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Baseflow, the sustained flow from groundwater, lakes, and snowmelt, is essential for maintaining
surface water flow, particularly during droughts. Amid rising global water demands and climate
change impacts, understanding baseflow dynamics is crucial for water resource management. This
study offers new insights by assessing baseflow controls at finer temporal scales and examining
their relationship with hydrological drought flows. We investigate how climatic factors influence
seasonal baseflow in 7138 global catchments across five major climate regions. Our analysis
identifies precipitation as the primary driver, affecting 58.3% of catchments, though its impact
varies significantly across different climates. In temperate regions, precipitation dominates (61.9%
of catchments), while in tropical regions, evaporative demand is the leading factor (47.3%). Snow
fraction is particularly crucial in both snow-dominated (20.8%) and polar regions (48.5%).
Negative baseflow trends generally emerge where the effects of evaporative demand or snow
fraction outweigh those of precipitation. Specifically, in northern regions and the Rocky
Mountains, where snow fraction predominantly controls baseflow changes, a negative trend is
evident. Similarly, in tropical catchments, where evaporative demand drives baseflow changes, this
also leads to a negative trend. Additionally, our findings indicate that baseflow changes are closely
linked to hydrologic drought severity, with concurrent trends observed in 69% of catchments.
These findings highlight the relationship between baseflow changes, the severity of hydrologic
drought and shifts in precipitation, evaporative demand, and snow dynamics. This study provides
crucial insights for sustainable water resource planning and climate change adaptation,
emphasizing the importance of managing groundwater-fed river flows to mitigate drought impacts.

1. Introduction

Baseflow, the perennial flow component of stream-
flow generated by groundwater storage, wetlands,
lakes, melting snow and glaciers [1-3], is crucial in
sustaining surface water flow and supporting river
ecosystems. As a relatively stable streamflow compon-
ent, baseflow becomes indispensable during drought,
acting as a vital supply for effective water resource
planning and management [4, 5]. During meteor-
ological drought conditions, baseflow serves as a
buffer against hydroclimatic variations and influ-
ences the propagation and severity of water deficits,

© 2024 The Author(s). Published by IOP Publishing Ltd

ultimately impacting society’s vulnerability to these
extreme events [6—8]. Therefore, understanding base-
flow dynamics, controlling mechanisms, and their
role in hydrologic drought severity is essential for mit-
igating drought impacts on water availability and eco-
system health [9-17].

Many studies have explored changes in baseflow,
revealing diverse patterns across different parts of the
globe. For instance, in the US Midwest, a signific-
ant increase in baseflow from May to September was
identified for a series of basins [18], while in the
Missouri River Basin, an overall rise in the number
of stations with positive baseflow slopes from 1950 to
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2014 was observed [10]. China’s Yellow River Basin
saw a general decline in annual baseflow from 1950—
2000 [19]. Southern Africa exhibited increases and
then decreases in baseflow from 1981-2018, while
northern Africa experienced consistently decreasing
trends from 1950-2018 [20]. Studies in Australia,
such as those focused on the Murray—Darling Basin,
have highlighted the potential consequences of cli-
mate change, including predicting reductions in
river baseflow and adverse impacts on groundwater-
dependent ecosystems [21-25]. In Central Europe,
studies have highlighted the impacts of climate and
catchment controls on baseflow changes, revealing a
highly variable pattern of trends for baseflow across
the region, with low flows exhibiting more frequent
downward trends [4, 26]. Other studies have focused
on regional analysis of groundwater, incorporating
observation wells. However, while well time series are
often abundant in space, they are challenging to extra-
polate from point to catchment scale and may not
reflect catchment-scale groundwater storage [27-29].

Despite growing concerns over how human activ-
ity and global climate change may affect water
resources, the impact of climate change on base-
flow changes and its relationship to hydrological
drought is still relatively understudied [1, 5, 30].
One of the primary drivers of baseflow changes is
climate, with precipitation, potential evapotranspir-
ation (ET,), and snow fraction being among the
most significant variables [30-37]. When precipita-
tion increases, more water can permeate the ground
and contribute to groundwater recharge, which usu-
ally leads to an increase in baseflow [30, 37]. Hence,
climate-change-driven changes in the form of precip-
itation (e.g. a shift from snow to rain), can also affect
baseflow [1]. For instance, a decrease in snow cover,
driven by reduced albedo and increased sublima-
tion, can decrease seasonal streamflow components
[38, 39]. Similarly, baseflow may decline if fewer
glaciers are present and lesser snow melt occurs in
summer [1]. Baseflow changes have also been related
to increases in ET, in some places due to rising
temperatures [40]. As more water is lost to the atmo-
sphere and less water is available for groundwater
recharge, a higher ET}, can decrease baseflow [40]. For
instance, studies conducted in the Upper Colorado
River basin have indicated that greater climate-
change-driven increases in evapotranspiration relat-
ive to precipitation may reduce baseflow [30]. In
contrast, a Canadian study found that warmer tem-
peratures and greater snow cover resulted in greater
baseflow [41].

Many studies examining streamflow compon-
ents have employed coarse temporal perspectives
to assess dominant climate and physiographic con-
trols of catchment water partitioning [37, 42-47].
Opverall, some of these studies rely on Budyko-based
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frameworks, initially developed for spatial, between-
catchment analyses under long-term temporal scales.
Nevertheless, given space-time asymmetry, their use
for analyzing water availability sensitivity and dynam-
ics at finer temporal scales is debatable [48]. In fact,
the Budyko framework, though informative [37, 43,
44,49, 50], disregards a substantial amount of hydro-
logical information and the interaction of multiple
factors that could affect baseflow dynamics at finer
temporal scales. Furthermore, the Budyko frame-
work is not fully developed for baseflow partitioning,
and geographical differences in baseflows between
catchments may arise due to various factors such
topography, soil properties [51-54], and vegetation
[55, 56].

To address this challenge and gain insight into
the intricate interplay of climate variables and base-
flow at finer time scales, we employ the Peter-
Clark Momentary Conditional Independence Plus
(PCMCI+) algorithm [57-59]—recently applied in
Earth System sciences—to systematically explore
causal relationships among hydroclimatic variables.
PCMCI+ offers a framework for identifying direc-
tional dependencies among variables by leveraging
time series data, making it particularly suited for ana-
lyzing the complex interplay between climatic factors
and baseflow. Recent studies in hydrometeorology
have demonstrated the effectiveness of PCMCI+ in
capturing both direct and indirect causal pathways
in baseflow and streamflow analysis, providing new
insights into how drivers interact to impact water
resources [57, 60—64]. We investigate the implications
of baseflow changes for hydrological droughts, mark-
ing this as a first evaluation of the significance of base-
flow alterations in the context of hydrological drought
dynamics. Depletion of the groundwater-sustained
component of river flow (i.e. baseflow) during persist-
ent droughts can pose additional pressure on water
security [4, 65-67]. This necessitates the identifica-
tion of regions susceptible to co-occurrence of base-
flow loss and hydrological drought conditions. The
structure of the paper is as follows. First, we exam-
ine the climatic factors influencing baseflow changes;
subsequently, we explore how baseflow loss is related
to hydrological drought; finally, we identify catch-
ments where baseflow loss and hydrological drought
occur simultaneously.

2. Data and methods

2.1. Data

Data of the studied watersheds was extracted from
the Caravan global dataset [68], which standard-
izes and aggregates large-sample hydrology datasets,
including the CAMELS datasets [69-73]. Caravan is
a comprehensive hydrological dataset that includes
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catchment attributes and streamflow data for vari-
ous locations. The Caravan dataset was selected to
ensure a globally consistent and spatially coherent
dataset, as it integrates CAMELS hydrological data
with ERA5-Land meteorological forcings, facilitating
global comparative studies across diverse geograph-
ical settings. We selected 7138 catchments with at least
15 years of data from 1981-2020. The catchments
exhibit diverse sizes, ranging from 10 to 2600 km?.
The Caravan dataset can be extracted from https://
zenodo.org/records/7387919.

We used daily streamflow, temperature, precip-
itation, and ET, data. The two climate controls
of baseflow, including seasonal precipitation and
ET,, were directly calculated from the daily met-
eorological data. In Caravan, ET, is derived using
the Penman—Monteith equation, integrating climatic
factors such as temperature, humidity, wind speed,
and radiation [74-76]. A simple temperature-based
threshold served to calculate snow fraction (i.e. the
portion of precipitation that falls as snow). If the aver-
age temperature for a given day remained below 1 °C,
all precipitation was classified as snowfall [77, 78].
Conversely, when temperatures exceeded 1 °C, the
precipitation was categorized as rainfall. It is import-
ant to note that total precipitation includes both rain
and snow. An alternative threshold of 0 °C [79] was
also explored, with consistent results, regardless of the
chosen method for estimating snowfall.

2.2. Baseflow and hydrological drought estimations
Baseflow was estimated using a one-parameter
recursive filter developed by Lyne and Hollick [49,
80—84], commonly used in the literature [41, 50, 85—
87] to decompose streamflow into its constituent
components, namely baseflow and direct flow:

qr=Qr— (ﬂQz—1+H_25~(QtQt—1)> (1)

where ¢, is the filtered quick response on day t, Q; is
the original streamflow, and [ is the filter parameter
(set at 0.925; a commonly-used value in hydrological
studies [44, 50, 85, 87—-89]). We applied the recursive
filter iteratively three times (forward-back-forward)
to filter off flood peaks from the original streamflow
time series. This separates the slow, groundwater-
derived baseflow from the rapid, rainfall-induced dir-
ect flow. Seasonal baseflow values are then calculated
from the daily values for the analysis, with the seasons
defined as follows: spring (March to May), summer
(June to August), fall (September to November), and
winter (December to February).

However, different streamflow partitioning meth-
ods, including the graphical method developed by
the UK Institute of Hydrology [90], Fixed interval
graphical method from the HYSEP program [91],
Eckhardt filter [3], and Chapman filter [92] have been
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previously applied. To address the inherent uncer-
tainty in streamflow partitioning [49], we conduc-
ted an additional analysis comparing the three-pass
Lyne-Hollick filter with other streamflow partitioning
methods (figure S1 in the appendix). The high cor-
relation values, ranging from 0.90 to 1.0, indicate a
strong consistency between the methods, particularly
between the LH method and the others. Therefore, we
opted to keep using the three-time running LH filter.

Hydrological drought is generally defined by a
deficiency in the volume of surface water supply [93,
94]. Tt is often characterized by low streamflow con-
ditions. Here, we use the widely used 7 d low flow,
which is the annual series of the minimum values of
mean discharge over any seven consecutive days [95].
This results in one annual minimum value for each
year.

2.3. Causal discovery algorithm

Here, we used the PCMCI+ causal discovery
algorithm [58, 59, 61]—recently developed and
applied in Earth system sciences—to examine the
role of climate on temporal changes of baseflow at
the seasonal time scale. Non-climatic factors also
affect baseflow changes, including topography, soil
properties [51-54], and vegetation [55, 56]. We focus
only on the climate control of baseflow changes as it
can explain most of the variability in baseflows. In
particular, we explore the causal effect of precipita-
tion, snow fraction, and evaporative demand on base-
flow changes using empirical data [43, 96-98]. The
PCMCI+- algorithm can outperform correlation ana-
lysis, identifying linkages that traditional correlation
analysis miss [64]. Moreover, it excels at accounting
for common drivers and detecting indirect links, dis-
tinguishing itself from other causal discovery meth-
ods, such as Granger causality [57, 58, 99].

The initial step involved constructing a directed
acyclic graph to unveil causal relationships between
variables. This graphical representation outlines the
system’s causal structure, with nodes representing
variables and directed edges signifying causal rela-
tionships. This algorithm begins with a fully connec-
ted graph and then iteratively evaluates the removal
of links between variables, considering expanding
cardinality conditioning sets. The algorithm has
two stages. First, the PC;, a Markov set discovery
algorithm based on the PC-stable algorithm [100],
eliminates spurious links through iterative independ-
ence testing. Here, we use linear partial correlation for
the conditional independence test. The significance
level of the independence test is set to 0.05, allowing
the PC algorithm to converge to only a few relevant
conditions. In the second step, the momentary con-
ditional independence (MCI) test uses the estimated
conditions found in step one to infer a causal link.
While the primary goal of the PCMCI+ algorithm
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is to detect the causal graph, the MCI test statistics
also provide a well-interpretable measure of a nor-
malized causal strength (MCI test statistics value),
used to determine the strength of causal links between
variables [60, 101]. The absolute MCI test statistic
value [57, 58, 99, 102] ranges from 0 (weakest) to 1
(strongest). The Python software for estimating the
causal network can be obtained from https://tocsy.
pik-potsdam.de/tigramite.php.

3. Results

3.1. Climatic controls on baseflow changes:
regional patterns and global assessment
First, we perform a global assessment of the causal
strength of specific climate controls on baseflow
changes (figure 1), thus providing insights into the
varying impacts of climate controls on baseflow
across distinct climate zones. The causal link strength
(MCI values) for the three climate controls are shown
in figures 1(a)—(c). Figures 1(d)—(h) display histo-
grams illustrating the distribution of absolute causal
strengths across the five major climate zones.
Globally, precipitation stands out as the dominant
factor influencing baseflow, with a noteworthy expec-
ted MCI of 0.45. Evaporative demand follows with
a substantial yet lesser impact (MCI = 0.30), while
snow fraction contributes with an expected MCI of
0.25. In the tropical zone, precipitation and evap-
orative demand play significant roles, with expected
MCI values of 0.42 and 0.41, respectively. In arid
climates, precipitation is identified as the dominant
factor (MCI = 0.40), while in temperate climates, a
similar pattern emerges. Conversely, in cold climates,
snow fraction becomes more influential than evapor-
ative demand (MCI = 0.26), and precipitation retains
significance (MCI = 0.39). In polar climates, snow
fraction prevails (MCI = 0.40), and precipitation
maintains significant causal strength (MCI = 0.33).
To assess the impact of dataset choice on our
results, we conducted an additional analysis using
four CAMELS datasets that utilize gauge station
data for climate forcings. As shown in figure S2 in
the appendix, the overall patterns of climate con-
trols on baseflow remained consistent across datasets.
Variations were observed in only 4.2% of catchments
for precipitation, primarily in northern Brazil and the
eastern US, and in 7% of catchments for evaporat-
ive demand. It is worth noting that while there may
be differences in the absolute values between datasets,
our focus here is on the causal effect of climate con-
trols on baseflow, which largely remains consistent.
The analysis of causal strength in figure 1 and
the dominant control in figure S3 reveal that while
precipitation holds some significance as a control
of baseflow changes in 73% of catchments, it is the
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primary control in only 58.3% of catchments glob-
ally. This underscores the critical role of precipitation
variability in modulating baseflow both temporally
and spatially. To determine the primary control, we
ranked the three factors—precipitation, evaporative
demand, and snow fraction—based on their MCI
values at each gauge station. Evaporative demand
emerges as the second most significant factor, in
17% of catchments, indicating that it can substan-
tially alter baseflow, particularly under warming con-
ditions. The evaporative demand holds its signific-
ance in the control of baseflow in 42.3% of stud-
ied catchments. Snow fraction is the primary factor
affecting baseflow in 12% of catchments, and exhib-
iting a significant control in 24.7% of studied catch-
ments. This highlights the importance of the shift
from snowmelt and snow accumulation processes in
cold regions toward greater rain due to climate warm-
ing. The remaining catchments are governed by other
factors not included in our analysis such as topo-
graphy, soil properties, and vegetation, suggesting a
complex interplay of additional controls.

The preceding analysis showed the dominance
of precipitation in governing baseflow changes. To
better understand the impact of climatic drivers on
baseflow changes at the regional scale, we exam-
ine the prevalence of the three key climatic factors
across five major Koppen climate regions (figure 2).
Each bar represents a climatic region, and colors
denote climatic factors. The colored segments indic-
ate the percentage of catchments where a particu-
lar climatic driver predominantly controls baseflow.
Precipitation emerges as the primary driver in four
out of five climate regions, reaching its highest rel-
ative occurrence at 61.89% in the temperate climate
zone and its lowest at 21.21% in the polar climate
zone. Evaporative demand is the second most influ-
ential factor, with its peak occurrence (47.31%) in
the tropical climate zone and the lowest (9.02%) in
the snow climate zone. Snow fraction significantly
impacts baseflow across four out of five climate zones,
with the highest occurrence (48.48%) in the polar cli-
mate zone and the lowest (6.53%) in the temperate
climate zone. Beyond climatic factors, it is important
to acknowledge the contribution of other variables in
explaining baseflow changes, with the polar climate
region exhibiting the highest contribution (21.21%).

3.2. Understanding the relationship between
baseflow changes and hydrological drought

The previous analysis unveils the impact of climate
controls on baseflow, yet lacks insights into the
intensity of baseflow changes across catchments. To
assess the severity of baseflow alterations, we calculate
the linear regression trend of the normalized annual
baseflows and the associated p-value. Recognizing the
potential exacerbation of the water-deficit condition
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through groundwater extraction during hydrological
droughts, we also examine the concurrent occur-
rence of baseflow changes and hydrological drought
(figure 3). The abscissa represents the linear regres-
sion trend of normalized annual baseflow, while the
ordinate illustrates the linear regression trend of nor-
malized annual hydrological drought.

The four zones are delineated by two solid white
lines indicating the significance threshold for a p-
value of 0.05 (see figure 3(a)). This threshold is
established to identify instances of physically unsus-
tainable multi-year groundwater extraction coupled
with hydrologic drought conditions—as defined by
Margat et al [103] and Bierkens and Wada [104]. The
critical risk zone exists where negative trends occur
in both cases. The two zones in which either negat-
ive baseflow or hydrological drought happens are the
moderate risk zones, while the one with both pos-
itive trends is the positive trend zone (figure 3(a)).
Results are displayed in figure 3(b). The trend in base-
flow demonstrates a strong association with hydro-
logical droughts (Spearman p = 0.59). Of all catch-
ments, 24% are in the critical risk zone and 31%
are in the moderate risk zones. The remaining 45%
are positioned in the positive trend zone, displaying
a positive trend in both baseflow and hydrological
droughts.

The preceding analysis revealed a significant cor-
relation between baseflow and hydrologic droughts,
given that they are both components of stream-
flow. Most trends are scattered around the fitted red
line (figure 3(b)), with 69% of catchments falling
within zones displaying similar directions in baseflow

and hydrologic droughts. However, in some catch-
ments, trends in hydrologic droughts deviate signi-
ficantly from the fitted linear regression line, with
31% displaying opposing directions in their trends,
which is partly associated to the changes in water
inequality—defined as the unequal distribution of
streamflow through a year, measured by the Gini
index (see figure 54 in the supplementary informa-
tion). In cases where baseflow increases but hydrolo-
gical drought worsens, the Gini index rises, indicat-
ing increased streamflow inequality that exacerbates
droughts. Conversely, when baseflow decreases but
hydrological drought improves, the Gini index falls,
signifying a more uniform streamflow distribution
that mitigates drought severity.

We further investigated the spatial distribution
of trends in normalized annual baseflow and annual
hydrological drought (figure 4). Figures 4(a) and (b)
reveal spatial patterns of regression trends in nor-
malized baseflow and hydrologic drought, respect-
ively. Figures 4(d) and (e) illustrate the correspond-
ing probability distribution of trend magnitudes for
baseflow and hydrologic drought.

In the northern hemisphere, negative trends in
baseflows prevail in the northeastern part of Canada,
the western US, and catchments near the Rockies.
Conversely, positive trends in baseflow are mainly
observed in the higher latitudes of Canada, includ-
ing catchments in polar and snow climate regions.
Hydrologic drought trends in the northern hemi-
sphere align with baseflow trends but are often
more intense, particularly in northern latitudes. In
the southern hemisphere, catchments in Brazil with
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Figure 4. Spatial analysis of normalized baseflow and hydrologic drought changes in the Caravan catchments. (a) and (b)
Illustrate the spatial distribution of regression trends in baseflow and hydrologic drought, respectively, with the significance level
set at p-value = 0.05. The significant negative and positive trends are depicted in shades of purple and green, respectively. The
corresponding probability distribution of trend values is shown in (d) and (e) for baseflow and hydrologic drought, respectively.
(c) Highlights the spatial distribution of single or concurrent baseflow and hydrologic drought. Catchments with either negative
baseflow or negative hydrologic drought are indicated in light red, representing a moderate risk. The catchments with the
concurrent occurrence of negative baseflow and hydrologic drought are shown in dark red, designating critical risk zones;
catchments with positive trends in baseflow and hydrologic drought are displayed in light grey, indicating a positive trend zone.
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arid climates predominantly exhibit negative trends.
Additionally, catchments along the Andes mountain-
ous region with snow climates show negative trends.
Some regions in southern Australia also display neg-
ative trends in baseflow. Hydrologic drought trends
in the southern hemisphere generally align with base-
flow trends, except for regions in southern Australia.
The mean value of the regression trend across all
catchments is 0.02 for baseflow and 0.03 for hydro-
logic droughts.

Figure 4(c) illustrates the spatial distribution of
single or concurrent negative baseflow and hydro-
logic drought. Catchments with a moderate risk

are indicated in light red, while those with crit-
ical risk conditions are shown in dark red; catch-
ments belonging to the positive trend zone are dis-
played in light grey. In the northern hemisphere,
catchments with a critical risk condition extend over
the northeastern part of Canada, the western US,
and some parts of the Rockies. Catchments with a
moderate risk condition spread over some parts of
northern Canada and most parts of the Rockies. In
the southern hemisphere, catchments with a crit-
ical risk condition are situated in the central and
northeast regions of Brazil and the Andes moun-
tainous region, with some regions in the central
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plateau of Brazil also exhibiting a moderate risk
status.

4. Discussion

4.1. Limitations of the Budyko framework and the
need for a novel approach

While traditional approaches like the Budyko frame-
work have been used to analyze the sensitivity of base-
flow to changes in climatic and physiographic con-
trols, it has been shown that this framework ori-
ginally designed for spatial, between-catchment ana-
lyses at long-term temporal scales, disregards sub-
stantial hydrological information [48]. To overcome
these limitations and better understand the intricate
interplay of climate factors and baseflow changes, we
employ the PCMCI+ causal discovery algorithm. We
used empirical data to focus on the causal effect of
precipitation, snow fraction, and evaporative demand
on baseflow changes and then analyzed the concur-
rent occurrence of trends in baseflow and hydrolo-
gic drought. Analyzing single/concurrent phenom-
ena has implications for identifying key modulators,
effective water resource management, climate impact
assessment, and risk analyses.

4.2. Regional drivers of baseflow changes
Our findings showed that climate is an important
modulator of the temporal changes in baseflow [1].
The global analysis of Caravan catchments identified
precipitation as the primary driver of global base-
flow changes with an average MCI of 0.45 across
58.3% of all catchments, aligning with findings of
prior studies conducted across different catchments
[9, 54, 105, 106]. For instance, in southwest China,
research indicated that a negative trend in precipit-
ation coupled with human activity, contributed to
changes in baseflow [107]. Similarly, in China’s Niya
River basin, precipitation greatly impacted baseflow
dynamics [108]. A large-scale analysis of natural
catchments in the US, UK, Brazil, and Australia sup-
ports these findings, highlighting that precipitation
exerts the most significant control on baseflow [109].
Evaporative demand emerged as the dominant
control of baseflow in 17% of catchments, with an
average MCI value of 0.30 across all studied catch-
ments. This finding suggests that as climate warming
intensifies, evaporative demand may deplete ground-
water in catchments with shallow groundwater con-
nections, as seen in previous studies [31, 110]. Our
finding aligns with earlier research highlighting the
association between baseflow changes in Costa Rica’s
tropical wet forest and groundwater withdrawal by
the forest for evapotranspiration [33]. There are also
studies that identified ET, along with precipitation
as primary controls, affecting baseflow changes at
regional and global scales [37, 49, 80, 96, 109, 111].
Specifically, in the Loess Plateau, a semiarid climate
region in China, research concluded that variations
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in baseflow are more sensitive to fluctuations in ET,,
than in precipitation [45].

Snow fraction has emerged as the dominant
control of baseflow changes, corroborating previ-
ous studies that highlight the significant role of
the snow-to-precipitation ratio in governing sum-
mer flows in boreal headwater catchments [112]. This
finding underscores the critical role snow fraction
plays in sustaining baseflows, particularly in snow-
dominated regions. However, with global warming,
snow fraction is expected to decrease [77], which may
lead to reduced snow accumulation and groundwater
recharge, thereby diminishing baseflow during crit-
ical periods. This decline is likely to exacerbate low-
flow conditions and negatively impact water availabil-
ity in these catchments. In fact, snow fraction, among
other climatic variables, is crucial in controlling run-
off and low flows in the mountainous regions of west-
ern North America [113]. In southeastern Canada,
temporal baseflow changes consistently align with
snow fraction changes over the Oak Ridges Moraine
[114]. Similarly, in the Midwestern US, it has been
concluded that snow fraction stands out as the most
influential factor in generating baseflow in fall and
winter in the studied catchments [115].

4.3. Trends in baseflow and their implications

The analysis showed that negative trends in base-
flow occur when either evaporative demand or snow
fraction dominates precipitation in controlling base-
flow changes. Specifically, we identify a negative
trend in baseflow across the northern regions and
the Rocky Mountains (catchments characterized by
a cold climate), where the snow fraction emerges
as the dominant control of baseflow changes. This
observation aligns with previous findings, demon-
strating the impact of changes in snow cover across
much of Canada on alterations in baseflow dynamics
[41]. In tropical catchments, however, a negative
trend in the baseflow was observed where evapor-
ative demand was identified as the primary control
of baseflow changes. This confirmed earlier findings,
demonstrating that ET, affects groundwater under
warming conditions, particularly in energy-limited
systems [31]. However, it is important to note that the
ERA5-Land datasets used in this study for estimat-
ing ET,, are based on the Penman—Monteith equation.
While this method is commonly used in the literature
[116-118], the choice of ET, product could intro-
duce variability in causal values (see figure S2 in
the appendix). The physiological effect of increased
atmospheric CO; on ET,, and drought conditions is
also an important emerging topic. Elevated CO, levels
can reduce the stomatal conductance of plants, poten-
tially decreasing ET, [119-123]. While this study
did not explicitly account for CO, effects, future
research should consider these physiological impacts
to provide a more comprehensive understanding of
baseflow changes under varying CO; scenarios.
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4.4. Regional risk assessment and drought
conditions

In the Northern Hemisphere, catchments exhibiting
critical or moderate risk conditions were primarily
located in eastern Canada, the western US, and the
Rocky Mountains, while in the Southern Hemisphere,
these catchments were concentrated on Brazil’s cent-
ral plateau and in the Andes mountain region. This
concurs with prior findings, demonstrating that the
western half of the US is experiencing drought con-
ditions in the 21st century [124-129]. Studies also
showed a decreasing trend in baseflow in the south-
western US, associated primarily with precipitation
and to a lesser extent with evaporative demand and
snowmelt [9, 67, 130]. Various local and regional
studies align with our findings globally. The occur-
rence of hydrologic droughts and/or decreasing base-
flow and their association with climatic factors have,
for example, been documented in Canada [41, 131].
In eastern Canada, declining low flows have been
linked to a reduction in snowfall [132]. In Brazil,
the observed patterns of drought and baseflow and
their association with climate factors align with prior
findings, showing that decreasing precipitation and
increasing water use occur in this region [95, 133].
In the Andes mountainous region, our findings of
intensified drought and decreasing baseflow, driven
by changes in precipitation and snow fraction aligned
with the literature [134—137]. The concurrent condi-
tion of hydrologic drought and baseflow change, dis-
tinct from the individual occurrence of two phenom-
enais also investigated in this study. However, to some
degree, the two phenomena are related [67]. Figure 4
indicates that catchments with intense hydrological
droughts tend to be characterized by more prolonged
baseflow loss than catchments with less pronounced
changes. Catchments that experience the concurrent
conditions often take much longer to recover from
drought. This concurs with other studies in the liter-
ature that analyzed changes in terrestrial water storage
and its relevance to drought severity using the GRACE
satellite [12, 14, 138—142].

5. Conclusion

Our study demonstrates the significant role of climate
factors—precipitation, snow fraction, and evaporat-
ive demand—in modulating baseflow changes across
diverse regions. Using PCMCI+ causal discovery
algorithm, we identified these key causal relationships
that provide insights into the dynamics underlying
baseflow variability. These findings underscore the
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importance of considering regional climatic drivers
on baseflow dynamics, as certain factors become more
prominent in specific climatic zones. For example, in
tropical regions, evaporative demand may become a
more critical factor, while in colder climates, snow
fraction plays a critical role. Notably, the negat-
ive trends observed in baseflow in regions where
snow fraction and evaporative demand are promin-
ent controls, highlight the need for ongoing mon-
itoring and adaptation strategies in water resource
management.

Future research should aim to understand the
complex interactions between climate, land surface
processes, and human activities on baseflow dynam-
ics. This includes investigating the effects of increased
atmospheric CO2 and other emerging factors on
baseflow and hydrological droughts. By continuing
to refine our understanding of these complex inter-
actions, we can better prepare for and mitigate the
impacts of climate change on water resources.
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Pairwise Comparison of Baseflow Methods
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Figure S1. Pairwise comparison of five different streamflow partitioning methods: Lyne and Hollick filter pass (LH; Lyne and
Hollick [81]), graphical method developed by UK Institute of Hydrology (UKIH; Aksoy et al [90]), Fixed interval graphical
method from HYSEP program (Fixed; Sloto and Crouse [91]), Eckhardt filter (Eckhardt; Eckhardt [3]), and Chapman filter
(Chapman; Chapman [92]). The values shown in each panel represent the Spearman correlation coefficients between the baseflow
time series obtained from the different methods, ranging from 0.90 to 1.0, indicating the consistency across these methods.
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Difference in causal link strength
between climate controls and
baseflow (MCI)- Camels vs. Caravan

[ T
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Figure S2. Difference in the absolute causal link strength between climate controls and baseflow (MCI) for four CAMELS
(CAMELS-US, CAMELS-GB, CAMELS-AUS, and CAMELS-BR) versus Caravan datasets. The causal link strengths are quantified
using the MCI test statistic, which ranges from 0 (weakest) to 1 (strongest). Panels (a)—(c) show the regional patterns of these
differences across 25 x 25 km grids, illustrating variations in the absolute MCI values between the two datasets.
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Spatial distribution of dominant controls of baseflow
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Precipitation |l Snow fraction

catchments in which each climate factor is dominant.

Evaporative demand [l Other factors

Figure S3. Spatial distribution of dominant controls influencing baseflow changes across 7138 catchments. The primary climate
control, determined by the highest MCI value within each catchment, is designated as the dominant control. In cases where none
of the three climate factors (precipitation, evaporative demand, or snow fraction) demonstrate a significant causal-effect
relationship with baseflow, ‘other factors’ are considered the dominant control. The significance level is set at 0.05 level for
independence tests. Colors denote the causative controls on baseflow changes. The donut chart shows the percentage of

Analysis of Gini index and its relationship to the
departures of trends in baseflow and hydrologic
drought

To explain the opposing trend directions in the base-
flow and hydrologic drought in figure 3, we employ
the residuals of the fitted linear regression and the
Gini index—a measure of water inequality—defined
as the unequal distribution of streamflow through
the year [143]. We used the Gini index of stream-
flow as a measure of global streamflow inequality
over the studied period. Recently used in hydro-
logy to investigate global inequality of precipitation
and streamflow [143, 144], the Gini index provides
insights on the spatiotemporal distribution of water
resources.

Our investigation explored the impact of stream-
flow inequality, an essential factor influencing water
availability inequality, on the departure of trends in
baseflow and hydrologic drought severity.

The Gini index captures the annual inequality in
streamflow at each gauge station, calculated by arran-
ging daily streamflow values g in ascending order such
that g; < ¢i+1 and can be expressed as [143]:

Gini index = ~ <n+ 1-2 <Z,-_1 ("n+ 1- 1)%))
" > im1 di
(2)

where n is the number of daily streamflow values
available over each year. The Gini index ranges from

0 to 1, with 0 indicating a uniform distribution of
streamflow throughout the year and 1 indicating that
all flows transpire within a single day.

To explore temporal variations in streamflow
inequality across the study period, we then calculated
the trends in the annual Gini index. For each year,
a singular Gini index was computed, and the linear
regression trend in the yearly Gini index is analyzed
to elucidate the temporal shifts in streamflow inequal-
ity for each gauge station. This analysis allowed us to
unravel the evolving dynamics of global streamflow
inequality over the examined timeframe and its rela-
tionship to the departure of trends in baseflow and
hydrologic drought severity.

Our investigation aims to understand how tem-
poral variations in streamflow inequality, denoted
by the streamflow Gini, can account for these devi-
ations (figure S2). The calculation involves determ-
ining the trend in the yearly streamflow Gini index,
ranging from 0 to 1. A Gini index of 0 indicates a uni-
form flow distribution throughout the year, while a
value of 1 indicates that all flows occur on a single
day (Please see figure S5 for the results of expec-
ted Gini index across all catchments). The points
of figure S4 are stratified with colors in panel (a).
The residuals of the fitted linear regression line are
then calculated, demonstrating the trend departures.
The relationship between trends in the residuals and
trends in the Gini index is depicted in panel (b) in
figure S4.

12



10P Publishing

Environ. Res. Lett. 20 (2025) 014035

M Zaerpour et al

(a).

Hydrologic drought
Regression trend in the normalized values (-)
Trend in streamflow Gini index (-)

LG.Z -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Baseflow changes
Regression trend in the normalized values (-)

correspond to those within Zone 2.

Figure S4. Analysis of departures of trends in the normalized annual baseflow and hydrologic drought. Panel (a) displays the
trend in baseflow and hydrologic drought, stratified with trends in Gini index. Panel (b) explores the relationship between
regression trend in streamflow Gini index and the residual of linear regression line fitted to points in panel (a), providing insights
into the departure from the fitted line. In panel (b), the gray dots represent the residuals for all catchments, while the purple dots
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Figure S5. The analysis of Gini index for the 7138 catchments. Panels (a) and (b) display the distribution of expected Gini index
for baseflow and total flow, respectively. The red lines are the expected value of the Gini index across all catchments.
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Notably, the analysis reveals a significant associ-
ation between changes in water inequality and the
departure of trends from the fitted line across all
catchments (depicted by light gray dots; Spearman
p = —0.51). This association is even more pro-
nounced for catchments situated in Zone 2, exhib-
iting a greater departure from the fitted line (depic-
ted by purple dots; Spearman p = —0.62). Examining
catchments below the fitted line reveals predom-
inantly positive trends, indicating a shift towards
less uniform streamflow distribution. Most catch-
ments in this scenario are colored red, indicating
that despite the rise in baseflow, drought conditions
are worsening. This is likely due to a less uniform
distribution of streamflow throughout the year, as
evidenced by a higher Gini index. The increased
inequality in streamflow exacerbates drought con-
ditions by concentrating water flows into shorter,
intense periods, leaving less water available during
prolonged dry spells. Conversely, in the second case,
baseflow decreases while hydrological drought flow

improves. This improvement, despite lower baseflow,
is driven by a more uniform distribution of stream-
flow, reflected in a lower Gini index. A more even
water distribution across seasons helps mitigate the
adverse effects of reduced baseflow, ensuring more
consistent water availability and lessening the impact
of drought.
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