76th Annual Meeting

of the International Society of Electrochemistry

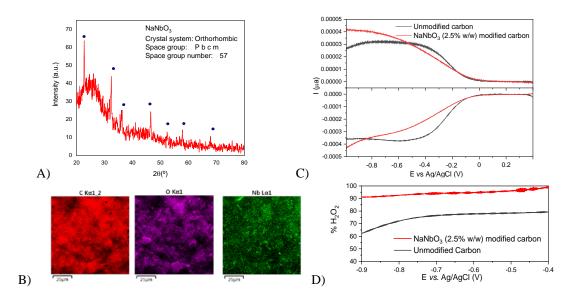
7 - 12 September 2025 *Mainz, Germany*

PROGRAM

https://annual76.ise-online.org e-mail: events@ise-online.org

Improving the H₂O₂ electrogeneration selectivity of biomass-based carbon xerogels through modification with NaNbO₃

<u>Nicolas Perciani de Moraes^{1,*}</u>, Julio César Lourenço¹, Robson da Silva Rocha², Liana Alvares Rodrigues², Marcos Roberto de Vasconcelos Lanza¹


1- University of São Paulo (Chemistry Institute of São Carlos) -Av. Trab. São Carlense, 400 - Parque Arnold Schimidt, São Carlos/SP, 13566-590, Brasil

2- University of São Paulo (Lorena Engineering School) - Estrada do Campinho, 100, Lorena/SP, Brazil

* nicolas.perciani@usp.br

Aiming to increase the efficiency of carbon-based electrodes developed for H₂O₂ production, various strategies have been adopted to modify carbonaceous materials. The modification of carbon matrices with semiconductors is a particularly suitable solution to enhance the H₂O₂ selectivity during the electrochemical reduction of oxygen. Focusing on the application of niobium-based semiconductors, potassium niobate has been successfully used to improve the selectivity of H₂O₂ production when supported on carbon blacks (Vulcan XC-72 and Printex L6) [1]. Thus, this work aims to modify cellulose/tannin-derived carbon xerogels with NaNbO3 using a simple one-pot synthesis route. The results show that the proposed modification was successfully achieved, as the orthorhombic NaNbO3 structure was observed in the sample's XRD, as well as in the elemental distribution obtained by EDS. Linear sweep voltammetry analyses (LSV) for the modified material indicate an increase in selectivity toward hydrogen peroxide production and increased ring currents after -0.5 V. Therefore, the distribution of NaNbO3 particles on the carbon xerogel surface probably leads to an efficient electron transfer kinetics for O₂ reduction via the 2-e⁻ pathway, favoring the formation of H₂O₂. In the study by Antonin et al. (2023), the observed improvement in selectivity is attributed to the O2 adsorption mechanism on the composite surface. The addition of potassium niobate facilitates the adsorption of *OOH intermediates with an optimal bond distance (O-O = 1.4 Å) and a good charge transfer capacity from the metal atom to the adsorbed oxygen species [1]. Thus, the results obtained in this work further corroborate the application of sodium niobate as a suitable modifier for carbonaceous structures towards higher selectivity in H₂O₂ electrogeneration processes.

Figure 1 – A) XRD of the modified carbon xerogel; B) Elemental mapping of the modified carbon; C) LSV collected for the modified and unmodified materials; D) Selectivity (%) of H_2O_2 formation

Funding

This study was financed by the São Paulo Research Foundation (FAPESP), Brasil (Grants #2022/12895-1, #2024/06648-7 and #2022/04058-2).

References

[1] Antonin, Vanessa S., et al. "Sodium niobate microcubes decorated with ceria nanorods for hydrogen peroxide electrogeneration: An experimental and theoretical study." *Journal of Alloys and Compounds* 965 (2023): 171363.