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Abstract In this paper, we revisit the one-dimensional tun-
neling problem. We consider different approximations for
the transmission through the Coulomb barrier in heavy ion
collisions at near-barrier energies. First, we discuss approx-
imations of the barrier shape by functional forms where
the transmission coefficient is known analytically. Then,
we consider Kemble’s approximation for the transmission
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coefficient. We show how this approximation can be exten-
ded to above-barrier energies by performing the analytical
continuation of the radial coordinate to the complex plane.
We investigate the validity of the different approximations
considered in this paper by comparing their predictions for
transmission coefficients and cross sections of three heavy
ion systems with the corresponding quantum mechanical
results.

Keywords Heavy ion reactions - Fusion - Quantum
tunneling - Transmission coefficients

1 Introduction

The transmission through a potential barrier is a remarkable
feature of quantum mechanics. Since Gamow’s theory of
alpha decay, in 1928, it has been used to explain a variety of
new phenomena. In particular, the transmission coefficients
through the Coulomb barrier have been an important ingre-
dient in calculations of heavy ion fusion cross sections along
the last few decades. In single-channel descriptions of heavy
ion scattering, fusion is frequently simulated by a strong
imaginary potential acting in the inner side of the Coulomb
barrier. Since the fraction of the incident current that reaches
the strong absorption region is fully absorbed, the fusion
probability at each partial wave can be approximated by the
transmission coefficient through the Coulomb + centrifugal
barriers.

Although the transmission coefficients through an arbi-
trary potential barrier can be evaluated by numerical proce-
dures, it is convenient to have analytical expressions. This
is possible in some particular cases, like the parabolic bar-
rier [1] and the Morse [2] barrier. In the case of alpha-decay
Li et al. [3] used a different approximation for the barrier
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which also resulted in an analytical form for the trans-
mission coefficient. Parabolic barriers have been used for
decades in fusion reactions of heavy ions [4-7]. In this
case, the barrier at each partial wave is approximated by a
parabola, with properly chosen parameters, and the trans-
mission coefficients are given by an analytical expression
involving these parameters. However, although this approx-
imation is very good near the barrier radius, it becomes
progressively worse as the radial distance increases. The
reason for this shortcoming is that the parabola is symmet-
ric around the barrier radius, whereas the actual barrier is
highly asymmetric. The latter falls off very slowly at large
distances (like 1/r), while the former decreases rapidly.
This exerts great influence on the transmission coefficient at
energies well below the barrier, which are very sensitive to
the potential at large distances. Thus, the parabolic approxi-
mation cannot be used to evaluate transmission coefficients
in this energy region. The situation is better if one approxi-
mates the Coulomb barrier by a Morse function. Although it
leads to a more complicated analytical expression, this bar-
rier has the advantage of being asymmetric. Similar to the
Coulomb barrier, it falls off slowly at the tail, and rapidly in
the inner region.

Owing to the short wavelengths involved in heavy ion
collisions, the transmission coefficients are frequently eval-
uated by semiclassical approximations, like the WKB (for a
recent review, see Ref. [8]). However, although this approx-
imation has been very successful at energies well below the
Coulomb barrier, it fails at energies near the Coulomb bar-
rier and above. Kemble [9] derived an improved version
of the WKB approximation that remains valid at energies
just below the Coulomb barrier. Further, he suggested that
his expression for the transmission coefficient could be
extended to energies above the barrier through an analytical
continuation of the radial variable to the complex plane. In
a previous work [10], we followed this procedure to study
Kemble’s approximation for a typical heavy ion potential,
below and above the barrier. We concluded that the trans-
mission coefficient and cross sections evaluated in this way
were in good agreement with their quantum mechanical
counterparts.

The present work reports a detailed study of parabolic
and Morse approximations for the Coulomb + centrifu-
gal barriers, and the resulting transmission coefficients
and fusion cross sections. It investigates also the use of
Kemble’s approximation for the transmission coefficients
through these barriers, at energies above and below the
Coulomb barrier. We show that Kemble’s approximation in
these cases becomes exact, independently of the collision
energy. The paper is organized as follows. In Section 2, we
present a brief description of the single-channel approach
to the fusion cross section in heavy ion scattering. In
Section 3, the main section of this work, we discuss
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approximate calculations of transmission coefficients and
fusion cross sections. We consider the approximation of the
barrier by a parabola and by a Morse function, and dif-
ferent versions of the WKB approximation for the trans-
mission coefficients. We discuss also the Wong formula
for the fusion cross section and recent improvements to it.
In Section 4, we apply the approximations of the previous
section to the calculation of transmission coefficients and
fusion cross sections. We consider a few light and medium
mass systems, namely ‘He + 16O, 12¢ 4+ 160, and 160 4+
208pp, 1t is expected that the accuracy of these approxima-
tions improves with the mass of the system [6]. Finally, in
Section 5, we present the conclusions of the present work.

2 Fusion Reactions in Heavy Ion Collisions

In single-channel descriptions of heavy ion scattering, the
fusion process is usually simulated by an imaginary poten-
tial. This potential is very strong and has a short range,
so that it acts exclusively in the inner region of the poten-
tial barrier, resulting from nuclear attraction plus Coulomb
repulsion. The scattering wave function is expanded in par-
tial waves, leading to a radial equation for each angular
momentum. The real part of the potential, appearing in the
radial equations, can be written as

2

h
Vi(r) = Ve(r) + Ww(r) + 3.2 I(+1), (1)
wr

where the Coulomb interaction between the finite nuclei is
usually approximated by the expression

ZpZt é?
Ver) = 21 forr > Re,  (2)
r
o7 2 2
= Zpere 3_r_ , forr < Rc, 3)
2 Rc R(2:
with

Rc =roc (A%,/3 + AF}/3) .

In the above equations, Zp (Ap) and Zt (At) are respec-
tively the projectile’s and target’s atomic (mass) numbers,
and we take roc >~ 1 fm.

Different procedures have been proposed to determine
the nuclear interaction between two heavy ions (see, e.g.
[11] and references therein). Among them, the double-
folding model [12] is a systematic procedure that has the
advantage of being applicable to any heavy ion system. In
this model, the potential is given by a multi-dimensional
integral involving the densities of the two nuclei and a real-
istic nucleon-nucleon interaction. On the other hand, this
model has the unpleasant feature of requiring the evalua-
tion of a rather complicate integral. To avoid this problem,
Akyliz and Winther [13] proposed a simplified version of
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the double-folding model. They evaluated the folding inte-

gral for a large number of systems, and fitted the resulting

potential by the Woods-Saxon (WS) function,
Vo

1 +exp [(r — Ro) /aol’

W(r) = “
with Ry = rg (Afl,/ 3 + AlT/ 3). The parameters Vy, ro,
and ag were then given by analytical expressions of the
mass numbers of the collision partners. This potential is
adopted throughout the present work. The values of the WS
parameters for the systems studied here are given in Table 1.

Usually, the loss of the incident flux to the fusion channel
is simulated by a short-range imaginary potential. The radial
equation is then solved numerically, starting from r = 0,
and the elastic scattering and the fusion cross sections are
determined from the / components of the S-matrix, S;, given
by the asymptotic form of the radial wave function.

An equivalent method to simulate the fusion process
is the ingoing wave boundary condition IWBC). In this
method, the potential is real but the integration of the radial
equation does not start at the origin. It starts at some radial
distance in the inner region of the barrier (usually, the min-
imum of the total potential), where the radial wave function
is assumed to have a purely ingoing behavior. The ini-
tial values of the wave function and of its derivative are
then evaluated by the WKB approximation. We adopt this
procedure in the present work.

The fusion cross section is then given by the partial wave
sum

o0
T
oF =13 Z(Zl +1) Pf, 5)
=0

with the fusion (absorption) probability,
Pl =1-I51%. ©)

Since the wave function inside the barrier is totally
absorbed, the fusion probability must be very close to the
probability that the incident current reaches the point of total
absorption. Thus, it can be approximated by the tunneling
probability through the corresponding /-dependent barrier.
That is,

F
P ~T. @)
Table 1 Strengths, radius parameters, and diffusivities in the Woods-

Saxon parametrization of the Akyiiz-Winther interaction for the sys-
tems studied in the present paper

System *He + %0 12C+ 160 160 + 208pp
Vo (MeV) —29.64 —39.47 —64.97

ro (fm) 1.156 1.163 1.179

ag (fm) 0.5535 0.5928 0.6576

We use this approximation to derive the fusion cross sec-
tions from the transmission coefficients of our approximate
calculations.

3 Approximate Transmission Coefficients
and Fusion Cross Sections

Now, we discuss different approximations for the trans-
mission coefficients mentioned in the previous section. We
consider approximations of the Coulomb barrier itself and
discuss the use of different versions of the WKB approx-
imation in the calculation of transmission coefficients. We
discuss also Wong’s approximation for the fusion cross
section, which is widely used in the study of heavy ion
fusion.

3.1 Approximations of the Potential Barriers

The transmission coefficient for some particular barriers can
be evaluated analytically. This is the case of the parabolic [1]
and the Morse [2] barriers. These results can be used in cal-
culations of fusion cross sections in heavy ion collisions.
For this purpose, one approximates the potential barriers of
Vi(r) by parabolae or by Morse functions, with properly
chosen parameters. To simplify the discussion, we con-
sider only S-waves. Other angular momenta can be handled
similarly.

3.1.1 Parabolic Barrier

Let us consider a parabolic barrier written as
S e I 2
Vi(r)="Vs 5 Mw” (r = Rp)". ®)

It corresponds to an inverted harmonic oscillator with the
maximum at r = Rpg, with the value V (r = Rg) = V3.
The barrier curvature parameter, hw, is related to the second
derivative of the total potential at » = Rp by the equation,

_52 "
ho = ‘/—V (RB).
1%

The transmission coefficient through this barrier, known
in the literature as the Hill-Wheeler transmission coefficient,
can be written as

1
HW _
O = e ©)
with
"Wy = L (Vs — E). (10)
hw

Note that the transmission coefficient of (9) and (10) is
exact.
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3.1.2 The Morse Barrier

The Morse barrier is given by the expression
Vmr) = Vg [Ze—(V—RB)/aM _ e_z(f—RB)/aM]’ (11)

where Rp and Vp are respectively the radius and the height
of the barrier. Above, ay is the Morse parameter, which is
related to the second derivative of the potential at the barrier
radius, V" (Rg), by the expression,

2VB
av = | ——7.
M7V =V (Re)

This barrier has two convenient properties. The first is
that it is asymmetric. Like the barriers of the total potential,
it decreases rapidly on the left (r < Rp) and slowly on the
right (r > Rp).

The second important property is that the transmission
coefficient through a Morse barrier is known analytically. It
is given by the expression [2]

TM(E) _ 1 —exp(—4ra) ’ (12)
I +exp[27 (B —a)]

with

o =kay = Z;E ayv  and ﬂ:%al\/l. (13)

3.1.3 Exact Barriers vs. Approximate Barriers

The values of the parameters that fit the Coulomb barriers
of the 4He + 00, 12C + 160, and !0 + 208pp systems by
parabolae and Morse functions are given in Table 2.

Figure 1 shows the Coulomb barriers (black solid lines)
and the best fits by parabolae (blue dot-dashed lines) and
by Morse functions (red dashed lines), for the three systems
considered in this paper. The plots show the radial distances
that influence the transmission coefficients at near-barrier
energies. The figure leads to two conclusions. The first is
that the fit by a Morse function is systematically better than

Table 2 Parameters of the parabolic and of the Morse barriers that
best fit the Coulomb barriers of the systems studied in the present paper

System “He + 10 2¢ 4+ 160 160 4 208pp,
Vg (MeV) 2.90 7.99 76.55

Rp (fm) 7.42 8.02 11.59

ho (fm) 2.94 2.95 451

am (fm) 2.96 3.13 432

Note that the radius and the height of the barriers are the same for the
two parametrizations. They differ only in the barrier curvature, given
by hw and by ay in the cases of the parabola and the Morse function,
respectively

@ Springer
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Fig. 1 (Color on line) Fits of the Coulomb barrier (black solid line)
by a parabola (blue dot-dashed line) and a Morse function (red dashed
line). For details, see the text

by a parabola. This is not surprising, since the Morse func-
tion is asymmetric, as the Coulomb barrier itself, whereas
the parabola is symmetric. The second conclusion is that the
fits by the two functions are reasonable for 160 4+ 208pp put
they are poor for the *He + '°O and '2C + 190 systems. They
become progressively worse as the system’s mass decreases.
The fits are particularly bad at r > Rp, where the Coulomb
potential decreases very slowly. Although the Morse func-
tion falls off more slowly on the external side of the barrier,
it decreases exponentially, which is much faster than the
1/r decay of the Coulomb potential. As it will be shown
in Section 4, the poor fits at large radial distances lead to
dramatic overestimations of transmission coefficients and
fusion cross sections at sub-barrier energies.

3.2 WKB Transmission Coefficients

The WKB approximation is a short wavelength limit of
quantum mechanics. Since it is extensively discussed in
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textbooks on quantum mechanics and scattering theory [11,
14, 15], its derivation will not be presented here. We con-
sider only the application of this approximation in calcula-
tions of transmission coeficients and fusion cross sections.

Let us consider a nucleus-nucleus collision at a sub-
barrier energy E, with angular momentum Al. Within the
WKB approximation, the transmission coefficient is given
by

TVKB(E) = exp [—2 CDWKB(E)] , (14)

where ®WKB is the integral

oWKB(E) = /rz Kk (r) dr, (15)
r

with

k() = M (16)

h

In the above equations, u is the reduced mass of the
projectile-target system, V;(r) is the total potential of (1),
and r1 and ry are the classical turning points. They are the
solutions of the equation on r,

Vi(r) = E. a7

The influence of multiple reflections under the barrier,
ignored in the above equations, was investigated by Brink
and Smilansky [16]. They concluded that these reflections
are relevant at energies just below the barrier, contributing
to improve the agreement with the exact results.

Although (14) is a very good approximation to the exact
transmission coefficient at energies well below the barrier of
the total potential, denoted by By, it becomes progressively
worse as the energy approaches B;. Furthermore, at ener-
gies above the barrier, the WKB transmission coefficient
takes the constant value TlWKB = 1, whereas its quantum
mechanical counterpart is equal to 1/2 at the barrier and
grows continually to one as the energy increases.

In 1935, Kemble [9] showed that the WKB approxi-
mation can be improved if one uses a better connection
formula. He got the expression

1
1 +exp[20WKB(E)]

T(E) = (18)
At energies well below the Coulomb barrier, the two turn-
ing points are far apart and « (r) reaches appreciable values
within the integration limits of (15). In this way, ®VKB(E)
becomes very large, so that the unity can be neglected in
the denominator of (18). This equation then reduces to (14).
Therefore, the two approximations are equivalent in this
energy region. However, Kemble’s approximation remains
valid as the energy approaches the barrier, leading to the
correct result at £ = By, namely 7; = 1/2.

3.3 Kemble Transmission Coefficient at Above-Barrier
Energies

The problem with WKB approximations (both standard and
Kemble’s version) at above-barrier energies is that there
are no classical turning points. At E = Vp, the two turn-
ing points coalesce, and above this limit, (17) has no real
solution. Then, VKB (E > V) = 0, and the transmission
coefficients of (14) and (18) take respectively the constant
values T\VKB = 1 and TX = 1/2.

However, Kemble [9] pointed out (see also the book by
Froman and Froman [17], where this problem is treated
formally) that (18) can be extended to above-barrier ener-
gies if one solves (17) in the complex r-plane and evaluates
the integral between the complex turning points. Although
Kemble [9] did not discuss this analytical continuation in
detail, he pointed out that it would lead to the exact expres-
sion for the parabolic barrier below and above the barrier.
More recently, the analytical continuation in the case of a
typical heavy ion potential was carried out numerically [10],
and the resulting transmission coefficient was shown to
be in very good agreement with its quantum mechanical
counterpart. In the next section, we carry out this ana-
Iytical continuation in the cases of the parabolic and the
morse barriers, where all calculations can be performed
analytically.

3.3.1 Transmission Through a Parabolic Barrier
for E > Vg

Since the transmission coefficient through a parabolic bar-
rier is known exactly, it is an ideal test for the analytical
continuation procedure. However, before any considera-
tion involving the complex plane, we prove that Kemble
approximation for a parabolic barrier is exact at sub-barrier
energies. For simplicity, we discuss in the section the par-
ticular case of a S-wave. The extension to other values
of the angular momentum is straightforward. One has just
to use the parameters of the /-dependent barrier, replacing
VB — B;, Rg — R; and hw — hwy.

Since the exact transmission coefficient of (9) has the
same general form of the Kemble transmission coefficient
(18), the two expressions will be identical if
VKB () = oMV (E). (19)
Using the explicit forms of ®WKB (15) and ®HW (10), the
above equation becomes,

Nl 2
TM/ dr\/VB—E—%(r—RB)Z

=2 (g—E)
“heo B ’

(20)
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To calculate this integral, we make the transformation:

r — x:w\/g(r—RB),

so that

1 /2
dr=— _[— dx, r4+ > x+ =+ Vg — E.
o\ p

Equation (20) then becomes
Xt
/ dx / (Vg — E) — x2. 20
X—

This integral can be easily evaluated and the result is

WKB _ i
hw

T
oWVKB — — (Vg —E). (22)

Thus, we conclude that Kemble approximation for a
parabolic barrier is exact at sub-barrier energies.

Now, we consider collisions at above-barrier energies. To
deal with this situation, we carry out the analytical continu-
ation of x to the complex plane. Setting x — z = x +1{ Yy,
the parabolic barrier becomes

V() = Ve — 2% (23)

The turning points are then the complex solutions of the
equation,

Vi) —E=0, 24)

for E > Vp. Clearly, these turning points must be located on
the complex r-plane, in a region where the potential is real.
Solving (24) for a general potential is not simple. However,
it can be easily done for a parabolic barrier, as that of (23).
In this case, V(z) is real only on the x and on the y axes.
Therefore, the turning points must be either real or imag-
inary. The real turning points are the solutions of (24) for
E < Vg, which we have already discussed. Now, we con-
sider the imaginary solutions. Inserting (23) into (24) and
setting z = iy, one gets the coordinates of the two imaginary
turning points,

y+ ==+ E — Vp.

Figure 2 shows a parabolic potential barrier (panel a) and
its analytical continuation (panel b). The green circles on
panel a, x_ and x4, represent the real turning points for an
energy E < V. The red circles in panel b, y_ and y,
indicate the imaginary turning points for an energy E > V3.

With the analytical continuation discussed above, the
WKB integral of (21) can be extended to the complex plane.
It must be evaluated along the imaginary axis, between the
turning points z+ = iy+. In this case, the integrand of (15)
must be generalized as

r4 +
o WVKB 2/ k(rydr — @®WVKB :f k(z)dz.  (25)
r— Z-
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Fig. 2 (Color on line) Analytical continuation of the parabolic poten-
tial barrier V (x + iy). Panels a and b show respectively the potential
on the real (y = 0) and on the imaginary (x = 0) axes. The figure also
shows the real and the imaginary turning points in the cases of £ < Vg
(panel a) and E > Vg (panel b)

Using the explicit form of the potential (23) in (16) for z =
iy, and changing the integration variable to y, one gets,

2 Y+
@WKBZ_% / dy \/(E — Vg) — y2.
y—

This integral is equivalent to the one in (21), and the result
is the same. Thus, we have shown that Kemble’s formula
for the transmission coefficient through a parabolic barrier
is valid for any collision energy. Besides, it gives the exact
quantum mechanical result.

3.3.2 Transmission Through a Morse Barrier for E > Vg

As in the previous section, we present a detailed discussion
of the S-wave transmission coefficient. To extend it to other
angular momenta, one has just to use the Morse parameter
of the /-dependent barrier, changing Vg — B;, Rg — Ry,
and apm — ay.

We start with an important remark about the Morse
approximation for the Coulomb barrier. In typical heavy ion
collisions at near-barrier energies, the following relation is
satisfied:

F(u, E) = exp (=47 a) = exp (—MWT M) < 1.

This term falls exponentially with the factor «/uwE. Thus,
its largest values are for the lightest system, at the low-
est collision energy. In the present study, it corresponds to
4He + 190, at 0.5 MeV. Under these conditions, one gets
f(u, E) =3 x 107. For the other two systems, this term
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is several orders of magnitude smaller. Therefore, it can be
safely neglected, and (12) reduces to

1

M _
() = 1+ exp [20M(E)] (26)
Above,
PME)=7 (8- ), (27)

where o and 8 are given by (13). Comparing (26) and (18),
one concludes that Kemble’s approximation for the Morse
barrier will be exact if the following condition is satisfied:

oM(E) = dWVKB(E). (28)

Using (15) and (27), the above condition becomes

@/Ma’r‘/VM(r)—E:n(ﬂ—a), (29)

where r+ represents the solutions of the equation
W (r+) — E =0.

These solutions can easily be determined and one finds
ri =Ry —ay ln[lzt«/l—e],

where we have introduced the notation
E
= V_B‘
To check the validity of (28), we evaluate the WKB integral

of (29). Using the explicit form of the Morse potential (11)
and changing to the new variable

exp[ — (r — Rg)/am] — 1
r — t= ,

Vi—e

the integral takes the form

&

WKB, . N20VB - ! V1-12
VKB (E) = am (1—¢) | dt ————.
h 1 14T —¢

This integral can be evaluated analytically and the result is
oV (E) =7 (B —a), (30)

which coincides with the expression for ®M(E) (27).

However, the above proof is not valid for £ > Vp.
The reason is that ®WVKB was evaluated by an integration
between two real turning points (see 29), which do not exist
in this energy region. Nevertheless, the validity of (29) can
be extended to £ > Vp, through an analytical continuation
of the variable r. This procedure, which is analogous to the
one adopted for a parabolic barrier, will be followed below.

First, we introduce the new projectile-target distance
variable,

r — RB

X = ,
am

where the Morse parameter, ay, and the barrier radius, Rg,
are known quantities. Then, we perform the analytical con-
tinuation of x to the complex plane. That is, x — z =
x+i y. Using the explicit expression of the potential in terms
of x and y, one gets

V(z) = VB [2 exp(—x —iy) — exp (—2x — 2iy)]
= U, y)+iWix,y),

with
Ulx,y) = Vi [2e*x cosy (1—e™ cosy) +e*2x] G1)
and
W(x,y)=2Vge *siny[e ™ cosy —1]. (32)

Since, in the equation defining the turning points, the poten-
tial must be real, we set

Wi(x,y)=0. (33)

The solutions of the above equation are

siny =0 (34)
and
e’ =cosy. (35)

Equation (34) is satisfied on the real axis and on other hori-
zontal lines intercepting the y axis at y = = nm, where n is
any integer. It can be easily checked that the potential eval-
uated at any point on these lines cannot be higher than Vp.
Thus, there are no turning points on them. Therefore, these
solutions must be discarded.

We are then left with the solutions of (35). They are
curves on the complex plane confined to the left half-plane
(x < 0). Similarly to (34), the periodicity of the trigono-
metric function (here cos y) leads to an infinite number of
solutions. They are curves that can be obtained from one
another by shifts of 2z along the y axis. Nevertheless, they
lead to the same physics. Therefore, we concentrate on the
one corresponding to the lowest values of |y|. This curve,
denoted by TI', is represented on panel a of Fig. (3). The
turning points for £ = 2 Vg are represented by solid circles.

On the curve I', the variables x and y are not indepen-
dent. They are related by (35). Thus, the potential becomes
a function of a single variable. The coordinate x along this
curve is the single-valued function of y,

xr(y) =In(cosy). (36)

Owing to the infinite values of the potential at y =
+m /2, the coordinate y is confined to the open interval
(—m/2,/2). Then, cos y is positive, so that the solution of
(36) is well defined.
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Fig. 3 (Color on line) The analytic continuation of the Morse poten-
tial on the complex plane. Panel a shows the lines where the Morse
potential is real. The green solid line is the trivial solution of (34) (the
real axis), whereas the blue dashed line, labeled by T', is the solution
of (35). The solid circles represent the turning points for an arbitrary
energy above the barrier. Panel b shows the potential for points on I",
where it is real, divided by Vg

To obtain the real potential for points on I', U (xr, y),
one inserts (36) into (31). One gets,

U r.y) = Ur(y) = Vi [1 +tan y]. (37)

Now, we evaluate the WKB integral on the complex
plane,

OVKB(EY = ay @ f ' dz /Vm (zr) — E. (38)

We remark that the factor a results from the change of vari-
able r — z = (r — Rp)/am. For practical purposes, it is
convenient to evaluate the integral over the contour I'. On
this contour, Vy(x, y) reduces to the real potential of (37),
Ur (y), and the differential dz can be written as

d
dz:[ xr(y) _H} dy.
dy

where dxr(y)/dy is areal function of y. For energies above
the barrier, Ur(y) — E is negative so that,

dz JUr() —E = (dxr(” + i) i VE=Ur(y) dy

dy
= Gr(y) dy +i G1(y) dy, (39)

where Gr(y) and Gi(y) are the real functions,

Gr() = —/E—=Ur (), (40)
Gy = I E oo, @1)

dy

@ Springer

The values of y corresponding to the integration limits of
(38) are given by the equation,

Ur(y)=E, or 1 +tan2y =g,

which has the solutions,

Y+ = +tan~ ' V1 —¢.

Expressing the integral of (38) in terms of the variable y,
one gets

2 Y+
OVKB() = ayy 1 / Gr(y) dy
y7

Y+
+1i / Gi(y) dy. 42)

Inspecting Fig. 3, one concludes that Gr(y) is an even func-
tion of y, whereas G1(y) is an odd function of y. Since the
integration limits are symmetrical, the integration of Gi(y)
vanishes. Then, using the explicit form of Gr(y) (40) with
the potential of Eq. (37), one gets

VKB (E) = —am —VZ’;LVB /H dy /(e —1) — tan? y .
- 43)

To evaluate this integral, we change to the new variable,
y — t = tany, so the above integral becomes

V2V /vs—l 5 ViEe—1)—12
M e . -

®WKB gy — _
(E) a T

(44)

The above integral can be found in standard integral tables,
and the result is

oVKB(E) = 7 MV <HVB "hZ“VB (1 _ ﬁ)
=7 (/3—0[).

Thus, we have proved that Kemble’s transmission coef-
ficient through a Morse barrier reproduces accurately the
exact quantum mechanical result, both below and above the
Coulomb barrier.

3.4 Wong’s Approximation for the Fusion Cross Section

In 1973, Wong [5] proposed a simple expression for the
fusion cross section, in which the Coulomb barrier is
approximated by a parabola, and the angular momentum is
treated as a classical variable. Wong’s formula is based on

the following assumptions:
1. The fusion probability at the /™ partial wave is approx-
imated by the Hill-Wheeler transmission factor

1
I +exp[2n (B, — E) /hay]’

PF(E) ~



Braz J Phys (2017) 47:321-332

329

with B; and hw; standing for the height and the curva-
ture parameters of the parabolic approximation for the
barrier of V;(r).

2. The radii and the curvature parameters of the I-
dependent barriers where assumed to be independent
of [. That is R; = Rj—o = Rp and hw; = hwj—g =
hw. With this assumptions, the barrier height takes the
simple form as follows:

R+ 1)

B =V +
i 2,uR123

(45)

3. The angular momentum is treated as the continuous
variable /| — A =1[ 4 1/2. Then, one approximates the
following: [(l + 1) ~ A% and 3,2l + 1) — 2 [ dA A.

With these simplifying assumptions, (5) becomes

1 7h? [
op(E) = — — diAT(M E),
E p
where
1
T E)=

2 h2\2 .
1 +exp [h—w[ (VB - E+ 2uR§>]
The above integral can be evaluated analytically, and the
result is Wong’s cross section, which can be written as

oV (E) = B2 "2 Ry (46)
F B 2E °
Above, x is the modified energy variable
E—-W
x=—"2 47)
hw

and Fp(x) is the dimensionless and system-independent
function

Fo(x) =1In[1+exp (2 x)]. (48)

This function is known in the literature as the universal
fusion function. It is frequently used as a benchmark in
comparative studies of fusion reactions [7, 18, 19].

3.4.1 Energy Dependence of the Barrier Parameters

Rowley and Hagino [20] pointed out that the barrier radius
of V;(r) may decrease appreciably with /, mainly for light
heavy ion systems. In this case, the radius for the grazing
angular momentum may be a few fermi smaller that that
for [ = 0. Then, the approximation R; >~ Rp is poor, and
this makes Wong’s formula inaccurate. The situation gets
worse as the energy increases, so that /g takes large values.
To cope with this situation, Rowley and Hagino proposed an
improved version of the Wong formula, where the S-wave
barrier parameters are replaced by the parameters associated
with the grazing angular momentum.

The grazing angular momentum at the energy E, which
we denote by Ag, and the corresponding barrier radius, RE,
are given by the coupled equations as follows:

2 )»2
Vg (r) = VN(RE) + Ve(Rp) + —= = E, (49)
2uRg
and
av;
dr Re

Solving these equations, one determines /E and RE, and the
barrier curvature parameter is given by

[—R2 V! (Rp)
g = —7 e VB
m

The above equations supply the barrier parameters for the
grazing angular momentum, which depends on the collision
energy. Accordingly, the improved Wong formula becomes

hw

oV (E) = R} 2—EE Fo(xg), (51)
where,
Fo(xg) = In[1 + exp (27 xg) ] (52)
and

E— Vg 53)
XE =

E Fw)E

Above, we have introduced the “effective Coulomb barrier”
for the energy E,
B2 A2

_ E _ yo(R Ve(RE). 54
2R2 N(RE) + Vc(RE) (54)

Ve = By

The above expression is valid for By, > E > Vg, where
Acrit 18 the critical angular momentum, corresponding to the
largest angular momentum where the total potential has a
pocket. For energies below Vg, one sets Vg = Vg, Rg =
Rg, and wg = w. For energies above B, ., VE is given by
(54) but with B, replaced by B;_. , and one sets Rg = R,
and WE = W),

crit crit

crit *

4 Applications

Now, we discuss the use of the approximations of the pre-
vious sections to evaluate S-wave transmission coefficients
and fusion cross sections. We perform calculations for a
very light system and two slightly heavier ones, namely *He
+160, 12C + 100, and '°0 + 208pp,

4.1 S-wave Transmission Coefficients

Figure 4 shows S-wave transmission coefficients obtained
with the approximations discussed in the previous sections,

@ Springer
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Fig. 4 (Color on line) S-wave transmission coefficients for the “He +
160 12C 4+ 160, and 190 + 208Pp at near-barrier energies. The figure
shows the results for a parabolic barrier (blue dot-dashed lines) and
for a Morse barrier (red dashed lines) and the predictions of Kemble’s
WKB approximation for the actual barrier (green solid lines), in com-
parison with the quantum mechanical results (stars). The results are
shown in logarithmic (a, ¢, e) and linear (b, d, f) scales

in comparison with the exact quantum mechanical trans-
mission coefficients (stars). The notation for the approx-
imations are indicated in panel b. The results are shown
in logarithmic scales (left panels), which is appropriate to
compare cross sections at sub-barrier energies, and in linear
scales (right panels), which gives a better picture at energies
above the barrier. In the calculations of Kemble’s transmis-
sion coefficients above the barrier, we used the elliptical
approximation for the curves of real potential on the com-
plex r-plane. As shown in Ref. [10], this approximation
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leads to accurate results, while it simplifies considerably the
calculations.

In the case of the heaviest system, 160y 4 208ph Kemble
WKB (with the analytical continuation of r [10]) repro-
duces the quantum mechanical transmission coefficient with
great accuracy, above and below the Coulomb barrier. The
other two curves, corresponding to approximations of the
Coulomb barrier by a parabola (blue dot-dashed lines) and
by a Morse function (red dashed lines) are very close to each
other. They are also close to the exact results, except for the
lowest energies in the plot, where the two approximations
overestimate slightly the quantum mechanical results.

The situation is different for the *He + 10 and '2C + 10
systems. Although Kemble’s WKB remains very accurate,
above and below the barrier, the parabolic and the Morse
approximations are very poor at sub-barrier energies. These
approximations greatly overestimate the transmission coef-
ficients, by more than one order of magnitude at the lowest
energies in the plots. In the case of the lightest system,
“He + 1°0, the parabolic and the Morse approximations are
also inaccurate at energies just above the barrier. It is clear
that the results of the Morse approximation are systemati-
cally better than those of the parabola. Nevertheless, they
are unsatisfactory, mainly at sub-barrier energies.

Figure 5 shows the fusion cross sections obtained with
different approximations, in comparison with the exact
cross sections (stars). The green solid lines are the results of
Kemble WKB, the blue dot-dashed lines correspond to the
Wong formula (46—48) and the red dashed lines correspond
to the Morse approximation. That is, they are obtained eval-
uating the partial wave sum of (5), with PlF approximated
by the transmission coefficient through the Morse barrier
fitting V;(r).

The main trends of the fusion cross sections of the three
systems are similar to the ones observed for the transmis-
sion coefficients. First, the Kemble WKB reproduces the
exact results of the three systems with great accuracy, above
and below the Coulomb barrier. Second, the Morse and the
Wong cross sections for the 100 + 298Pb at sub-barrier ener-
gies reproduce the exact cross section fairly well. On the
other hand, the cross sections of the *He + !0 and !2C
+ 190 systems obtained with these approximations greatly
overestimate the quantum mechanical cross section at sub-
barrier energies. This is an immediate consequence of the
abnormally large transmission coefficients of the parabolic
and Morse barriers in this energy range.

On the other hand, one can observe an interesting trend
of Wong’s cross section at energies above the barrier. It
is systematically larger than the quantum mechanical one.
This discrepancy increases as the system’s mass decreases.
Rowley and Hagino [20] explained that this is a conse-
quence of using a constant barrier radius, independent of
the angular momentum. They pointed out that this problem
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Fig. 5 (Color on line) Fusion cross sections for the systems of the
previous figures. The meaning of the lines are indicated within panel b

could be fixed by using the barrier parameters of the graz-
ing angular momentum in Wong’s formula, as described in
Section 3.4.1. This is illustrated in Fig. 6, where we show
the cross section obtained with the original Wong’s for-
mula (Wong 1) and the ones obtained with Wong’s formula
with energy-dependent parameters (Wong 2), as given by
(51-53)). For comparison, we show also the corresponding
quantum mechanical results (stars). For this illustration, we
consider only the “He + !0 system, where Wong’s approx-
imation above the barrier is worst. Since the two versions
of the Wong formula are identical below the Coulomb bar-
rier, it is not necessary to display the results in a logarithmic
scale. Inspecting the figure, one concludes that the Wong
formula with energy-dependent parameters of Ref. [20]
works very well above the Coulomb barrier, even in the case
of a very light system.
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Fig. 6 (Color on line) Fusion cross sections given by the original
Wong formula (Wong 1) and by the improved Wong formula (Wong 2)
for the “He + 1°0 system, in comparison with the quantum mechanical
results (stars)

5 Conclusions

We have studied the old problem of the one-dimensional
tunneling in quantum scattering and fusion. First, we con-
sidered approximations of the barrier shape, by parabo-
lae (Hill-Wheeler approximation) and by Morse functions.
These approximations have the advantage of leading to
analytical expressions for the tunneling probabilities. We
investigated also the analytical continuation of the radial
variable in Kemble’s version of the WKB approximation
for the parabolic and Morse barriers. We have shown that
Kemble’s WKB on the complex r-plane leads to exact
transmission coefficients through these barriers and this
conclusion is valid at energies below and above the barrier
height.

Investigating the S-wave transmission coefficients for the
‘He + 160, 2¢ 4 16O, and 100 + 208pp systems, we found
that the Morse barrier, being a more realistic non-symmetric
function, leads systematically to better transmission coef-
ficients. However, the improvement is not significative, as
both approximations are poor at sub-barrier energies, except
in the case of 1°0 + 208Pb, or heavier systems. On the other
hand, the Kemble WKB approximation on the complex r-
plane using the exact potential, developed in Ref. [10],
gives a very accurate description of the quantum mechanical
results, above and below the Coulomb barrier.

We performed calculations of fusion cross sections for
the abovementioned systems using the Wong, the Morse,
and Kemble WKB approximations. The conclusions were
similar to the ones reached in the study of transmission
coefficients. However, we found that the Wong formula
overestimates the fusion cross section at energies above the
barrier, mainly for very light systems. This shortcoming
was then eliminated adopting the energy-dependent Wong
formula of Rowley and Hagino [20].
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