

ANAIS

DO 18° SIMPÓSIO DE GEOLOGIA DO SUDESTE

Campinas, São Paulo 2025

Editores:

Iata Anderson de Souza Adilson Viana Soares Júnior Daniela Kuranaka Marina Thimotheo Wagner da Silva Amaral Francisco Manoel Wohnrath Tognoli Danielle Simeão Silvério Rocha Saul Hartmann Riffel

18º SIMPÓSIO DE GEOLOGIA DO SUDESTE 26 a 30 de maio de 2025 | Campinas - SP

EVOLUÇÃO METAMÓRFICA DE ROCHAS CALCISSILICÁTICAS DA REGIÃO DE CACONDE-SP

Jean William Mendes¹, Renato de Moraes²

¹Universidade de São Paulo, jean.mendes@usp.br ²Universidade de São Paulo, rmoraes@usp.br

Na porção NW da Nappe Socorro-Guaxupé, situada na região de Caconde-Tapiratiba-São José do Rio Pardo, ocorrem rochas calcissilicáticas com mineralogia variada em que se destacam diopsídio, wollastonita, granada, escapolita, hornblenda e plagioclásio, contando ainda com grossulária e forsterita, além de carbonatos e silicatos, produzidos por provável metassomatismo. Com foco em Caconde, área investigada, as rochas constituem-se como mármores de estrutura maciça e textura granoblástica definida por calcita + dolomita, com olivina + clinopiroxênio ± granada ± fluorita disseminados na matriz, ou ainda com ocorrências locais de bandamento seriado por reação decorrente da composição do fluido disponível. As paragêneses formadas foram observadas através de análise de campo e em lâminas petrográficas possibilitando a interpretação dos processos metamórficos aos quais os protólitos foram submetidos. O estudo também contou com a utilização do software THERMOCALC para realizar análises composicionais em função de diferentes variáveis termodinâmicas, como temperatura e pressão (T x P), e temperatura x fração molar de CO₂ (T x XCO₂), permitindo a modelagem das reações para a formação de paragêneses minerais de interesse para as rochas investigadas. A wollastonita, um dos principais minerais de interesse apresentou uma janela de estabilidade ampla, através de reações que são controladas pela participação dos fluidos; na reação 5 wollastonita + meionita = 2 quartzo + 3 granada + CO₂, por exemplo, sua reação com a meionita sugere a liberação do CO2 necessitando de ambientes de altas condições de P-T, em ambiente metamórfico onde o fluido tenha mobilidade, reação que também destaca seu consumo, associado à anortita, para a formação de granada. Já a meionita possui uma janela de estabilidade menor e, portanto, é considerada melhor geotermômetro, estando frequentemente associadas ao consumo de calcita e interação com fluidos, principalmente na liberação de H_2O , em reações que ultrapassam os 800°C e compreendem condições de pressão de 7,4-14,4 kbar. A coexistência de wollastonita e meionita, portanto, pode reduzir a janela de estabilidade para a interpretação mais precisa para as amostras investigadas, como na reação wollastonita + meionita = granada + 2anortita + CO₂, sugerindo que essa composição pode ser estável em condições de metamorfismo regional de alto grau, típico de fácies granulito, geralmente associado a rochas carbonáticas metamorfizadas ou ainda skarns. Considerando a influência da fugacidade do CO₂ na estabilidade dos minerais envolvidos, algo crucial em contextos como metamorfismo de rochas carbonáticas e interações com fluidos metamórficos ricos em CO₂, também se optou pelo estabelecimento de pressão fixa para determinação de campos de estabilidade sob diferentes níveis de interação do fluido. Os resultados do estudo visam contribuir para a produção do conhecimento acerca do processo de evolução metamórfica da Nappe Socorro-Guaxupé, visto que investigações a partir destas associações minerais não foram amplamente realizadas até o presente momento na área investigada.