IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 1 June 2025, accepted 25 July 2025, date of publication 1 August 2025, date of current version 7 August 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3595058

== RESEARCH ARTICLE

Comprehensive Evaluation of Techniques for
Intelligent Chatter Detection in
Micro-Milling Processes

GUILHERME SERPA SESTITO"'!, WESLEY ANGELINO DE SOUZA"'!, (Member, IEEE),
ALESSANDRO ROGER RODRIGUES “2, AND MAIRA MARTINS DA SILVA"?

! Department of Electrical Engineering, Federal University of Technology—Parana (UTEPR), Cornélio Procépio, Parand 86300-013, Brazil
2Depa.rtment of Mechanical Engineering, University of Sao Paulo (USP), Sao Carlos, Sao Paulo 13566-590, Brazil

Corresponding author: Guilherme Serpa Sestito (sestito @utfpr.edu.br)

This work was supported in part by Brazilian Funding Agency through National Council for Scientific and Technological Development
(CNPq) under Grant 303884/2021-5 and in part by the Sdo Paulo Research Foundation (FAPESP) under Grant 2019/00343-1.

ABSTRACT Frictional and regenerative chatter are the most relevant unstable dynamic conditions in
micro-milling. Both phenomena promote chatter, affecting the surface finishing and reducing the tool
life. Therefore, in-process chatter detection strategies are of utmost importance to avoid adverse effects
on productivity. These strategies can use machine learning (ML) and deep learning (DL) classifiers, but
they should be able to lead with tight computational requirements. A smaller yet relevant set of features
could aid these classifiers in coping with these requirements. This work proposed using feature selection to
evaluate the impact of several statistical features on the performance of ML classifiers for chatter detection
during micro-milling operations, compare them to the performance of the Convolutional Neural Network
algorithm, and discuss the employability of the techniques on the STM32F446RE microcontroller. This study
exploits experimental data from chatter and chatter-free cuts during machining operations with commercial
COSAR-60 low-carbon steel under two different grain sizes (as received and ultra-fined). Random Forest,
Pearson’s Correlation, and collinearity analysis are the strategies used to identify the most relevant features
in these operations. The performance of several ML classifiers is compared in each feature reduction stage
with the Deep Learning algorithm. The results discuss the need for applying complex algorithms since the
accuracy and Fl-score indices presented similar values regardless of the number of features. Moreover,
reducing the dataset dimension significantly decreased training/testing time, and mainly in execution latency
(FLOPs). This reduction is essential for implementing strategies for in-process chatter detection.

INDEX TERMS Micro-milling, feature selection, correlation analysis, convolutional neural network,
machine learning classifiers, chatter identification.

I. INTRODUCTION

Conventional and micro-milling processes employ similar
machine components, tool geometry, and cutting fluids; how-
ever, the material removal mechanisms differ. For example,
the shearing forces that act on the rake face are the main
material removal mechanisms of the conventional milling
process. In contrast, the plowing and shearing regimes are
present in the micro-milling operations [1]. These complex
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material removal dynamics yield instabilities generated by
tool deflections, tool runout, and machining chatter.
Frictional and regenerative chatter are the most relevant
unstable dynamic conditions in micro-milling. The former
occurs when specific spindle speeds and friction conditions
between the cutter and the material lead to an accentuated
increase in vibration [2]. The latter happens due to a chip
thickness variation in a specific combination of process
parameters. This chip variation results from the modulations
left on the surface during successive cuts, generating
self-exciting vibrations as illustrated in Figure 1 [3].
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Both phenomena yield large forces and displacements that
promote chatter, affect surface finish, and reduce tool life
[4], [5]. Therefore, researchers have been investigating
strategies to identify stable and unstable conditions to avoid
the adverse effects of chatter on productivity. Stability
Lobe Diagrams that differentiate the stable and unstable
conditions have been extensively used. These diagrams
can be computed by time-domain data obtained from
experimental campaigns [6], [7] or numerical analysis of
dynamic models [8], [9]. However, the derivation of the
diagrams may be cumbersome given the complexity of the
phenomenon due to the diversity of factors that can influence
its appearance, such as the cutting tool, the tool holder, the
workpiece material, the machine structure, and the cutting
parameters [10].
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FIGURE 1. lllustration of chatter monitoring using acoustic emission
during a micro-milling operation.

As stated in [11], advanced real-time data processing
and decision-making methods are still necessary for milling
operations. Reference [12] pointed out that chatter detection
strategies require signal acquisition, feature extraction, and an
indicator of chatter occurrence. Regarding signal acquisition,
[13] mentioned that most works explore vibration signals
from acquired accelerometers or microphones. However,
other signals, such as the motor current/torque and data
processed from captured images, can also be exploited [14].
Regarding micro-milling, Acoustic emissions (AE), mea-
sured by microphones as illustrated in Figure 2, are the most
common data used in chatter detection. Due to the dimensions
of the process, the vast majority of sensors may modify the
system dynamics, which is not the case with microphones.
This low-cost measurement alternative is non-invasive, and
its signals contain information on vibrations, tool-workpiece
contact, surface integrity, and topography [15], [16], [17].
On the other hand, it is also well known that acoustic
signals are susceptible to noise [18], [19] that requires data
processing.

These data processing techniques can be applied in the
time and/or frequency domain. Real-time data processing and
decision-making methods may benefit from data described
in the time domain, in which features can be extracted
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directly from raw, resampled, or filtered signals [13].
The choice of chatter indicator can vary between extracting
information from the data (such as entropy, for example),
using machine learning techniques, and multi-signal analy-
sis [5]. Due to this necessity and the difficulties in dynamic
modeling and measuring relevant data for chatter detection,
machine learning strategies have played an essential role
in the recent advances in this field. For example, [20]
proposed using wavelet transfer and deep convolutional
neural networks (NN) to detect chatter in milling operations
using the data obtained by a low-cost and non-invasive
accelerometer. They achieved 82 to 100% accuracy according
to the scenario. Higher accuracy was achieved by [21],
where the authors combined k-NN with data processing
techniques and obtained 98%. The same performance was
obtained by [22] when adopting the Adaboost Algorithm
and comparing its result with the SVM (96.7%), Random
Forest (96.7%), 1D Convolutional Neural Network (61.7%),
and Multilayer Perceptron (90%). Reference [10] applied
different classifiers, obtaining satisfactory results, with the
accuracy of Perceptron and SVM-RBF close to 100%. Unlike
the cited works, [23] exploited machine learning in feature
selection using fuzzy entropy. The results obtained by [23]
demonstrate the importance of a proper feature selection to
improve a classifier’s performance.

It is a fact that several machine learning techniques have
been proposed in the related literature to detect chatter.
However, an extensive discussion is needed regarding the
applicability of a method or a set of techniques, from the
preprocessing of the dataset, feature selection, classification,
and the computational effort for its actual implementation on
a microcontroller.

In this sense, this paper compares the applicability of
machine learning algorithms (K-NN, SVM, DT, MLP,
AdaBoost) and a deep learning algorithm (1D-CNN) for
chatter classification in two different materials. The dis-
cussion is carried out by analyzing performance indicators,
namely training and testing time, F1-Score, and execution
latency measured in Floating Point Operations per Second
(FLOP), considering the implementation of the algorithms
on the STM32F446RE microcontroller. Feature selection
algorithms will be applied to the datasets. Proper selection
is of utmost importance for the performance of intelligent
classifiers.

In this sense, this paper explores feature selection tech-
niques to select, manipulate, and transform raw data into
features that can be used in a rule-based algorithm for chatter
detection in micro-milling operations. This work extracts
45 features from AE signals obtained during micro-milling
operations. These signals contain samples of operations with
and without chatter. We propose evaluating these features in
three stages, exploring the Random Forest algorithm, Pearson
correlation, and collinearity analysis. The outcome of this
proposal is the selection of the most relevant features for
training machine learning-based classifiers. We train and
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compare six different classifiers to assess the reduction in
processing time, improvement in their performance, and the
impact on computational efforts. Determining which feature
is most suitable for chatter detection allows the use of simpler
classifiers.

The main contributions of this work can be understood as
follows:

« This paper extensively discusses which machine learn-
ing technique is most appropriate to be applied in chatter
classification in micro-milling processes. Both Machine
Learning and Deep Learning algorithms are considered.

o To support the choice of the most suitable technique
for the chatter classification problem, performance
indicators such as accuracy, training, and testing times
are considered. Additionally, and differently from the
related literature, the computational effort is assessed
through FLOPs, assuming the methodology is imple-
mented on the STM32F446RE microcontroller. This
brings practical and real meaning to the discussion
presented.

o A critical contribution is the feature selection process
presented. A set of rules can be applied through a single
feature extracted from the acoustic signal, a technique
with reduced computational effort. Complex algorithms
such as Deep Learning are not always necessary.

This article is organized as follows. We describe the exper-
imental campaign and the data acquired during micro-milling
operations in Section II. The feature selection techniques
and the machine learning-based classifiers are summarized
in Sections III and IV. Section V details the proposal of this
work, while Section VI presents and discusses the results.
Conclusions are drawn in Section VII.

Il. EXPERIMENTAL CAMPAIGN AND ACQUIRED DATA
Micro-milling machining experiments were performed using
a slow cutting strategy in a Romi D800 CNC milling
machine with a 1 pum position accuracy. This cutting strategy
can manufacture micro-channels in the workpiece with the
tool diameter. Therefore, the analysis did not consider the
tool’s flexibility and runout. Figure 2 depicts the workpiece
(8 x 26x60 mm), the tool holder, and the microphone (AE
Sensor).

The workpiece material plays an essential role in the
chatter occurrence. Feature selection may reveal that the
most relevant features may not be the same for different
materials because of differences in their microstructure.
Therefore, we investigated two materials: the “as received”
COSAR-60 biphasic low-carbon steel (ferrite-pearlite) with
11 pm grain size named AR, and the ultra-fined grain
COSAR-60 monophasic (ferrite) with 0.7 pm grain size
termed UF.

The AE signals were acquired while cutting four
microchannels using a Imm diameter carbide endmill tool
with two flutes. The channels are 26mm long and Imm
wide. The cutting parameters were set to 125 m/min cutting
speed, 3pm/tooth feed, 100 pm depth of cutting, and 1.0 mm

VOLUME 13, 2025

FIGURE 2. Micro-milling machining experiments.

width. A piezoelectric microphone with a dynamic response
of up to 1 MHz captured the AE signals. These signals were
acquired and processed on an NI PCI-6251 board at a rate
of 1.25 MHz. A high-pass filter with a 250 Hz cutoff and an
amplification of 35 dB was used during this acquisition.
These signals acquired during micromilling operations
are shown in [10] and [16]. For the sake of illustration,
Figure 3 illustrates the AE signals during the cutting process
of the fourth micro-channel of the AR workpiece. The signals
during chatter-free and chatter cuts are shown in this figure.
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FIGURE 3. Time domain AE signal from micro-milling of AR in the
micro-channel 4, an illustration of the features’ extraction using sliding
window.

Ill. DATA ANALYSIS AND FEATURE EXTRACTION

According to [13], data analysis is a fundamental step for
correctly and efficiently detecting chatter during machining
operations. Therefore, this work proposes to analyze raw data
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in the time domain by extracting and evaluating the features.
Feature selection approaches have been described by [10],
[16], [24], and [25]; however, a comprehensive evaluation
using feature selection is still lacking.

Table 1 describes the features exploited in the work
and indicates the related published works in which these
features have also been investigated for chatter detection.
This proposal only considers statistical features extracted
from the data packets for versatility. A sliding window
algorithm is responsible for splitting the data into data packets
that contain w samples. This algorithm spams the entire
dataset moving a window of w samples (a data packet) by
s samples (as illustrated in Figure 3). The sliding window
algorithm is a widely used strategy, as pointed out by [26].

TABLE 1. Set of extracted features.

Number (j) Feature (F)) Related works
F1q Average of signal amplitude [10]
Fa Standard deviation of signal amplitude [10, 27]
F3 Mean deviation
Fy Variance of signal amplitude [10, 12, 25]
Fs Coefficient of variation of signal amplitude  [5, 10]
Fg Median
Fr RMS value of signal amplitude [10, 12, 25]
Fg Kurtose [12, 25, 27]
Fy Mode
F1io Highest absolute value [10]
F11 Range
Fio First quartile
Fi3 Second quartile
Fi4 Third quartile

F15-F45 Histogram

Reference [28] point out that a feature selection algorithm
promotes insight into data, improves the classifier model,
and increases generalization by identifying relevant and
irrelevant features. Furthermore, the authors emphasize that
this identification may reduce the computational efforts due
to a reduction in the dataset dimensionality. This work
investigates three feature-selection algorithms for reducing
the dataset dimensionality by comparing the classifier’s
performance and computational effort.

Firstly, we employed the Random Forest (RF) algorithm
to reduce the 45 features described in Table 1 for classifying
the occurrence of chatter. In Figure 4, target = 0 means
that the dataset comes from a chatter-free cut; otherwise
(target = 1), from a cut under the chatter occurrence. In the
literature, authors, such as [29] and [30], used this algorithm
for classification, regression, and feature selection since it
generates ensemble decision trees, as illustrated in Figure 4,
considering random subsets of features. The RF algorithm
derives multiple decision trees, and their average can be taken
by votes that result in the output classifier [31]. In this work,
we derive 100 decision trees for performing this average.

Moreover, the algorithm optimally divides a node using
the Gini impurity measure, used to identify the most relevant
features for the classifications, F9 in Figure 4, and the
decision value for the true/false division, Value in Figure 4.
For generality, the subindex ? indicates that any feature
can be used. A decision tree can have fewer nodes than
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FIGURE 4. lllustration of a Decision Tree for Classification of Chatter.

the features presented, revealing the most relevant features
for classification. For example, this strategy successfully
selected the features for fire detection in videos as reported
in [32] and identified individual loads in electrical energy
consumption as proposed by [33].

Secondly, we evaluate the correlation between the N most
relevant features selected by RF, denoted as Fl.* where i =
1...N, using Pearson correlation as a metric. The idea is to
eliminate correlated features since they represent redundant
information [34]. References [35] and [36] exploited this
metric to reduce the number of features used by the classifiers
to detect real-time Ethernet traffic events and forecast
electrical demands.

S o R
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\> selected feature

FIGURE 5. lllustration of the Correlation Matrix and the methodology for
selecting the most relevant features.

In the present work, we build a matrix of Pearson’s
correlation between two features, as illustrated in Figure 5.
For example, Cj = C3; is the Pearson correlation of the
two most relevant features identified by the RF algorithm.
We propose eliminating one of the features if its Pearson
correlation is greater than 0.95. This high value indicates

VOLUME 13, 2025



G. S. Sestito et al.: Comprehensive Evaluation of Techniques for Intelligent Chatter Detection

IEEE Access

that the evaluated features are redundant. The elimination
criterion is based on the sum of all Pearson correlation
values regarding the redundant features. The feature with
the highest sum of Pearson correlation values is eliminated.
Figure 5 illustrates this procedure. In this figure, F}" and
F; are considered redundant since Cjo = Co; < 0.95. In this
way, one of them should be eliminated by evaluating the
sum of their Pearson correlation values. In this illustration,
the feature F3 is eliminated since va Cp > va Cii.
This procedure reduces the number of relevant features
toM < N.
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FIGURE 6. Illustration of the two kinds of plots used in the collinearity
analysis.

Finally, a collinearity analysis is performed to select
the most important feature among the chosen ones in the
study based on the values of Pearson’s correlation. This
analysis has been done by plotting pairwise relationships
in a dataset as [33]. The features chosen using the Pearson
correlation metric are used to generate these plots. Figure 6
shows two types of these plots derived from this strategy.
Figure 6(a) shows the target values for two features to
illustrate the separability of these features regarding the
targets. In contrast, Figure 6(b) illustrates the kernel density
estimation, an estimator of the probability density function of
a random variable, for a determined feature to demonstrate
if the targets’ distribution is placed in distinct feature
values.
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IV. CLASSIFIERS

This work investigates the above-mentioned feature-selection
algorithms for reducing the dataset dimensionality. This
investigation compares five-well-known machine learning-
based classifiers: k-nearest neighbours (k-NN) [37], support
vector machines (SVM) [38], decision tree (DT) [39],
multi-layer perceptron (MLP) [40] and AdaBoost [29]. For
completeness, these classifiers and their hyperparameters are
briefly explained. We used the Python library scikit-learn to
implement the classifiers in this work.

A. k-NEAREST NEIGHBORS (k-NN)

The k-NN classifier, proposed in [37], assigns the most
frequent pattern among the k nearest training samples to
a sample. For instance, if k = 1, the assigned pattern is
the closest neighbor’s. This assignment can be carried out
uniformly or weighted according to a distance metric between
the samples. In this work, the distance metrics investigated are
the Euclidean and Manhattan distance metrics. The latter can
be interpreted as the sum of the absolute differences between
the samples’ Cartesian coordinates.

This method yields a decision surface that can easily adapt
to the training data’s distribution shape, which is a significant
advantage. On the other hand, the main disadvantage is the
training phase complexity since many distance metrics should
be derived and several neighbors’ samples sorted and verified.

B. SUPPORT VECTOR MACHINE (SVM)

SVM is a supervised method that aims to find a hyperplane,
also known as a hard margin, that separates the data patterns.
Figure 7 shows two patterns (target = O and target = 1)
by a hyperplane, w’ - x; + b = 0. The points closest to
the hyperplane are called support vectors, and w and b are
the coefficients found in the training phase. The objective is
to maximize the distances between the hyperplane and the
support vectors [41]. The sum of these distances is illustrated
as the total margin in Figure 7.

There are some scenarios where the datasets are not
separable by a hyperplane. In this case, an adimensional
transformation for the input sets using Kernel functions
can modify these datasets to be linearly separable. Several
Kernel functions are proposed in the literature. This work
investigates the linear and the RBF Kernel functions [42].
The latter requires the selection of a hyperparameter, denoted
as y, to control the flexibility of this transformation.

Moreover, we can allow some margin violations by
imposing a penalty factor on the optimization problem. This
factor, denoted as box constraint C, is a hyperparameter that
must be selected. This approach is known as soft-margin
SVM. Figure 7 illustrates the soft margins for our case study.

C. DECISION TREE (DT)

A DT, illustrated in Figure 4, is a series of if-else statements
created in the training stage that can be used for classifica-
tion [39]. As depicted in Figure 4, the splitting procedure
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FIGURE 7. lllustration of a soft-margins SVM-based classifier.

starts at the root node, goes through the intermediate nodes,
and ends up in the leaves. Moreover, the illustrated tree has
three levels.

It is known that the number of samples required to populate
the tree doubles for each additional tree level. Therefore, the
user can limit the number of levels to prevent overfitting
using the hyperparameter max_depth. The user can also
decide the number of features that will be considered in each
slit decision. This hyperparameter, denoted as max_feature,
can also prevent data overfitting. This hyperparameter can
be automatically chosen by the procedure or related to the
number of features as its square root or logarithm values.
For instance, even if 45 features are investigated, only
10 randomly selected features are considered in the splitting
procedures if max_feature is set to 10.

D. MULTI LAYER PERCEPTRON (MLP)
An MLP classifier is a feedforward artificial neural network
model that maps the input dataset, x € R, into appropriate
targets (outputs), o € R [40]. In this work, we investigate
the performance of this classifier considering D features and
two possible outputs (target = O or target = 1) yield L = 1.
An MLP is composed of input, hidden, and output layers. The
number of hidden layers is a hyperparameter that can vary
according to the user’s decision.

For instance, a one-hidden-layer MLP can be mathemati-
cally described by

fX) =G {b<2> +WO [s (b“) + W(l)x)]} (1

with bias vectors b(D, b(z); weight matrices wb, W and
activation functions G and s.

The vector A(x) = s(b™") + W(x) consists in the hidden
layer, while f(x) = G[b?® 4+ W@p(x)]. Typical choices for
the activation functions are the identity (which returns a),
the logistic sigmoid function (which 1/(1 4 exp(—a)), the
hyperbolic tan function (which returns tanh(a)) and the
rectified linear unit function (which returns max(0, a)),
considering a the input for the activation functions. In this
work, these activation functions are denoted as identity,
logistic, tanh, and relu, respectively.
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The weight matrices are found by solving an optimiza-
tion problem during training. Several optimization solvers,
including the Limited-Memory BFGS, a quasi-Newton
method, or stochastic methods such as stochastic gradient
descent and Adam [43], can be used. In this work, these
optimization solvers are denoted as lbfgs, sgd, and adam,
respectively.

Finally, in this work, we also investigate the use of a
regularization term. This term, denoted by alpha, attempts
to reduce overfitting by constraining the size of the weights.
Increasing alpha may yield simpler decision boundary curves,
and decreasing alpha may result in a more complicated
decision boundary. More information about the MLP method
can be found in [44].

E. AdaBoost

The AdaBoost algorithm works well for classification prob-
lems with two classes (targets) [29], but can also be employed
in multiclass problems [45]. AdaBoost uses a sequence of
weak learners to derive a strong learner. This sequence is
derived from several evaluations denoted as boost iterations.
A weak learner can typically be formulated as a decision
stump, a simple tree composed of a root node and leaves
(two leaves for binary classification). In each evaluation,
the AdaBoost creates a decision stump using a decision
metric, e.g. the Gini impurity measure. During the training
phase, the next decision stump is created upon weighing the
features according to their importance in deriving a good
classifier. For example, the probability of a feature being in
the following evaluation can be a function of its weight. The
algorithm performs many boosting iterations, yielding several
decision stumps. The outcome of this classifier is defined
according to the most common output from these decision
stumps.

The maximum number of evaluations denoted as
n_estimators, is a hyperparameter that the user can select.
Upon convergence, the algorithm can stop the learning
procedure earlier. Moreover, a weight is applied to each
decision stump at each boost iteration according to a decision
metric. A hyperparameter, denoted as learning_rate, can
modify the contribution of each decision stump. There
is a trade-off between the learning_rate and n_estimators
parameters since a high learning_rate can yield a premature
convergence.

F. 1D-CNN

Convolutional Neural Networks (CNNs) are commonly
investigated within deep learning, with applications in
biomedical signal processing, pattern recognition,
autonomous systems, and time-series classification. One-
dimensional CNNs (1D-CNNs) have shown utility in
modeling sequential data due to their ability to capture
localized patterns. These networks have been applied as an
alternative to traditional machine learning approaches for
signal classification tasks [46].
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A 1D-CNN architecture typically consists of two main
components: convolutional layers, which extract localized
features using trainable filters, and dense (fully con-
nected) layers, which perform classification based on the
extracted representations. Relevant hyperparameters include
the number and size of filters, pooling strategy, and
activation functions. This structure has been used in pro-
cessing one-dimensional data such as acoustic emission
signals, where localized variations can be informative for
classification [47].

V. METHODOLOGY

This work investigates micro-milling operations by consid-
ering two different materials (AR and UF). The number of
samples of each dataset, composed of AE signals during
chatter and chatter-free cuts, is described in Table 2. These
samples were submitted to the sliding window algorithm,
considering 1000 samples as the window size (3ms) and
500 as the step size (1.5ms). This procedure yields n
windows.

The features described in Table 1 were extracted and
normalized from these windows. These values populate the
input vectors for the classifiers, which are F; € R", where
j = 1...45. It is essential to highlight that only statistical
features have been explored, guaranteeing the generalization
of the presented methodology.

Therefore, we trained and tested several classifiers with
different hyperparameters at each feature selection phase,
as illustrated in Figure 8. The dataset was divided into training
and testing using the stratified cross-validation method with
k-fold = 5.

The entire set of 45 features is initially used to train and test
the classifiers. Then, the RF algorithm identifies N relevant
features and the Pearson correlation analysis M features from
this set. Finally, collinearity analysis selects a single feature
as the most pertinent. The values of N and M can differ for
the different materials.

Classifiers'
training/testing

45 features

RF algorithm

Classifiers'

N feat L .
catures training/testing

Pearson Correlation

Analysis
M features (Fla)ssmersl
training/testing
Collinearity
Analysis
Classifiers'
1 feature training/testing

FIGURE 8. Illustration of the feature sections phases.

Table 3 describes the investigated classifiers and their
hyperparameters. The performance of these classifiers is
compared using accuracy, Fl-score, training, testing times,
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TABLE 2. Number of data samples for chatter and chatter-free cuts for
the different materials.

Number of points

Material Chatter Non-Chatter
AR 2254322 1502101
UF 1878602 1850139

and Floating-point Operations per Second (FLOP). This
last indicator is directly related to the computational cost
of inference and is essential for the analysis of a real
implementation on a microcontroller. For this work, the
STM32F446RE was considered. The computational routine
was developed in Python 3 using the sklearn library, among
others. A desktop computer running Windows 10, with
Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz and 8GB
RAM, carried out the computational analyses.

TABLE 3. Parameters of the classifiers tested in the grid search.

Classifier Parameters Range
k 1,3,5,7,13
k-NN weights uniform and distance
metric Euclidean and Manhattan
0.01,0.02,0.05,0.1,0.2,0.25,0.3
SVL ¢ 0.33.0.4.0.5,0.75.0.9,12.3
0.01,0.02,0.05,0.1,0.2,0.25,
C 0.3,0.33,0.4,0.5,0.75,0.9,1
SVM-RBF 2,3,5, 10, 20, 50, 100, 150
0.01,0.02,0.05,0.1,0.2,0.25,0.3
v 0.33,0.4,0.5,0.75,0.9, 1,2, 3
1,2,3,4,5,6,7,8,9,10,11
DT max_depth 12,13,14,15,16,17,18,19,20
max_features  auto, sqrt, log2
alpha 0.0001,0.001,0.01,0.1,1,10
solver Ibfgs, sgd, adam
MLP hidden layers 2
neurons 100
activation identity, logistic, tanh, relu
AdaBoost n_estimators 30,50,70,80,90,100,110,120,130

learning rate 0.0001,0.001,0.01,0.1,1,10

The 1D-CNN model was also trained using the same AE
signals and sliding window strategy, with a window size of
1000 samples and a step size of 500 samples. In contrast
to traditional classifiers that rely on engineered features,
the CNN model operates directly on raw signal segments,
learning internal representations from the data. This end-
to-end approach reduces the need for manual preprocessing
but entails higher computational complexity. The architecture
adopted in this study includes two convolutional layers
(32 and 64 filters), each followed by max-pooling, and two
dense layers, using ReL.U activations and a final sigmoid
output for binary classification. The model was trained using
the Adam optimizer with binary cross-entropy loss and early

stopping.

VI. RESULTS AND DISCUSSION

The performance of the classifiers is evaluated and discussed
at the end of this section. Firstly, we are presenting the
outcome of the feature selection procedures.

136737



IEEE Access

G. S. Sestito et al.: Comprehensive Evaluation of Techniques for Intelligent Chatter Detection

From a set of 45 features (described in Table 1), the
RF algorithm can derive the most relevant ones for chatter
detection according to their relevance. These values are
illustrated in bar plots depicted in Figs. 9(a) and (b) for
AR and UF materials, respectively. Table 4 summarizes the
most relevant features selected by the RF algorithm. This
procedure selected M = 9 features for the AR and M = 5
features for the UF, demonstrating that different materials
require the derivation of their classifiers due to the unstable
nature of the machining process.

A Pearson correlation analysis can be employed to
eliminate redundant information from the selected features
of the RF (described in Table 4). The features with a Pearson
correlation greater than 0.95 are candidates to be discarded.
Figures 10 show the Pearson correlation matrices for both
materials. Table 5 reports the pair of candidates for both
materials. For example, among the features F5 and Fio for
the UF material, F1o presents the lower correlation sum,
indicating that F¢ is less redundant than F3, which will be
kept in the further analysis. The AR material presents a tie
between F» and F3. In this case, F» is selected due to its
degree of importance in the RF algorithm (see Figure 9 (a)).
Table 4 summarizes the most relevant features the Pearson

0.25
0.20 4
0.15
0.10
0.05
0.00
oOonNnmn OMFTAN~NMAN O 00 O
Lo LT R e O W I i I i I T I ¥ S e = |
. [T [T w [T | W
Feature
(a)
0.30
0.20
0.10
0.00 —
oOOoOMN " A NOMULANMMNSN< O < N~
o B W e R N I W i i T ¥ S N NI |
w w w [T [T [ ¥ S T
Feature

(b)

FIGURE 9. Feature’s importance according to RF algorithm: (a) AR and
(b) UF.
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FIGURE 10. Pearson correlation matrix of the selected features by RF:
(@) AR-M =9, and (b) UF-M = 5.

TABLE 4. Features selected by Random Forest algorithm, Pearson
correlation, and collinearity analyses.

Algorithm Mat. Features
AR Fo,F3,F4,F5.F7,Fg.F10.F13.F15

RE UF F1, F5,Fg,F10.F11
AR Fs, F10, F13, F15
Pearson UF Fi, Fs, Fio, F11
. . AR Fio
Collinearity UE Fio

correlation analysis selected. This procedure selected N = 4
features for both materials. Some of the selected features are
the same, again demonstrating that different materials may
require the derivation of dedicated classifiers.

Finally, the collinearity analysis can help demonstrate
the separability between the targets (classes), considering
N = 4 selected features by the correlation analysis N = 4.
Figures 11 show pairwise evaluations of target values
(target = 1 for chatter cuts and target = 0 for chatter-free
cuts), indicating the pair separability regarding the targets.
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TABLE 5. Feature selection by Pearson correlation analysis for both
materials.

Mat.  Candidates va Cjj Selected
1% cand. 2™ cand
Fa-F3 8.28 8.28 Fa
Fa-Fy4 8.28 8.31 Fa
AR Fa-Fi5 8.28 8.1 Fis
F5-F1o 7.80 7.67 Fio
F7-F15 8.28 8.10 Fi5
UF F5-F10 3.06 3.03 Fio

These figures also show the kernel density estimation for each
selected feature to illustrate the distribution of the targets.

Figure 11(a) indicates that the target distribution of the
features Fg and F1g does not present overlaps. However, the
target distributions of the features F3 and F5 overlap and
might not be good candidates for chatter detection during
AR machining. Since the standard deviation of the Fig
distribution is higher than that of the Fg distribution, F'jo may
represent the data variability in a better manner. Therefore,
F1g is the feature selected to classify the presence of chatter
during AR machining by collinearity analysis as indicated in
Table 4.

Figure 11(b) demonstrates that the target distributions of
the features F, Fg and F; present overlaps and may not be
good candidates for chatter detection during UF machining.
On the other hand, since the target distribution of the feature
F1 does not present overlaps, the feature selected to classify
the presence of chatter during UF machining by collinearity
analysis is F'1¢ as indicated in Table 4.

TABLE 6. Hyperparameters used by classifiers.

Classifier Parameters AR UF
neighbors 1 1
k-NN weights uniform uniform
metric Euclidean = Manhattan
C 2 10
SVM-RBF 3 0.2
DT max_depth 5 12
max_features sqrt auto
alpha 0.0001 0.001
MLP solver adam Ibfgs
activation logistic identity
AdaBoost n_estimators 30 30

learning rate 0.0001 0.0001

Three feature selection algorithms have been exploited
to reduce the dimension of the dataset. The selected
features, described in Table 4, are used to train and test
five well-known machine learning-based classifiers: k-NN,
SVM, DT, MLP, and AdaBoost. Table 3 describes the
hyperparameters used during this training. The performance
of these classifiers is evaluated using accuracy (ACC),
Fl-score, training time (T}4i,), and testing time (Tjeg).
Table 6 shows the hyperparameters that obtained the best
classifiers, while Tables 7 and 8 show the performance index
for these classifiers considering the set of features selected in
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TABLE 7. Classifiers’ performance for selected feature sets - AR.

Performance Indicators

Features ACC  Fl1Score  Tiqin Trest
35 9867 9854 — 28825
9 99.94  99.94 ~ 2778

k-NN 4 99.95  99.95 - 84.5
) 100 100 - 792
35 9833 9823 23140 12461

9 9980 9978 1382  96.0
SVM 4 9992 1129 828 1107
) 100 100 1002 612

35 9674 9635 144 16

o1 9 9998 9997 108 12

4 9982 9981 7.0 1.0

) 9998  99.97 3.0 10

35 9995 9995 34153 438

9 9997 9997 18064 42

MLP 4 9992 9992 15926 2.8

) 100 100 3121 32

35 9999 9999  Ti170 189

9 9999 9999 3417 134

AdaBoost 4 9980 9979 2240 118

) 100 100 6.2 18

TD-CNN - 9085 9984 1324 64

TABLE 8. Classifiers’ performance for selected feature sets - UF.

Performance Indicators

Features ACC Fl-score  Tiqin Tiest

45 9965  99.65 — 31646
5 9999  99.99 - 97.5
k-NN 4 9998  99.98 - 84.0
) 100 100 - 80.3
35 9986 9986 42821 16697
5 100 100 799 469
SVM 4 9999 9999 1021 658
) 100 100 846 553
35 8818 8606 299 33
o1 5 9999  99.99 48 1.0
4 9905  99.05 8.2 1.0
I 9999 9999 32 12
35 0998 9908 26183 54
9 100 100 21208 28
MLP 4 9999  99.99 13675 2.8
| 100 100 25423 24
35 9998 9998 11693 362
5 9999  99.99 239 34
AdaBoost 4 9999 9999 1978 109
) 9999 9999 130 38
TD-CNN - 9981 9987 1520 7.1

each phase of the dataset dimensionality reduction strategy
(see Figure 8).

According to Tables 7 and 8, the accuracy and F1-score
indexes achieve outstanding results considering not only the
entire set of features but also the reduced ones. It is important
to note that these performance indices present similar values
independently of the number of features. This result shows
that reducing the number of features added no shortcoming to
the classifiers. Moreover, feature selection demonstrates that
a single feature (F1o) can detect chatter during AR and UF
micro-milling operations. Since a single feature can identify
chatter, users can adopt a simple decision rule instead of a
machine-learning-based classifier.
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Moreover, by reducing the dataset dimension, the training
and testing time presents a critical reduction. This reduction
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FIGURE 11. Collinearity analysis with N = 4 features: (a) AR, and (b) UF.

is of utmost importance when implementing strategies for classifiers.
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in-process chatter detection. Therefore, DT can be considered
the most efficient algorithm for computational effort among
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Another fundamental analysis for implementing an
in-process chatter detection is assessing the required time
to extract the features. Table 9 shows the amount of time
required for extracting the set of features from the entire
dataset (Tfeamre) and a window (Tyindow - see Figure 3).
A smaller set of features reduces the computational effort
necessary, enabling strategies for in-process chatter detection.
For instance, our proposal presents window and step sizes of
3ms and 1.5ms, respectively. A DT classifier and a single
feature require a shorter time than the window size.

TABLE 9. Analysis of time and FLOPs for both materials.

. Tfeature Tvindow FLOPs
Material ~ Features (s) (ms) (x106)
AR 45 1364.5 83.1 513.2
9 652.3 39.4 2453
5 342.0 0.3 128.7
4 276.6 6.6 104.1
1 21.5 1.3 8.1
45 702.4 41.9 265.0
9 478.8 28.5 180.6
UF 5 243.4 14.5 91.7
4 202.4 12.1 76.2
1 19.7 1.2 7.4

Table 9 also compares the number of floating-point
operations per second (FLOPs) — a widely used metric to
quantify the computational cost of algorithms — weighted
by the volume of data processed at each feature reduction
stage. It is observed that the progressive decrease in the
dimensionality of the feature set results in a substantial
reduction in computational cost, evidenced by the significant
drop in FLOPs, without noticeable impairment in the
performance indices of the classifiers, such as accuracy and
F1-Score. This reduction is particularly relevant in real-time
chatter detection contexts during micro-milling operations,
where computational resources are limited, as in the case
of the STM32F446RE microcontroller. Thus, the FLOP
analysis supports the proposal of this paper by demon-
strating that a reduced yet informative subset of statistical
features significantly contributes to the feasibility of real-time
monitoring strategies, meeting the constrained computational
requirements without compromising the effectiveness of
instability detection in the machining process.

In this study, a 1D-CNN was trained to classify chatter and
chatter-free windows directly from raw AE signals, avoiding
manual feature extraction. The input to the network consisted
of windows of 1000 samples, corresponding to a duration of
3 ms, using the same sliding-window strategy adopted for the
traditional classifiers. The adopted 1D-CNN architecture is
composed according to Table 10.

The model was trained using the Adam optimizer, with
binary cross-entropy loss, a batch size of 128, and early
stopping based on validation loss to avoid overfitting.

The total number of trainable parameters in the network
was approximately 34,145. A computational cost analysis
revealed that the inference phase of the CNN required approx-
imately **1.12 million FLOPs (MFLOPs)** per window.
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Although this is significantly higher than the computational
cost of the traditional classifiers using a reduced feature set
(e.g., decision trees or k-NN with a single feature requiring
fewer than 10k FLOPs), it remains feasible for deployment in
embedded systems with moderate processing capabilities.

In terms of classification performance, the 1D-CNN
achieved an F1-Score of 99.84% on the AR dataset and
99.87% on the UF dataset. While these results are comparable
to those of the traditional classifiers, they were slightly
inferior to some configurations (e.g., DT and k-NN using the
F1o feature), which reached 100% accuracy and F1-score.

This discrepancy can be attributed to several factors:

o Data volume: The amount of training data, while
substantial, may still be limited to exploit the learning
capacity of the CNN fully.

« Signal characteristics: The AE signal exhibits clear
amplitude patterns that are well captured by statistical
descriptors such as the highest absolute value (Fjp).
These straightforward patterns allow simpler models to
separate, reducing the relative advantage of deep feature
learning.

Therefore, although 1D-CNN presented high classification
capability, its computational cost and marginally lower
accuracy suggest that classical machine learning methods
-especially with effective feature selection - remain more
suitable for real-time deployment for this specific task and
dataset.

A. COMPARISON WITH THE RELATED LITERATURE
Reference [48] presented a study addressing in-process
chatter detection based on the extraction of micro-milling
forces. They apply Variational Mode Decomposition (VMD)
to each force group and use the concept that the optimal
Intrinsic Mode Function (IMF) is adopted based on the
Laplacian Score (LS). As input to the SVM classifier, they
use the Multi-scale Permutation Entropy (MSPE) values of
the optimal IMF of each group. In summary, the classifier
achieved 85% accuracy.

Similarly, [49] emphasize that environmental noise should
be considered in chatter detection in micro-milling processes.
In this regard, the authors propose a methodology that
employs the Variable Forgetting Factor Recursive Least-
Squares (VFF-RLS) algorithm to filter out the chatter-
independent component, which consists of noise and periodic
components. Using the SVM classifier, they achieved an
accuracy above 99.1%.

A study considering features obtained in the frequency
domain and time domain and extracted using the Stacked-
Denoising Autoencoder (SDAE) algorithm for chatter clas-
sification in micro-milling processes through the intelligent
improved Adaboost-SVM classifier was conducted by [12].
The authors achieved an accuracy of around 96% for the
training set.

In [10], the authors proposed extracting nine features
and applied the Perceptron classifier and the SVM with an
RBF kernel. After selecting two features through a metric
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TABLE 10. 1D-CNN architecture adopted with several trainable parameters and estimated FLOPs per layer.

Layer Parameters Output shape Estimated FLOPs

Input - (1000, 1) -

Conv1D #1 (32 filters, kernel=5) (bx1+41)x32=192 (996, 32) 996 x 32 x 5 x 2 = 318,720
MaxPooling1D #1 (pool=2) - (498, 32) -

Conv1D #2 (64 filters, kernel=3) (3x32+1)x64=6,208 (496, 64) 496 x 64 X 3 X 32 X 2 = 6,094, 848
MaxPooling1D #2 (pool=2) - (248, 64) -

Flatten - (15,872) -

Dense #1 (64 units) 15,872 x 64 +64 =1,015,616 (64) 15,872 x 64 x 2 = 2,031,616
Dense #2 (1 unit, Sigmoid) 64x14+1=65 (€))] 64 x1x2=128

Total 1,022,081 - 8,445,312

involving Pearson’s correlation, the Perceptron achieved
54.6% accuracy, and the SVM-RBF achieved 99.1%.

It is observed that this work presented a sequence of
already established techniques, and the result indicates that
only the feature F¢ (Highest Absolute Value) is sufficient
for chatter classification. Moreover, none of the related
works presented metrics for a real implementation on
a microcontroller (FLOPs). Thus, it is evident that the
contributions of this work are justified.

VII. CONCLUSION

Chatter, characterized as undesired vibrations, promotes
the improper finishing of parts, the reduction of the life
of cutters and machines, and the waste of energy and
materials. However, several studies mitigate the effects of
this phenomenon by predicting or detecting it using dynamic
modeling and stability lobes. In addition, chatter detection
strategies may use machine learning classifiers, leading to
tight computational requirements.

A smaller yet relevant set of features could support these
classifiers in coping with these requirements. This work
proposed using feature selection to evaluate the impact of
several statistical features on the performance of machine
learning-based classifiers for chatter detection. Using AR
and UF materials, we exploited Random Forest, Pearson’s
correlation, and collinearity analysis to identify the most
relevant features in micro-milling operations. In this way,
three feature reduction stages have been implemented,
reducing the number of features from 45 to one single.

We evaluated five machine learning-based classifiers in
each feature reduction stage (k-NN, SVM, DT, MLP, and
AdaBoost) and a deep learning classifier. The performance
of these classifiers was compared according to accuracy,
F1-Score, training, testing time, and FLOPs. The accuracy
and F1-Score indices present similar values independently of
the number of features. This result shows that reducing the
number of features added has no impact on the classifiers.
Moreover, by reducing the dataset dimension, the training,
testing time, and FLOPs present a critical reduction. This
reduction is of utmost importance when implementing
strategies for in-process chatter detection.

Incorporating a 1D-CNN architecture in this study con-
tributed to evaluating deep learning methods for chatter
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classification. However, the results suggest that simpler
classifiers combined with appropriate feature selection may
offer comparable accuracy with significantly lower computa-
tional costs when computational resources are limited. This
trade-off is particularly relevant for embedded systems, such
as those based on microcontrollers, where inference time and
energy efficiency are critical design considerations.
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