
                          

LETTER

Improved ring approximation for the free energy in
thermal scalar field theory
To cite this article: F. T. Brandt et al 2014 EPL 105 51001

 

View the article online for updates and enhancements.

You may also like
Non-Hermitian quantum dynamics and
entanglement of coupled nonlinear
resonators
Evren Karakaya, Ferdi Altintas, Kaan
Güven et al.

-

Universal monomer dynamics of a two-
dimensional semi-flexible chain
Aiqun Huang, Ramesh Adhikari, Aniket
Bhattacharya et al.

-

Triple Higgs boson production at the high-
energy Photon Linear Collider in the Higgs
triplet model
Jie-Fen Shen and Yan-Ping Bi

-

This content was downloaded from IP address 143.107.135.170 on 07/07/2022 at 19:47

https://doi.org/10.1209/0295-5075/105/51001
/article/10.1209/0295-5075/105/40001
/article/10.1209/0295-5075/105/40001
/article/10.1209/0295-5075/105/40001
/article/10.1209/0295-5075/105/18002
/article/10.1209/0295-5075/105/18002
/article/10.1209/0295-5075/105/41001
/article/10.1209/0295-5075/105/41001
/article/10.1209/0295-5075/105/41001


March 2014

EPL, 105 (2014) 51001 www.epljournal.org
doi: 10.1209/0295-5075/105/51001

Improved ring approximation for the free energy in thermal scalar
field theory

F. T. Brandt, J. Frenkel and J. B. Siqueira

Instituto de F́ısica, Universidade de São Paulo - São Paulo, SP 05315-970, Brazil

received 16 January 2014; accepted 24 February 2014
published online 17 March 2014
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Abstract – In a d-dimensional field theory at finite temperature T , with a g2φ4 interaction, we
compute the contributions to the free energy in the ring approximation. These are calculated in
a consistent manner, by evaluating the thermal self-energy ΠT in a similar approximation. The
complete result can be expressed in closed form in terms of the Haber and Weldon functions
hd+1(

√
ΠT /T 2). This result exhibits, to leading order, a non-analyticity in the coupling constant

of the form (g2)(d−1)/2 or logN(g2) when d is even or odd, respectively.

Copyright c© EPLA, 2014

It is well known that the occurrence of infrared singu-
larities in field theories at finite temperature leads to a
breakdown of the usual perturbative series [1,2]. Then,
it is necessary to perform a resummation of the ther-
mal loops, which yields an effective action allowing for
a consistent perturbative expansion [3,4]. This problem
has been further studied in the context of the free en-
ergy in 4-dimensional field theories, where the infrared
divergences induce non-analiticities in the calculations at
higher loop order [5–11]. The scalar φ4 model provides
a simple context to study this and other important as-
pects of field theories at finite temperature, such as the
nature of phase transitions [12]. Moreover, this model is
also relevant in d �= 4 space-time dimensions. For exam-
ple, in lower dimensions, the d-dimensional Ising model is
described, close to its critical point, by the φ4 action [13].
On the other hand, in higher dimensions, such scalar theo-
ries exhibit some interesting similarities to gauge theories
like QCD [14] and quantum gravity [15,16].

The purpose of this letter is to evaluate, in the
d-dimensional g2φ4 theory at finite temperature T , the
contributions to the free energy which arise from the set
of ring diagrams shown in fig. 1. To this end, we find con-
venient to employ the imaginary time formalism, where
the energies take the discrete values ωl = 2πlT [1,2,17].
Furthermore, we assume that T is much greater than the
zero temperature mass, which we consequently neglect.
The set of ring diagrams contains the leading infrared di-
vergent contributions to the free energy, which come from
the static mode l = 0 [18]. In consequence of this behavior,
the complete result which arises from the summation over
all Matsubara modes involves non-analytic contributions

.  .  .

Fig. 1: Ring diagrams in the φ4 model. Small blobs represent
the thermal self-energies of scalar particles.

in the coupling constant. This result can be expressed
in closed form (see eqs. (11)–(13)) in terms of the func-
tions hd+1(

√
ΠT /T 2) discussed by Haber and Weldon [19].

Here ΠT denotes the thermal self-energy of the scalar par-
ticle which will be evaluated to higher orders in a consis-
tent approximation. Assuming that ΠT /T 2 � 1, these
functions can be expanded in a power series, which leads
to the expressions given in eqs. (16) and (18). As can be
seen from eq. (16), when d = 2n is even, the free energy
exhibits a leading non-analyticity in the coupling constant
of the form (g2)n−1/2. On the other hand, when d = 2n+1
is odd, we can see from eq. (18) that the non-analyticity
is logarithmic, being to leading order of the form log(g2).
An exception occurs for d = 3 (n = 1), when the leading
non-analyticity is of the form log2(g2).

In the following, we will compute the contributions to
the free energy which are generated by the class of ring
diagrams in fig. 1. The first diagram, which corresponds
to the free boson gas in d space-time dimensions, gives

Ω0(d) = V

∫
dd−1p

(2π)d−1

[
|�p |
2

+ T log
(
1 − e− |�p |

T

)]
. (1)
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Fig. 2: Thermal self-energy ΠT in the chain approximation.

The sum of the contributions to the free energy coming
from all other ring diagrams of fig. 1 may be written
as [1,2]

Ωr(d) =
V T

2

∞∑
l=−∞

∫
dd−1p

(2π)d−1

× log

[
1 +

ΠT

(2πlT )2 + |�p |2
]
, (2)

The thermal self-energy ΠT can be determined in a way
consistent with the ring approximation, from the equation

ΠT =
g2

2
T

∞∑
j=−∞

∫
dd−1k

(2π)d−1

1

ω2
j + |�k|2 + Π1

T

, (3)

where

Π1
T = g2T d−2 Γ(d − 2)ζ(d − 2)

(4π)
d−1
2 Γ

(
d−1
2

) . (4)

is the thermal self-energy at one loop order. Here Γ and
ζ denote, respectively, the gamma and zeta functions [20]
(we point out that g2 has canonical mass dimension 4−d).
Equation (3) involves the scalar field propagator evaluated
in the chain approximation, arising from the sum of all
graphs obtained by chains of one-loop self-energy inser-
tions as shown in fig. 2. Performing in (3) the summation
over j and an expansion in powers of g2, leads to a result
of the form

ΠT = Π1
T + Cd(T )

(
Π1

T

T 2

) d−1
2

+ O
(
g4
)
, (5)

where

Cd(T ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)
d−1
2 T 2

2Γ(d − 2)ζ(d − 2)
log

(
Π1

T

T 2

)
, for d odd,

(−1)
d−2
2 πT 2

2Γ(d − 2)ζ(d − 2)
, for d even.

(6)

For d even we see that Π1
T /T 2 appears with a non-integer

exponent in the second term of (5). On the other hand,
when d is odd, it follows from (6) that a logarithmic fac-
tor log

(
Π1

T

T 2

)
occurs in the second term of (5). Since

Π1
T /T 2 ∼ g2T d−4, these features reflect the breakdown of

the näıve perturbation theory due to infrared divergences
which arise in individual diagrams in fig. 2.

We now turn to the calculation of the sum over l in
eq. (2), where it is useful to relate, with the help of an
auxiliary integral, the logarithm to a simple propagator

Ωr(d) =
V T

2

∫ ΠT

0
dm2

∞∑
l=−∞

×
∫

dd−1p

(2π)d−1
1

(2πlT )2 + |�p |2 + m2

=
V

2

∫ ΠT

0
dm2

×
∫

dd−1p

(2π)d−1

1 + 2NB

(√
|�p |2+m2

T

)

2
√|�p |2 + m2

, (7)

where NB(ω/T ) is the Bose-Einstein distribution

NB

(ω

T

)
=

1

e
|ω|
T − 1

. (8)

One can now perform the m2 integration in eq. (7), which
leads to

Ωr(d) = V

∫
dd−1p

(2π)d−1

×
[√|�p |2 + ΠT

2
+ T log

(
1 − e−

√
|�p|2+ΠT

T

)

− |�p |
2

− T log

(
1 − e− |�p|

T

)]
. (9)

Hence, combining the contributions from eqs. (1) and (9),
we get the result

Ω(d) = V

∫
dd−1p

(2π)d−1

[√|�p|2 + ΠT

2

+ T log

(
1 − e−

√
|�p|2+ΠT

T

)]
. (10)

This has the simple interpretation of replacing the free
propagator which occurs in the first diagram of fig. 1, with
the propagator corrected by the thermal self-energy.

The first integral in eq. (10) is easily evaluated and gives
the contribution

Ω′(d) = −V

2
Γ

(
−d

2

)(
ΠT

4π

) d
2

. (11)

The integral over the logarithm in eq. (10) can be done
after integration by parts and one gets

Ω′′(d) = − V T dΓ(d + 1)

(4π)
d−1
2 Γ

(
d+1
2

)hd+1

(√
ΠT

T 2

)
. (12)
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Here hd+1

(√
ΠT /T 2

)
denote the Haber-Weldon func-

tions which are defined, at zero chemical potential, as [19]

hd+1

(√
ΠT

T 2

)
=

1
Γ(d + 1)

∫ ∞

0
dx

xd√
x2 + ΠT

T 2

× NB

(√
x2 +

ΠT

T 2

)
, (13)

where NB is the Bose-Einstein distribution. Since Ω′(d)
and Ω′′(d) have a different behavior when d is even or odd,
we will discuss these cases separately.

For even values of d, Ω′(d) in eq. (11) contains simple
poles. To regularize these, we set d = 2n − 2ε and use
dimensional regularization which introduces a mass scale
μ. In the limit ε → 0, we then obtain

Ω′(d = 2n − 2ε) = − V

2Γ(n + 1)

×
[

1
ε

− log

(
ΠT

4πμ2

)
− γ +

n∑
k=1

1
k

]

×
(

−ΠT

4π

)n

. (14)

The pole term 1/ε is cancelled by contributions coming
from other diagrams [5], after performing the ultraviolet
renormalization of the coupling constant. With this un-
derstanding, this term will be henceforth omitted. On the
other hand, since the contributions to Ω′′(d) in eq. (12) are
well behaved in the ultraviolet region, we may set here di-
rectly ε = 0. Assuming that ΠT /T 2 � 1, we can expand
the functions hd+1

(√
ΠT /T 2

)
according to the formu-

las given in [19]. Proceeding in this way, and using the
identity [20]

Γ(2n + 1) =
22n

√
π

Γ

(
n +

1
2

)
Γ(n + 1), (15)

one can show that the log(ΠT ) terms cancel between
eqs. (12) and (14), in the sum Ω′ + Ω′′. Thus, the to-
tal contribution to the free energy may be written in this
case as

Ω(d=2n)=−V T d

{
1
πn

n−1∑
k=0

(−1)k Γ(n−k)ζ(2n−2k)
Γ(k+1)

(
ΠT

4T 2

)k

+
(−1)nπ

2Γ
(
n + 1

2

)
(

ΠT

4πT 2

)n− 1
2

+
1

2Γ(n + 1)

×
[
γ−log

(
4πT 2

μ2

)](
− ΠT

4πT 2

)n

+O
[(

ΠT

T 2

)n+1]}
. (16)

From the relations (5) and (6), it follows that higher-
order corrections in eq. (16) can generate sub-leading non-
analiticities of the form (g2)k+n−3/2 (k ≥ 2). Moreover,

one can see that the (ΠT )n−1/2 term in eq. (16) exhibits
a leading non-analyticity in the coupling constant of the
form (g2)n−1/2. Similarly, when k = 1, the first term in
eq. (16) will also yield a non-analyticity of the same order.
For example, when d = 4, the above expression for the free
energy takes the form

Ω(d = 4) = −π2V T 4

90

{
1 − 15

8

(
g2

24π2

)

+

(
1 +

3
2

)
15
2

(
g2

24π2

) 3
2

+ O(g4)

}
. (17)

We point out that the factor 1 in the last term of eq. (17)
corresponds to the usual result, obtained by considering
only one-loop self-energy insertions in the ring diagrams [1,
2]. On the other hand, the factor 3/2 in eq. (17) arises
from multi-loop contributions to ΠT , which lead to the
non-analytical term appearing in eq. (5).

We now turn to the case when d = 2n+1 is odd. Then,
although Ω′(d = 2n + 1) in eq. (11) does not have poles,
it leads to a non-analyticity in the coupling constant due
to the factor (ΠT )n+1/2. However, one can show with the
help of the identity (15), that such terms cancel in the
sum Ω′ + Ω′′. We then get the following contribution to
the free energy:

Ω(d = 2n + 1) = −V T d

{
1

πn+ 1
2

n−1∑
k=0

(−1)k

× Γ
(
n + 1

2 − k
)
ζ(2n + 1 − 2k)

Γ(k + 1)

(
ΠT

4T 2

)k

+
(−1)n+1

2Γ(n + 1)

[
log

(
ΠT

T 2

)
− γ − Ψ(n + 1)

]

×
(

ΠT

4πT 2

)n

+ O
[(

ΠT

T 2

)n+1]}
, (18)

where Ψ is the Euler psi function [20]. Using the re-
lations (5) and (6), we see that due to the presence
of a log(Π1

T ) term in ΠT and of the log(ΠT ) factor in
eq. (18), Ω(d = 2n + 1) exhibits a logarithmic non-
analyticity in the coupling constant. To leading order,
the non-analytic contributions from eq. (18) have the form
(g2)n log(g2). In addition, the log(ΠT )Πn

T term in eq. (18)
can also generate sub-leading non-analytic contributions
like (g2)2n−1 log2(g2). An interesting exception occurs in
the case n = 1, when the last contribution is actually lead-
ing being of the form g2 log2(g2). In fact, from eqs. (5), (6)
and (18) we readily find that for d = 3, the main non-
analytic contribution to the free energy is given by

Ω�(d = 3) =
V T 3

64π2

g2

T
log2

(
g2

T

)
, (19)

where we note that the coupling constant g2 now carries
the dimension of mass.
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In conclusion, we remark that the non-analyticities
present in eqs. (16) and (18) arise in consequence of the
infrared singularities. These come from the static mode
l = 0 in eq. (2) as well as from the j = 0 mode in the ther-
mal self-energy (3). Indeed, as shown in [18], such infrared
divergent contributions induce, when d is even, a lead-
ing non-analyticity in the coupling constant of the form
(g2)(d−1)/2, whereas when d is odd the non-analyticity is
only logarithmic. The results given in eqs. (16) and (18)
may be useful approximations for the free energy in ther-
mal φ4 field theory in d space-time dimensions. The set
of ring diagrams can be relevant also in thermal fermionic
field theory, describing a system of interacting electrons.
For example, for a high-density electron gas in two space-
time dimensions, this class of graphs gives, to all orders,
the dominant contributions to the free energy [13]. It
would be interesting to extend the present study to QED
in a d-dimensional space time [21].
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