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Abstract. We study the spherical collapse of non-top-hat matter fluctuations in the presence
of dark energy with arbitrary sound speed. The model is described by a system of partial
differential equations solved using a pseudo-spectral method with collocation points. This
method can reproduce the known analytical solutions in the linear regime with an accuracy
better than 10−6% and better than 10−2% for the virialization threshold given by the usual
spherical collapse model. We show the impact of nonlinear dark energy fluctuations on matter
profiles, matter peculiar velocity and gravitational potential. We also show that phantom
dark energy models with low sound speed can develop a pathological behaviour around matter
halos, namely negative energy density. The dependence of the virialization threshold density
for collapse on the dark energy sound speed is also computed, confirming and extending
previous results in the limit for homogeneous and clustering dark energy.
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1 Introduction

The Spherical Collapse (SC) model, as proposed by Gunn and Gott [1], describes the nonlinear
evolution of pressureless matter perturbations in Einstein-de-Sitter Universe (EdS). This
model can be used to determine the critical density of collapse, δc, which can be used in
Press-Schechter or Sheth-Tormen [2, 3] halo mass functions to compute the abundance of Dark
Matter (DM) halos in the universe. However, the expansion of the universe is accelerating,
which indicates that, assuming General Relativity correctly describes gravitational interactions
on large scales, the universe is composed of roughly 70% Dark Energy (DE) and 30% of matter
(DM plus barions) today. Even before the discovery of the accelerated expasion, the SC model
has been generalized to include the Cosmological Constant, Λ, [4–7]. Later, homogeneous
DE models described as a perfect fluid were studied, e.g., [7–10]. In these scenarios, DE
induces a small (at most 1%) decay of δc at low-z in comparison to the standard EdS value
(δc ' 1.686).

Recently, observational data has indicated that the value of the Hubble constant predicted
by the ΛCDM model is in tension with local astrophysical measurements. There also
exists a less significant tension, still compatible with a statistical fluctuation [11], related to
the normalization of matter perturbations, expressed in terms of the S8 = σ8

(
Ω0
m/0.3

)1/2

parameter. See [12] for a discussion and several proposals to solve these issues. If the
accelerated expansion is not caused by Λ, DE necessarily has fluctuations, which might be
important for the evolution of matter fluctuations on small scales, for a review, see [13]. For
a concrete recent study of how DE perturbations can alleviate these tensions, see [14].

Several papers have studied the SC model and halo abundances in the presence of DE
fluctuations, e.g., [15–27]. The key parameter that determines the impact of DE fluctuations

– 1 –



J
C
A
P
0
2
(
2
0
2
3
)
0
3
7

is the sound speed cs =
√
δpde/δρde. If cs ' 1, DE fluctuations are much smaller than matter

fluctuations on small scales and essentially do not modify the growth of nonlinear structures.
The nonlinear evolution of Quintessence and Tachyon models were studied in [28]. For
Quintessence, cs = 1, and its perturbation remains very small even when matter perturbations
become nonlinear. As we will show, this also happens in the fluid description implemented in
this work. In Tachyon models, c2

s = −w and, since w ' −1 at late times, the sound speed is
also near the unity, erasing DE fluctuations on small scales.

On the order hand, if cs is sufficiently small, DE perturbation can be of the same
magnitude as matter fluctuations. If cs ≈ 0, DE fluctuations are effectively pressureless and
behave as matter fluctuations. In this case, one can modify the SC model to include this
extra clustering component [17, 19, 29]. However, for non-negligible cs, DE fluctuations are
affected by their pressure gradients, and do not follow the matter evolution. Therefore, the
SC model has to be modified to account for this effect. The first effort in this direction was
made in [21], which included DE linear perturbations in the evolution of the SC model.

Only in the last couple years, studies based on numerical N-body simulations codes
began to include DE fluctuations. In [30], DE linear perturbations are included as a source of
the gravitational potential. It was found that, even without nonlinear DE fluctuations, the
matter power spectrum can change at the percent level. In [31], DE nonlinear fluctuations
where treated, showing that they can indeed become nonlinear and change the formation of
halos for c2

s = 10−7. However, so far, this kind of studies did not yet consider the impact of cs
on halo mass functions. As we will show, in terms of virialization threshold (δv) and density
profiles, DE fluctuations become effectively pressureless for c2

s < 10−5 on small nonlinear
scales, but higher values also produce relevant changes with respect to the nearly homogeneous
case with c2

s = 1.
In order to show these effects, we develop a method to solve the nonlinear evolution of

perfect fluids with spherical symmetry, particularly in the case of pressureless matter and
DE with arbitrary w and cs. We present the equations in the Pseudo-Newtonian framework
and solve them numerically using the pseudo-spectral method with collocation points. We
show the impact of cs on the linear and nonlinear evolution of matter fluctuations, matter
peculiar velocities and gravitational potential. We also compute the threshold of virialization
for various values of cs, which can be used to estimate the impact of DE fluctuations on the
abundance of halos.

Although this approach is not as realistic as a N-body simulation, it is much more eco-
nomical in computational power, allowing us to understand the dependence of DE fluctuation
on cs, and not only for very low values. A typical code run takes about 10 minutes in an Intel
i7 core, with very small memory use. The method can be easily generalized for other models,
like coupled DE-DM, warm DM, modified gravity and Ultra Light DM. Therefore, we can
easily explore model parameters and predict which scenario is potentially observationally
distinguishable in view of current or future observations. This kind of study can also be a
guide to more realistic simulations.

This paper is organized as follows. In section 2, we show the system of equations that
describe the fluctuations in the two fluids and their initial conditions. In section 3, we present
the numerical method used to solve the resulting equations. In section 4, we show the impact
of cs on DM and DE profiles and discuss a pathology associated with the nonlinear evolution
of phantom models (w < −1). We calculate the virialization threshold in section 5 and
conclude in section 6.
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2 Equations of motion

We will use the Pseudo-Newtonian Cosmology [32] in order to describe the evolution of
pressureless matter and DE fluctuations in the nonlinear regime, written in physical coordinates.
For each fluid, we have the following equations:

∂ρ

∂t
+ ~∇ · (~uρ) + p~∇ · ~u = 0 , (2.1)

∂~u

∂t
+
(
~u · ~∇

)
~u = −~∇Φ−

~∇p
ρ+ p

, (2.2)

and for the gravitational potential we have

∇2Φ = 4πG
∑
j

(ρj + 3pj) . (2.3)

As usual, we split background and fluctuations quantities. Assuming spherical symmetry, all
quantities depend on time and the radial coordinate, r, which we define as comoving with the
background expansion:

ρ = ρ̄ (t) + δρ (t, r) , (2.4)
p = p̄ (t) + δp (t, r) , (2.5)
~u = ~u0 + v (t, r) r̂ , (2.6)
Φ = Φ0 + φ (t, r) . (2.7)

We also assume a time-dependent equation of state for the background pressure,

p̄de = w (t) ρ̄de , (2.8)

and a time-dependent sound speed, which relates the pressure and to density fluctuations

δpde = c2
s (t) δρde . (2.9)

Under these assumptions, the equations for the nonlinear evolution of pressureless matter
and DE are given by:

δ̇m + (1 + δm) ∂r
(
r2vm

)
ar2 + vm∂rδm

a
= 0 , (2.10)

v̇m +Hvm + vm∂rvm
a

= −∂rφ
a

, (2.11)

δ̇de + 3H
(
c2
s − w

)
δde +

[
1 + w +

(
1 + c2

s

)
δde
] ∂r (r2vde

)
ar2 + vde∂rδde

a
= 0 , (2.12)

v̇de +Hvde + vde∂rvde
a

= −∂rφ
a
− c2

s∂rδde
a [1 + w + (1 + c2

s) δde]
, (2.13)(

∂2
r + 2

r
∂r

)
φ = 3a2H2

2
[
Ωmδm + Ωde

(
1 + 3c2

s

)
δde
]
. (2.14)

For scales well above the sound horizon of DE, the term c2
s∂rδde can be neglected, and

equations (2.13) and (2.11) are identical, showing that both fluids flow in the same way. Under
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this assumption, clustering DE models have been studied in various scenarios [16, 17, 19, 22–
25, 33, 34]. The same problem was also studied for non-negligible sound speed, but assuming
that dark energy perturbations are linear [21]. The main achievement of our work is the
development of a numerical code capable of consistently solving the evolution of this type of
model for arbitrary values of sound speed.

In the following, we assume a background evolution with flat spatial section, pressureless
matter (baryons plus dark matter) and DE with CPL equation of state [35, 36] w = wa +
(1− a)wa. Thus, the Hubble function is given by:

H2 = H2
0

(
Ω0
ma
−3 +

(
1− Ω0

m

)
f (a)

)
, (2.15)

where f (a) = a−3(1+w0+wa) exp [3wa (a− 1)]. In all examples shown, we assume Ω0
m = 0.3.

For simplicity, we also assume a constant cs.

Initial conditions. We set the initial conditions in the matter-dominated era (zi = 99),
making use of well-known analytical solutions in the linear regime, for instance, see [37, 38].
We assume an initial Gaussian profile for matter, which initially follows the EdS solution

δm (a, r) = A

(
a

ai

)
exp

(
− r2

2σ2

)
. (2.16)

Then we determine the initial velocity profile for matter with the linearized version of eq. (2.10):

vm (ai, r) = −aiHi

r2

∫ r

0
dr′
(
r′
)2
δm
(
ai, r

′) . (2.17)

The initial potential profile is determined assuming that, initially Ωmδm � Ωdeδde:(
∂2
r + 2

r
∂r

)
φ = 3H2

i

2 Ωm (ai) δm (ai, r) , (2.18)

which has the analytical solution

φ = −3H2
i

2 Ωm (ai)Aσ3
√
π

2
1
r
erf
(

r√
2σ

)
. (2.19)

For DE, we implement two kinds of initial conditions, depending on the value of cs. If
cs < csd, where csd is some reference value below which DE fluctuations behave as dust, we have

δde (ai, r) = 1 + w

1− 3wδm (ai, r) (2.20)

and
vde (ai, r) = vm (ai, r) . (2.21)

For cs > csd, DE perturbations are much smaller then matter perturbations and the initial
conditions are given by

δde = −1 + w

c2
s

φ (2.22)

and
vde (ai, r) = −3aiHi

(
c2
s − w

)
(1 + w) r2

∫ r

0
dr′
(
r′
)2
δde
(
ai, r

′) . (2.23)
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Off course, in the case cs ∼ cd these initial conditions might not be quite satisfactory, but this
is not an issue for the late-time evolution, when transient behavior due to imprecise initial
conditions are usually negligible. As will be shown, for the small nonlinear scales, DE models
with c2

s < 10−3 begin to deviate significantly from the homogeneous case (c2
s = 1), thus we

assume c2
sd = 10−3.

However, in general, we observe that for c2
s > 10−3 the numerical evolution is more

stable if we start with δde = 0. Again, this choice has little effect on the late time evolution of
δde. Moreover, in this case, we will show that DE fluctuations are much smaller than matter
fluctuations. Therefore, the reduced accuracy in these nearly homogeneous DE scenarios has
a negligible effect on the late-time values of δm and φ. The origin of this issue is likely related
to the boundary conditions for δde that will be discussed in the next section. They are chosen
to better represent models with low cs, in which case the impact of DE fluctuation is much
more relevant.

3 Numerical method

We numerically integrate the equations of motion (2.10)–(2.13) using the Galerkin-Collocation
method [39], which is one variant of spectral methods. The starting point is the establishment
of approximate expressions for the relevant dynamical quantities δm(t, r), vm(t, r), δde(t, r),
vde(t, r) and φ(t, r):

δm(t, r) =
N∑
k=0

ak(t)ψk(r), vm(z, r) =
N−1∑
k=0

vmk(z)χk(r), (3.1)

δde(t, r) =
N∑
k=0

bk(t)ψk(r), vde(z, r) =
N−1∑
k=0

vde k(z)χk(r), (3.2)

φ(t, r) =
N∑
k=0

φk(t)ξk(r), (3.3)

where ak(t), vmk(t), bk(t), vde k(t) and φk(t) are the unknown modes that constitute the spectral
representation of the respective dynamical quantities of interest; N is the truncation order
that limits the number of terms in the series expansion. The functions ψk(r), χk(r), ξk(r) are
defined in the whole spatial domain, 0 ≤ r <∞, and expressed as suitable combinations of
the rational Chebyshev polynomials [40] in order to satisfy the following boundary conditions,

δm = f(t) +O(r), vm = O(r), (3.4)
δde = g(t) +O(r), vde = O(r), (3.5)
φ = φ0(t) +O(r2), (3.6)

near r = 0, and,

δm, δe = O(r−1), vm, ve = O(r−1), (3.7)
φ = O(r−1), (3.8)

valid at the spatial infinity, r =∞.
The basis functions that satisfy the above boundary conditions are defined as convenient

linear combinations of the rational Chebyshev polynomials, TLk(r), given by [40],

TLk(r) ≡ Tk
(
x = r − L0

r + L0

)
, (3.9)

– 5 –
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where Tk(x) represents the usual Chebyshev polynomials, and L0 is the map parameter.
Accordingly, the basis functions are defined as:

ψj(r) = 1
2(−1)j+1(TLj+1(r)− TLj(r)) , (3.10)

χj(r) = (−1)j+1(ψj+1(r)− ψj(r)) , (3.11)

ξj(r) = − 1 + 2j + 2j2

3 + 2j + 2(j + 1)2ψj+1(r) + ψj(r)). (3.12)

We remark that the requirement of the basis functions to satisfy the boundary conditions is a
typical feature of the Galerkin method. On the other hand, we shall use a characteristic of
the collocation method, namely, the unknown modes are chosen such that the approximations
described by eqs. (3.1)–(3.3) coincide with the corresponding exact functions at certain points,
known as the collocation or grid points. For instance, we can write the following relation for
the contrast density of matter:

δm(t, rj) =
N∑
k=0

ak(t)ψk(rj) ≡ δ
(exact)
m[j] (t) . (3.13)

The set of values of the density contrast of matter at the collocation points δ(exact)
m[j] (t),

j = 0, 1, . . . , N , constitutes the physical representation of δm that is related to its correspondent
spectral representation formed by the coefficients ak. The collocation points are given by,

xj = cos
(
jπ

N

)
, j = 0, 1, . . . , N, and (3.14)

rj = L0
1 + xj
1− xj

. (3.15)

The interplay between both representations will be determinant for an efficient imple-
mentation of the spectral algorithm to evolve the field equations. In this way, by substituting
the approximations (3.1)–(3.3) into the systems of equations (2.10)–(2.14), we generate the
correspondent residual equation. Following the collocation method, these equations are
forced to vanishes exactly at the collocation points. For the sake of clearness, let us consider
equation (2.11) in which by imposing that the correspondent residual equation vanish at the
collocation points, it follows,

Res(t, rj) = v̇m[j] +Hvm[j] + 1
a
vm[j]

N∑
k=0

vmk(z)χ′k(rj) + 1
a

N∑
k=0

φk(z)ξ′k(rj) = 0, (3.16)

for all j = 0, 1, . . . , N . Notice that v̇m[j] and φ[j] are the values of v̇m and φ evaluated at the
collocation points. Repeating this procedure to the remaining equations, we end up with
a coupled system of ordinary differential equations for the values of δ̇m, v̇m, δ̇e and v̇e. We
solve the system of ordinary differential equations using the Gnu Scientific Library routines
implemented in C language.

4 Evolution of the profiles

Let’s study some qualitative aspects of the nonlinear evolution of matter and DE fluctuations.
Excluding models with phantom crossing, we analyze the evolution of matter overdensities

– 6 –
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c2
s = 10−5
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Figure 1. Profiles ratios δm,cs
/δm,cs=1 at z = 0 for selected values of cs. The initial conditions for

δm are the same in all cases.

and underdensities for non-phantom (w > −1) and phantom (w < −1) DE. Given the
approximate solutions (2.22) and (2.20), we expect that matter fluctuations will be correlated
with DE fluctuations with non-phantom EoS, while for phantom EoS DE fluctuations should
be anti-correlated with those of matter. For all the examples shown, the initial matter profile
has σ = 30Mpc/h.

4.1 Linear evolution

Let’s first consider the linear evolution of matter and DE perturbations. Although this task
can be efficiently done in the Fourier space, it’s important to check how our implementation
performs for our specific profile. In appendix A, we present a convergence and accuracy study
for the evolution of profiles in EdS model, showing that we can achieve errors smaller than
10−6% for δm in the central regions.

In figure 1 we plot the ratio of the linearly evolved matter profiles to the profile with
cs = 1, δm,cs/δm,cs=1. For cs = 1, DE perturbations are negligible on small scales, even in
the nonlinear regime (see figure 2). Therefore, the growth of δm is effectively scale-invariant.
We verified this behavior by observing that

δm,cs=1 (z = 0, r)−Arδm,cs=1 (z = 99, r) ∼ 10−5 , (4.1)

where the quantity

Ar = δm,cs=1 (z = 0, r = 0)
δm,cs=1 (z = 99, r = 0) (4.2)

rescales the profile with the matter growth computed at the center. Therefore, radial deviations
from the profile δm,cs=1 (r, z) indicate scale-dependent growth, which is expected for lower
values of cs. As seen in figure 1, this clearly happens for c2

s = 10−3 and c2
s = 10−4. For

c2
s ≤ 10−5, the growth is also nearly scale-independent because DE perturbations tend to
behave as dust. In all cases, a lower sound speed enhances the matter growth compared to
the cs = 1 case.

– 7 –



J
C
A
P
0
2
(
2
0
2
3
)
0
3
7

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
r [Mpc/h]

75

100

125

150

175

200

225

250
δ m

w0 = −0.9, wa = 0.2, z = 0.04

c2
s = 1

c2
s = 10−3

c2
s = 10−4

c2
s = 10−5

c2
s = 10−7
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c2
s = 10−3

c2
s = 10−4

c2
s = 10−5

c2
s = 10−7

Figure 2. Left panel: impact of DE fluctuations on the nonlinear matter profile at z = 0.04 (at which
we roughly have virialization overdensity at the center) for selected values of cs. Right panel: profiles
of δde for the corresponding cases shown in the left panel. The initial conditions for matter fluctuations
are the same in all cases.

4.2 Matter halos

Now we analyze the impact of cs on matter profiles associated with the formation of halos.
Starting with the same initial conditions for matter fluctuations at zi = 99, we show the
profiles at very low-z. The value of δm (r = 0, zi) is chosen to produce a profile that roughly
represents virialization overdensities (δm ∼ 200) at z = 0.04.

In the left panel of figure 2 we can see that lower values of cs enhances matter clustering.
For c2

s > 10−3, this enhancement is small when compared to c2
s = 1. For c2

s ≤ 10−7, we verified
that δm barely changes. The range of variation of the central value of δm is substantial,
showing that even a small contribution of DE can produce a large modification in the matter
fluctuation in the nonlinear regime.

In left panel of figure 2, we show the corresponding profiles of δde at z = 0.04. For
c2
s = 1, DE fluctuations stay in the linear regime and are 7 orders of magnitude smaller than
matter fluctuations, which can be assumed as homogeneous DE on small scales. In the case of
c2
s = 10−7, δde can reach few percent of the corresponding matter fluctuations. For the scales
under consideration, we see that DE fluctuations become nonlinear for c2

s < 10−4.
In figure 3, we also show the impact of cs on the gravitational potential. In the top panel

we show 104 × φ and in the lower panel the percent differences with respect to the c2
s = 1

case, given by ∆φ = 100×
(

φcs
φcs=1

− 1
)
. As we can see, in the central region, the potential

can change about 10% with respect to the homogeneous case (cs = 1). The impact of cs is
also present far away from the center, but is slightly reduced.

To visualize the time evolution and the effects cs on the profiles, we present three movies
as supplementary data attached to this paper. For δm and δde, we show the evolution from
z = 0.8 to z = 0. This starting point corresponds to δm(r = 0) ' 5, which is roughly
associated with the turn-around time. For φ, we start the animation at z = 5, so we can
see that, initially, the potential is nearly constant (EdS solution). Later, we can observe two
distinct behaviours: at the center, the potential grows in absolute value, which is induced by
the nonlinear growth of δm; at larger radius, the potential decays in absolute value due to
accelerated expansion on linear regions. Note that the values of cs is different in the videos.
For δm and φ we show the two extreme values c2

s = 1 and c2
s = 10−7, which are related to

– 8 –
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Figure 3. Top panel: profiles of the potential φ at z = 0.04 (close to virialization in central regions)
for selected values of cs. Lower panel: percent differences of the potential for various cs with respect
to the cs = 1 case, given by ∆φ = 100 × (φcs

/φcs=1 − 1). The initial conditions are the same used
in figure 2.

the largest difference in these quantities. For δde, we show the evolution with c2
s = 10−5 and

c2
s = 10−7, so that differences can be seen on a linear scale. The initial conditions are the
same used to produce figures 2 and 3, also note that the videos present the evolution beyond
the approximate virialization time shown in these figures. The links1 to the videos are: matter
evolution, DE evolution and potential evolution.

We also check the impact of DE fluctuation of the peculiar matter velocity, which is
related to the redshift space-distortion effect. In figure 4, we plot the percent difference of vm
with respect to the case with homogeneous DE (cs = 1), given by ∆vm = 100×

(
vmcs
vmcs=1

− 1
)
.

The vertical dashed line indicates the radius such that δm ' 5. This value roughly indicates
the transition between collapsing nonlinear and still expanding linear regions. In the nonlinear
regions, DE fluctuations can change vm substantially, in 10–20% range. In the linear regions,
the variation with respect to the homegeneous case is only about 3% for the two lowest cs values.

Phantom negative energy density. In the previous examples, we used w > −1 for all
the evolution. Now let’s analyze the case of a phantom equation of state. As already noticed
in the literature [17, 19, 38], in the limit cs → 0, positive matter fluctuations will induce
negative phantom DE fluctuations, because δde ∝ (1 + w) δm. Therefore, it is possible that
matter halos can generate δde < −1, which is associated with the pathological situation of
negative total energy in the DE component ρde = ρ̄de (1 + δde).

In figure 5, for w0 = −1.1 and wa = 0, we show that this situation is achieved by
models with sufficiently low sound speed. Note that, in these examples, δm roughly presents
virialization values at the central regions. This can be understood as an averaged density
contrast for the real halo profile. In this phantom example, the corresponding changes in the
potential with respect to the homogeneous case are smaller and opposite to the non-phantom
case, reaching at most −2.5% for c2

s = 10−7.

1Also available at https://pessoal.ect.ufrn.br/~rbatista/sc_videos/.
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Figure 4. Change of the peculiar matter velocity, vm, at z = 0.04 (close to virialization in central
regions) for selected values of cs with respect to the cs = 1 case, given by ∆vm = 100×

(
vmcs

vmcs=1
− 1
)
.

The initial conditions for δm are the same as those used in figure 2. The vertical dashed-black line shows
the region where δm ' 5, which roughly indicates the transition between collapsing and expanding
regions.
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Figure 5. Left panel: δm profiles for w = −1.1 and selected values of cs at z = 0.18 (close to
virialization at the center). Right panel: corresponding δde profiles. The initial conditions for δm are
the same as those used in figure 2.

More realistic halo profiles can have δm ∼ 103 at the central region. Then, to avoid
δde < −1, larger cs is necessary. In figure 6 we show the profiles for δde at z = 0.11, but now
with δm ' 1500 at the center. As can be seen, δde < −1 is now achieved also for c2

s = 10−5.
The DE contrast can be even more negative for lower sound speed values. It is important to
note that, having in mind that δde ∝ (1 + w) δm, larger values of cs will be needed for more
negative w to avoid this pathological behavior.

The main driver of this pathological behavior is the term 1 + w +
(
1 + c2

s

)
δde in equa-

tion (2.12), which couples the density contrast to the gravitational potential. The correspond-
ing term for matter fluctuations is 1 + δm, thus, when δm → −1, the fluctuations decouple

– 10 –
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Figure 6. DE profiles for w = −1.1 at z = 0.11 for selected values of cs. Here the matter profile is
evolved up to a later time, when δm ' 1500 at the center. In this example, when c2

s < 10−5 we have
δde < −1 around the center of the halo.

from φ, the decrease of δm halts, and we always have δm > −1. However, in general, this
coupling term for DE does not vanish when δde → −1, and situations with δde < −1 can be
achieved for sufficiently small cs.

At face value, these phenomenological models present pathologies that must be absent
in any fundamental theory. Our examples demonstrate that phantom models can not be
described as perfect fluids with arbitrarily low cs, as in [41]. In practice, many scalar field
models with w < −1 have no perfect fluid correspondence [42, 43], and dissipative effects may
avoid this kind of problem in the nonlinear regime.

4.3 Matter voids

Let us estimate the impact of DE fluctuation on voids. Assuming the same initial conditions
as those used in figure 2, but with negative values for δm, we evolve the profiles up to z = 0.04.
As can be seen in figure 7, the same kind of initial conditions that generate overdensities of
nearly virialized halos produce voids with δm ' −0.67 at the central region. The impact of cs
on δm is much smaller for a void, below 1%. The variation of δde with cs is also smaller than
in the case for halos.

We note that, in the left panel of figure 7, we have δde > 0 for the cs = 1 case, following
the approximate solution δde ∝ − (1 + w)φ/c2

s for models with relevant pressure support on
small scales. For the cases with c2

s < 10−3, we have negative DE fluctuations, following the
dust-like approximate solution δde ∝ (1 + w) δm.

Although the impact of DE fluctuation in matter voids is smaller, the change in the
potential is similar to what we observed for halos. In the lower panel of 8, we see that φ can
change about 8% with respect to the homogeneous case.

– 11 –
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Figure 7. Left panel: impact of DE fluctuations on the nonlinear void matter profile at z = 0.04 for
selected values of cs. Right panel: profiles of δde for the corresponding cases shown in the left panel.
The initial conditions for matter fluctuations are the same as in figure 2, but with oposite signs. In
the left panel, we focus on more central regions so that the small differences (bellow than 1%) in the
matter profiles can be visible.
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Figure 8. Top panel: profiles of the potential φ at z = 0.04 for selected values of cs. Lower
panel: percent differences of the potential for various cs with respect to the cs = 1 case, given by
∆φ = 100× (φcs

/φcs=1 − 1). The initial conditions for δm are the same as in figure 7.

4.4 Local DE EoS

When DE fluctuations are non-negligible, it’s local EoS, defined by

wc = p̄de + δpde
ρ̄de + δρde

= w +
(
c2
s − w

) δde
1 + δde

, (4.3)

is expected to vary near a nonlinear structure [15, 17]. With our method to solve for the
profiles, we can now analyze how wc changes in space.
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Figure 9. Profiles of the local DE EoS, wc, at z ' 0.026 for selected values of cs. The initial conditions
for δm are the same in all cases and roughly produce virialization overdensities at the central regions
at z ' 0.026.

For this purpose, we choose w0 = −1 and wa = 0.2. This model gives an EoS that is
close to −1 at low−z, but is less negative in the past, allowing DE fluctuation to grow and
be present up to now. In this case we have a background similar to ΛCDM at low redshift,
but with still relevant DE fluctuations. In figure 9, we show the profile of wc at z ' 0.026
using initial conditions for δm such that its value at the center roughly represents virialization
values. As can be seen, for c2

s < 10−5, the change of the local equation of state with respect
to w can be large near the center and still relevant in outer regions. In the case of voids, we
have wc ' w because the fluctuations of DE are still linear.

In the central regions, the local gravity of the halo dominates over the background
expansion. Thus the values of wc shall have a negligible effect on light propagation and
particle dynamics. But in the outskirts of halos or in mildly nonlinear structures, it’s possible
that departures of w due to DE fluctuations can produce a non-negligible effect. Such impact,
however, depends crucially on the actual matter distribution.

For phantom DE with low cs in the presence of a matter halo, the local equation of state
is ill-defined because wc diverges when δde → −1. For healthy phantom models, it would be
possible to find a c2

s such that the change in wc is large. For instance, with w0 = −1, wa = −0.2
and c2

s = 10−5 we can find δde (r = 0) ' −0.3 at low-z, which produces wc (r = 0) ' −1.57.
However, this kind of model is much more speculative because one would need to fine-tune c2

s

for each EoS under consideration to avoid δde < −1.

5 Virialization threshold

In the classical model for the spherical collapse in an EdS universe, the evolution of δm can
be solved analytically [1, 44]. The top-hat nonlinear density diverges when the shell radius
goes to zero, which determines the redshift of collapse zc, which, in turn, is used to compute
the critical density for collapse, δc, as the value of the linear evolved contrast at zc. As
well-known, in EdS model, δc ' 1.686 is independent of redshift and scale. In ΛCDM model,

– 13 –



J
C
A
P
0
2
(
2
0
2
3
)
0
3
7

δc is redshift dependent, being slightly smaller than 1.686 at low z [5, 7]. Smooth dynamical
DE, in general, does not change this picture significantly [9].

The threshold density can also be computed for clustering DE models. If cs is negligible
on the scales of interest, the DM and DE have the same peculiar velocities, which allows the
use of top-hat profiles for both of them [15, 17, 19, 22, 23, 25]. In this case, the model is
described as a system of ordinary differential equations, which can be solved numerically up
to a certain threshold, e.g., δm ∼ 106, which then defines zc and δc. For a detailed discussion
about the numerical computation of δc, see [13, 45, 46].

When solving for the evolution of the radial profile, we observe that the system gets
unstable when δm (r = 0) ∼ 104, which does not allow us to define a reliable threshold for
a reasonable redshift range. This is easy to understand with the following example: in the
EdS model, starting with δm (ai = 0.01, r = 0) = 0.01686, the linear evolution indicates that
δm (a = 1, r = 0) = 1.686 at a = 1. Therefore, according to the top-hat spherical collapse
model, the nonlinearly evolved contrast will diverge at the origin. This behavior is critical for
the evolution of the whole profile, generating spurious oscillations.

Given this difficulty, we will use an alternative method to compute the threshold density,
which was proposed in [47] and also developed in [25] for clustering DE. Instead of determining
δLm (zc), we will determine the linearly evolved contrast at zv, the redshift of virialization. In
EdS we have

δv ≡ δ̄Lm (zv) ' 1.583 , (5.1)

∆v ≡
ρm
ρ̄m

= 1 + δ̄NL
m (zv) ' 146.8 . (5.2)

In the context of non-top-hat profiles, the contrasts with overbar can be understood as
volume-averaged quantities. Since at zv the central region of the density contrast has not
formally diverged, naturally, the evolution of the entire profile does not present any instability.

As discussed in [25], in the presence of clustering DE, the natural generalization for the
virialization threshold is given by

δv (z) ≡ δ̄Ltot (zv) = δ̄Lm (zv) + Ωde (zv)
Ωm (zv) δ̄

L
de (zv) (5.3)

and the virial overdensity by

∆v = Ωm

[
1 + δ̄NL

m (zv)
]

+ Ωdeδ̄
NL
de (zv) . (5.4)

In these expressions, zv is the redshift of virialization, determined at the moment that the
virial equation for non-conserving mass is satisfied

1
2Mtot

d2Mtot
dt2

+ 2
MtotR

dMtot
dt

dR

dt
+ 1
R2

(
dR

dt

)2
+ 1
R

d2R

dt2
= 0 , (5.5)

where Mtot = Mm +Mde,
Mm = 4π

3 R3ρ̄m
(
1 + δ̄NL

m

)
, (5.6)

and
Mde = 4π

3 R3ρ̄deδ̄
NL
de

(
1 + 3c2

s

)
. (5.7)

In the SC model,Mm is conserved, butMde is not. For more details about this implementation,
see [21, 25].
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Now we have to define how to compute the linear and nonlinear volume averaged
contrasts, δ̄m and δ̄de. In the case of a top-hat profile, indicated by δth

m (t), we have

Mm = 4
3πR

3ρ̄m
(
1 + δth

m (t)
)
. (5.8)

Assuming mass conservation within the physical radius R, we get the usual continuity equation

δ̇th
m + 3

(
1 + δth

m

)(Ṙ
R
− ȧ

a

)
= 0 , (5.9)

which gives the dependency of R with δth
m

1 + δth
m (t)

1 + δth
m (ti)

=
(
a (t)
a (ti)

R (ti)
R (t)

)1/3
. (5.10)

For general profiles, however, we can not analytically determine the relation between R
and δm because the nonlinear effects and the presence of DE fluctuations change the profile
during the evolution. Thus we need to numerically compute the integral

Mm = 4πρ̄m
∫ R

0
drr2

(
1 + δNL

m (r, t)
)
, (5.11)

many times at each time of interest to determine the value of R that conserves the mass.
Given that the profile implemented is steep, and that it get’s much steeper in the nonlinear
regime, the computation of such integral can be numerically unstable in general. To save
computational time and for the sake of numerical stability, we determine R using

Mm = 4π
3 ρ̄mR

3
(
1 + δNL

m (rf , t)
)
, (5.12)

where rf � σ, so that the profile is nearly constant between 0 < r < rf .
With this simplification, we lose the precise association between Mm and the physical

scale R, but, as we will see, the time-dependent quantities (δv, ∆v) are determined with good
accuracy. In the general case, δv and ∆v would also depend on the mass (or radius) scale. In
the examples we will show, we can consider that these quantities are determined for comoving
scales, r, such that δm is roughly constant. From figure 2, we can estimate this is roughly
valid for r < 0.25Mpc/h. A more detailed analysis of the dependence of the threshold and
virialization densities on the scale will be done in a forthcoming paper. For a study about
the scale-dependent SC quantities in the presence of linear DE perturbations, see [48]. With
this setup, we can check how accurate our model reproduces the classical SC results, see
appendix A.

Finally we determine the impact of c2
s on δv and ∆v on small scales. We show results

for a non-phantom model (w0 = −0.9 and wa = 0.2) and phantom model (w0 = −1.1 and
wa = −0.2). We verified that the values for c2

s < 10−7 are very close with those for null sound
speed. As expected, for non-phantom DE, in both cases all curves lie in between the ones for
c2
s = 0 and c2

s = 1. As can be seen in figure 10, there is an important dependence of δv with
cs at low-z.

In the phantom case, there is an interesting trend, namely, for sufficiently small cs, δv
decreases with z. This happens because low values of cs will induce more negative δde, which
in turn decreases the matter growth and δv. It’s also important to note that, in phantom
models, DE becomes important for the background evolution at lower redshifts. Hence, it’s
effects are more apparent later than in non-phantom model. Finally, we remark that we
restricted c2

s ≥ 10−3 to avoid the negative densities in phantom DE, as discussed in section 4.2.
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Figure 10. Left panel: evolution of δv with z for non-phantom models and selected values of cs.
Right panel: the same, but for phantom models. In this latter case, we restrict the values of cs, so
that negative densities associated with phantom DE are not present.

6 Conclusions

In this work, we developed a numerical code capable of solving the nonlinear partial equations
of the SC model associated with perfect fluids with pressure. This kind of system naturally
arises when some clustering component has a scale-dependent growth, as DE with arbitrary
sound speed, and cannot be treated by the usual SC methods. Thus we were able to generalize
results in the literature that were obtained in the limits of homogeneous DE (cs = 1) and
clustering DE (cs = 0). Our method shows very good agreement with linear solution in EdS
model and with the top-hat SC collapse model for the cases with cs = 1 and cs = 0.

We have confirmed that DE fluctuations with cs = 1 remain very small compared to
matter fluctuations, even in the nonlinear regime, as expected in Quintessence and Tachyon
models [18, 28]. We also verified that, for cs < 10−5, DE fluctuations behave as dust and can
become nonlinear, also depending on w. In this case, the evolution of matter fluctuations
is strongly impacted. As a consequence, the virialization threshold, δv, has a substantial
increase in non-phantom models and a moderate decrease in phantom healthy models. We
also found that, for c2

s < 10−3, the gravitational potential associated with matter halos and
voids can change about 4–9% with respect to the c2

s = 1 case. This can be an important
observational feature of DE fluctuations [49].

We have shown that phantom DE with low cs can develop a pathological state of
negative energy density around matter halos. This can happen for c2

s < 10−7 around virialized
overdensities and for c2

s < 10−5 around overdensities δm ∼ 103. Therefore, in order to avoid
negative densities, phantom DE models described by perfect fluids can not have arbitraly
low sound speed, such as in model [41]. The specific minimum value of cs that avoids this
pathology also depends on w. Thus, helthy phantom models demand some fine tune or can
not be described by perfect fluids [43].

For the first time, we have explored the dependence of δv with cs. At low redshifts, the
departures from the homogeneous case is about 1% for c2

s = 10−3 and increase up to 7% for
c2
s = 10−7. As shown in [25], the variation of halo abundances between homogeneous and
clustering DE can reach up to 30%. Therefore, intermediate values of cs can also present
a sizable impact on cluster abundances. Our results are focused on small nonlinear scales.
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We aim to further develop this code to precisely determine the scale dependence of δv and
implement more realistic profiles.

Our code can be adapted to solve the nonlinear evolution of fluctuations in other
cosmological scenarios which present scale-dependent growth of fluctuations, such as warm
DM and modified gravity models. The inclusion of bulk viscosity is also possible and models
like [24] can be studied beyond the top-hat approximation. A particular interesting application
is the case of Ultra Light DM, [50]. In such models, DM naturally has a scale-dependent
growth, and small halos develop a core due to “quantum pressure”. Semi-analytical halo
abundances of these models have used prescriptions for the collapse threshold proposed in the
context homogeneus DE or warm DM [51, 52]. Thus a more detailed semi-analytic study of
the nonlinear evolution is still lacking.
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A Convergence and accuracy tests

Linear evolution. Let’s first analyze the convergence and accuracy of the method in the
linear regime. In figure 11 we show the percent error in the δm profile at z = 0, given by

ENm (r) = 100%× |δ
EdS
m (r)− δNm (r) |

δEdS
m (r) , (A.1)

where δEdS
m is the analytical solution, equation (2.16), and δNm is the numerical solution for the

truncation order N . We assume that σ = 30Mpc/h. Here we only show the dependence with
N , however the map parameter L0 is also important because it changes the spatial coverage
of the collocation points, which has to be adjusted according to the profile parameters in
order to minimize the error. For the present case, L0 = 12 was used.

As we can see, the error falls with the increase of the truncation order N . We observe
that N = 60 minimizes the error within 1σ, which is below 10−6%. We also note that the
error is cumulative with time. Therefore, for higher redshifts, the error is even smaller. It
is also important to note that higher values of N do not necessarily decrease the error. As
N grows, more numerical precision is needed to satisfactorily evaluate the base functions at
the collocation points. In the algebraic procedure, done with Maple software, the numerical
precision can be increased to fulfil this demand. However, when exporting the equations to be
integrated with GSL routines written in C language, we are limited to the machine precision,
and the errors increase above some N . The onset of this limitation can be seen as a noisy
error profile for N = 55 and N = 60 at large radius. For N > 60 the error around the origin
increases, so we will use N = 60 in the examples shown in this paper because we are mainly
interested in the nonlinear evolution, which takes place at more central regions of the profile.

We also verified the accuracy of the numerical procedure comparing the linearly evolved
contrasts with the analytical solutions in EdS model for DE eqs. (2.22) and (2.20), i.e.,
assuming that the DE is a test field in a matter-dominated universe. For the case with cs = 0
and assuming w = −0.9, the error profile is very similar to what is shown for δm in figure 11.
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Figure 11. Numerical error profiles for the linear evolution δm defined in eq. (A.1).

The error for δde with cs = 1 is larger, about a few percent. Probably, this larger
imprecision is due to the boundary conditions implemented, eq. (3.5), which are chosen for
better accuracy in models with low cs, i.e, they are the same as those for matter. For the
results we have shown, the impact of this larger error for the non-negligible sound speed cases
is very small because in this case DE perturbations are at least a few orders of magnitude
smaller than matter perturbations and barely impact its evolution and quantities used to
determine the virialization. We also checked the error in the gravitational potential, which is
about the 10−5% order for N = 60.

Nonlinear evolution. We also compute the error in the nonlinear evolution of δm as
compared to the analytical solution in EdS. Let us first consider the determination of the
critical density threshold at virialization, δv. As discussed earlier, when trying to reproduce
the usual threshold for collapse, δc, severe numerical instabilities arise. Thus, we compare the
numerical and analytical determinations of quantities at the virialization time, zv, in EdS
model: δv ' 1.583 and ∆v ' 146.8.

We also compare the evolution of δv and ∆v provided by our method with the one
obtained in the top-hat spherical collapse model in the presence of clustering DE, i.e., for
cs = 0 [25]. In figure 12, we show the percent difference in δv between the methods is presented
for the parameters w0 = −0.9 and wa = 0.2. As can be seen, the errors are below 0.1%. For
∆v the errors are larger, reaching a few percent for models with DE.

The different errors magnitude for these quantities can be understood as follows. Both
of them are determined at the redshift of virialization given by equation (5.5). The value of
δv is then given by the linear values of the contrast, whereas ∆v by the nonlinear ones. Since
∆v is usually two orders of magnitude larger than δv, the same error in zv can be amplified
by roughly this amount. It’s also important to note that the errors in these quantities
depend both on the contrasts evolution and their numerical temporal derivatives, which enter
equation (5.5). Moreover, we verified that another numerical implementation for the clustering
case, based in Python and with results shown in [13], differs 2–3% from the computations
presented here and those from [25], which was implemented in Mathematica. Therefore, it’s
important to note that we still lack a sub-percent accurate computation of ∆v, which can be
used directly in mass functions [53, 54].
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Figure 12. Left panel: numerical error for δv when compared to the analytical solution for EdS model
and the numerical solution from the top-hat SC model for a model with w0 = −0.9 and wa = 0.2 for
cs = 1 and cs = 0, as presented in [25]. Right panel: the same, but for ∆v.
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