring and 

(Rj′)fj = 0 whenever j′ ∈ J \ {j}. Let e ∈ Γ0. Since (A ⋊α
β Γ)e ̸= 0, there exists j ∈ J

such that (Rj)e ̸= 0. The gr-primeness of Rj implies that 1eRj1fj ̸= 0 and there exists 
σ ∈ eΓfj . Then Ae = ασ(Afj ) ∼ = Afj is a division ring.

(2) =⇒ (3): If (2) holds, then A⋊α
β Γ is a gr-semisimple ring by Proposition 5.37 and 

(A⋊α
β Γ)e ∼ = Ae is a division ring for all e ∈ Γ0. By Theorem 7.8, A⋊α

β Γ is a gr-division 
ring.

(3) =⇒ (1): It follows from Theorem 4.4. □
Recall that a (group graded) ring is a (group graded) division ring if and only if all 

its (graded) right modules are (graded) free. The next result is a generalization of such 
fact for groupoid graded rings. Indeed, if Γ is a group and e is the identity of Γ, then 
eΓe = Γ and 1eR1e = R. Thus, Proposition 7.10(2) implies that R is a Γ-graded division 
ring.

Proposition 7.10. Let R =
⨁︁
γ∈Γ

Rγ be a Γ-graded ring. The following statements are 

equivalent.

(1) R is a gr-division ring.
(2) R is a pfm ring and every eΓe-graded right 1eR1e-module is gr-free (as a group 

graded module) for all e ∈ Γ′
0(R).

(3) R is a pfm ring and every right Re-module is free for all e ∈ Γ′
0(R).

Proof. Implications (1) ⇒ (2) and (1) ⇒ (3) hold by Theorem 4.4(1) and because, by 
Theorem 7.8, (1) implies that 1eR1e is an eΓe-graded division ring and Re is a division 
ring for all e ∈ Γ′

0(R).
(2) ⇒ (1) (resp. (3) ⇒ (1)) holds because of Theorem 7.8, since every pfm ring is 

gr-semisimple by Lemma 7.1(1). □
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As Example 7.2(2) shows, the hypothesis about 1eR1e-modules or Re-modules are 
necessary in Proposition 7.10. Moreover, as we are going to see next, the hypothesis of 
R being a pfm ring in Proposition 7.10 cannot be dropped either. We proceed to present 
some cases where some of these conditions are not necessary.

Proposition 7.11. Consider the following statements.

(I) R is a Γ-graded division ring if and only if every Γ-graded right R-module is pseudo
free.

(II) R is a Γ-graded division ring if and only if, for each e ∈ Γ′
0(R), every eΓe-graded 

right 1eR1e-module is gr-free.
(III) R is a Γ-graded division ring if and only if, for each e ∈ Γ′

0(R), every right Re
module is free.

The following assertions hold:

(1) Statement (I) holds true for every Γ-graded ring R if and only if Γ =
⋃︁

e∈Γ0

eΓe, that 

is, Γ is a disjoint union of groups.
(2) Statement (II) holds true for every Γ-graded ring R if and only if Γ =

⋃︁
e∈Γ0

eΓe.

(3) Statement (III) holds true for every Γ-graded ring R if and only if Γ = Γ0.

Proof. (1) Suppose that Γ =
⋃︁

e∈Γ0

eΓe, that is, eΓf = ∅ for all different e, f ∈ Γ0. Let 

R be a pfm ring. Then, by Theorem 7.5, there exist a summable family of Γ-graded 
gr-simple rings {Rj : j ∈ J} and (fj)j∈J ∈ (Γ0)J such that

R ∼ = gr
∏︂gr

j∈J 
Rj

and, for each j ∈ J , R(fj) is gr-simple and Rj(fj) ̸= 0. Since Rj(fj) ̸= 0 and 1fjRj1fj is 
a nonzero graded ideal of Rj , it follows that suppRj ⊆ fjΓfj . Since Rj(fj) is gr-simple, 
Theorem 7.8 implies that Rj = 1fjRj1fj is a Γ-graded division ring. Furthermore, if 
j ̸= j′, then Rj′(fj) = 0 and fj ̸= fj′ . Thus, Theorem 7.8(6) is satisfied and it follows 
that R is a Γ-graded division ring. Therefore, statement (I) holds for all Γ-graded rings 
R.

Conversely, suppose that Γ ̸= ⋃︁e∈Γ0
eΓe. Inspired by Example 7.2(2), we are going 

to construct a Γ-graded ring for which statement (I) does not hold. Let D be a division 
ring and σ ∈ Γ be such that r(σ) ̸= d(σ). Consider D as a Γ-graded division ring with 
support concentrated in {r(σ)}. Set

R = M3(D)(r(σ), r(σ), σ).
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Then Theorem 7.3(3) holds and it follows that every Γ-graded right R-module is pseudo
free. But R is not a gr-division ring because Er(σ)

11 ∈ Rr(σ) is not invertible.
(2) If Γ =

⋃︁
e∈Γ0

eΓe, then R =
⨁︁
e∈Γ0

1eR1e for any Γ-graded ring R. Hence, R is 

a Γ-graded division ring if and only if 1eR1e is an eΓe-graded division ring for each 
e ∈ Γ′

0(R). But this last condition amounts to say that every eΓe-graded right 1eR1e
module is gr-free for each e ∈ Γ′

0(R). Therefore, statement (II) holds for all Γ-graded 
rings R.

Conversely, suppose that Γ ̸= ⋃︁
e∈Γ0

eΓe and let σ ∈ Γ be such that r(σ) ̸= d(σ). Let D

be a division ring and

R =
[︃
D D
0 D

]︃
.

We make of R an object unital Γ-graded ring via

Rr(σ) =
[︃
D 0
0 0

]︃
, Rσ =

[︃
0 D
0 0

]︃
, Rd(σ) =

[︃
0 0
0 D

]︃
.

Then Rr(σ) and Rd(σ) are division rings with identity element 1r(σ) := E11 and 
1d(σ) := E22, respectively. Thus, 1r(σ)R1r(σ) = Rr(σ) is a r(σ)Γr(σ)-graded division 
ring and 1d(σ)R1d(σ) = Rd(σ) is a d(σ)Γd(σ)-graded division ring. But R is not a Γ

graded division ring because E12 =
[︃
0 1
0 0

]︃
∈ Rσ is not invertible. Therefore such R

contradicts statement (II).
(3) If Γ = Γ0, then R =

⨁︁
e∈Γ0

Re for any Γ-graded ring. In this event, R is a Γ-graded 

division ring if and only if Re is a division ring for each e ∈ Γ′
0(R). This amounts to 

say that every right Re-module is free for each e ∈ Γ′
0(R). Therefore, (III) holds for all 

Γ-graded rings R.
Conversely, suppose that Γ ̸= Γ0. Thus, there exists σ ∈ Γ such that either σ2 is not 

defined or σ2 is defined but σ2 ̸= σ. If r(σ) ̸= d(σ), then the ring R used in (2) shows 
that statement (III) does not hold. Hence suppose that r(σ) = d(σ) and σ2 ̸= σ. Let D
be a division ring and consider the ring

R := D[x]
⟨x2⟩ ,

endowed with a Γ-grading via

Rr(σ) := D + ⟨x2⟩, Rσ := Dx + ⟨x2⟩.

Then Rr(σ) is a division ring and, therefore, every right Rr(σ)-module is free. But R is 
not a Γ-graded division ring because x+⟨x2⟩ ∈ Rσ is not invertible. Therefore, statement 
(III) does not hold for all Γ-graded rings. □
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8. Semisimple categories

Throughout this section, we fix a small preadditive category 𝒞. We will use the follow
ing notation: 𝒞0 is the set of objects of 𝒞, IX is the identity morphism of X ∈ 𝒞0 and 
𝒞(A,B) := Hom𝒞(A,B) for all A,B ∈ 𝒞0.

We denote by 𝒜b the category of abelian groups (in which we will always adopt additive 
notation).

We alert the reader that, in this section, the letter f will denote a morphism in a 
category and not an idempotent in a groupoid as in previous sections.

There are some concepts in Ring Theory that are also defined in Category Theory. For 
example, definitions of semisimple category, artinian category, free functor and others 
can be found in [18,32]. In this section, we explore some of these notions, relate them 
to the concepts of foregoing sections and show how they are related via the ring of the 
category when considered as a groupoid graded ring as in Example 2.3(1).

Many of the results in this section can be proved in a more general context. The 
authors have been working on a paper in which they introduce the concept of groupoid 
graded categories, which generalize group graded categories, and results are obtained for 
such more general categories.

8.1. (Bi)functors are graded (bi)modules

Let Fun(𝒞,𝒜b) be the category of additive covariant functors 𝒞 → 𝒜b. By Fun(𝒞op,𝒜b), 
we denote the category of additive contravariant functors 𝒞 → 𝒜b.

For each A ∈ 𝒞0, we consider the following functors 𝒞 → 𝒜b

𝒞(A,−) := hom𝒞(A,−) and 𝒞(−, A) := hom𝒞(−, A).

A right sieve on A in 𝒞 is an additive subfunctor (a subobject in the category of additive 
functors) of 𝒞(−, A) and a left sieve on A in 𝒞 is an additive subfunctor of 𝒞(A,−).

In [32], 𝒞(A,−) and 𝒞(−, A) are denoted by 𝒞A and 𝒞A∗, respectively. In [32, p. 18], a 
right (left) ideal of 𝒞 is defined as a subfunctor of 𝒞A (of 𝒞A∗) for some A ∈ 𝒞0. We point 
out that we are using the opposite notation because our composition of morphisms in 
the category 𝒞 is the usual from right to left, while [32, p. 7] composes morphisms of 𝒞
from left to right.

In what follows, inspired by [18, Proposition 2 (p. 347)], we present a possible moti
vation for the previous definitions.

Let R[𝒞] be the ring of the category 𝒞 as defined in Example 2.3(1). Recall that R[𝒞]
is graded by the groupoid 𝒢 := 𝒞0 × 𝒞0, see Example 2.1(2), whose idempotents are of 
the form

εA := (A,A), A ∈ 𝒞0.
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Let M =
⨁︁

(A,B)∈𝒢 M(A,B) be a 𝒢-graded right R[𝒞]-module. We build an additive 
contravariant functor M(−, 𝒞0) : 𝒞 → 𝒜b as follows: for each X ∈ 𝒞0, we define

M(X, 𝒞0) := MIX =
⨁︂
A∈𝒞0

M(A,X)

and for each morphism f : X → Y in 𝒞 we define

M(f, 𝒞0) : M(Y, 𝒞0)→M(X, 𝒞0)
m ↦→ mf.

If M = M(εA) for some A ∈ 𝒞0, then we will write M(−, A) instead of M(−, 𝒞0).
Consider the 𝒢-graded ring Z(𝒢0) and the 𝒢-graded abelian groups as left Z(𝒢0)

modules as in Remark 2.5(2). Note that, for each X,Y ∈ 𝒞0 and f ∈ 𝒞(X,Y ), M(X, 𝒞0)
is a 𝒢-graded left Z(𝒢0)-module with support contained in 𝒢εX and M(f, 𝒞0) is a homo
morphism of degree (Y,X) ∈ 𝒢.

We denote by Fungr(𝒞op,𝒢ε−Z(𝒢0)-mod) the category whose objects are the additive 
contravariant functors F : 𝒞 → 𝒢ε−Z(𝒢0)-mod such that, if X,Y ∈ 𝒞0 and f ∈ 𝒞(X,Y ), 
then F (f) ∈ HOM(F (Y ), F (X))(Y,X). The morphisms between two functors F,G ∈
Fungr(𝒞op,𝒢ε − Z(𝒢0)-mod) are the natural transformations (αX : F (X) → G(X))X∈𝒞0

such that αX ∈ Homgr(F (X), G(X)). Note that if F ∈ Fungr(𝒞op,𝒢ε−Z(𝒢0)-mod), then 
for each X ∈ 𝒞0 we have suppF (X) ⊆ 𝒢εX , because F (IX) is the unity of the ring 
END(F (X))(X,X) and therefore

0 ̸= a ∈ F (X)(Y,Z) =⇒ 0 ̸= a = (a)F (IX) ∈ F (X)(Y,Z)(X,X) =⇒ Z = X.

Now, let F : 𝒞 → 𝒜b be an additive contravariant functor and consider the additive 
group

M [F ] :=
⨁︂
X∈𝒞0

F (X).

Given X,Y, Z ∈ 𝒞0, m ∈ F (Z) and f ∈ R[𝒞](Y,X) = 𝒞(X,Y ), we define

mf :=
{︄

(F (f))(m) ∈ F (X), if Z = Y

0, if Z ̸= Y
.

It is easy to see that this makes M [F ] a unital right R[𝒞]-module. Thus, if we fix A ∈ 𝒞0, 
then M [F ] is a 𝒢-graded right R[𝒞]-module via

M [F ](A,X) := F (X)

for each X ∈ 𝒞0. If F ∈ Fungr(𝒞op,𝒢ε−Z(𝒢0)-mod), then we consider M [F ] as a 𝒢-graded 
right R[𝒞]-module via
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M [F ](Y,X) := F (X)(Y,X)

for each (Y,X) ∈ 𝒢.
The next result links the constructions of the previous paragraphs. Recall that, by 

Remark 2.5(1), every unital right R[𝒞]-module M can be regarded as a 𝒢-graded R[𝒞]
module making M = M(εA) for some εA ∈ 𝒢0. Therefore, Theorem 8.1(1) is a rephrasing 
of [18, Proposition 2 (p. 347)].

Theorem 8.1. Let 𝒢 := 𝒞0×𝒞0. The following functors define an equivalence of categories

𝒢 − gr-R[𝒞] ⇆ Fungr(𝒞op,𝒢ε− Z(𝒢0)-mod)

M ↦→M(−, 𝒞0)
M [F ] ← ⫞ F.

Moreover, if A ∈ 𝒞0, then such equivalence induces

(1) an equivalence of categories

εA𝒢 − gr-R[𝒞] ⇆ Fun(𝒞op,𝒜b)
M ↦→M(−, A)

M [F ] ← ⫞ F ;

(2) a bijection between the sets

{graded right ideals of R[𝒞] contained in R[𝒞](εA)} → {right sieves on A in 𝒞}

sending R[𝒞](εA) to 𝒞(−, A).

Proof. Let M and N be objects of 𝒢 − gr-R[𝒞]. If α ∈ Homgr(M,N), then α(MIX) ⊆
NIX for all X ∈ 𝒞0. Thus, α induces a natural transformation M(−, 𝒞0) → N(−, 𝒞0)
given by restriction of α, that is, 

(︂
M(X, 𝒞0) αX −−→ N(X, 𝒞0)

)︂
X∈𝒞0

where αX = α|MIX . 
Indeed, if X,Y ∈ 𝒞0 and f ∈ 𝒞(X,Y ), then αX(mf) = αY (m)f for all m ∈ MIY , i.e., 
the following diagram commutes

MIX = M(X, 𝒞0)
αX

M(Y, 𝒞0) = MIY
M(f,𝒞0)

αY

NIX = N(X, 𝒞0) N(Y, 𝒞0) = NIY
N(f,𝒞0)

Conversely, let F,G ∈ Fungr(𝒞op,𝒢ε − Z(𝒢0)-mod) and 
(︂
αX : F (X) → G(X)

)︂
X∈𝒞0

, 
where each αX ∈ Homgr(F (X), G(X)), be a natural transformation F → G. By the 
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universal property of direct sums, we can define a homomorphism of Γ-graded additive 
groups α :=

∑︁
X∈𝒞0

αX : M [F ] →M [G]. Moreover, if A,B,X, Y ∈ 𝒞0, f ∈ 𝒞(X,Y ) and 
m ∈M [F ](A,B), then

α(mf) =
{︄
αX((m)F (f)), if B = Y

α(0), if B ̸= Y
=
{︄

(αY (m))G(f), if B = Y

0, if B ̸= Y
= α(m)f

by the commutativity of the diagrams in a natural transformation.
It is straightforward to check that M [M(−, 𝒞0)] ∼ = gr M for each object M of 

𝒢 − gr-R[𝒞], and M [F ](−, 𝒞0) ∼ = F for each object F of Fungr(𝒞op,𝒢ε − Z(𝒢0)-mod). 
Furthermore, such isomorphisms are natural.

(1) Fix A ∈ 𝒞0. For F ∈ Fun(𝒞op,𝒜b), consider M [F ] as an object of εA𝒢 − gr-R[𝒞]
via M [F ](A,X) := F (X) for each X ∈ 𝒞0. Then the assignments M ↦→ M(−, A) and 
F ↦→M [F ] define an equivalence between the categories εA𝒢−gr-R[𝒞] and Fun(𝒞op,𝒜b).

(2) Note that if M is a graded right ideal of R[𝒞] with M = M(εA) for some A ∈ 𝒞0, 
then M(−, A) is a subfunctor of 𝒞(−, A), i.e., a right sieve on A in 𝒞. And, if F is a right 
sieve on A in 𝒞, then M [F ] is naturally gr-isomorphic to a graded right ideal of R[𝒞]
contained in R[𝒞](εA). Thus, (2) follows from (1). □
Remark 8.2. Analogously, we define the category Fungr(𝒞, ε𝒢−mod-Z(𝒢0)) whose objects 
are the additive covariant functors F : 𝒞 → ε𝒢 −mod-Z(𝒢0) such that, if X,Y ∈ 𝒞0 and 
f ∈ 𝒞(X,Y ), then F (f) ∈ HOM(F (X), F (Y ))(Y,X). Then, for a 𝒢-graded left R[𝒞]
module M we can build functors M(𝒞0,−) and M(A,−). In this way, we prove that 
there exists an equivalence of categories

𝒢 −R[𝒞]-gr ⇆ Fungr(𝒞, ε𝒢 −mod-Z(𝒢0))

M ↦→M(𝒞0,−)

M [F ]← ⫞ F,

where M [F ](X,Y ) := F (X)(X,Y ) for each (X,Y ) ∈ 𝒢. If A ∈ 𝒞0, then we get

(1) an equivalence of categories

𝒢εA −R[𝒞]-gr→ Fun(𝒞,𝒜b)
M ↦→M(A,−).

(2) a bijection

{graded left ideals of R[𝒞] contained in (εA)R[𝒞]} → {left sieves on A in 𝒞}

that sends (εA)R[𝒞] to 𝒞(A,−). □
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Now we turn our attention to bimodules and bifunctors.
Let M be a 𝒢-graded (R[𝒞], R[𝒞])-bimodule. We define a bifunctor

M(−,−) : 𝒞op × 𝒞 → 𝒜b

as follows. For each X,Y ∈ 𝒞0, we put

M(X,Y ) := M(Y,X)

and, for morphisms f : Z → X and g : Y →W in 𝒞, we define

M(fop, g) : M(X,Y )→M(Z,W )

m ↦→ gmf.

Conversely, let F be an additive bifunctor 𝒞op×𝒞 → 𝒜b. Consider the additive group

M [F ] :=
⨁︂

X,Y ∈𝒞0

F (X,Y ).

For A,B,X, Y, Z,W ∈ 𝒞0, m ∈ F (A,B), f ∈ R[𝒞](X,Z) = 𝒞(Z,X) and g ∈ R[𝒞](W,Y ) =
𝒞(Y,W ), we define

gmf :=
{︄
F (fop, g)(m) ∈ F (Z,W ), if (A,B) = (X,Y )
0, if (A,B) ̸= (X,Y )

.

It is not difficult to verify that M [F ] is a 𝒢-graded (R[𝒞], R[𝒞])-bimodule via

M [F ](X,Y ) := F (Y,X)

for each (X,Y ) ∈ 𝒢.
The next theorem links the two previous constructions. Before stating the result, we 

need some definitions. Following [32, p. 18], we define an ideal of 𝒞 as an additive sub
functor of the bifunctor 𝒞(−,−) : 𝒞op × 𝒞 → 𝒜b. We denote the category of additive 
bifunctors 𝒞op×𝒞 → 𝒜b by Bifun(𝒞,𝒜b). We also define the category R[𝒞]-gr-R[𝒞] whose 
objects are the 𝒢-graded (R[𝒞], R[𝒞])-bimodules and the morphisms are the homomor
phisms of bimodules g : M → N such that g(Mσ) ⊆ Nσ for all σ ∈ Γ. Note that, by 
Remark 2.5(1), the second part of the following theorem contains a characterization of 
ideals of R[𝒞].

Theorem 8.3. Let 𝒢 := 𝒞0×𝒞0. The following functors define an equivalence of categories

R[𝒞]-gr-R[𝒞] ⇆ Bifun(𝒞,𝒜b)
M ↦→M(−,−)

M [F ] ← ⫞ F ;
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Moreover, such equivalence induces a bijection

{graded ideals of R[𝒞]} −→ {ideals of 𝒞}

that sends R[𝒞] to 𝒞(−,−).

Proof. The verification that M ↦→ M(−,−) and F ↦→ M [F ] define an equivalence is 
similar to the proof of Theorem 8.1.

For the second part of the statement, it suffices to note that if M is a graded ideal 
of R[𝒞], then M(−,−) is a subfunctor of 𝒞(−,−) and, conversely, if F is an ideal of 𝒞, 
then M [F ] is naturally gr-isomorphic to a graded ideal of R[𝒞]. □
8.2. Semisimple categories

Recall that a nonzero object A in an abelian category 𝒜 is simple if it has no proper, 
nonzero subobjects, and A is semisimple if it is a coproduct of simple objects.

Following [32, p. 18], we will say that 𝒞 is a (right) semisimple category if 𝒞(−, A) is 
a semisimple object in the category Fun(𝒞op,𝒜b) for all A ∈ 𝒞0.

The next proposition follows immediately from Theorem 8.1.

Proposition 8.4. Let 𝒢 := 𝒞0 × 𝒞0 and A ∈ 𝒞0. Then 𝒞(−, A) is a semisimple object 
in the category Fun(𝒞op,𝒜b) if and only if R[𝒞](εA) is a 𝒢-graded gr-semisimple R[𝒞]
module. □

For the next result, we need some definitions.
If R is a ring, not necessarily unital, then f. g. -mod-R will denote the category of 

finitely generated unital right R-modules.
Let {𝒞j : j ∈ J} be a family of preadditive categories with at least a zero object. 

Following [16, p. 133], let 
∏︁f

j∈J 𝒞j be the full subcategory of 
∏︁

j∈J 𝒞j whose objects are 
of the form (Aj)j∈J , where Aj is a zero object of 𝒞j for every j ∈ J except for finitely 
many indices j.

We have the following characterization of semisimple categories. The equivalence of 
items (1) and (8) was first proved in [32, pp. 19-20].

Theorem 8.5. Let 𝒢 := 𝒞0 × 𝒞0. The following assertions are equivalent:

(1) 𝒞 is a semisimple category.
(2) R[𝒞] is a gr-semisimple ring.
(3) Every object of the category Fungr(𝒞op,𝒢ε− Z(𝒞0)-mod) is semisimple.
(4) Every object of the category Fun(𝒞op,𝒜b) is semisimple.
(5) Every object of the category Fungr(𝒞, ε𝒢 −mod-Z(𝒞0)) is semisimple.
(6) Every object of the category Fun(𝒞,𝒜b) is semisimple.
(7) For all A ∈ 𝒞0, 𝒞(A,−) is a semisimple object in Fun(𝒞,𝒜b).
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(8) There exist a family {Dj : j ∈ J} of division rings and a function n : J×𝒞0 −→ Z≥0

such that, for each A,B ∈ 𝒞0, 
∑︁
j∈J

n(j, A) < ∞ and there exists an isomorphism of 

additive groups

φ(A,B) : 𝒞(A,B) −→
∏︂
j∈J

Mn(j,B)×n(j,A)(Dj)

so that all these isomorphisms are compatible with products, i.e., φ(A,B)(fg) =
φ(C,B)(f) · φ(A,C)(g), for each f ∈ 𝒞(C,B), g ∈ 𝒞(A,C).

(9) There exists a family {Dj : j ∈ J} of division rings such that 𝒞 is isomorphic to a 
small full subcategory of f. g. -mod-

⨁︁
j∈J

Dj.

(10) There exists a family {Dj : j ∈ J} of division rings such that 𝒞 is isomorphic to a 
small full subcategory of 

∏︁f
j∈J f. g. -mod-Dj.

Proof. (1) ⇐⇒ (2): By Proposition 8.4, 𝒞 is a semisimple category if and only if 
R[𝒞](εA) is a gr-semisimple 𝒢-graded R[𝒞]-module for all A ∈ 𝒞0. By Lemma 5.12(2), 
this last condition is equivalent to the gr-semisimplicity of R[𝒞] as a 𝒢-graded ring.

(2) =⇒ (3): If R[𝒞] is a gr-semisimple 𝒢-graded ring, then, by Proposition 5.9, all 
objects of 𝒢 − gr-R[𝒞] are gr-semisimple. By Theorem 8.1, we obtain (3).

(3) =⇒ (4): It follows from Theorem 8.1.
(4) =⇒ (1): It is clear.
The equivalence between (7), (2), (5) and (6) follows by the same argument as above, 

using Remark 8.2 and the fact that the concepts of right gr-semisimplicity and left gr
semisimplicity coincide for groupoid graded rings.

(2) =⇒ (8): Suppose that R[𝒞] is a gr-semisimple 𝒢-graded ring. By Theorem 5.30, 
there exist a set J , a family {Kj : j ∈ J} of non-empty sets, a sequence (Aj)j∈J ∈ 𝒞J0 , 
a summable family of 𝒢-graded rings {MKj

(Dj)(ςj) : j ∈ J} and an gr-isomorphism of 
𝒢-graded rings

φ : R[𝒞] −→
∏︂gr

j∈J 
MKj

(Dj)(ςj)

where Dj is a 𝒢-graded division ring with supp(Dj) ⊆ εAj
𝒢εAj

and ςj = (ςjk)k∈Kj
∈

(εAj
𝒢)Kj is a dfinite sequence for each j ∈ J .

Fix j ∈ J . For each k ∈ Kj , let Bjk ∈ 𝒞0 such that ςjk = (Aj , Bjk). For each A ∈ 𝒞0, 
consider the sets Kj,A := {k ∈ Kj : Bjk = A} and JA := {j ∈ J : Kj,A ̸= ∅}. Note that 
Kj,A = {k ∈ Kj : d(ςjk) = εA}. It follows that Kj,A and JA are finite for all j ∈ J and 
A ∈ 𝒞0.

For each j ∈ J , supp(Dj) ⊆ εAj
𝒢εAj

implies supp(Dj) = {εAj
} and therefore Dj is a 

division ring. We also have that the function
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n : J × 𝒞0 −→ Z≥0

(j, A) ↦−→ |Kj,A|

is such that {j ∈ J : n(j, A) ̸= 0} = JA is finite for all A ∈ 𝒞0. In order to obtain 
the isomorphism φ(A,B) it suffices to compose φ|𝒞(A,B) with the isomorphism given by 
Lemma 3.21 noting that, for each j ∈ J and A,B ∈ 𝒞0, we have

M|Kj,B |×|Kj,A|(Dj)(ςj,B)(ςj,A)(B,A) = Mn(j,B)×n(j,A)(Dj).

(8) =⇒ (2): Suppose that (8) holds. Fix j ∈ J . For each A ∈ 𝒞0, define the following 
finite subset of J × 𝒞0 ×N:

Kj,A :=
{︄
{(j, A, p) : 1 ≤ p ≤ n(j, A)}, if n(j, A) ̸= 0
∅, if n(j, A) = 0

.

Consider the disjoint union

Kj :=
⋃︂

A∈𝒞0

Kj,A

and, for each k ∈ Kj , define Bjk = A if k ∈ Kj,A. Take Aj ∈ 𝒞0 and consider Dj as a 
𝒢-graded division ring via (Dj)(Aj ,Aj) := Dj . For each k ∈ Kj and A ∈ 𝒞0, let ςjk :=
(Aj , Bjk), ςj := (ςjk)k∈Kj

and ςj,A := (ςjk)k∈Kj,A
. Note that ςj is dfinite. Therefore we 

can consider the 𝒢-graded ring MKj
(Dj)(ςj).

Since 
∑︁

j∈J n(j, A) <∞ for all A ∈ 𝒞0, the family {MKj
(Dj)(ςj) : j ∈ J} is summable. 

Therefore the 𝒢-graded ring

∏︂gr

j∈J 
MKj

(Dj)(ςj)

can be considered and it is gr-semisimple by Theorem 5.30.
For each j ∈ J and A,B ∈ 𝒞0, Lemma 3.21 gives us an isomorphism of additive groups

MKj
(Dj)(ςj)(B,A) −→ M|Kj,B |×|Kj,A|(Dj)(ςj,B)(ςj,A)(B,A)

= Mn(j,B)×n(j,A)(Dj).

Now the compatibility of the isomorphisms φ(A,B) induces the gr-isomorphism R[𝒞]→∏︁gr
j∈J MKj

(Dj)(ςj).
(8) =⇒ (9): It suffices to consider the functor F : 𝒞 → f. g. -mod-

⨁︁
j∈J

Dj defined on 

objects by F (A) =
⨁︁

j∈J D
n(j,A)
j and defined on morphisms using the maps φ(A,B).
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(9) =⇒ (8): Let M and N be objects of f. g. -mod-
⨁︁
j∈J

Dj . It is easy to see that there 

exist sequences (n(j,M))j∈J and (n(j,N))j∈J of non-negative integers with n(j,M) = 0
and n(j,N) = 0 for almost all j such that M ∼ = 

⨁︁
j∈J D

n(j,M)
j and N ∼ = 

⨁︁
j∈J D

n(j,N)
j . 

Then

Hom(M,N) ∼ = 
⨁︂
j∈J 

HomDj
(Dn(j,M)

j , D
n(j,N)
j ) ∼ = 

⨁︂
j∈J 

Mn(j,N)×n(j,M)(Dj)

and we obtain (8).
(8) =⇒ (10): It suffices to consider the functor F : 𝒞 → ∏︁f

j∈J f. g. -mod-Dj defined 

on objects by F (A) = (Dn(j,A)
j )j∈J , and on morphisms using the maps φ(A,B).

(10) =⇒ (8): Let (Mj)j∈J and (Nj)j∈J be objects of 
∏︁f

j∈J f. g. -mod-Dj . For each 

j ∈ J , take n(j,M), n(j,N) ∈ Z≥0 such that Mj
∼ = Dn(j,M)

j and Nj
∼ = Dn(j,N)

j . Then, 
the morphisms from (Mj)j∈J to (Nj)j∈J in 

∏︁f
j∈J f. g. -mod-Dj are

∏︂
j∈J

HomDj
(Mj , Nj) ∼ = 

∏︂
j∈J

HomDj
(Dn(j,M)

j , D
n(j,N)
j ) ∼ = 

∏︂
j∈J

Mn(j,N)×n(j,M)(Dj)

and (8) follows. □
Remark 8.6. Let R be a unital ring and let {Sj : j ∈ J} be a complete set of representa
tives of the isomorphism classes of simple right R-modules. Set Dj := HomR(Sj , Sj) for 
all j ∈ J .

Suppose that 𝒞 is a small full subcategory of f. g. -mod-R whose objects are semisimple 
modules. Given objects M and N of 𝒞, there exist sequences (n(j,M))j∈J , (n(j,N))j∈J ∈
NJ such that

M ∼ = 
⨁︂
j∈J 

S
n(j,M)
j , N ∼ = 

⨁︂
j∈J 

S
n(j,N)
j ,

∑︁
j∈J

n(j,M) <∞ and 
∑︁
j∈J

n(j,N) <∞. Then HomR(M,N) is naturally identified with

∏︂
j∈J

Mn(j,N)×n(j,M)(Dj)

as in Theorem 8.5(8). Hence, 𝒞 is a semisimple category. □
8.3. Simple artinian categories

Following [32, p. 18-19], we will say that 𝒞 is a right artinian category if 𝒞(−, A) is an 
artinian object of the category Fun(𝒞op,𝒜b) for each A ∈ 𝒞0. That is, the subobjects of 
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𝒞(−, A) satisfy the descending chain condition. We will say that 𝒞 is a simple category 
if the only nonzero ideal of 𝒞 is 𝒞(−,−).

The following result follows from Theorems 8.1(2) and 8.3.

Proposition 8.7. Let 𝒢 := 𝒞0 × 𝒞0. The following statements hold true.

(1) For each A ∈ 𝒞0, 𝒞(−, A) is an artinian object of Fun(𝒞op,𝒜b) if and only if R[𝒞](εA)
is a gr-artinian 𝒢-graded R[𝒞]-module.

(2) 𝒞 is a right artinian category if and only if R[𝒞] is a right 𝒢0-artinian ring.
(3) 𝒞 is a simple category if and only if R[𝒞] is a gr-simple 𝒢-graded ring. □

Items (2) and (3) of the previous result lead us to define that 𝒞 is a simple artinian 
category if 𝒞 is right artinian and simple.

It is easy to see that R[𝒞] is a gr-simple ring if and only if 𝒞 is a simple category in the 
sense of [16, Section 7.2]. Therefore, it follows from Proposition 8.7(3) that our concept 
of simple category coincides with that of [16]. In [16, Section 7.2], it was proved that if R
is a simple (unital) ring, then the category proj-R of finitely generated projective right 
R-modules is a simple category [16, Proposition 7.6] and that a preadditive category 𝒫
is a simple category if and only if there exists a simple ring R such that 𝒫 is equivalent 
to a full subcategory of proj-R [16, Theorem 7.5]. The following result characterizes the 
simple artinian categories.

Theorem 8.8. Let 𝒢 := 𝒞0 × 𝒞0. The following assertions are equivalent.

(1) 𝒞 is a simple artinian category.
(2) 𝒞 is a simple and semisimple category.
(3) R[𝒞] is a gr-simple 𝒢0-artinian ring.
(4) There exist a division ring D and a function n : 𝒞0 −→ Z≥0 such that, for each 

A,B ∈ 𝒞0, there exists an isomorphism of additive groups

φ(A,B) : 𝒞(A,B) −→ Mn(B)×n(A)(D)

and all these gr-isomorphisms are compatible with products, i.e., φ(A,B)(fg) =
φ(C,B)(f) · φ(A,C)(g), for each f ∈ 𝒞(C,B), g ∈ 𝒞(A,C).

(5) There exists a division ring D such that 𝒞 is isomorphic to a small full subcategory 
of f. g. -mod-D.

(6) There exists a simple artinian ring R such that 𝒞 is isomorphic to a small full 
subcategory of f. g. -mod-R.

Proof. (1) ⇐⇒ (3): It follows from Proposition 8.7.
(2) ⇐⇒ (3): It follows from Proposition 8.7 and Theorem 5.19.
(3) ⇐⇒ (4): The equivalence is obtained by repeating the proof of (2) ⇐⇒ (8) in 

Theorem 8.5 for |J | = 1.
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(4) =⇒ (5): It suffices to consider the functor F : 𝒞 → f. g. -mod-D defined on objects 
by F (A) = Dn(A), and defined on morphisms using the maps φ(A,B).

(5) =⇒ (6): It is clear.
(6) =⇒ (4): Suppose 𝒞 be a small full subcategory of f. g. -mod-R, where R is a 

simple artinian ring. Fix a simple R-module S and for each M ∈ 𝒞0 an isomorphism 
M ∼ = S(nM ) for a unique nM ∈ Z≥0. For any M,N ∈ 𝒞0,

HomR(M,N) ∼ = HomR(S(nM ), S(nN )) ∼ = MnN×nM
(D),

where D := End(SR). □
8.4. Free functors

In this subsection, we explore when R[𝒞], the ring of the small preadditive category 
𝒞, is a pfm ring and relate this fact with the concept of free functors defined in [32, 
p. 17-18]. We proceed to recall the definition of that notion. Let F : 𝒞 → 𝒜b be an 
additive contravariant functor. We say that (xi)i∈I ∈

∏︁
i∈I F (Ai), where (Ai)i∈I ∈ 𝒞I0 , 

is a sequence of generators of F if, for all A ∈ 𝒞0 and x ∈ F (A), there exists (λi)i∈I ∈⨁︁
i∈I 𝒞(A,Ai) such that

x =
∑︂
i∈I 

(F (λi))(xi).

If, for all A ∈ 𝒞0 and x ∈ F (A), the sequence (λi)i∈I is unique, then we say that (xi)i∈I

is a basis of F and that F is free.
The next result associates free functors with pseudo-free R[𝒞]-modules. The equiva

lence of (1) and (3) was given in [32, p. 18].

Proposition 8.9. Let F : 𝒞 → 𝒜b be an additive contravariant functor and A ∈ 𝒞0. 
Consider the 𝒞0 × 𝒞0-graded right R[𝒞]-module M [F ] with M [F ](A,B) = F (B) for each 
B ∈ 𝒞0. The following statements are equivalent:

(1) F is a free functor with basis (xi)i∈I ∈
∏︁
i∈I

F (Ai).

(2) M [F ] is a pseudo-free right R[𝒞]-module with pseudo-basis (xi)i∈I ∈
∏︁
i∈I

M [F ](A,Ai).

(3) The natural transformation ⨁︂
i∈I 
𝒞(−, Ai) −→ F

IAi
↦−→ xi

is an isomorphism in Fun(𝒞op,𝒜b).
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Proof. (1) ⇐⇒ (2): It suffices to note that x =
∑︁
i∈I

F (λi)(xi) for some B ∈ 𝒞0, x ∈ F (B)

and (λi)i∈I ∈
⨁︁

i∈I 𝒞(B,Ai) is equivalent, by Theorem 8.1(1), to x =
∑︁
i∈I

xi ·λi for some 

B ∈ 𝒞0, x ∈M [F ](A,B) and (λi)i∈I ∈
⨁︁
i∈I

R[𝒞](Ai,B).

(2) ⇐⇒ (3): It follows from Proposition 3.1(7) and Theorem 8.1(1). □

We have the following characterizations of small preadditive categories where all func
tors are free.

Theorem 8.10. Let 𝒢 := 𝒞0 × 𝒞0. The following statements are equivalent:

(1) All additive contravariant functors 𝒞 → 𝒜b are free.
(2) All additive covariant functors 𝒞 → 𝒜b are free.
(3) R[𝒞] is a pfm 𝒢-graded ring.
(4) There exist a set J , a sequence (Aj)j∈J ∈ 𝒞J0 , a family {Dj : j ∈ J} of division 

rings, a map n : J × 𝒞0 → Z≥0 with 
∑︁

j∈J n(j, A) <∞ for all A ∈ 𝒞0, n(j, Aj) = 1
and 𝒞(Aj , Aj) ∼ = Dj for all j ∈ J , and there exist isomorphisms of additive groups

φ(A,B) : 𝒞(A,B) −→
∏︂
j∈J

Mn(j,B)×n(j,A)(Dj)

for each A,B ∈ 𝒞0. Moreover, all such isomorphisms are compatible with products, 
that is, φ(A,B)(fg) = φ(C,B)(f) · φ(A,C)(g), for each f ∈ 𝒞(C,B), g ∈ 𝒞(A,C).

(5) There exists a family ℱ := {Dj : j ∈ J} of division rings such that 𝒞 is isomorphic 
to a small full subcategory of f. g. -mod-

⨁︁
j∈J

Dj whose set of objects contains ℱ .

(6) There exists a family ℱ := {Dj : j ∈ J} of division rings such that 𝒞 is isomorphic 
to a small full subcategory of 

∏︁f
j∈J f. g. -mod-Dj whose set of objects contains ℱ .

Proof. (1) =⇒ (3): By Proposition 8.9 and Theorem 8.1(1), we have that (1) implies 
that all 𝒢-graded right R[𝒞]-modules M of the form M(εA), A ∈ 𝒞0, are pseudo-free. 
Now, (3) follows from Corollary 3.2.

(3) =⇒ (1): It follows immediately from Proposition 8.9.
(2) ⇐⇒ (3): It follows in the same way as (1) ⇐⇒ (3), using Remark 8.2.
(3) =⇒ (4) Proceed as in the proof of (2) =⇒ (8) in Theorem 8.5 and note that 

there exists a sequence (Aj)j∈J ∈ 𝒞J0 such that n(j, Aj) = |Kj,Aj
| = 1 and n(j′, Aj) =

|Kj′,Aj
| = 0 for all distinct j, j′ ∈ J by Theorem 7.5(2).

(4) =⇒ (3) Proceed as in the proof of (8) =⇒ (2) in Theorem 8.5 and note that 
there exists a sequence (Aj)j∈J ∈ 𝒞J0 such that |Kj,Aj

| = n(j, Aj) = 1 and |Kj′,Aj
| =

n(j′, Aj) = 0 for all distinct j, j′ ∈ J . By Theorem 7.5(2), this implies that R[𝒞] is a pfm 
𝒢-graded ring.
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(4) =⇒ (5): It suffices to consider the functor F : 𝒞 → f. g. -mod-
⨁︁
j∈J

Dj defined by 

F (A) =
⨁︁

j∈J D
n(j,A)
j and to note that F (Aj) = Dj for each j ∈ J .

(5) =⇒ (4): It follows the same idea of the proof of (9) =⇒ (8) in Theorem 8.5, 
noting that if 𝒞 is a full subcategory of f. g. -mod-

⨁︁
j∈J

Dj and Dj ∈ 𝒞0, then 𝒞(Dj , Dj) ∼ = 

Dj is a division ring.
(4) =⇒ (6): It suffices to consider the functor F : 𝒞 → ∏︁f

j∈J f. g. -mod-Dj defined 

by F (A) = (Dn(j,A)
j )j∈J and to note that, for each j ∈ J , F (Aj) is the copy of Dj in ∏︁f

j∈J f. g. -mod-Dj .
(6) =⇒ (4): It is similar to (5) =⇒ (4). □
Let R be a unital ring and let 𝒞 be a small full subcategory of f. g. -mod-R. Suppose 

that there exists a subset 𝒮 ⊆ 𝒞0 of simple right R-modules such that all the objects of 𝒞
are isomorphic to finite direct sums of elements of 𝒮. Then R[𝒞], the ring of the category 
𝒞, satisfies Theorem 8.10(4). Thus, R[𝒞] is a pfm ring. Therefore, suppose that ℬ is a 
small preadditive category such that R[ℬ] is not pfm. Then ℬ cannot be equivalent to 
the category of finitely generated semisimple modules of a ring.

The category of all finitely generated semisimple modules of a ring is an example of an 
amenable semisimple category [32, p. 20]. A characterization of such categories is given 
in [16, Theorem 4.55]. We observe that small amenable semisimple categories satisfy the 
conditions of Theorem 8.10.

For small preadditive simple categories, we have the following result, which follows 
from Proposition 8.7(3) and Theorems 8.10 and 7.3.

Theorem 8.11. Suppose that 𝒞 is a simple category and 𝒢 := 𝒞0 × 𝒞0. The following 
statements are equivalent:

(1) Every additive contravariant functor 𝒞 → 𝒜b is free.
(2) There exists A ∈ 𝒞0 such that 𝒞(−, A) is a simple object of Fun(𝒞op,𝒜b).
(3) 𝒞 is a right artinian category and there exists A ∈ 𝒞0 such that 𝒞(A,A) is a division 

ring.
(4) There exist A ∈ 𝒞0, a division ring D, a map n : 𝒞0 → Z≥0 with n(A) = 1 and there 

exist isomorphisms of additive groups

φ(A,B) : 𝒞(A,B) −→ Mn(B)×n(A)(D)

for each A,B ∈ 𝒞0. Moreover, all such isomorphisms are compatible with products, 
that is, φ(A,B)(fg) = φ(C,B)(f) · φ(A,C)(g), for each f ∈ 𝒞(C,B), g ∈ 𝒞(A,C).

(5) There exists a division ring D such that 𝒞 is isomorphic to a small full subcategory 
𝒟 of f. g. -mod-D with DD ∈ 𝒟0. □
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8.5. Division categories

Suppose that a preadditive category 𝒟 has a nonzero object. We say that 𝒟 is a 
division category if each nonzero morphism in 𝒟 is an isomorphism. By Schur’s Lemma, 
an example of a division category is the category of simple modules over a ring. We 
characterize small division categories in the next result.

Proposition 8.12. Let 𝒢 := 𝒞0 × 𝒞0. The following statements are equivalent:

(1) 𝒞 is a division category.
(2) R[𝒞] is a 𝒢-graded division ring.
(3) Every functor F ∈ Fun(𝒞op,𝒜b) is free and all basis of F have the same cardinality.
(4) 𝒞 is a semisimple category and 𝒞(A,A) is a division ring for each nonzero object 

A ∈ 𝒞0.
(5) There exists a family {𝒞j : j ∈ J} of simple division categories such that 𝒞 =∐︁

j∈J 𝒞j.

Proof. (1) ⇐⇒ (2): it is clear.
(2) ⇐⇒ (3): By Theorem 7.6, (2) holds if and only if R[𝒞] is a pfm 𝒢-graded ring 

and, for each 𝒢-graded R[𝒞]-module M all pseudo-basis of M have the same cardinality. 
By Theorem 8.10 and Proposition 8.9, this is equivalent to (3).

(2) ⇐⇒ (4): By Theorem 7.8, (2) holds if and only if R[𝒞] is a gr-semisimple 𝒢
graded ring and R[𝒞](A,A) is a division ring for all nonzero A ∈ 𝒞0. By Theorem 8.5, this 
is equivalent to 𝒞 being a semisimple category and 𝒞(A,A) being a division ring for all 
A such that 𝒞(A,A) ̸= 0.

(2) =⇒ (5): By Theorem 7.8, there exists a family {Rj : j ∈ J} of gr-simple gr
division rings such that R[𝒞] =

⨁︁
j∈J Rj and supp(Rj) ∩ supp(Rj′) = ∅ for all different 

j, j′ ∈ J . It suffices take, for each j ∈ J , the full subcategory 𝒞j of 𝒞 whose set of objects 
is {A ∈ 𝒞0 : εA ∈ 𝒢′

0(Rj)}.
(5) =⇒ (2): For each j ∈ J , consider Rj := R[𝒞j ] as a 𝒢-graded ring. Then R[𝒞] =⨁︁
j∈J Rj is a decomposition as in item (6) of Theorem 7.8. □

Corollary 8.13. If 𝒞 is a division category, then every additive contravariant functor 
𝒞 → 𝒜b is free. □

We comment on the decomposition in item (5) of Proposition 8.12. Let 𝒞 be a division 
category and 𝒞′0 the set of nonzero objects of 𝒞. Similarly to Proposition 4.1, we can define 
in 𝒞′0 the equivalence relation A ∼ B ⇐⇒ 𝒞(A,B) ̸= 0. Let {Aj : j ∈ J} be a family 
of all representatives of this relation. For each j ∈ J , let 𝒞j be the full subcategory of 𝒞
whose set of objects is {A ∈ 𝒞0 : 𝒞(Aj , A) ̸= 0}. Each 𝒞j is a simple division category 
and 𝒞 =

∐︁
j∈J 𝒞j . In particular, 𝒞 is simple if and only if 𝒞(A,B) ̸= 0 for all A,B ∈ 𝒞′0.

Proposition 8.14. Let 𝒢 := 𝒞0 × 𝒞0. The following assertions are equivalent:
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(1) 𝒞 is a simple division category.
(2) R[𝒞] is a gr-simple 𝒢-graded division ring.
(3) There exists a division ring D such that 𝒞 is isomorphic to a small full subcategory 

of f. g. -mod-D whose objects have dimension 0 or 1.
(4) There exists a ring with unity R such that 𝒞 is isomorphic to a small full subcategory 

of f. g. -mod-R whose objects are null or simple modules.

Proof. (1) ⇐⇒ (2): It follows from Proposition 8.12 and Proposition 8.7(3).
(2) =⇒ (3): By Theorem 8.8, there exists a division ring D such that 𝒞 is isomorphic 

to a small full subcategory of f. g. -mod-D. If M and N are nonzero D-modules, then 
the invertibility of all nonzero elements of HomD(M,N) is equivalent to M and N have 
dimension 1. Thus, (3) follows.

(3) =⇒ (4): It is clear.
(4) =⇒ (1): It follows from Schur’s Lemma. □
By Proposition 8.12, R[𝒞] is a 𝒢-graded division ring if and only if for each A,B ∈ 𝒞0, 

all nonzero morphism in 𝒞(A,B) is invertible. On the other hand, Theorem 8.10 tells us 
that if R[𝒞] is a pfm ring, then there exists a family {Aj : j ∈ J} of objects in 𝒞, a family 
{Dj : j ∈ J} of division rings, a map n : J × 𝒞0 → Z≥0 with 

∑︁
j∈J n(j, A) < ∞ for all 

A ∈ 𝒞0, n(j, Aj) = 1 and 𝒞(Aj , Aj) ∼ = Dj for all j ∈ J , and

𝒞(Aj , B) ∼ = 
∏︂
j′∈J

Mn(j′,B)×n(j′,Aj)(Dj′) = Mn(j,B)×1(Dj);

𝒞(B,Aj) ∼ = 
∏︂
j′∈J

Mn(j′,Aj)×n(j′,B)(Dj′) = M1×n(j,B)(Dj).

That is, in this case we just know that, for each j ∈ J , the nonzero morphisms with 
domain Aj are left invertible and the nonzero morphisms with codomain Aj are right 
invertible.
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