

DESENVOLVIMENTO E VALIDAÇÃO DE UM MÉTODO BIOANALÍTICO PARA QUANTIFICAÇÃO DE ÁCIDOS GRAXOS DE CADEIA CURTA EM AMOSTRAS BIOLÓGICAS

Caroline de Souza Lima

Stanislau Bogusz Junior

Universidade de São Paulo (USP), Instituto de Química de São Carlos (IQSC)

carolinesouza.lima@usp.br

Objetivos

Desenvolver e validar um método bioanalítico para quantificação de ácidos graxos de cadeia curta (ácido acético, ácido propiônico e ácido butírico) em amostras biológicas, utilizando extração sólido-líquido com água acidificada como solvente, seguida de separação e quantificação por cromatografia gasosa capilar acoplada a detector de ionização em chama (GC-FID). Para isso, foram otimizadas as condições cromatográficas, adequada separação dos analitos, e avaliadas as figuras de mérito do método, incluindo linearidade, precisão, exatidão, limite de detecção e limite de quantificação. Após a validação, o método foi aplicado para a quantificação dos ácidos graxos de cadeia curta em amostras de fezes de animais de laboratório que foram fornecidas pelo Departamento de Alimentos e Nutrição da Faculdade de Engenharia de Alimentos da Unicamp.

Métodos e Procedimentos

Para o desenvolvimento do método bioanalítico, foram utilizados padrões de ácidos graxos de cadeia curta (AGCC), especificamente ácido acético, ácido propiônico e ácido butírico, enquanto que o ácido 2-etilbutírico foi empregado como padrão interno. As soluções

estoques dos ácidos graxos foram preparadas em concentração de 150 mM. De forma análoga, a solução estoque do padrão interno também foi preparada em 150 mM, contendo 12% (v/v) de ácido fórmico. Todas as soluções foram armazenadas a -20 °C até o momento do uso, garantindo a estabilidade dos compostos.

No total, foram analisadas 28 amostras, cada uma com aproximadamente 50 mg de fezes, previamente descongeladas e acondicionadas imediatamente antes das análises de maneira a preservar os analitos.

As fezes previamente pesadas foram diluídas em 500 μ L de água MiliQ e 54 μ L de HCl 3 mol/L, de modo a ajustar o pH para 2 a 3. Em seguida as amostras foram agitadas por 1 min em vórtex e, após as amostras foram centrifugadas por 60 min. Em seguida, 180 μ L do sobrenadante foram transferidos para um vial com microinsert, ao qual se adicionou 20 μ L do padrão interno (ácido 2-etil butírico, 10 mmol/L), seguido de agitação por 1 min.

Foram construídas curvas de calibração para cada analito em duas faixas de concentração (1, 3, 5, 6, 12 e 24 mmol/L e 10, 30, 60, 90 e 120 mmol/L). A quantificação dos AGCC foi realizada a partir da relação entre a área dos picos cromatográficos e a concentração correspondente, originando as curvas de calibração. Os limites de detecção (LOD) e quantificação (LOQ) foram determinados a partir

dessas curvas, considerando a área do pico de cada ácido graxo.

Resultados

A obtenção dos cromatogramas permitiu a elaboração de curvas de calibração individuais para cada ácido graxo de cadeia curta (AGCC), a partir das quais foram determinados os limites de detecção (LOD) e quantificação (LOQ). As curvas apresentaram boa linearidade em todas as faixas de concentração avaliadas, evidenciando a confiabilidade do método (Tabela 1).

Tabela 1 – Parâmetros de Validação

Composto (AGCC)	Faixa de calibração (mmol/L)	R ²	LOD (mmol/L)	LOQ (mmol/L)
Acetato	1; 3; 6; 9; 12; 24	0,9991	0,0117	0,0354
Propionato	1; 3; 6; 9; 12; 24	0,9991	0,1246	0,3776
Butirato	1; 3; 6; 9; 12; 25	0,9990	0,2867	0,8688

A concentração dos ácidos graxos de cadeia curta (CA, mmol/L) foi determinada tanto pela curva de calibração como pelo método do padrão interno, utilizando a fórmula CA = (AA × CIS) / (RRF × AIS). Nessa equação, AA representa a área do pico do AGCC na amostra, AIS é a área do pico do padrão interno, CIS corresponde à concentração do padrão interno em mmol/L, e RRF é o fator de resposta relativo, calculado a partir da razão entre a área do pico do AGCC padrão e a área do pico do padrão interno. Esse procedimento permite quantificar os ácidos graxos com maior precisão, considerando a resposta relativa ao padrão interno e os LOD fornecidos pelas curvas de calibração.

Foram analisadas 28 amostras fecais, obtendose diferentes perfis de concentração entre os AGCC. Para o ácido acético, todas as amostras apresentaram valores acima do LOD e LOQ. No caso do ácido propiônico, todas as amostras estiveram acima do LOD, sendo sete também acima do LOQ. Para o ácido butírico, seis amostras apresentaram concentrações acima do LOD, porém nenhuma atingiu o LOQ.

Conclusões

O método desenvolvido demonstrou-se confiável e sensível para a quantificação de ácidos graxos de cadeia curta em amostras fecais, apresentando boa linearidade nas curvas de calibração e limites de detecção e quantificação adequados. A utilização do padrão interno permitiu uma análise precisa, tornando a abordagem adequada para estudos de perfil de AGCC em diferentes amostras biológicas.

Agradecimentos

Agradeço ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e a Dow Chemistry Company pelo financiamento do projeto.

Referências

Zhao, G., Nyman, M., & Jönsson, J. A. (2006). Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomedical Chromatography, 20(8), 10.1002/bmc.580.

Kong, J., Han, D., Wang, X., & Liu, Q. (2018). Tributyl phosphate assisted hollow-fiber liquid-phase microextraction of short-chain fatty acids in microbial degradation fluid using capillary electrophoresis-contactless coupled conductivity detection. *Journal of Pharmaceutical and Biomedical Analysis*, 154, 191-197.

Marques, L. M., Sampaio, M. M. S., Queiroz, A. P., Sampaio, K. B., Costa, B. P. A., & Lacerda, C. (2019). Determination of short chain fatty acids in mice feces by capillary electrophoresis. *Journal of the Brazilian Chemical Society*, 30(6), 1326–1333.