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SELDON, a modular and easily customizable antibody design
pipeline capable of iteratively optimizing an antibody—antigen |
(Ab—Ag) interaction in five different modification steps, including s:oring—- R
CDR and framework grafting, and mutagenesis. The optimization

process is guided by diversity data collected from millions of

publicly available human antibody sequences. This approach enhanced the exploration of the chemical and conformational space of
the paratope during computational tests involving the optimization of an anti-HER2 antibody. Optimization of another antibody
against Gal-3BP stabilized the Ab-Ag interaction in molecular dynamics simulations at lower runtime than alternative pipelines. Tests
with SKEMPI's Ab-Ag mutations also demonstrated the pipeline’s ability to correctly identify the effect of the majority of mutations,
especially multipoint and those that increased binding affinity. This freely available pipeline presents a new approach for
computationally efficient and automated in silico antibody design, thereby facilitating the development of new biopharmaceuticals.
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1. INTRODUCTION criterion.* Another method, OptMAVEn 2.0, assembles the
antibody variable region from structural parts representing the
V, D, and ] regions, mimicking V(D)J recombination.

Both RAbD and OptMAVEn rely on a relatively small
number of experimentally determined antibody structures as
their starting points, restricting their exploration of the
paratope chemical and conformational space. In the case of
OptMAVEn, this is especially relevant to CDRs 1 and 2
because they are part of the V region and, therefore, are always
grafted together.4’6

Rangel et al. addressed this limitation by grafting CDR-like
fragments from various Protein Data Bank (PDB) proteins,
including nonhuman and nonimmunoglobulin, broadening
modification possibilities. Despite high antigen affinity, the
authors noted that sequences from nonhuman proteins may
lead to immunogenic antibodies, limiting their therapeutic
potential.” More recently, Barletta et al. published a modular

Monoclonal antibodies are widely used to treat cancers,
infectious diseases, and autoimmune disorders. They have
become the leading class of biopharmaceuticals, with nearly
200 therapeutic antibodies currently approved or under
regulatory review." This has led to the development of
computational tools that can help reduce both the time and
cost of rational antibody design compared with experimental
approaches.”?

Classical computational antibody design methods often
combine CDR grafting and point mutations, followed by their
evaluation. CDR grafting allows extensive exploration of the
chemical and conformational space of CDRs with relatively few
tests, analogous to the biological V(D)] recombination.
Subsequently, point mutations can be introduced to further
optimize the antibody—antigen (Ab-Ag) interaction, similarly
to somatic hypermutation (SHM).**

A popular method among these is Rosetta Antibody Design

(RAbD), which has been successfully used to generate anti- Received: August 11, 2025
SARS-CoV-2 antibodies.” RAbD grafts CDR structures from Revised:  January S, 2026
canonical clusters in the PylgClassify database onto an Accepted: January S, 2026

antibody framework followed by mutagenesis. It operates on Published: January 20, 2026

a series of modification cycles, where the changes are evaluated
using an energy function and the Metropolis Monte Carlo

© 2026 The Authors. Published b
American Chemical Societ¥ https://doi.org/10.1021/acs.jcim.5c01924

v ACS PUbl icatiOI’]S 1895 J. Chem. Inf. Model. 2026, 66, 1895—1905



Journal of Chemical Information and Modeling

pubs.acs.org/jcim

platform for high-throughput parallel generation of multiple
antibody mutation lineages, called Locuaz. However, this
algorithm is limited to point mutations and lacks a fragment or
CDR grafting step, restricting the exploration of different CDR
lengths or conformations.

A novel class of deep learning (DL) algorithms tailored for
antibody design has recently emerged. In particular, some
diffusion-based methods like EAGLE, DiffAb and RFantibody
show promise among DL methods that account for the epitope
during sequence-structure codesign. However, current DL-
based approaches have low success rates, which can be less
than 1% when designing antibodies with improved affinity
against several targets, especially those without a known initial
binder, with few considering the target epitope during
design.z’g_12

Part of the reason for these low success rates lies in the
inherent difficulty of predicting Ab—Ag complex structures
using deep learning (DL) models. These models depend on
the limited number of experimentally resolved Ab—Ag
structures currently available for training. In recent years,
algorithms such as AlphaFold 3 (AF3),"® Boltz-1,"* and Chai-
1'> have achieved notable improvements over AlphaFold 2 in
modeling Ab—Ag complexes. However, their performance
remains constrained, with even the best-performing method,
AlphaFold 3, producing acceptable or higher-quality models in
fewer than 35% of tested cases in a recent study.'®

To overcome the limitations of existing antibody design
tools, we developed Ab-SELDON (Antibody Structural
Enhancement Leveraging Diversity for Optimization of
iNteractions), a computationally efficient and easily custom-
izable Python-based modular pipeline for antibody design and
optimization. This easy-to-use pipeline works in iterative
cycles. In each cycle, modifications to the antibody sequence
are introduced, the new sequence is modeled, followed by a
minimization of the resulting Ab-Ag complex structure. The
evaluation of the proposed modification uses either the CSM-
AB or the REF1S scoring functions, combined with either the
Metropolis criterion or two other possible modes for
approval."”

In its default mode of operation, Ab-SELDON begins with a
rough optimization of the starting Ab-Ag interaction through
three different CDR grafting steps, using naive antibody
sequences taken from the Observed Antibody Space (OAS)
database.'® Tt then fine-tunes the interaction through a
mutagenesis step and a final framework swap step, both
based on data from memory antibody sequences in OAS.
Olsen et al. have previously demonstrated the importance of
utilizing memory antibody data for optimization tasks in order
to avoid germline bias and emphasize mutations that improve
affinity and specificity toward desired antigens.'’

Users can select the steps they wish to execute and the order
in which they are performed. To improve the exploration of
the antibody conformational space and optimization efficiency,
Ab-SELDON probabilistically selects, in each cycle, a CDR for
modification based on the relative diversity of the six CDRs
calculated from OAS sequences.

This optimization process allows for extensive exploration of
the chemical and conformational space of the antibody variable
region, including the framework, resulting in a comprehensive
and easily customizable antibody design pipeline.
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2. METHODS

All third-party software tools were executed with default parameters,
unless explicitly specified otherwise. A table summarizing the
nomenclature of the different modules/steps and data sets used by
the pipeline can be found on the Supporting Information (Table S1).

2.1. Antibody Diversity Analysis and Sequence Data Sets

2.1.1. Collecting and Filtering Sequences. To optimize the
antibody modification process in Ab-SELDON, we collected diversity
data from millions of experimentally determined unpaired antibody
sequences in the Observed Antibody Space database,'® excluding
sequences missing any CDRs and those from unhealthy human
donors. The concept of diversity has been 2p1‘ev1ously applied to other
studies about the antibody repertoire.*’

2.1.2. Categorizing Sequences. The sequences were divided by
chain and further into two subgroups: those produced by naive B
cells, and by memory B cells. Sequences of IgM antibodies were
excluded from the memory group because th1s isotype is generally
associated with low specificity and low affinity.”® Each of these groups
was clustered at 95% identity using Linclust to eliminate
redundancies, and ANARCI was used to number the sequences
with the Martin scheme and determine their germline.m_26

2.1.3. Determining the Gamma Diversity of CDRs. To
quantify the comparative diversity of each CDR, we applied the
concept of y diversity, which measures the total diversity across an
entire population.””>"*” In this context, each CDR type was treated as
a distinct population, defined by the complete set of its observed
sequences. More details about this procedure can be found in the
Supporting Information.

2.1.4. Determining the Alpha Diversity of CDR Positions. To
quantify the variability within individual positions of each CDR of
memory antibodies, we applied the concept of a diversity, which
measures the average diversity within individual subgroups of a
population®”*"*’—in this case, specific sequence positions within
CDRs of defined length and type. More details about this procedure
can be found in the Supporting Information.

2.1.5. Analyzing Framework Regions. Similarly to the CDRs,
the o diversity of each framework position was calculated to identify
the least conserved positions within the germline V region. The
mutation frequencies of each of these positions in the memory
antibodies were determined by aligning the sequences to their
corresponding IMGT germlines using AbAlign.”>*’ Analyses were
repeated with the Murphy10 reduced amino acid alphabet to identify
framework positions tolerant to class-changing mutations, such as
SER to GLU.>**' More details are available in the Supporting
Information.

2.1.6. Building Optimization Data Sets. After these analyses,
we used the framework and CDR sequence data sets as the basis for
the new data sets that Ab-SELDON uses in its different optimization
steps. The first is a Naive OAS CDR sequence data set (N-CDR),
clustered at 40% identity to produce a much smaller but diversified
pool of 1,129,369 sequences, enabling a broad paratope chemical
space exploration with less epitope bias than memory antibody
sequences.

The other data set is used by Ab-SELDON in the optimization of
framework regions, which can significantly improve antigen binding.32
The Memory Framework data set (Me-FWK) comprises all 335,145
memory sequences from healthy donors. Its Mutated Framework
subset (Mu-FWK) includes 231,932 sequences, all with at least four
framework mutations compared to the IMGT germline, c0n51stent
with the minimum found in FDA-approved antibodies.*® In this
subset, at least one mutation must be in a less conserved position
impacting CDR conformation or the VH-VL angle, such as the

Vernier regions or chain interface (Table $2).>**%*

2.2. Optimization Pipeline Description

2.2.1. Pipeline Overview. Starting from an input Ab-Ag complex
and an antibody FASTA sequence, the Ab-SELDON pipeline
optimizes the antibody through iterative modification cycles (Figure
1A). Each cycle involves probabilistically selecting a modification site,
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Figure 1. (A) Basic Ab-SELDON modification cycle performed in the CDR grafting and mutagenesis steps, assuming the use of the Metropolis
Criterion for the approval or rejection of mutations. (B) Ab-SELDON’s default order of modification steps.

altering the antibody sequence, modeling the modified antibody, and
scoring the modified Ab-Ag complex. Although Ab-SELDON requires
a starting Ab-Ag complex structure, this input can originate from
either experimental data (e.g, in affinity maturation scenarios) or
computational methods such as docking or modeling, as is commonly
done in de novo antibody design. The starting structure is not
required to follow any particular antibody numbering scheme.

2.2.2. Ab-SELDON Modification Cycle. By default, the program
uses the diversity values of each CDR or position to determine the
probability of a site being selected for modification, but users can set
custom probabilities.

Then, a modification is chosen for that site using data sets of
possible CDR sequences or mutations, with the specific data set
depending on the current optimization step. The data sets used in the
CDR grafting steps come from naive antibodies, while the
mutagenesis and framework optimization steps use data from memory
antibodies, mimicking V(D)J recombination and somatic hyper-
mutation, respectively.

The modified sequence is modeled using ImmuneBuilder’s
ABodyBuilder2.*® The resulting model is then aligned to the complex
using PyMOL, replacing the previous antibody.’” This is done to
preserve the starting Ab-Ag interaction pose and reduce the
computational cost of each cycle. The modified complex is subjected
to an energy minimization using the Amber suite and scored using
either CSM-AB or Rosetta’s REF1S5 scoring function, depending on
the user’s choice.”*™*

The well-established REF1S energy-based score is the default,
because of its low computational cost and for having the highest
accuracy for Ab-Ag evaluations among physics-based scoring
functions, as shown in a previous benchmark.*"** As an alternative,
CSM-AB—a machine-learning-based method that builds upon earlier
models such as mCSM-AB, mCSM-Ab2, and mmCSM-AB—offers
higher accuracy than physics-based scorers but is slower, as it is
accessed through a web server via an APL*® Further details of these
modeling, minimization and scoring procedures can be found in the
Supporting Information.

Based on the score of the new complex, the proposed modification
is either accepted (with the modified antibody becoming the basis of
the next cycles) or rejected using the Monte Carlo Metropolis
criterion by default.'” However, two stricter criteria are implemented,
approving only mutations that decrease the predicted interaction
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energy or those that reduce it by a user-customizable minimum
threshold.

2.2.3. Pipeline Optimization Steps. Users can allocate the
modification cycles across five modular optimization steps, each
targeting different aspects of the antibody optimization process. By
default, the pipeline runs all five modules in a sequence that mirrors
the biological progression from V(D)J recombination to somatic
hypermutation in both CDRs and framework regions. However, users
can run any number of modules in any order. This involves adjusting
the pipeline’s configuration file, which also allows customization of
numerous settings, most with predefined defaults (Figure 1B).

Before the start of the optimization process, a preparation step is
run, which models the input antibody sequence and uses the resulting
model to replace the antibody structure in the input Ab-Ag complex.
This complex is used to calculate the score of the initial antibody.
Additionally, this script also uses ANARCI to determine the V
germline of the starting antibody and to number the sequence with
the Martin scheme. The Martin scheme was chosen for its accuracy in
tasks involving antibody structures, and was used as reference to
define the CDR and DE loop regions.**

2.2.3.1. CDR H3 Grafting. By default, the initial optimization step is
CDR H3 grafting, as this CDR is typically the most variable and
crucial for Ab-Ag interactions.**** In this module, naive CDR H3
sequences from the previously described N-CDR data set are grafted
onto the antibody. Based on the user-selected mode, it either tests H3
sequences of similar length to the starting antibody (default) or tests
H3 sequences of any length present in the data set, either randomly or
weighted by a distribution of CDR H3 lengths derived from the N-
CDR data set.

2.2.3.2. Grafting Representatives of Canonical Conformations of
Non-H3 CDRs. Next comes the grafting of sequences representing the
53 canonical conformations of non-H3 CDRs from the PyIgClassify 2
database. The sequences were obtained from the median antibody
structure of each canonical conformation, as specified in PyIgClassi-
fy2. When the median antibody was not human, the sequence was
taken from the human antibody with the lowest dihedral distance
from the median structure.* As the PylgClassify2 database uses the
AHo numbering scheme to define the CDR regions, this step uses
expanded CDR definitions that fit this database’s sequences for the
grafting process (Table S3).

These 53 canonical representative sequences are iteratively grafted,
modeled and scored. If a candidate conformation is accepted, it

https://doi.org/10.1021/acs.jcim.5c01924
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becomes the new reference, and the remaining alternatives are
retested against this updated model. This cycle continues until none
of the other 52 canonical structures yield further improvement. For
CDRs H2 and L1, the DE loop is also cografted due to its impact on
their conformation.*>*” This ensures that the influence of a CDR’s
conformation on neighboring loops*® is taken into account and allows
a comprehensive exploration of the CDRs’ conformational space
within a limited number of cycles.

2.2.3.3. Grafting of Non-H3 Naive CDR Sequences. With the
optimal paratope conformation chosen, the antibody undergoes a final
grafting step where naive sequences from the N-CDR data set are
grafted onto non-H3 CDRs. By default, only CDR sequences that
belong to the same V germline as the starting antibody and that, upon
modeling, adopt the same conformation selected in the previous step
will be tested. Whenever CDR H2 or L1 is chosen for grafting, the DE
loop is also cografted. These constraints allow a greater exploration of
the plausible chemical space for that same conformation. However,
these germline and conformational requirements can be optionally
disabled.

To simulate insertions and deletions, a customizable probability is
used to determine whether the tested sequence will have either the
same length, one more residue, or one less residue than the initial
CDR, with default probabilities based on a previous study.*’

2.2.3.4. Mutagenesis. After all CDR grafting steps, by default, a
mutagenesis step module introduces point mutations. The site of the
mutation and the new residue are chosen based on diversity data from
memory antibodies, although a random mutagenesis option exists.
Mutations altering CDR conformation are avoided, unless the user
permits them.

2.2.3.5. Framework Grafting. In the final antibody modification
step, the goal is to mature the non-CDR regions, since mature
frameworks are associated with antibodies of higher affinity and
specificity.*>***° The two chains of the antibody are aligned with the
user-chosen set of memory framework sequences (Me-FWK data set
or Mu-FWK subset) using BLAST to identify the closest matches.”"
Hybrid antibodies are then generated, comprising one chain with a
new mature framework and another with the original framework,
while keeping the optimized CDRs. By default, only modifications
preserving the paratope conformation are permitted.

The mature chains of these hybrids are combined to produce fully
“mature” antibody variable regions, rechecking paratope conforma-
tions. Upon complex assembly, minimization, and scoring, the
antibody with the lowest interaction energy is considered optimized
and delivered as the final output if it improves upon the pre-
framework graft antibody. Otherwise, the pre-framework graft
antibody is delivered as the final output.

2.3. Pipeline Testing

2.3.1. Evaluation of Scoring Protocol with SKEMPI. We
evaluated the scoring protocol of the pipeline (comprising modeling,
minimization, and scoring) using mutations documented in the
SKEMPI 2.0 database.’® More information about the composition of
this data set is available in the Supporting Information. We
benchmarked the performance of Ab-SELDON’s default scoring
function (REF1S) with other state-of-the-art, deep-learning-based
metrics. For this, in addition to REF13, a series of metrics calculated
by AF3Score (pLDDT, pTM, iPTM, PAE and PAE Interaction)*’
and ipSAE (ipSAE, pDockQ and pDockQ2)** were used to evaluate
mutated and wild-type structures produced by two approaches: the
Ab-SELDON protocol, and a baseline protocol. AF3Score was used to
apply AlphaFold 3 confidence metrics to these input structures
without remodeling or altering their conformations. The REF15
predictions resulting from these two approaches were also compared
using increasingly strict thresholds for approval of mutations.

In the Ab-SELDON approach, the mutations were applied to the
antibody FASTA sequences, followed by structural modeling and
alignment to the complex using the previously detailed protocol
(Figure 1A). The wild-type antibodies were also subjected to the
same protocol, allowing a better comparison of the changes predicted
by the scoring functions.
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For the baseline approach, we also performed an independent
analysis using PyMOL'’s mutagenesis wizard to introduce mutations
directly onto the PDB-originated structures of the antibody—antigen
complexes while preserving the original conformations and packing of
the other residues. Both the wild-type and mutant structures were
then evaluated by the scoring functions. This provided a baseline
measurement of their predictive accuracy, isolated from perturbations
introduced by modeling, alignment, and energy minimization.

Mutations were classified as correctly predicted if increased affinity
in SKEMPI corresponded to a predicted improvement by the scoring
function, like a decreased REF1S interaction energy or increased
pLDDT, and vice versa. We also tested the performance of consensus
metrics, where two scoring functions had to approve the mutation,
leading to its rejection otherwise.

For the 40 mutations with available AAH data, we assessed the
correlation between the experimental AAH and the change of the
values predicted by REF1S, AF3Score and ipSAE using Ab-
SELDON’s protocol. All tests with this protocol were conducted in
quadruplicate to account for variations introduced by the modeling
and minimization processes.

2.3.2. Comparison of Diversity-Guided and Random
Optimization. We assessed whether using antibody diversity data
could enhance the optimization process by comparing results from
diversity-guided modifications to those from random modifications.
Trastuzumab, a humanized antibody used for treating stomach and
breast cancers,”*® served as the modification starting point.

2.3.2.1. Optimization Setup and Execution. The optimization
runs were based on PDB structure 1N8Z.”” We conducted 16
optimization runs, equally divided between using and not using
diversity data for modification selection, with all other parameters set
to default and REF1S as the scoring function. More details of this
procedure are available in the Supporting Information.

2.3.2.2. Quantifying Conformational Diversity. Each output
structure from the optimization runs was compared within its group
(diversity with diversity, random with random) to evaluate the
conformational variation achieved by each approach. To quantify the
structural differences, we used FP-Zernike to calculate the Euclidean
distance, where higher distances indicated greater structural
divergence between each pair of antibody structures within each
group.”® This comparison was done using the “protein mesh (PM)”
representation option.

2.3.3. Evaluation of Antibody—Antigen Interaction Stability
before and after Optimization. We sought to evaluate Ab-
SELDON’s ability to enhance interactions with a target epitope in a
more challenging design task, where neither the antigen nor the
starting antibody had a crystallized structure on the PDB. For this, we
redesigned a pre-existing antibody to interact with cancer-related
protein Galectin-3 binding protein (Gal-3BP) and utilized heated
molecular dynamics (hMD) simulations to assess the stability of the
Ab-Ag interaction pre- and post-optimization. This protocol has
proven effective in differentiating between real and decoy Ab-Ag
complexes.””° More information about how this method was applied
in this work can be found in the Supporting Information.

The antibody and antigen models were docked using the blind
docking server ClusPro with its specialized antibody mode activated,
allowing the %eneration of a variety of plausible starting poses for
optimization.®' ®® Representative complexes of the highest-scoring
clusters underwent hMD simulations. The pose whose interface
RMSD stayed below the 5 A threshold the longest was selected for
optimization. This pose was also compared with structures produced
by AlphaFold 3."* After optimization with Ab-SELDON, the final Ab-
Ag complex was assessed via hMD simulations, done with four
replicates.

We also sought to compare Ab-SELDON’s performance with
other, currently available pipelines. For this, the same complex
submitted as input to Ab-SELDON was also submitted as input for
Rosetta Antibody Design, and the diffusion-based RFantibody. The
pipelines were compared in their ability to stabilize an Ab-Ag
complex, and their computational performance. All three pipelines
were run using their default settings. For the computational

https://doi.org/10.1021/acs.jcim.5c01924
J. Chem. Inf. Model. 2026, 66, 1895—1905



Journal of Chemical Information and Modeling

pubs.acs.org/jcim

performance test, each step of Ab-SELDON was executed
independently to determine its runtime. More details of these
optimization runs are available in the Supporting Information.

3. RESULTS AND DISCUSSION

3.1. CDR Gamma Diversity Analysis Reveals Enrichment of
CDRs L1 and H2 upon Maturation

The OAS antibody sequence collection and filtering produced
two heavy-chain data sets (naive: 6,509,559 sequences;
memory: 730,219 sequences) and two light-chain data sets
(ne{fve: 4,994,546 sequences; memory: 332,331 sequences).
From these data sets, we quantified and compared the y
diversities of all human antibody CDRs in different maturation
states (Table S4). This analysis revealed that CDR3 exhibited
the highest variability in both chains and maturation states,
which was expected since it originates from multiple gene
segments during V(D)]J recombination (Figures S1C and S2).
In agreement with Glanville et al., we found that CDRs H2 and
L1 showed greater diversity than H1 and L2, respectively.®*
This pattern was observed in both the naive (Figure S1A,D)
and memory antibody data sets (Figure S1B,E).

Interestingly, comparing the naive and memory data sets, the
diversities of CDRs H2 and L1 seemed enriched compared to
the other CDRs from their respective chains after the
maturation process. The ratio between the diversities
(Dcprj:Depra:Deprs) of the light chain CDRs was 25:1:675
in naive antibodies, compared to 29:1:143 in memory
antibodies, while in the heavy chain, the ratios were
approximately 1:2:1,020,356 in naive antibodies, and 1:6:377
in memory antibodies.

The higher diversity and further enrichment observed in
CDRs H2 and L1 upon maturation suggest that these CDRs
are particularly important for antigen binding and recognition.
This aligns with a computational study analyzing antibody
structures from the PDB, which concluded that CDRs H2 and
L1 play a greater role in antigen recognition than CDRs H1
and 1L2.%°

The enrichment of these CDRs post-maturation is likely due
to the greater variety of lengths previously reported for these
CDRs compared to the other (non-H3) CDRs in their
respective chains, allowing a wider variety of SHM-induced
mutations and indels.*>*® Indeed, a recent phage display study
observed a 20-fold improvement in binding affinity after
varying the lengths of CDRs H2 and L1.

Therefore, these results suggest that CDRs H2 and L1
should receive more attention in computational antibody
optimization processes, especially during optimization steps
analogous to somatic hypermutation.

3.2. Antibody Optimization Tests

3.2.1. REF15 is Competitive with AF3-Based Metrics
and Superior for Multipoint Mutations. We benchmarked
Ab-SELDON’s default scoring function (REF15) against state-
of-the-art AlphaFold 3-based metrics, along with hybrid
metrics based on the consensus of more than one scorer.
This was done using 551 antibody—antigen mutations from the
SKEMPI database. Across all mutations, REF1S5 had a lower
Fl-score (0.40), but achieved the highest accuracy for affinity-
increasing mutations (61.6%) compared to ipSAE (60.6%) and
pLDDT (60.2%) (( Table S5).

However, pLDDT performed better for the complete set of
mutations and the subset of affinity-decreasing mutations
(62.1% vs 53.8%), yielding the highest overall F1-score (0.43)
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(Table SS). A consensus between REF1S and pLDDT further
improved rejection of nonbeneficial mutations (81.2%
accuracy for affinity-decreasing cases), albeit at reduced
sensitivity to beneficial ones (40.3%), achieving a slightly
lower Fl-score than pLDDT alone (0.41).

For the subset of 161 multipoint mutations, REF1S achieved
the highest Fl-score among all metrics (0.49 vs 0.47 for
pLDDT), balancing improved accuracy for affinity-increasing
mutations (70.7% vs 60.0% for ipSAE) with comparable
accuracy for affinity-decreasing ones (Table S6). When
applying a —2 REU threshold for approval on this subset,
REF15’s Fl-score increases further (0.50) (Table S7), with the
affinity-increasing accuracy remaining equal to the best among
AF3-based metrics (60% for both REF1S and ipSAE).
Additionally, this threshold made the affinity-decreasing
accuracy become better than all other metrics but pDockQ
(77.9% vs 84.7%), which had the worst affinity-increasing
accuracy (41.4%) (Table S6). As in the full data set, the
REF15/pLDDT consensus showed the best rejection of
nonbeneficial mutations (91.5% accuracy) but reduced
detection of beneficial ones (45%) (Table S6).

For the 40 mutations with available AAH data, REF15’s
predicted interaction energy changes showed a moderate
correlation with experimental values (r = 0.57) (Figure S3A),
slightly lower than those of pLDDT (r = —0.69) and ipSAE (r
—0.60) (Figure S3B,C). However, Ab-SELDON’s binary
approval/rejection strategy should reduce this limitation,
particularly for modifications that cause large structural
changes, such as CDR grafting. Additionally, REF1S had the
best correlation for affinity-increasing mutations and was
second only to pLDDT for affinity-decreasing cases (Figures
S4A and SSB).

Overall, when comparing the pipeline’s default scoring
function (REF1S) with AlphaFold 3-based metrics, we
observed that while it had a somewhat inferior performance
to pLDDT and ipSAE when evaluating all mutations in
aggregate, REF1S was substantially superior for the subset of
multipoint mutations. This is particularly important, consider-
ing Ab-SELDON’s emphasis on large-scale modifications on
the antibody, like CDR and framework grafting.

Additionally, the calculation of REF1S has a much lower
computational cost than the alternative metrics tested,
requiring less than 2 s per structure on a CPU, compared to
~46 s on an NVIDIA RTX 4090 GPU for AF3Score, which
also depends on a >620 GB local AlphaFold database.
Nevertheless, a future implementation of AF3Score’s pLDDT
calculation on Ab-SELDON can become an advantageous
alternative scoring method for the mutagenesis step.

3.2.2. Ab-SELDON’s Scoring Protocol Improves
Identification of Affinity-Increasing and Multipoint
Mutations. We compared Ab-SELDON’s scoring protocol
with a baseline approach using data from SKEMPI, assessing
their ability to approve affinity-improving mutations and reject
affinity-decreasing ones. Both used REF1S as the scoring
function.

Across all 551 antibody—antigen mutations, Ab-SELDON’s
protocol performed slightly worse overall than the baseline
(56% vs 67%) (Tables S8 and S9). However, within the 132
affinity-increasing cases, Ab-SELDON substantially outper-
formed the baseline (62% vs 44%). Furthermore, Ab-SELDON
was able to correctly classify more than 50% of both affinity-
increasing and affinity-decreasing mutations, a balance that the
baseline method failed to achieve under any threshold and
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Figure 2. Comparison of Clus2 complex with (A) all AF3 complexes, and with (B) only the best AF3 complex. Antigen (gray), AF3 poses (cyan,
green, salmon, magenta and yellow), and ClusPro pose (dark blue); iRMSD of the optimized antibody-Gal-3BP complexes during hMD replicates
produced by (C) Ab-SELDON, (D) Rosetta Antibody Design, and (E) RFantibody.

which is reflected in its lower Fl-scores. This difference
became more pronounced with stricter approval thresholds.

For multipoint mutations, the baseline approved less than
30% of affinity-increasing mutations, while Ab-SELDON’s
protocol not only increased its accuracy for these mutations to
71%, but also improved its identification of affinity-decreasing
mutations to 67% (Tables S7 and S10). The baseline’s
accuracy imbalance on the classification of the two types of
mutations resulted in its substantially lower Fl-scores and
worsened sharply with the stricter approval thresholds. In
contrast, Ab-SELDON’s accuracy and Fl-score remained
stable or improved slightly up to the —2 REU threshold
(Table S7). Therefore, by tuning the approval threshold, users
can emphasize detection of either affinity-increasing or affinity-
decreasing modifications while preserving overall classification
balance and performance.

Taken together, this suggests that Ab-SELDON’s modeling
and minimization protocol better captures post-modification
conformational changes that enable improved Ab-Ag inter-
actions, though it has difficulty identifying detrimental
mutations that cause steric clashes. An improved performance
for both types of mutations was observed when evaluating
multipoint mutations, showing the protocol’s ability to cope
with larger-scale changes to the antibody.

While these results suggest that Ab-SELDON’s protocol for
modeling and scoring mutations has a similar or superior
performance when compared to a baseline approach, its
performance remains constrained by the accuracy of existing
scoring functions, including REF1S and even more modern
deep-learning-based metrics. This limited success may stem
from the higher flexibility inherent to Ab-Ag interactions,
which can be difficult to account for when scoring static
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structures.*>°® This could lead to beneficial mutations getting

rejected and detrimental ones getting approved during
optimization.

However, the scoring protocol was able to accurately
evaluate the effectiveness of a majority of proposed mutations,
especially multipoint and those that improve binding affinity,
with this effect being more pronounced when using a stricter
threshold for approval. Therefore, it is expected that, after a
sufficient number of modification cycles, Ab-SELDON’s
optimization process should lead to a net improvement of
the Ab-Ag interaction.

3.2.3. Diversity-Guided Optimization Leads to More
Conformationally Diverse Antibodies. To assess the
performance of the pipeline in antibody optimization tasks,
we applied Ab-SELDON to further optimize trastuzumab, a
humanized monoclonal antibody that targets the Human
Epidermal Growth Factor Receptor 2 (HER2). Overexpression
of HER2, involved in signaling pathways that drive cell
proliferation, has been reported in several malignancies,
including breast, lung, and gastric cancers.”” Anti-HER2
antibodies such as trastuzumab have been successfully used
to treat HER2-positive tumors by promoting receptor
internalization and degradation.”” Owing to its clinical
relevance and extensive structural characterization, trastuzu-
mab has also served as a test case in multiple antibody design
studies.”' 7

In the optimization trials performed in this study, between
525 and 608 cycles were executed per run, due to the variable
number of cycles in the representative CDR grafting step.
These runs took between seven and 12 hours to complete.

We plotted the Ab-Ag interaction energy from trastuzumab
modifications approved throughout all runs. In the modifica-
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tion steps where the diversity data could influence the
modification selection process (representative and OAS CDR
grafting, and mutagenesis), the diversity-guided runs saw, on
average, slightly lower final interaction energy values and a
slightly higher total number of modifications approved than
randomized ones (146 for diversity versus 118 for random)
(Figures S6 and S7). In this example, the framework grafting
step resulted in no approved modifications, likely because
trastuzumab’s framework regions, with 27 pre-existing
mutations, were already near-optimal.”’

To assess whether a diversity-guided approach enhances the
conformational exploration of the antibody, each output
structure from optimization runs was compared within its
group (diversity with diversity, random with random). Results
indicated that structures from diversity-guided modifications
had significantly higher Euclidean distances, compared to
randomized modifications (average values of 1.7 and 1.3 for
diversity and random runs, respectively, p = 0.004). This
suggests that a broader exploration of the antibody conforma-
tional space was achieved by the diversity-guided approach
(Figure S8).

3.3. Ab-SELDON Improves Antibody—Antigen Interaction
Stability at Lower Computational Cost

To evaluate Ab-SELDON, RAbD, and RFantibody in cases
with limited structural information, the pipelines were used to
optimize an anti-Gal-3BP antibody, starting from modeled
antibody and antigen structures docked together. Gal-3BP is a
soluble protein with a regulatory role in the immune system.”®
Its overexpression is associated with a poor prognosis for many
types of malignancies, including breast and lung cancers, where
it is involved in numerous pro-tumoral mechanisms, like
angiogenesis, migration, adhesion, motility, and immune
response. This has led to the identification of Gal-3BP as a
promising target for inhibition by immunotherapeutics.”’

Because predicting antibody—antigen affinity from static
structures remains challenging,”” we assessed pre- and post-
optimization Ab-Ag interaction stability using heated molec-
ular dynamics (hMD) simulations (details in Supporting
Methods). In all simulations of the initial antibody-Gal-3BP
complexes produced by ClusPro, the iRMSD exceeded S A,
particularly at higher temperatures. However, one complex,
Clus2, maintained iRMSD below 5 A for longer and at higher
temperatures than the alternatives and was considered the
most promising for optimization (Figure S9).

To further assess this starting structure, we compared it
against models generated by AlphaFold 3 (AF3). Notably, AF3
predictions broadly agreed with the Clus2 binding region, with
four out of five models targeting the same functional domain
(Gal-3BP BTB/POZ domain, which mediates oligomerization,
among other functions’®) as ClusPro (Figure 2A,B). While this
domain-level agreement reinforced the biological plausibility of
the Clus2 pose as a robust starting point for refinement, the
specific epitopes differed and the AF3 models themselves were
assigned low confidence scores (best model: ipTM = 0.26;
pTM = 0.51; ipSAE = 0.08). Therefore, the Clus2 complex was
selected as the starting point for the optimization process,
which was done using the default settings for all pipelines,
including diversity-guided modifications for Ab-SELDON. The
optimized complexes were then compared using new hMD
simulations.

In the case of Ab-SELDON, the simulations revealed that
the optimized antibody exhibited more stable interactions with

1901

the antigen. Notably, except for a brief spike at 330 K, the
iRMSD of replicate 1 (S-Rep1) stayed below S A, even at the
highest simulation temperatures (Figure 2C). Considering that
Ab-Ag interface stability has been previously correlated with
higher afﬁnity,79 these results indicate that Ab-SELDON was
able to effectively optimize the antibody paratope to stabilize
the Ab-Ag interface, even after starting from modeled antibody
and antigen structures.

The antibody optimized by RAbD also exhibited improved
stability, with R-Rep3 remaining below S A throughout the
simulation, though R-Repl destabilized at high temperature,
reaching 9.67 A (Figure 2D). In comparison, Ab-SELDON’s
least stable replicate (S-Rep3) peaked at 8.46 A but partially
recovered by the end.

None of the antibodies generated by RFantibody remained
stable over the course of the simulations (Figure 2E), with
replicate 2's (RF-Rep 2) iRMSD crossing the S A threshold
within the first 10 ns and rapidly increasing throughout the
simulation, suggesting a destabilization of the complex. These
observations suggest that optimization by RFantibody did not
substantially improve antibody—antigen interaction stability.
We also compared the computational performance of the
different pipelines (Table S11). Normalized per modification
cycle (or structure for RFantibody), Ab-SELDON completed
one cycle in 62.2 s, compared to 100.7 s for RAbD and 400 s
for RFantibody, representing 38.2% and 84.4% shorter
runtimes, respectively. Within Ab-SELDON, the CDR grafting
and mutagenesis steps took similar times per cycle, while the
framework step was slower (101.1 s/cycle), due to additional
modeling events.

Together, these results demonstrate that Ab-SELDON
achieves comparable or superior stabilization of antibody—
antigen complexes while operating with lower computational
cost than existing antibody design pipelines. Although
activating docking in RAbD or increasing structure generation
in RFantibody could improve their performance, such changes
would substantially increase runtime.

4. CONCLUSION

The increasing significance of monoclonal antibodies in
treating cancers, infectious diseases, and autoimmune disorders
has driven the demand for user-friendly and computationally
efficient in silico antibody design tools. In this context, our
proposed Ab-SELDON pipeline, designed for modularity and
ease of use, employs a diversity-driven approach to optimize
antibody structures, leveraging human antibody sequence and
conformational variability data to enhance Ab-Ag interactions.
By integrating ABodyBuilder2, a modern deep-learning-based
modeling tool, with Amber’s GPU-based energy minimization
feature, Ab-SELDON is able to accurately generate and
evaluate modified antibody structures. For a small antigen,
each modification cycle takes under 1 min on a laptop GPU
(NVIDIA RTX 3060 Mobile) and approximately 30—40 s on a
workstation GPU (NVIDIA RTX A6000).

During trastuzumab optimization testing, Ab-SELDON’s
diversity-guided modifications achieved slightly lower Ab-Ag
interaction energies and produced more conformationally
diverse antibodies compared to randomized modifications.

Additionally, tests using SKEMPTI’s experimentally measured
Ab-Ag mutations indicated that Ab-SELDON’s modeling and
minimization protocol accurately predicted the effects of the
majority of mutations, especially multipoint and those that
increased affinity. The pipeline’s default scoring function
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(REF1S) was also shown to have a competitive performance
when compared to state-of-the-art metrics based on deep
learning, and at a far lower computational cost.

The performance of the pipeline was also compared with
currently available alternatives, both classic (Rosetta Antibody
Design) and diffusion-based (RFantibody), by comparing their
ability to improve an initially unstable complex produced
through modeling and docking of the Ab and Ag structures.
Heated molecular dynamics of the optimized complexes
showed that Ab-SELDON was able to produce similar or
better results at a lower computational cost than the
alternatives. These results demonstrate Ab-SELDON’s ability
to efficiently design antibodies with improved predicted
interaction energy and stability against target antigens, proving
its utility in antibody engineering.

The pipeline’s performance and accuracy are limited by the
currently available scoring functions and by the low availability
of data on human memory antibodies (relative to naive
antibodies) on OAS. However, the modular nature of the
pipeline’s algorithm simplifies the integration of future tools
that can improve it in these areas. Planned upgrades include
the integration of DL-based scoring functions, such as
AF3Score’s pLDDT and ipSAE, that can more accurately
evaluate antibody mutations, albeit at an increased computa-
tional cost; and of an antibody-specific Language Model with
low germline bias that can favor mutations that lead to higher
affinity and specificity, such as AbLang-2."”
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The source code, optimization data sets and user instructions
are freely available at https://github.com/SFBBGroup/Ab-
SELDON. The testing data is available at 10.5281/zenodo.
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