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1 Introduction

Distributions unintegrated over the parton transverse momentum, k;, are known to be
an effective way to describe hard processes in which the transverse momentum of final
particle (prompt photon [1-3], W, Z boson or Drell-Yan lepton pair [4], heavy quark [5],
etc.) is measured. For the interaction with a heavy nucleus the momentum distribution of
secondaries is affected both by the ‘final state’ rescattering of the secondary particle inside
the nuclear medium and by the nuclear modification of the incoming Parton Distribution
Functions (PDFs).

In [6] a prescription was proposed which allows the unintegrated PDF (uPDF) to be
obtained from the conventional integrated PDF with NLO accuracy. This opens up the
possibility to study the nuclear modifications of uPDFs based on the existing parton distri-
butions in nucleus. Here the unintegrated distributions are calculated using the EPS09 [7]
nuclear parton integrated distribution functions for the case of A = 208, lead.

Different approaches have been used to determine the unintegrated nuclear distribu-
tions [8, 9]. In the earlier work [8], the nuclear effects in the gluon distribution were
studied in the small x domain based on the analytical asymptotic solution of the Balitsky-
Kovchegov equation [10, 11]. The BK equation is a non-linear evolution equation in the
variable x and includes effects from saturation [12].

In ref. [9], a Monte Carlo was developed to determine the nuclear unintegrated gluon
distribution, in which, in impact parameter space, nucleons of finite radius are placed at
random in positions inside the nucleus. When the nucleus is probed at an impact parameter
that is contained by only one nucleon, the unintegrated gluon distribution from free proton
is used, derived from the numerical solution of the running coupling BK equation [13]
starting from some initial saturation scale ng. If the nucleus is probed at an impact
parameter domain where n nucleons overlap, then the initial saturation scale is multiplied
n, i.e., nQ?O.

In contrast with the previous studies, the present work covers the whole region of x
up to x = 1 and, besides the screening corrections, accounts for the Fermi motion, EMC
effect and the antishadowing at not too low x. Also, all species of unintegrated partons are



obtained, including unintegrated quark distributions. This work is based in Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi evolution [14-16] in which In Q? terms are properly taken
into account at each order, and the unintegrated distributions are functions of three vari-
ables, z, k;, and Q?, instead of just the first two. DGLAP provides a linear evolution and
saturation effects are absent, except in the parametrization of the distributions at the start-
ing scale. In addition, our approach includes the suppression of unintegrated distributions
at small k; caused by the Sudakov factor.

2 Nuclear modification

Recall that a parton distribution in a nucleus (PDF#) is not equal to the sum of the PDFs
in the component nucleons (A-PDF™).! There are different physical effects depending on
the value of . We summarize here in terms of ratio

PDF4

RiA= 7
A-PDFN

(2.1)
as follows:

e At very small x the parton density is smaller (than the simple sum) due to absorptive
(shadowing) effects.

o At larger x, 0.03 < x < 0.1, the value of PDF4 exceeds the sum, A-PDFY. This
antishadowing is just due to momentum conservation. After the fusion of two parton
cascades (originating from two different nucleons) into the one branch of the parton
cascade we get a lower number of low z partons but the momentum fraction, x,
carried by each parton becomes larger just near the fusion position.

e Next, for z 2 0.3 there is an EMC effect ([17]; for a review of the EMC effect see for
instance [18]; for recent measurement of the EMC effect see, for example [19]) and
the ratio R4 becomes less than 1.

e Finally, at very large x > 0.8, we have an enhancement R > 1 due to Fermi motion.

The unintegrated parton distributions are obtained from [6]:
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where k? = k?/(1 — z) and b (z,k?) is the integrated parton distribution, for example,
b(z, u?) = g(z, u?). The cutoff A in z integration is specified below, see (2.8). The Sudakov
factor T, (k?, u?) resums the virtual DGLAP contributions during the evolution from k? to
©2. Tt is given by:
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1Strictly speaking as a ‘reference quantity’ in denominator we have to use not A-PDFY but Z-PDF?+N-
PDF™. However this does not matter since below we consider the flavour singlet parton distributions only.



The tilde splitting functions are given by the usual o, expansion P = P©) 4 (ag/27) P14
. and they are defined from the unregulated DGLAP splitting kernels. For non-diagonal
elements, one has P(z,A) = P(z), while for diagonal elements:

P, A) = P)(z) = O(z — (1 = 8)) F{Ppaa(z) (2.4)

with F\* = Cp, F{” =2C,, and
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The cutoff in z, A, accounts for the coherence of gluon radiation amplitudes which
leads to the angular ordering of emitted gluons. It is function of transverse momentum
and the scale p. In (2.2) it reads

ki
A=_"t 2.8
T (2.8)
while in (2.3), being written in terms of virtuality,
2(1 — 2
A - 2n (2.9)

Tt veRi-0 A_2H2+u2+\/4ﬁ2u2+u4'
We use NLO kinematics throughout.

At first sight, the unintegrated parton distributions, f(x, k¢, u) should have the same
behaviour as the parent integrated parton b(z/z, k?) in (2.2). However, the integral (2.2)
samples the parton density at a larger + — x/z and at a somewhat different scale k? =
kZ/(1 — z). Therefore the uPDFs become shifted to the left, that is to a smaller values of
both z (x < z/z) and k; (k? < k?). This leads to the distortion of the nuclear modification
effects. Depending on the particular kinematics in some regions, say z ~ 0.01, we may get
R4 < 1 (shadowing) at low k; and antishadowing, R4 > 1 at larger ;.

3 Results

The result of calculations are presented in figures 1 and 2 in the form of the ratios
uPDF4/A-PDFY for the gluon and the singlet quark unintegrated distributions obtained
based on the integrated EPS09 nuclear PDFs [7]. For comparison we plot also the analo-
gous ratio for the integrated EPS09 PDF taken at the same z and the scale kZ. For the free
proton baseline, the same PDFs used in the fit of EPS09 were employed here, i.e., NLO
CTEQ6.1M [21] and LO CTEQ6L1 [20].

We consider both the LO and the NLO prescriptions to calculate the uPDF. In both
cases we account for the kinematical factor pu? > k? = k2 /(1 — z) which limits the available
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Figure 1. Gluon ratios obtained using EPS09 nuclear PDFs with 4 = 10 GeV. The continuous
curves are the unintegrated ratios uPDF4/A - uPDFY. The integrated ratios are given simply by
EPS09{LO,NLO}(x, k¢) / CTEQ{6L1,6.1M}(z, k¢ ).

value of k; < py/1 — z in the unintegrated distributions with the fixed hard scale pu. For
a large k;, relatively close to the value of u, these kinematics lead to a vanishing of the
nucleon uPDF already at x ~ 0.3 — 0.5. Indeed, due to angular ordering in gluon emission
we have an upper limit z < 1 — A = u/(k; + p) in the diagonal tilde splitting functions
Poa(z,A) and in the integration in z there is a kinematical upper limit z < 1 — k?/u?
enforced by the © function in (2.2). On the other hand, in (2.2) z > z; that is, even
starting with a §(1 — z) integrated distribution, for k; = 0.8y we get a zero uPDF for
x > 0.36.

Actually the nucleon PDFs decrease sharply as x — 1. For a heavy nucleus this
distribution is washed out by Fermi motion, leading to a large ratio

.  PDFA

A -PDF
at x close to 1. Since the unintegrated distribution is shifted by the kinematical inequality
z < 1— A and starts to decrease at a lower z, the increase of the ratio R4 takes place

(3.1)
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Figure 2. Quark singlet ratios obtained using EPS09 nuclear PDFs with u = 10GeV. The
continuous curves are the unintegrated ratios RA. The integrated ratios are given simply by
EPS09{LO,NLO}(x, k¢) / CTEQ{6L1,6.1M}(z, k¢ ).

earlier. In figures 1 and 2 it looks like a singularity of R4, with an x-position which moves
to smaller x when k; becomes closer to .

At very small z, absorption affects the uPDF# less than the integrated PDF4. This is
due to the fact that the integrated distribution, xg(z, k?) (or xq(x, k?)) includes all partons
with transverse momenta k; < k;, while in uPDF we deal with partons of momentum k;
only. At lower k, the absorptive cross section, 0% oc 1/ k2, is larger, leading to stronger
shadowing of the integrated distributions.? Correspondingly in the unintegrated case we
observe a weaker antishadowing (also shifted to a smaller z ~ 0.01-0.02).

The nuclear modification effects observed for the uPDF4, obtained under the LO and
the NLO prescriptions, are qualitatively the same. However in the NLO case, which samples
some contributions beyond strong k; ordering, the difference between the shadowing of the
uPDF and the integrated PDF is smaller.

In figures 3 and 4 we present the ratios R4 calculated at a larger scale u = 40 GeV. In
the low x region the nuclear modification is controlled by the value of k; and practically is

ZNote that at a larger k; we have a weaker shadowing in figures 1 and 2.
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Gluon ratios obtained using EPS09 nuclear PDFs with p = 40GeV. The con-

Figure 3.
The integrated ratios are given simply by

tinuous curves are the unintegrated ratios R4.
EPS09{LO,NLO}(x, k:) / CTEQ{6L1,6.1M}(z, k¢ ).

independent of u; see, for example, the comparison of results in figures 1 and 3 for fixed
ks = 2 or 8 GeV (and again the comparison of figures 2 and 4). In (2.2) the value of u affects
only the Sudakov factor T'(k?, i?) which is almost exactly canceled in the ratio R4. On the
other hand, for large = it becomes crucial that the scale y determines the limits of the z
integration and therefore the shift between the R4 curves for integrated and unintegrated
distribution depends on the ratio k;/u. Indeed, we observe practically the same shift in z
for the cases of {u =40GeV, ky =32GeV} and {u = 10GeV, k; = 8 GeV}.
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Figure 4. Quark singlet ratios obtained using EPS09 nuclear PDFs with p = 40GeV. The
continuous curves are the unintegrated ratios RA. The integrated ratios are given simply by
EPS09{LO,NLO}(x, k:) / CTEQ{6L1,6.1M}(z, k¢ ).

4 Conclusion

The unintegrated quark and gluon z-distributions for a lead nucleus were calculated for
different values of transverse momenta k; based on the integrated PDF's for the nucleus [7]
using both the LO and the NLO prescriptions [3, 4]. We present the ratios of the parton
distributions for a lead nucleus to that for the sum of the free constituent nucleons. We
discuss the role of the kinematical effects which (a) shift the unintegrated distribution to
smaller = values, (b) wash out the distribution, and (c) lead to a weaker absorption in the



uPDF# case. We show that the absorptive effects depend mainly on the value of k;, while
the shift of the R4 curve in z is controlled by the k;/u ratio.

We have calculated nuclear PDF's unintegrated over the transverse momentum using
one recent set of integrated nuclear PDFs, namely the EPS09 set. The main effects that
we found (listed (a)-(c) above) are of a purely kinematical origin, and so will hold for
unintegrated nuclear PDFs obtained from any set of integrated nuclear PDFs. That is,
the effects will be weaker or stronger depending on whether the nuclear modifications
of the particular integrated set are weaker or stronger. For example, in the very recent
DSSZ set [22] of integrated nuclear PDFs in which the EMC and antishadowing effects are
weaker or absent, these features will be reflected in the unintegrated PDFs obtained with
our prescription.
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