Boletim Técnico da Escola Politécnica da USP
Departamento de Engenharia de Sistemas

Eletronicos

ISSN 1517-3542

BT/PSI1/0011

InterFace: A Real Time Facial
Animation System

José Daniel Ramos Wey
Marcelo Knorich Zuffo

Sao Paulo — 2000

O presente trabalho & um resumo da dissertagdo de mestrado apresentada por José Daniel
Ramos Wey sob orientagdo do Prof. Dr. Marcelo Knorich Zuffo.: “InterFace: A Real Time
Facial Animation System”, defendida em 16/12/99, na Escola Politécnica.

A integra da dissertacdo encontra-se a disposi¢cdo com o autor e na Biblioteca de Engenharia
de Eletricidade da Escola Politécnica/USP.

FICHA CATALOGRAFICA

Wey, José Daniel Ramos

InterFace : a real time facial animation system / J.D.R. Wey, M.K.
Zuffo. — Sao Paulo : EPUSP, 2000.

7 p. -- (Boletim Técnico da Escola Politécnica da USP, Departa-
mento de Engenharia de Sistemas Eletrénicos, BT/PSI1/0011)

1. Computagéo grafica 2. Operagao em tempo real (Computado-
res) 3. Animagao por computador |. Zuffo, Marcelo Knorich Il. Universi-
dade de S&o Paulo. Escola Politécnica. Departamento de Engenharia
de Sistemas Eletronicos ll. Titulo IV. Série

ISSN 1517-3542 CDD 006.6
004.33
778.5

InterFace: a Real Time Facial Animation System

JOSE DANIEL RAMOS WEY

LSI - Laboratorio de Sistemas Integraveis
Escola Politecnica de Universidade de Sao Paulo
Av. Prof. Luciano Gualberto, 158 trav 3 Cidade Universitiria, SP, Brazil

Wi

si.usp.br

Abstract. This paper describes InterFace, a real-time facial animation system. The system uses a
simple set of pre-modeled facial expressions to create a wide range of emotions, mouth positions and
complete head movements. The animation is done through layered groups of actions that combined gives
the virtual actor complete freedom to perform different actions independently and simultaneously, without
the intervention of the animator. Due to its software structure, InterFace can be used as a "render plug-in"
for an artificial intelligence program or a script-based animation system. The system was successfully
implemented using the languages Java and VRML, and can be executed through the Internet in PCs or
workstations with a Java-enable Web browser. Applications that can benefit from this system are interface
agents, virtual reality systems and animation software, among others.

Keywords: Computer Graphics, Real Time, Facial Animation, Facial Expressions, Morphing, Virtual

Actors,

1. Introduction

Computer generated human characters is one of the most
important areas in Computer Graphics lately. Agents or
avatars are present in multimedia titles, graphic user
interfaces, tele-presence and shared virtual worlds
systems. While these agents can represent a
breakthrough in human-computer interaction, it is not
easy to create and animate believable human characters.
When we are dealing with computer-generated agents,
we turn on our human responses. We expect them to act
like humans, moving the lips when they are talking,
expressing emotions, having a personality. We expect
human behavior from a computer program.

A powerful method for adding a human personality
in a computer generated character is facial animation.
Psychological researchs show that humans express most
of the communication and the emotions by the face [K.
Mehrabian, J. Ferris (1967)]. However, creating
believable human faces in a computer is not an easy task.
We have a remarkable ability to recognize one face
between thousands of similar faces, and we can detect
very subtle changes in facial expressions [F. Parke, K.
Waters (1996)]. It's correct to say that all humans are
specialists in human faces.

The construction and animation of human facial
models in computers is not a new area. Since Parke’s
first studies [F. Parke (1972)], several techniques have
been used to add realism to 3D computer human faces.
However, animating a face convincingly in real-time is
still a problem today.

The most used techniques to animate human faces
are morphing between fixed and wvariable polygon
topology [F. Parke (1972)][F. Parke (1974)][N. M.
Thalmann et al. (1989)] and muscles simulations [K.
Waters (1987)][C. Wang et al. (1994)]. While muscle
simulations can give good results, it is computationally
expensive and difficult to implement. Morphing between
faces are easy to implement and computationally cheap,
but usually requires the animator to model all the facial
expressions and mouth positions before hand.

We propose a facial animation system that allows
easy creation and animation of facial expressions. It is
simple to implement and not toc expensive
computationally, being adequate for complete human
simulations (with body movements, behavior, and so
on). Facial expressions are created interactively, based
on a simple set of pre-modeled expressions that when
combined can lead to a wide range of facial emotions
and mouth positions. The animation system uses a
layered approach, making it easy to combine different
actions, for instance to say a phrase while the character
is angry. Actions in different layers are composed using
techniques similar to image composition.

2. System Overview

To develop a facial animation system, we have to
consider at least two aspects: modeling and animation.

The model is the representation of the head. It can
be done in different ways: modeling from photographs,
3D scanning or modeling using special software. Models
can use different representations, like polygon mesh and

B-splines. The animation can also be done in several
different ways, like morphing geometry between
different pre-modeled faces, simulating the muscles of
the face, or using sensors or trackers.

Because of the real-time nature of the InterFace
system, we use polygon-based models and geometric
morphing between faces for animation.

The InterFace system has two modules; the
expression modeler and the animation module.

We define an expression as any change in the face
geometry. Simpler expressions can be combined visually
and interactively to create more complex expressions.

The animation is done by composing groups of
actions. An action is a script of animation the virtual
actor can perform, like crying, talking, blinking or
moving the eyes. Actions of the same kind are joined
together in groups. Each group of actions has a
transparence value to be used when the actions are
composed, in a way similar to image processing
algorithms.

The InterFace system is based on a previous work
done in the Improv System [K. Perlin, A. Goldberg
(1996)] and the Aria project [R. Ruschionni et al
(1997)]. 1t is implemented using VRML [VRML (1997)]
for the description of the scene and basic expressions,
and Java [Java (1995)] for the animation and modeling
modules. These languages were chosen because they are
system independent and have a good performance. The
InterFace system can be accessed on-line, in the URL
http://www.lsi.usp.br/~wey/interface/. The system
requires a Java compatible browser with a VRML 2.0
plug-in. The platform used for development was a
Pentium PC with Windows 95 and Netscape
Communicator.

3. Modeling facial expressions

The process of animating a face usually requires
modeling all facial expressions and mouth positions by
hand. When the scene is long or complex, this approach
can easily become impractical - the number of
expressions to be modeled is too large.

To solve this problem, Frederick Parke [F. Parke
(1974)] used parametric models of the face. By
controlling a small set of parameters (like jaw rotation,
eyelid opening and mouth positions) it is possible to
create different facial expressions easily. Each parameter
controls a region of the face, allowing transformations
like rotation, scaling, vertices position offsets and
interpolation.

The InterFace system uses the same approach, but
in a different way. Complex expressions are modeled
combining a small set of pre-modeled expressions, called

JoseD. R. WEY

the Basic Library of Expressions (BLE) - it is very
similar to what Frederick Parke called "parameters".
This specific set of BLE was based on the research done
by Ken Perlin [K. Perlin (1997)]. We adapted the BLE
defined by Perlin to 3D, since Perlin's work was done in
a 2D character. Of course, the system is not limited to
the BLE. We can use other expressions if necessary. The
BLE is just a good set of expressions for creating
emotions and mouth positions.

The BLE is composed by the following expressions:
eyes move up, eyes move left, rotation of the left
eyebrow, rotation of the right eyebrow, blink left, blink
right, lower eyelid move up left, lower eyelid move up
right, sneer left, sneer right, smile left, smile right, mouth
position like "ahh", mouth position like "ohh", head
rotation in Z, Y and X axis. A screenshot of the
InterFace expression modeler is shown in figure 1.

Each expression in the BLE is stored by the system
as differences from the original face of the character
(called the canonical expression). These differences can
be vertices offset or rotation, translation and scaling of
objects. For instance, given the canonical face and the
face with the mouth like "ahh", the system will calculate
which vertices moved (in this case, only the vertices
from the mouth) and store these differences as an array
of vertices offsets and vertices indexes. The vertices that

do not move are not stored.

Inbedace Diemo

b i LY whi
Tuonda_» AT ses Surate_ i
Faca e N ey Faza o

Swnmontn_o 2T e Sobxancela,

Hewso_e .) Goes
(b per A1 oo Bibha, v
Pakwd_e | | S Fadoed_d

.y & T wjan v

Wtz A d THes

LosdDpresmors | oo o ‘.-miwg uwli

Figure 1: The InterFace expression modeling module.
Each slider correspond to an expression from the basic
library

The system modeler module presents 17 sliders,
each one representing the weight of each expression of
the basic library. While Parke's implementation used a
value from O to 1 in each parameter, our system uses a

JosED. R. WEY

different approach: each expression of the BLE has a
weight on the model. Each weight can range from -« to
+oo, although the useful values almost never exceed -5 to
+5. Negative weights create the oposite effect of positive
weights: if 1 use a value of -1 in the expression
EYES_RIGHT, the actor will look to the left.

The final expression is composed by simply adding
the differences stored for each expression in the basic
library, multiplied by the respective weights. The order
that the weighted expressions are added makes no
difference in the final expression. Figure 2 shows an
example of the result of adding three expressions.

Although the BLE is relatively small, we were able
to model several different and interesting expressions.
Some of them are shown in the figure 3.

We also modeled a small set of mouth positions that
can be used efficiently for synchronizing the lip
movements and the voice, as described in [P. Blair
(1989)] and [B. Robertson (1997)]. It is a set of eight
mouth positions that mimics most of the phonemes of
the English language, creating the illusion that the
character is actually speaking. This set has been used for
traditional cartoon animation for many years.

Figure 2: the result of adding three expressions

Figure3: Some expressions modeled using the BLE

All expressions created in this module are stored as
arrays of weights of BLE. The last expression shown in
the image above is described by the following array of
BLE weights: [0.2 -03 38 4.1 -03 04 -04 -0.7
0.10.6 0.6 02 -04 06 -0.2 0.1 0.1].

Jose D. R. WEY

4. Animating the face

Once we have some expressions modeled in the module
described above, it is time to animate our character. As
stated before, the InterFace system is composed of two
modules: the expression modeler and the animation

engine.

The animation engine is based on the concept of
layers of actions, developed by Ken Perlin in his recent
work on virtual actors [K. Perlin (1994)][K. Perlin
(1995)][K. Perlin (1996)]. We adapted the concept of
layers of actions to solve the specific problem of facial
animation.

[Geth | Fmmrner ¢ ammu e

Figure 4: The Interface Animation module

4.1 Actions

The basic element of the animation system is the Action.
An action is a script of animation the virtual actor can
perform. Examples of actions are talk, look at
something, breath, sneeze, say a phrase, smile and so on.

Actions are based on the expressions created in the
expression modeler. What an action do is modify the
intensity of expressions with the time, using
mathematical functions (called curves in our system to
be more intuitive for animators).

The curves available in the InterFace system are:
constant, linear interpolation, B-splines, sine, cosine,
non-predictable impulse and Perlin Noise [K. Perlin
(1985)]. Since Java is an object-oriented language, it is
very easy to add more mathematical functions as needed
— Just create another class inherited from the curve
abstract class that implements the function.

The expression curve is involved by an envelope as
shown below:

JostD. R. WEY

g

Curve Value

o i Time
Tstart | Tout |

Figure 5: How the envelope affects the curve

This envelope defines a time to start (where the
weight of the expression is zero, no matter the value of
the function), a time to “fade in” (where the value of the
function is multiplied by a linear interpolation from 0 to
1), a “duration” time (where the value of the function is
not changed) and a “fade out” time (where the value of
the function is multiplied by a linear interpolation from 1
to 0). The duration time can be infinite. The curve values
are not limited to [0,1], although most of time this range
is used.

Several expressions can be used in the same action.
When two or more expressions are combined in the same
action, the system just add the weights, therefore the
order that the expressions are specified is not important.

The action itself is involved in an envelope. For
each action we specify a time to fade in, a duration time
(which can be infinite) and a time to fade out. These
times are especially important in the transitions from one
action to another.

The system uses a simple language to create
actions. The syntax is:

ActionName Tin Tdur Tout

Exprl Tst Tin Tdur Tout curve
params
Expr2 Tst Tin Tdur Tout curve
params

Tin is the time to fade in, 7dur is the duration of the
action or the curve of the expression and Tout is the time
to fade out. All times are given in seconds. The
parameters of the curve are dependent to the type of
curve used.

To illustrate how actions are done, we show below
the code that defines the action sneeze:

Action Sneeze 0.1 9.6 0.3

rotx 0 0 10 0 spline 0 0 3.5 1 4 -2
5-270

blink 3 0 2.5 2 constant 1

Ahhh 0 3 0.5 0.5 constant 1
whistle 3.5 0.5 1 2 constant 1
roty 7 0.2 1 0.2 noise 0.3 1
rotz 7 0.2 1 0.2 noise 0.3 0.6

The action has a total time of 10 seconds (0.1 to
fade in, 9.6 sustain and 0.3 to fade out). We defined in
the expression modeler that the expression rosr rotates
the head in about 30 degrees in the X axis. We used a B-
spline curve to animate this expression: in time 0
seconds, the value of the weight for this expression is 0.
From 0 to 3.5 seconds, the weight is smoothly
interpolated from O to 1 (which is the movement for the
“ahhh” phase in a sneeze). From 3.5 to 4 seconds, the
weight is smoothly interpolated from 1 to
—2, which is the movement for the “choo” in the sneeze.
And so on. The blink expression closes the eyes during
the sneeze. The Ahhh and whistle perform the mouth
movements for “ahhh-choo” and the rofy and rotz
expressions gives an impression of itching the nose after
the sneeze.

One of the key elements to add realism to the
characters is the use of Perlin noise [K. Perlin (1985)]. In
order to make actions like blinking and breathing
realistic, the timing must be non-predictable, but it must
be controlled as well, so the actor will not take too long
to blink or blink too fast — these variations are handled
very well with the noise function. As a result, the use of
Perlin noise helps avoiding the impression of
“mechanical” movements.

Actions can be interrupted at any time. When an
action is interrupted, it automatically starts to “fade out™,
unless, of course, the action is already in this state. The
fade out time in actions is used to avoid rough
transitions when an action is interrupted.

4.2 Layers of Actions

In order to improve performance and make the process
of animation easier, actions of the same kind, like mouth
movements, head movements or actions expressiong
emotions are grouped together. Each group represents a
layer when the actions are composed (the words layer
and group represents the same concept in this paper) .
Actions that belong to a group are usually not performed
at the same time, except during the transition from one
action to another — where one action is “fading in”, while
the other is “fading out”. Of course, actions from
different groups can be performed simultaneously.

While the system allows any action to be grouped
together, we achieved the best results using the
following groups: non-intentional actions (like breathing
and blinking), emotions (like crying, smiling and

sleeping), Lip movements (the eight lip positions
described above that mimics the phonemes), eyes
movements and head movements.

Each layer has a transparency or alpha value,
ranging from 0 to 1. Groups with alpha set to 1 are
completely transparent and with alpha set to 0 are
completely opaque. The alpha value is used in the
composition of actions, described below.

4.3 Composition of Actions

The virtual action can perform several actions at the
same time. Each action that is been executed may
contribute to the final scene, depending of the alpha
value of the group it belongs. Actions executed in an
almost opaque layer will have more influence in the final
scene than actions in an almost transparent layer. The
madel for composing the actions is similar to techniques
used in composition of layers of images with
transparency [M. Levoy (1988)].

In a given time, the system verifies in each group
the actions that are being performed. If no action is
performed in a group, it skips to the next. If an action is
performed, probably this action is multiplying an array of
modeled expressions by curves, resulting in an array of
weights in the BLE. The system accumulates the weights
of the BLE from group to group using the following
algorithm:

For each group {

[Wseene]l = [Wseenel *C(-group =F: [Wgroup] * (1=
Otgroup)
}

Where [Wgcene] is the array of weights of the BLE
of the scene, [Wgroup] is the array of weights of the BLE
calculated for the actions that are been performed by this
group and Ogroyp is the transparency value of the group.
Of course, groups with alpha value of 0 do not influence
the final scene. The actions use transparency also: for
instance, actions that only make movements on the lips

are transparent to the rest of the face.

The order which the groups are calculated is
important! Changing the order can give a totally
different result. Groups that are calculated later usually
affect the scene more than groups calculated earlier. The
group order can be changed on the system in real time.

This technique simplifies considerably the work of
an animator: the virtual actor can perform actions like
crying, talking, blinking and moving the eyes at the same
time. The animator acts more like a director to the scene,
coordinating what the virtual actor will do, instead of
actually moving the objects and vertices.

JostD. R, WEY

5. Conclusions and Future Work

The InterFace system was designed to be used by
animators or to be integrated with other systems. In
order to stick to this goal, we decided to make the
interface and the inputs to the system as simple and
visual as possible. Although the actions are not created
interactively at the moment, actions created for one
actor can be easily used in another, so libraries of actions
can be made, simplifying the process of animating other
actions considerably. Using Java and VRML for
development made it possible to share our program with
users all over globe through the Internet, allowing an
ease way to distribute the software and receive feedback
from testers.

The InterFace system will be improved in different
ways. We are working on a script language that can start
and stop actions and change the group order and
transparency. Scripts can be used to drive a scene
directly or can be combined in libraries to be used as
“building blocks” of larger scenes. Since InterFace is a
real-time system, we can read and execute scripts in real-
time. This way, any program that uses CG humans as its
user interface (like programs that simulate human
behavior, computer games, virtual agents or avatars) can
use InterFace to render the facial expressions of the
virtual actor. We are also working on a visual editor of
actions, sticking again with our objective to create a
system easy to use for animators.

In a near future we will add the ability of changing
the color of the face, thus simulating vascular activity [P.
Kalra, N. M. Thalmann (1994)]. This would increase the
realism of the virtual actor — when the actor is feeling
fear, his face would become white, when he is angry or
shy, his face become red and so on.

Finally, we are working on recreating the
environment of the Aria project, presented in Siggraph
1996 [R. Ruschionni et al (1997)] on this system,
allowing it to run in PCs through the Internet instead of
expansive graphics workstations.

6. Acknowledgments

This work would never be possible without the help and
suggestions of Ken Perlin, professor of The New York
University. He is also responsible for the name
InterFace. Arnaldo Massato Oka created the 3D model.
Everyone involved in Ara also helped in the
development of this project, especially Marcelo Zuffo
and Ruggero Ruschionni, Daniel Wey would like also to
thank Raquel Pires Gongalves for the supported and for
lending her animation books. This project was partially
supported by the administration of the University of Sao
Paulo.

JoseD. R. WEY

7. References:
References are listed in alphabetical order:

[B. Robertson (1997)] B. Robertson, Mastering Lip
Sync, Computer Graphics World, August 1997, 26-36.

[C. Wang et al. (1994)] C. L. Y. Wang, David R.
Forsey: Langwidere: A New Facial Animation System,
IEEE Computer Graphics and Applications, September
1994, 59-68.

[F. Parke (1974)] F. 1. Parke, 4 parametric model for
human faces, PhD Thesis, University of Utah, December
1974,

[F. Parke (1972)] F. 1. Parke, Computer generated
animation of faces, Master Thesis, University of Utah,
June 1972.

[F. Parke, K. Waters (1996)] F. 1. Parke, K. Waters,
Computer Facial Animation, Published by A. K. Peters,
1996.

[Java (1995)] Java - http://www.javasoft.con.

[K. Waters (1987)] K. Waters, A muscle model for
animating three-dimensional facial expressions,
SIGGRAPH Proceedings 1987, 21(4):17-24.

[K. Perlin (1985)] K. Perlin, 4n image synthesizer,
Siggraph '85 proceedings, 1985, 19(3):287-296.

[K. Perlin, A. Goldberg (1996)] K. Perlin, Athomas
Goldberg, Improv: A System for Scripting Interactive
Actors in Virtual Worlds, Siggraph 1996 Computer
Graphics proceedings CDROM.

[K. Perlin (1994)] K. Perlin, Danse Interactif, Siggraph
'94 Electronic Theater Video, 1994.

[K. Perlin (1997)] K. Perlin, Layered Compositing of
Facial Expressions, Siggraph 97 technical sketches,
1997 (online at http://mrl.nyu.eduw/improv/sig97-sketch)

[K. Perlin, 1995] K. Perlin, Real Time Responsible
Animation with Personality, TEEE Transactions on
Visualization and Computer Graphics, 1995, 1(1) (online
at http://mrl.nyu.edw/improv/perlin ieee.tar.gz).

[M. Levoy (1988)] M. Levoy, Volume Rendering:
Display of Surface from Volume Data, TEEE Computer
Graphics and Applications May 1988, 26-36.

[K. Mehrabian, J. Ferris (1967)] K. Mehrabian, J. Ferris,
Inference of Attitudes from non-verbal communication
in two channels, Journal of Consulting Psycology, 1967,
3(31):248-252.

[N. M. Thalmann et al. (1989)] N. Magnenat-Thalmann,
H. minh, M. de Angelis and D. Thalmann, Design,
Transformation and Animation of Human Faces, The
Visual Computer, 1989, 32-39.

[P. Kalra, N. M. Thalmann (1994)] P. Kalra, N.
Magnenat-Thalmann, Modeling of Vascular Expressions
in Facial Amimation, ITEEE Computer Graphics and
Applications, September 1994, 50-57.

[P. Blair (1989)] P. Blair, How To Draw Film Cartoons,
Walter Foster Publishing, 1989, 17.

[R. Ruschionni et al (1997)] R. A. Ruschionni, J. D. R.
Wey, M. K. Zuffo, E. Toledo, Some FExperiences
Implementing Virtual Worlds: The Aria Project, IFIP
1997 Proceedings CDROM, Florian6polis, SC, Brazil —
http://www lsi.usp.br/~aria/.

[VRML (1997)] VRML97 - The Virtual Reality
Modeling Language Specification -
http://www . vrml.org/.

BOLETINS TECNICOS - TEXTOS PUBLICADOS
BT/PS1/0001 — Observabilidade Topolégica de Osawa em Redes nao Lineares — ARMANDO HANDAYA, FLAVIO A. M.
CIPPARRONE

BT/PS1/0002 - Desenvolvimento de uma Microbalanga de Quartzo para Detectar Gases — ROBERTO CHURA CHAMBI,
FRANCISCO JAVIER RAMIREZ FERNANDEZ

BT/PSI/0003 — Sistema para Desenvolvimento de Sensores Inteligentes — ANTONIO CARLOS GASPARETTI, FRANCISCO
JAVIER RAMIREZ FERNANDEZ

BT/PSI/0004 — A 1.6GHz Dual Modulus Prescaler Using the Extended True Single-Phase Clock CMOS Circuit Technique (E-
TSPC) — JOAO NAVARRO SOARES JUNIOR, WILHELMUS ADRIANUS M. VAN NOIJE

BT/PSI/0005 — Modelamento em Linguagem VHDL de uma Unidade de Policiamento para Redes Locais ATM — EDSON
TAKESHI NAKAMURA, MARIUS STRUM

BT/PS1/0006 — Otimizago das Operagdes Coletivas para um Aglomerado de 8 Computadores usando uma Rede Ethemet 10
Mbps baseada em Hub — MARTHA TORRES, SERGIO TAKEO KOFUJI

BT/PSI/0007 — Short Temporal Coherence Optical Source With External Fiber Optics Cavity — CARMEM LUCIA BARBOSA,
JOSE KEBLER DA CUNHA PINTO

BT/PSI/0008 - Hidrogenated Carbon Films Used as Mask in Wafer Processing With Integrated Circuits: Post-Processing —
JUAN M. JARAMILLO O., RONALDO D. MANSANO, EDGAR CHARRY R.

BT/PSI/0009 - Redes Neurais em VLS — ANTONIO RAMIREZ HIDALGO, FRANCISCO JAVIER RAMIREZ FERNANDEZ

BT/PSI/0010 - Caracterizagio de Filmes Obtidos a Partir da Deposi¢éo por Plasma de Hexametildissilazana — SANDRINO
NOGUEIRA, MARIA LUCIA PEREIRA DA SILVA

