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Abstract In view of the recent discovery of Tcc, which
can be described as a DD∗ molecular state, we perform a
study of the K DD∗ system, and its extension to studying
K D∗D∗, where D∗D∗ is bound as a spin 1 Tcc-like state,
to search for the possible existence of exotic mesons with
the open flavors ccs being part of their quark configuration.
Considering the additional attractive interactions present in
the K D and K D∗ subsystems, where the states D∗

s0(2317)

and Ds1(2460) are generated, we solve the Faddeev equa-
tions considering the fixed-center approximation for the men-
tioned three-body systems and find the existence of two dou-
bly charmed K ∗-like mesons, K ∗

cc(4309) and K ∗
cc(4449),

with quantum numbers I (J P ) = 1/2 (1−). Considering the
respective three-body thresholds of the two systems, both
Kcc-states are bound by around 60 MeV. An experimental
confirmation will bring evidence for the existence of a degree
of exoticity beyond charm +2.

1 Introduction

The search for the existence of exotic hadrons is at the
forefront of hadron physics, deepening our understand-
ing of quantum chromodynamics (QCD). A major break-
through occurred in 2003 when the charmonium-like meson
χc1(3872) was discovered by the Belle Collaboration [1].
After one decade, the charged charmonium meson Zc(3900),
the first confirmed hadron with a minimal four-quark content,
was observed by the BESIII and Belle experiments [2,3].
Most recently, the LHCb Collaboration reported the obser-
vation of the T+

cc state [4], which is the first doubly charmed
exotic meson observed. Along with a series of XYZ states,
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other resonances such as the lightest positive parity charmed
states D∗

s0(2317) and Ds1(2460) [5,6], the fully charmed
tetraquark candidate X (6900) [7] and the Pc pentaquarks [8,
9], the existence of exotic hadrons has expanded our knowl-
edge of the working of strong interactions between heavy
quarks, as well as between heavy and light quarks,but partic-
ularly in the charm sector [10,11].

From the theoretical side, there are tremendous efforts in
the hadron physics community to explain the nature of exotic
charm hadrons (we refer the interested readers to the most
recent reviews for more details [11–16]). Here we would
like to emphasize the relevance of the hadronic molecule
picture, which provides a natural explanation of the prop-
erties observed for many of the exotic states found as two-
hadron molecules. For instance, χc1(3872) and Zc(3900) are
expected to be s-wave DD̄∗ +c.c. molecules, and T+

cc can be
interpreted as a bound state of the DD∗ system [17–23]. As
a natural extension of the existence of hadron molecules of a
two-body nature, one can expect the existence of three-body
molecules or multi-body states in the charm sector, likewise
the deuteron, triton, and nucleus in nuclear physics. Such
kind of research tendency has been highlighted in the last
years, for instance, in Refs. [24,25].

Recently, the interest in the existence of exotic mesons
with strangeness seems to grow increasingly, and several the-
oretical studies have been made investigating the interactions
between mesons with strangeness, like K , and charm mesons
like D/D̄, D∗/D̄∗ [26–37]. These investigations are moti-
vated by the strong s-wave attractive interactions present in
the K D and K D∗ systems, which give rise to the D∗

s0(2317)

and Ds1(2460) resonances, respectively [38,39]. Having
strange and charm quarks, different super-exotic structures,
non-compatible with the quantum numbers obtained from
the traditional quark model, can emerge in these systems,
like heavy K ∗ hexaquarks with hidden charm (cc̄sq̄qq̄) or
doubly charmed states with strangeness (ccsq̄q̄q̄).

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-024-13683-9&domain=pdf
http://orcid.org/0000-0002-5138-7415
http://orcid.org/0000-0003-2686-5419
http://orcid.org/0000-0002-3656-5834
mailto:xiulei.ren@uni-mainz.de
mailto:kanchan.khemchandani@unifesp.br
mailto:amartine@if.usp.br


1297 Page 2 of 9 Eur. Phys. J. C (2024) 84 :1297

The K DD̄∗ and K DD̄ systems belong to the former
mentioned case, i.e., hidden charm and open strangeness.
As shown in Refs. [26–29], considering s-wave interactions,
two hidden charm K ∗

cc̄ mesons are found. In particular, a
state about 50–80 MeV below the three-body threshold is
obtained in the K DD̄∗ system with quantum numbers of
isospin I and spin-parity J P given by I (J P ) = 1/2(1−).
In the case of the K DD̄ system, a state with binding energy
around 50 MeV and I (J P ) = 1/2(0−) is found as a con-
sequence of the three-body dynamics involved in these sys-
tems. In the case of the even more exotic quantum num-
bers of open strangeness and double charm, the existence
of such states has been claimed in Refs. [30–32] from the
dynamics involved in the K DD system by using different
approaches [30–32]. In both the studies, a doubly charmed
K ∗
cc bound state is predicted with a binding energy around

65–90 MeV [31,32]. Such a system has also been studied in
a finite volume [33,34] and experimental searches for such a
state have already started [35], although better statistics are
necessary to reach to any conclusion. The K DD∗ has been
investigated in Ref. [26] by solving the Schrödinger equa-
tion with the Born–Oppenheimer approximation, and, after
the discovery of T+

cc , the interest in such a system has grown.
Most recently, the former system has been investigated by
using the chiral quark model [36] and the lattice effective
field theory [37]. The result of Ref. [37] confirmed the exis-
tence of a bound state as claimed in Ref. [26], with a binding
energy around 44 ∼ 84 MeV. Furthermore, the K D∗D∗ sys-
tem has been investigated in Ref. [30] by using the Ds1D∗
quasi-two body scattering, finding loosely bound states with
spin-parity J P = 0−, 2−. Similarly, other three-body sys-
tems, such as those involving the vector meson K ∗ instead of
the pseudoscalar K meson, and/or their extension to the bot-
tom sector, with the B/B̄, B∗/B̄∗ pairs instead of the D/D̄,
D∗/D̄∗ mesons have been investigated in Refs. [40–43].

It is in order here to mention that despite having experi-
mental access to energies � 4000 MeV, finding of no new
K or K ∗ mesons have been claimed. A quick look at the
review of the Particle Data Book (PDG), shows an inactivity
in the spectroscopy of strange mesons, with K ∗(1680) being
the latest J P = 1− state with strangeness observed. Obser-
vation of some of the aforementioned exotic mesons with
strangeness has been claimed in the J/ψπK invariant mass
distribution obtained from weak decays of the B meson [44],
and it is simply a matter of time before experimental inves-
tigations of such mesons will be carried out.

Inspired by the growing interest in the spectroscopy of
exotic mesons with strangeness, we extend our previous
investigation of the K DD̄∗ [27] system to analyze the forma-
tion of three-body states in the K DD∗ system. This is done by
using the fixed-center approximation (FCA) to solve the Fad-
deev equations [45,46], an approximation which is valid for
studying the formation of states below the three-body thresh-

old of a system where its dynamics can be considered as that
of a particle interacting with a heavier cluster (for detailed
discussions, see the review in Ref. [24] and for applicability
limits see Refs. [47,48]). Having this in mind, we consider in
this case that the heavy DD∗ system clusters as Tcc [49], and
the light K -meson scatters off the D and D∗ mesons forming
Tcc. Due to the description of D∗

s0(2317), Ds1(2460) and Tcc
as states generated from the K D, K D∗ and DD∗ (coupled-
channel) interactions, respectively, a doubly charmed bound
state with positive strangeness is obtained. Besides, we con-
sider that the generation of a Tcc-like state is also predicted
from the interaction of D∗D∗ with J P = 1+ in Ref. [50]
by solving the Bethe–Salpeter equation with a coupled chan-
nels approach. Thus, we find it interesting to extend our FCA
study to the K D∗D∗ system and explore the possible exis-
tence of a bound state.

The paper is organized as follows. In Sect. 2, we outline
the main aspects of the formalism employed to investigate the
three-body systems. The results obtained for the K DD∗ and
K D∗D∗ systems, along with the corresponding discussion,
are presented in Sect. 3. Finally, we summarize the main
conclusions obtained in Sect. 4.

2 Fixed-center approximation to Faddeev equations

Generally, three-hadron systems can be studied by solving
the three-coupled integral Faddeev equations [51], which
allows to determine the T -matrix of the system as a sum
of three partitions T1, T2 and T3, each of them containing
the information of the scattering where particle i = 1, 2, 3
starts being a spectator in the lowest order contribution to
the scattering series in Ti . However, solving such equations
is not an easy task, especially, when coupled channels are
involved, and, in many occasions, approximate methods are
often implemented to simplify the Faddeev equations. In this
context, the relevance of the use of effective Lagrangians to
determine the input two-body t-matrices by considering the
on-shell factorization of the Bethe–Salpeter equation and the
use of these t-matrices as input for the Faddeev equations,
have allowed studying a large variety of three-body systems
with a large number of coupled channels [52–54].

Within the different approximate methods to solve the
Faddeev equations, there is one which is especially suitable
for studying the scattering between a cluster (R12) composed
of two particles, which we denote as particles P1 and P2,
whose mass is larger than the other particle of the system,
which we denote as particle P3 (e.g., the K meson in the
current work), which is known as the fixed center approx-
imation [45,46,55,56]. In this case, the scattering between
the three particles resembles that of a particle with a fixed,
heavier, scattering center formed by the other two particles
and such a description is a rather good approximation when
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studying the formation of three-body states below the three-
body threshold [57,58]. For the technical details of FCA,
we refer the reader to Refs. [24,59,60]. Here, we summarize
the main aspects of the formalism. Within the fixed-center
approximation, the scattering consists of a series of contri-
butions where particle 3 scatters off particles 1 and 2 form-
ing the cluster, having then two series of contributions (see
Fig. 1): those where particle 3 interacts first with particle 1 of
the cluster and starts rescattering with the two particles form-
ing the cluster (T31 partition); Those contributions in which
particle 3 starts interacting first with particle 2 of the cluster
and keeps rescattering with the particles of the cluster (T32

partition). Then, the total scattering amplitude Ttol is given
as follows:

Ttol = T31 + T32,

T31 = t31 + t31 G0 t32 + t31 G0 t32 G0 t31 + · · ·
≡ t31 + t31 G0 T32,

T32 = t32 + t32 G0 t31 + t32 G0 t31 G0 t32 + · · ·
≡ t32 + t32 G0 T31.

(1)

As illustrated in Fig. 1-(a1) and -(b1), the amplitudes t31 and
t32 represent the single scattering of the K meson with the
R12 cluster: t31 denoting the K -P1 interaction and P2 as a
spectator, and t32 for the K -P2 interaction with P1 as a spec-
tator. Through the rescattering procedure, K can propagate
through the cluster to trigger the double scattering (t31 G0 t32

and t32 G0 t31), the triple scattering, etc. The loop function
G0 in Eq. (1) represents the Green function of the K meson
propagating in the cluster R12. After solving the coupled
equations in Eq. (1), which are algebraic equations, the total
three-body amplitude can be written as:

Ttol = t31 + t32 + 2t31t32G0

1 − t31t32G2
0

. (2)

In Eq. (2), t31 and t32 depend, respectively, on the invariant
masses of the (31) and (32) subsystems, which are functions
of the center-of-mass energy,

√
s, and the mass of the cluster

R12, while G0 depends on
√
s and the mass of the cluster

R12. The latter is fixed to the mass of the particle obtained
from the interaction of particles 2 and 3 (in this case, Tcc
or Tcc like states). The t31 and t32 amplitudes, at the same
time, depend on the weighted combinations of the different
isospin t-matrices describing the (31) and (32) subsystems,
respectively.

In the following, we present the steps followed to find the
expression of t31/32 in terms of the isospin t-matrices related
to the (31)/(32) subsystems and provide the expression of G0

for the specific three-body systems considered in the present
work, i.e. K DD∗ and K D∗D∗.

Fig. 1 Diagrams representing the K meson scattering off the R12 clus-
ter constituted by the P1 and P2 particles. The rescattering diagrams in
the first row provide the Faddeev partition T31, and the second-row
diagrams give rise to T32

2.1 Singe scattering amplitudes

First, to illustrate the method, we focus on the K DD∗ system,
where DD∗ is considered to form the Tcc state with isospin
I = 0 and J P = 1+ [49]. In the isospin basis, Tcc is described
by the ket |DD∗; I = 0, Iz = 0〉, which, in terms of the
charged states, can be written as

|DD∗; I = 0, Iz = 0〉 = − 1√
2

(|D+D∗0〉 − |D0D∗+〉),
(3)

with the isospin doublets being: (D+,−D0) and (D∗+,

−D∗0). If we add now a Kaon, we have the following isospin
ket for the three-body K DD∗ system:

∣
∣∣∣K (DD∗); I = 1

2
, Iz = 1

2

〉
=

∣
∣∣∣K ; 1

2
,

1

2

〉
⊗

∣
∣∣∣DD∗; 0, 0

〉
,

(4)

where the total isospin of K DD∗ is I = 1/2 and the third
component of isospin is chosen, for example, as Iz = 1/2.
The matrix elements of the single scattering amplitudes t31

and t32 can be evaluated via

t31 = 〈K (D D∗); 1/2, 1/2|t̂31| K (D D∗); 1/2, 1/2〉,
t32 = 〈K (DD∗); 1/2, 1/2|t̂32| K (DD∗); 1/2, 1/2〉, (5)

where the under brackets in the ket denote the collision con-
figurations: K D (i.e., particles 3 and 1, respectively) and
K D∗ (particles 3 and 2). Next, we express the kets in Eq. (5)
in terms of isospin kets related to the subsystems (31) and
(32), depending on whether we evaluate t31 or t32:

| K (D D∗); 1/2, 1/2〉

= 1√
2

[∣∣∣I K D = 1, I K D
z = 1

〉
⊗

∣∣∣
∣I

D∗
z = −1

2

〉

− 1√
2

(∣∣∣I K D = 1, I K D
z = 0

〉
+

∣∣∣I K D = 0, I K D
z = 0

〉)
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⊗
∣∣∣∣I

D∗
z = 1

2

〉]
, (6)

| K (DD∗); 1/2, 1/2〉

= − 1√
2

[∣
∣∣I K D∗ = 1, I K D∗

z = 1
〉
⊗

∣∣
∣∣I

D
z = −1

2

〉

− 1√
2

(∣∣∣I K D∗ = 1, I K D∗
z =0

〉
+

∣∣∣I K D∗ =0, I K D∗
z =0

〉)

⊗
∣∣∣∣I

D
z = 1

2

〉]
. (7)

By plugging the above kets into Eq. (5), we obtain the sin-
gle scattering amplitudes t31 and t32 as combinations of the
isospin 0 and 1 s-wave amplitudes of the K D and K D∗ pairs:

t31 = t I=0
K D + 3 t I=1

K D

4
,

t32 = t I=0
K D∗ + 3 t I=1

K D∗
4

.

(8)

Following the same procedure, one can easily obtain the
single scattering amplitudes for the K (D∗D∗) system, find-
ing:

t31 = t32 = t I=0
K D∗ + 3t I=1

K D∗
4

. (9)

As can be seen in Eqs. (8) and (9), we need the two-body
t-matrices describing the K D and K D∗ interactions. These
t-matrices can be determined by solving the coupled channel
Bethe–Salpeter equations

t I = v I + v I gt I (10)

for a certain isospin I of the system. In Eq. (10), g is a diag-
onal matrix in the coupled-channel space whose elements gi
are the two-hadron loop functions for the channels i . These gi
are regularized by introducing subtraction constants and we
consider the same values as those used in Refs. [38,61]. The
kernel v I in Eq. (10) is a matrix whose elements v I

i j describe
the transition amplitude i → j and they are obtained from a
Lagrangian based on the chiral and heavy quark symmetries.
Here we follow the approach of Refs. [38,61], where the
K D and K D∗ interaction kernels are determined from the
lowest order chiral Lagrangian based on heavy-quark spin
symmetry.

In the case of total isospin I = 0, the K D(∗) system,
together with ηD(∗)

s , are considered as couple channels when
solving the Bethe–Salpeter equations. At leading order, v I=0

is given by [38,61]:
(

v I=0
K D,K D v I=0

K D,ηDs

v I=0
ηDs ,K D v I=0

ηDs ,ηDs

)

=
(−2

√
3√

3 0

)
s − u

4 f 2
π

, (11)

(
v I=0
K D∗,K D∗ V I=0

K D∗,ηD∗
s

V I=0
ηD∗

s ,K D∗ V I=0
ηDs ,ηD∗

s

)

=
(−2

√
3√

3 0

)
s − u

4 f 2
π

ε · ε′, (12)

where fπ = 92.4 MeV is the pion decay constant, s and u
are Mandelstam variables, and ε(′) denotes the polarization
vector associated with the vector meson in the initial (final)
state. The amplitudes v I

i, j in Eqs. (11) and (12) are further
projected on the s-wave by considering

1

2

1∫

−1

cosθ v I
i, j (s, u(θ)), (13)

with θ being the angle formed between the incident and the
scattered Kaon in the center-of-mass frame.

Similarly, for total isospin I = 1, in Refs. [38,61], K D(∗)

and πD(∗)
s are treated as coupled channels when solving

the Bethe–Salpeter equation, and at leading order, v I=1 read
as [38,61]

(
v I=1
K D,K D v I=1

K D,πDs

v I=1
πDs ,K D v I=1

πDs ,πDs

)
=

(
0 −1

−1 0

)
s − u

4 f 2
π

, (14)

(
v I=1
K D∗,K D∗ V I=1

K D∗,πD∗
s

V I=1
πD∗

s ,K D∗ V I=1
πDs ,πD∗

s

)

=
(

0 −1
−1 0

)
s − u

4 f 2
π

ε · ε′. (15)

After projecting the aforementioned amplitudes in the s-
wave, they are plug into Eq. (10), obtaining in this way the
two-body t-matrices t I=0,1

K D and t I=0,1
K D∗ in Eqs. (8) and (9).

As a consequence of the dynamics considered, poles in the
t-matrices for the K D and K D∗ coupled-channel systems
in the isospin 0 sector are found at 2312 MeV and 2452
MeV, respectively, which can be associated with D∗

s0(2317)

and Ds1(2460). The dominant molecular nature obtained for
D∗
s0(2317) and Ds1(2460) has been confirmed from lattice

QCD studies [62].
Furthermore, as a consequence of the different normaliza-

tions between the scattering matrix of a three-body system
and that of a particle+cluster system, with the cluster arising
from the interaction of two particles, we need to normalize
the t31 and t32 amplitudes in Eq. (1) before solving the equa-
tion. In particular, in this case [27]

t31 → MR

m1
t31, t32 → MR

m2
t32, (16)

where MR represents the mass of the cluster, andmi , i = 1, 2,
the mass of the particle Pi in the cluster.

As a final comment in this section, we would like to men-
tion that the arguments of t31 and t32 are s31 and s32, which are
the invariant masses of the K P1 and K P2 systems. The latter
can be related to the center-of-mass energy of the three-body
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system,
√
s, via the following equations [54]:

s31 = m2
3 + m2

1 + M2
R + m2

1 − m2
2

2M2
R

(s − m2
3 − M2

R),

s32 = m2
3 + m2

2 + M2
R + m2

2 − m2
1

2M2
R

(s − m2
3 − M2

R).

(17)

2.2 Green function for K propagating in the cluster R12

The loop function G0 in Eq. (1), which describes the prop-
agation of the K meson in the R12 cluster, can be expressed
as [59,63]

G0(s) = 1

2MR

∫
d3q

(2π)3

FR(q2)

(q0)2 − q2 − m2
K + iε

, (18)

where MR is the mass of the R12 cluster, and q0 is the on-shell
energy of the K meson in the cluster rest frame:

q0 = s − m2
K − M2

R

2MR
, (19)

In Eq. (18), FR(q) is the form factor of R12 as a cluster of
two hadrons in s-wave, which is related to the corresponding
wavefunction in the coordinate representation via a Fourier
transformation [24,59,60,63]:

FR(q) = 1

N
∫

{| p|,| p−q|<	R}
d3 p fR( p) fR( p − q),

N =
∫

| p|<	R

d3 p
[
fR( p)

]2
,

fR( p) = 1

2 ω1( p)
1

2 ω2( p)
1

MR − ω1( p) − ω2( p)
,

(20)

with the normalization being FR(q = 0) = 1. In Eq. (20),

the particle energies ω1(2) are given by ω1( p) =
√
m2

1 + p2,

ω2( p) =
√
m2

2 + p2. Since the form factor FR(q) is related
to the wave function of the R12 cluster, the upper integra-
tion limit 	R in Eq. (20) corresponds to the value of the
momentum cutoff considered in the study where the genera-
tion of the cluster from the interaction of particles P1 and P2

is found when solving the Bethe–Salpeter equation, where
two-hadron loop functions need to be regularized [24]. For
the present systems under study, i.e., K DD∗ and K D∗D∗,
we list in Table 1 the values considered for the cluster masses
MR of DD∗ and D∗D∗ and the corresponding cutoff 	R , val-
ues which are based on the results found in Refs. [49,50]. The
resulting form factors FR(q) are shown in Fig. 2 for the DD∗
and D∗D∗ clusters. As can be seen, they start from 1 and
gradually decrease to 0 as q increases. Also, for q ∼ 2	R ,
both form factors are exactly zero due to the integral bound
| p − q| < 	R present in Eq. (20).

Furthermore, in Fig. 3 we present the real and imaginary
parts of the Green function G0(s) for the case of the K DD∗
and K D∗D∗ systems. As can be seen, it presents the typical

Table 1 Values of the cluster
mass MR and cutoff 	R (in
units of MeV) for the K (DD∗)
and K (D∗D∗) systems

K (DD∗) K (D∗D∗)

MR 3874.82 4015.54

	R 415 420

Fig. 2 Form factors related to the (DD∗)Tcc cluster with 	R = 415
MeV (solid line) and (D∗D∗)Tcc cluster with 	R = 420 MeV (dashed
line)

Fig. 3 Real (solid line) and imaginary (dashed line) parts of G0(s)
function in the K (DD∗) system (left panel) and the K (D∗D∗) system
(right panel)

feature of a two-particle loop function, i.e., a cusp at the
m3 +MR threshold for its real part and a non-zero imaginary
part for energies above that threshold, which is

√
s = 4370.5

MeV for the K DD∗ system, and
√
s = 4511.2 MeV for the

K D∗D∗ case.

3 Results and discussion

In this section, we present the three-body scattering ampli-
tudes for the K DD∗ and K D∗D∗ systems for the total
isospin I = 1/2 and spin-parity J P = 1−. Using the expres-
sions for t31 and t32 in Eqs. (8), (9), along with the weight
factors in Eq. (16), we can determine Ttol from Eq. (2) for
the K (DD∗) and K (D∗D∗) systems, as a function of

√
s.

In Fig. 4, we present the modulus squared |Ttot|2 for the
transition KTcc → KTcc as a function of

√
s. A narrow

peak around 4309 MeV is observed, indicating the existence
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Fig. 4 Left panel: Modulus
squared of the total scattering
amplitude for the K DD∗
system with isospin I = 1/2.
The thresholds for the KTcc and
K DD∗ systems are indicated by
vertical lines. Right panel:
Modulus squared of the
two-body scattering amplitudes
for K D and K D∗ with isospin
I = 0, 1. The (blue) vertical
lines denote the values of

√
sK D

and
√
sK D∗ for

√
s = 4309

MeV, which is the mass of the
K DD∗ bound state found

of a K DD∗ bound state with a binding energy BKDD∗ � 62
MeV. This state is dynamically generated through the non-
perturbative iteration of the single scattering amplitudes t31

and t32, as given in Eq. (2). To show this explicitly, we also
present in Fig. 4 the result obtained from |t31 + t32|2, where
t31 + t32 represents the input for Eq. (2). As can be seen,
two nearby peaks are observed at

√
s = 4312.7 MeV and

4313.6 MeV, which are a reflection of the two-body reso-
nances D∗

s0(2317) and Ds1(2460) generated in the two-body
systems. These two peaks, by summing all the rescattering
contributions of particle 3 with particles 1 and 2, ultimately
lead to the formation of the K DD∗ bound state at

√
s = 4309

MeV.
For a better understanding of the dynamics involved in the

generation of the aforementioned three-body state, we show
the modulus squared of the two-body scattering amplitudes
tK D and tK D∗ with I = 0, 1 as a function of the correspond-
ing two-body invariant masses on the right panel of Fig. 4.
At the energy of the three-body bound state, i.e.,

√
s = 4309

MeV, the corresponding energies of the K D and K D∗ sub-
systems are

√
sK D = 2307 MeV and

√
sK D∗ = 2448 MeV

[see Eq. (17)]. As can be seen in Fig. 4, this is precisely
the energy region in which D∗

s0(2317) and Ds1(2460) are
generated from, the K D and K D∗ interactions, respectively,
in isospin I = 0 and the latter amplitudes are much bigger
than their I = 1 counterparts. In this way, we can conclude
that the D∗

s0(2317) and the Ds1(2460) are generated in the
(31) and (32) subsystems, while Tcc is formed in the DD∗
subsystems. All these attractive interactions produce a state
which is ∼ 4 MeV away from the position of the peaks seen
in |t31 + t32|2.

Next, we focus on the K (D∗D∗) system, for which we
show the modulus squared of the T -matrix in the isospin
I = 1/2 and spin-parity J P = 1− as a function of the center-
of-mass energy in Fig. 5. As can be seen, there exists a bound
state with a mass of 4449 MeV, which is � 64 MeV below

the three-body threshold mK + 2mD∗ . By considering |t31 +
t32|2 alone, we simply find the reflection of the Ds1(2460)

state originated from the K D∗ interaction, whose mass has
a related

√
s value of 4454 MeV. It should be recalled that

the two-body states are generated in the presence of a third
particle, and are expected to appear at a total energy which
depends on the mass of the third particle and the peak position
in the invariant mass of the resonating pair. Only when all
contributions represented in Fig. 1 are implemented via the
resolution of Eq. (1), a three-body state, which is ∼ 5 MeV
away from the position of the peaks in |t31+t32|2, is observed.
Furthermore, we present |tK D∗ |2 for I = 0, 1 in the right
panel of Fig. 5 as a function of the invariant mass of the
system. Similarly to the K DD∗ system, the K D∗ interaction
with I = 0 is much stronger than that with I = 1 as a
consequence of the generation of Ds1(2460). As can be also
seen, for the

√
s value at which the three-body state is found,

the K D∗ interaction generates Ds1(2460), which together
with the formation of a Tcc like state with spin 1 in the D∗D∗
system [50], it produces such a strong attraction which binds
the three-body system.

We summarize our results for the masses and binding ener-
gies of the states obtained in the K DD∗ and K D∗D∗ sys-
tems in Table 2, and compare them with the previous calcu-
lations available for the K DD∗ system with the same quan-
tum numbers [26,37]. Our result for K ∗

cc(4309) is located in
between the two previous estimations. Such uncertainties in
the masses are common among hadronic models based on dif-
ferent methods to study the interactions between the particles
constituting the system. To be more specific, in Ref. [26], the
one-pion-exchange potentials among the two-body subsys-
tems present in the K DD∗ system are used within the Born–
Oppenheimer approximation to determine the wave function
of the system and find the corresponding binding energies.
In Ref. [37], the authors consider chiral interactions for K D
and K D∗ beyond the leading order, along with the lowest
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Fig. 5 Left panel: Modulus
squared of the total scattering
amplitude for the K D∗D∗
system with isospin I = 1/2.
The thresholds related to the
KTcc and K D∗D∗ systems are
indicated by vertical lines. Right
panel: Modulus squared of the
two-body scattering amplitudes
for the K D∗ system with
isospin I = 0, 1. The (blue)
vertical line marks the position√
sK D∗ = 2448 MeV, which is

the value of that invariant mass
for a center-of-mass energy of√
s = 4449 MeV, i.e., the mass

associated with the K D∗D∗
bound state formed

order DD∗ potential. They obtain a K DD∗ bound state with
a binding energy ranging from 44 to 84 MeV by solving
the three-body system within the lattice effective field theory
framework [37].

In spite of the uncertainties inherent to the consideration
of different inputs and methods employed to determine the
three-body T -matrix, there is no doubt that the generation of
a three-body state with a mass � 4300 MeV is obtained with
exotic quantum numbers of strangeness +1 and charm +2,
and J P = 1−. We also predict the existence of a J P = 1−
state with strangeness +1, charm +2, and a higher mass as a
consequence of the K D∗D∗ dynamics. It should be noted
here that the K D∗D∗ dynamics produces a state slightly
more bound than the one in K DD∗, a result which is mainly
due to the fact that the input K D∗ interaction is slightly more
attractive than the K D interaction. This can be deduced from
the binding energy of the bound states obtained (∼ 52 MeV
in the case of the K D∗ system and ∼ 50 MeV for the K D sys-
tem). Furthermore, the D∗D∗ interaction considered is also
more attractive than that of DD∗, as can be deduced from the
results shown in Table 1. We should, however, mention that
a difference of the order of 2 MeV in the binding energies
of the states is compatible with the expected uncertainties
in the inputs, making it difficult to affirm with certainty that
K D∗D∗ interaction is more attractive than that of K DD∗.

Future experimental searches will be relevant for the con-
firmation of these states. Considering the internal structures
obtained for the aforementioned states, K ∗

cc(4309) can decay,
for example, into two particle final states like DDs and
D∗D∗

s via a mechanism involving triangular loops. Similarly,
K ∗
cc(4449) can decay into two-body channels like D∗Ds

and DD∗
s . The corresponding calculation of these partial

decay widths is currently in progress. Feasible experimental
searches of these Kcc states could involve the reconstruction
of the D(∗)D(∗)

s invariant mass distribution from their pro-
duction in ϒ(1S, 2S) inclusive decays or from direct produc-

Table 2 Masses and binding energies of the K DD∗ and K D∗D∗ bound
states with J P = 1−, and a comparison with previous calculations

K DD∗ K D∗D∗
M [MeV] B [MeV] M [MeV] B [MeV]

This work 4309 62 4449 64

Ref. [37] 4292(4) 79(4) − −
Ref. [26] 4318(4) 54(4) − −

tion in e+e− collisions, similar to the study in Refs. [35,64].
The recent progress in the studies of doubly heavy-flavored
hadrons within lattice QCD [65–72] shows that the explo-
ration of the existence of Kcc is also plausible in such a
framework.

4 Summary

In this work, we have investigated the three-body systems
K DD∗ and K D∗D∗ to search for potential exotic states with
open strange and double charm flavor. Inspired by the recent
observation of the Tcc state by the LHCb Collaboration, we
consider the scattering of a Kaon with the DD∗ and D∗D∗
systems, where DD∗ clusters as Tcc, while D∗D∗ forms a
Tcc like state, as shown in Refs. [49,50], with both clusters
having I = 0 and J P = 1+. Besides this, the two-body K D
and K D∗ amplitudes in the I = 0, 1 sectors are well con-
strained from the heavy-quark and chiral symmetries, giving
rise to the generation of the D∗

s0(2317) and Ds1(2460) reso-
nances. Through repeatedly scattering of the light K meson
off the particles forming the heavy clusters, we evaluated
the three-body amplitudes by using the fixed-center approx-
imation to the Faddeev equations. We find two bound states,
named K ∗

cc(4309) and K ∗
cc(4449), with quantum numbers

I (J P ) = 1/2(1−) for the K DD∗ and K D∗D∗ systems,
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respectively. The corresponding binding energies are of the
order of 60 MeV. We hope this work encourages future exper-
imental searches for these hexaquark mesons containing ccs
open flavors.
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