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This paper studies axial gravitational perturbations of a uniform-density star in scalar-Einstein-Æther theory.
By applying the Israel junction conditions explicitly in the presence of a scalar field minimally coupled to the
gravitational sector, it is shown that a nontrivial scalar profile cannot be sustained, as it induces a divergence at
the stellar center. Since analytical solutions are unattainable, the background metric is determined through
numerical integration for a few representative configurations. For axial gravitational perturbations, it is found
that the system of equations of motion cannot be decoupled as long as the Æther parameter ci does not vanish.
Subsequently, the dynamics of the system can be simplified to two coupled equations that describe vector and
tensor perturbations with distinct wave velocities cV and cT , giving rise to a bimodal system. It is shown that as
the stellar radius is smaller than that of the maximum of the vacuum Schwarzschild-type effective potential,
a potential well is formed, leading to the emergence of echo phenomenon for the axial gravitational
perturbations. When the stellar radius exceeds the could-have-beenmaximum, the resulting effective potential
decreases monotonically, and the wave propagation is primarily dictated by the discontinuity occurring at the
star’s surface, producing a type of more attenuated echo waves. In addition, we explore the specific properties
of the resultant bimodal medium consisting of two degrees of freedom with distinct sound speeds. However, it
is understood that such a characteristic does not lead to observational implications, and subsequently hardly
offers a potential empirical means to constrain specific metric parameters of the Einstein-Æther. We present
numerical calculations and discuss the potential implications of our findings.

DOI: 10.1103/44n5-s2k6

I. INTRODUCTION

General relativity is undoubtedly one of the most pro-
minent physics achievements of the last century. In the past

decade, with the discovery of gravitational waves and the
unveiling of black hole images, nearly all of the predictions
made by general relativity have been confirmed [1–16].
Nevertheless, general relativity still has its shortcomings:
firstly, the dark energy and dark matter discovered in the
universe have long remained inadequately explained,
becoming the biggest unsolved puzzles in astronomy and
cosmology; additionally, in theoretical physics, it has been
found that general relativity is a nonrenormalizable theory,
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which means that Einstein’s theory is valid only at energies
much smaller than the Planck scale.
Various modified gravity theories have been proposed to

address these challenges. Among these, the Einstein-Æther
theory is a particularly notable candidate [17]. Post-
Newtonian approximation calculations indicate that, with
appropriate parameter adjustments, the Einstein-Æther
theory can replicate results identical to those of general
relativity, satisfying all post-Newtonian tests validating
Einstein’s theory [18,19]. Additionally, the theory con-
verges with the Horava-Lifshitz theory at low energies,
positioning it as a promising candidate for quantum gravity
[20–22]. A vital aspect of the theory is the assumption of
Lorentz-symmetry breaking, achieved by introducing a
timelike vector field, referred to as the “æther,” into the
action. Consequently, in this theory, the propagation speeds
of the scalar (cS), vector (cV), and tensor (cT) degrees of
freedom, determined by four coupling constants, may differ
from the speed of light [23,24]. This leads to challenges in
defining the black hole’s event horizon. The event horizon,
traditionally defined with respect to the speed of light,
might be crossed by superluminal particles predicted by
the theory. Nevertheless, studies have shown the existence
of a universal horizon within the black hole’s event
horizon, which prevents even infinitely fast particles from
escaping [25–27]. Despite this, the standard coordinates
ðt; r; θ;φÞ are inadequate for describing black hole space-
times in this theory. These coordinates remain effective for
spacetimes without black hole horizons, such as cosmo-
logical or wormhole spacetimes.
This study investigates axial gravitational perturbations

in uniform-density stars as spacetime metric solutions
within the scalar-Einstein-Æther theory. Section II derives
the spacetime metric for a static, uniform-density star. As
the minimally coupled scalar field does not possess a
nontrivial solution, one obtains a spherically symmetric
vacuum solution for the star’s exterior, analogous to the
Schwarzschild metric. However, obtaining an analytical
solution for the interior metric is generally challenging.
Instead, we present numerical solutions derived using the
finite difference method. The background metric of static,
uniform-density stars depends solely on c14 ≡ c1 þ c4
within the Einstein-Æther theory. Given this background
metric, we analyze axial gravitational perturbations and
derive the corresponding equations of motion. It is shown
that the wave equation for this perturbation cannot be fully
decoupled when c14 ≠ 0. At best, one can obtain a coupled
system of vector and tensor wave equations, with the field
dynamics governed entirely by three parameters: c14, cV ,
and cT . In Sec. III, we explore the temporal evolution of
axial gravitational perturbations. We demonstrate the exist-
ence of echoes [28–31]. Specifically, when the star’s radius
is smaller than the maximum of the Schwarzschild-type
effective potential, a potential well is formed inside the star,
leading to echoes. Conversely, when the radius exceeds this

maximum, the effective potential lacks a local maximum
and decreases monotonically with the radial coordinate.
The latter scenario produces a distinct type of echoes
[32,33], driven by the discontinuity at the star’s surface.
Numerically, the waveform of the echoes exhibits more
significant attenuation. Finally, we explore the potential
implications of the bimodal nature of the model, arising
from the distinct propagation speeds of the vector and
tensor degrees of freedom. However, it can be argued that
the very construction of the theory implies that this feature
could hardly be used to constrain the metric parameters of
the underlying theory via experimental observation. Sec. IV
presents the concluding remarks.

II. UNIFORM DENSITY STAR SOLUTION IN
SCALAR-EINSTEIN-ÆTHER GRAVITY

The action of the Einstein-Æther theory [20–27,34,35]
when minimally coupled with a scalar fieldΨ, is given by æ

S ¼ 1

16πGæ

Z ffiffiffiffiffiffi
−g

p
d4x

�
R − 2gαβDαΨDβΨ

−
�
c1gαβgμν þ c2δαμδ

β
ν þ c3δανδ

β
μ − c4uαuβgμν

�
× ðDαuμÞðDβuνÞ þ λðuρuρ þ 1Þ�þ Sm; ð2:1Þ

where Sm is the action of the remaining matter field, the
constant Gæ is related to the Newtonian counterpart GN
by a ci-dependent rescaling Gæ ≡ ð1 − c14=2ÞGN [35],
and we write c14 ≡ c1 þ c4, c� ≡ c1 � c3, and c123 ¼
c1 þ c2 þ c3. Also, we set κm ¼ 8πGæ ¼ c ¼ 1.
The resulting field equations are

Rμν −
1

2
gμνR − Sμν ¼ Tμν;

Æμ ¼ 0;

gαβDαDβΨ ¼ 0;

gαβuαuβ ¼ −1; ð2:2Þ

where

Sαβ ≡Dμ

�
JμðαuβÞ þ JðαβÞuμ − uðβJ

μ
αÞ
�

þ c1
�ðDαuμÞðDβuμÞ − ðDμuαÞðDμuβÞ

�
þ c4aαaβ þ λuαuβ −

1

2
gαβJ

μ
νDμuν;

Æμ ≡DνJνμ þ c4aνDμuν þ λuμ;

Tμν ≡ ðρþ PÞUμUν þ Pgμν

þ 2

�
DμΨDνΨ −

1

2
gμνDαΨDαΨ

�
; ð2:3Þ

with
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Jαμ ≡
�
c1gαβgμν þ c2δαμδ

β
ν þ c3δανδ

β
μ − c4uαuβgμν

�
Dβuν;

aμ ≡ uαDαuμ;

Uμ ¼ δμt ¼ ð1; 0; 0; 0Þ; ð2:4Þ

where the matter field is characterized by the pressure P
and density ρ. From the above field equations, we have

λ ¼ uβDαJαβ þ c4aρaρ: ð2:5Þ

For a static star with spherical symmetry, one considers
the following ansatz

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdφ2Þ;

uμ ¼
ffiffiffiffiffiffiffiffiffi
hðrÞ

p
δtμ;

Ψ ¼ ΨðrÞ; ð2:6Þ

which corresponds to the case by choosing αðrÞ ¼ 0 in a
more general form [36]

½uμ� ¼
	 ffiffiffiffiffiffiffiffiffi

hðrÞ
p

coshðαðrÞÞ; 1ffiffiffiffiffiffiffiffiffi
fðrÞp sinhðαðrÞÞ; 0; 0



:

However, as discussed in Appendix A, such a star metric
does not accommodate a nontrivial scalar field, owing to
the second Israel junction condition. By suppressing the
scalar field, the field equations are simplified to,

f0 þ f

�
2

r
þ h0

h

�
−
2

r
þ 2r
2 − c14

½ρþ ð2c14 − 1ÞP� ¼ 0;

h0 þ 4

c14

h
r
−

2
ffiffiffi
2

p
h

c14r
ffiffiffi
f

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c14 þ ð2 − c14Þf þ c14r2P

q
¼ 0;

P0 þ h0

2h
ðPþ ρÞ ¼ 0:

ð2:7Þ

For the exterior of the star r > rs, we have ρ ¼ P ¼ 0.
For both the interior and exterior of the star, analytical
solutions are generally difficult to obtain. Nonetheless,
numerical methods can be used. The interior solution and
the vacuum solution are connected at the star’s surface by
Israel’s first junction conditions [37,38],

finsideðrsÞ ¼ foutsideðrsÞ;
hinsideðrsÞ ¼ houtsideðrsÞ; ð2:8Þ

together with a vanishing pressure PðrsÞ ¼ 0. Observing
the second line of Eq. (2.7), one notes that the continuation
of f, h, and P on the star’s surface implies that h0 is
continuous across the surface. However, the jump in ρ leads
to the discontinuity in f0 at r ¼ rs, which implies a
nonvanishing energy-momentum tensor on the surface.
Further discussions about the above junction condition
can be found in Appendix A. It is noted that the last line of
Eq. (2.7) can be integrated once, starting from the surface of
the star and moving inward or outward, to give PðrÞ ¼
ρðrÞð

ffiffiffiffiffiffiffiffi
hðrsÞ
hðrÞ

q
− 1Þ.

For given values of ρ and c14, we can numerically
integrate inward and outward by Eq. (2.7) from the star’s
surface, where the junction conditions Eq. (2.8) are
satisfied. A valid numerical solution is obtained by tuning
fðrsÞ and hðrsÞ, satisfying the requirement that the spacetime
is asymptotically flat. The numerical results of f ¼ fðrÞ,
h ¼ hðrÞ, and P ¼ PðrÞ are illustrated in Figs. 1 and 2.

FIG. 1. Left: Profiles of f ¼ fðrÞ, h ¼ hðrÞ, and P ¼ PðrÞ as functions of the radial coordinate. Right: The relation between the radial
and tortoise coordinates. The calculations are performed using c14 ¼ 0.1, ρ ¼ 0.25, and Pc ¼ 1.2.
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It is observed that the functions f ¼ fðrÞ, h ¼ hðrÞ,
h0 ¼ h0ðrÞ, P ¼ PðrÞ, and r� ¼ r�ðrÞ are all continuous
at the surface of the star r ¼ rs. By assuming uniform
density, ρ is constant inside the star. In the next section,
we will explore the axial gravitational perturbations of the
obtained metric.

III. AXIAL GRAVITATIONAL PERTURBATION
AND NUMERICAL RESULTS

To investigate the axial gravitational perturbations, we
consider the Regge-Wheeler gauge

δgμν ¼

2
6664

0 0 0 h0ðrÞ
0 0 0 h1ðrÞ
0 0 0 0

h0ðrÞ h1ðrÞ 0 0

3
7775e−iωt sin θ∂θPLðcos θÞ

δuμ ¼ δφμhnðrÞe−iωt sin θ∂θPLðcos θÞ ð3:1Þ

where the method of separation of variables is adopted,
it suffices to consider the vanishing magnetic quantum
number M ¼ 0. Also, we consider L ¼ 2 in our numerical
calculations. For perturbations of axial parity, Regge and
Wheeler use the freedom to choose h1 as the gauge-
invariant quantity [39]. Subsequently, one results in two
independent degrees of freedom h1 and hn. The back-
reaction is ignored as the perturbations are insignificant,
namely gμν ≫ δgμν and uμ ≫ δuμ.
By introducing the transformation

h1ðrÞ ¼ r2e
R �ð1−2c14ÞrP−rρ

ðc14−2Þf − 1
rf

�
drRBðrÞ;

hnðrÞ ¼ RCðrÞ=ω; ð3:2Þ

we find two coupled master equations for axial gravita-
tional perturbations as follows

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞhðrÞ

p d
dr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞhðrÞ

p d
dr

RBðrÞ
�

þ
�
ω2

c2T
− VTðrÞ

�
RBðrÞ ¼ UTðrÞRCðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞhðrÞ

p d
dr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞhðrÞ

p d
dr

RCðrÞ
�

þ
�
ω2

c2V
− VVðrÞ

�
RCðrÞ ¼ UVðrÞRBðrÞ ð3:3Þ

where the effective potentials VT , VV , UT , and UV are
given in Appendix B, while the propagation speeds of the
vector and tensor sectors, cV and cT , are given by

c2V ¼ 2c1 − cþð2c1 − cþÞ
2c14ð1 − cþÞ

;

c2T ¼ 1

1 − cþ
: ð3:4Þ

For convenience, the tortoise coordinate is introduced as
r� ¼

R
r
0 dr=

ffiffiffiffiffiffi
fh

p
. One notes that the derivation of Eq. (3.3)

is based on the feasibility of separating variables.
As the effective potentials vanish at infinity and diverge

at the center, the boundary conditions read

RBðrÞ ∼
�
r1þL r → 0

ei
ω
cT
r� r → ∞

;

RCðrÞ ∼
�
r1þL r → 0

ei
ω
cV
r� r → ∞

: ð3:5Þ

In order to study the spacetime evolution of the coupled
axial gravitational perturbations, one can work out the
master equation in a similar fashion in the time domain and
employ the finite difference method [40–46]. Specifically,
we set ti ¼ t0 þ iΔt, r�j ¼ jΔr�, ψ i

j ¼ RBðt¼ ti; r� ¼ r�jÞ,
ϕi
j ¼ RCðt ¼ ti; r� ¼ r�jÞ, VT

j ¼ VTðr� ¼ r�jÞ, VV
j ¼

VVðr� ¼ r�jÞ, UT
j ¼UTðr� ¼ r�jÞ, and UV

j ¼UVðr� ¼ r�jÞ.

FIG. 2. Same as Fig. 1 but for the parameters c14 ¼ 0.1, ρ ¼ 1.2, and Pc ¼ 0.3.
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The discretized master equation reads

ψ iþ1
j ¼ −ψ i−1

j þ Δt2

c2TΔr2�

�
ψ i
j−1 þψ i

jþ1

�

þ
�
2− 2

Δt2

c2TΔr2�
−
Δt2

c2T
VT
j

�
ψ i
j −

Δt2

c2T
UT

j ϕ
i
j;

ϕiþ1
j ¼ −ϕi−1

j þ Δt2

c2VΔr2�

�
ϕi
j−1 þϕi

jþ1

�

þ
�
2− 2

Δt2

c2VΔr2�
−
Δt2

c2V
VV
j

�
ϕi
j −

Δt2

c2V
UV

j ψ
i
j; ð3:6Þ

for which the boundary conditions are,

ψ i
0 ¼ ϕi

0 ¼ 0: ð3:7Þ

On the star’s surface r�s ≡ r�ðrsÞ ¼ NsΔr�, the connection
condition is discretized into the following form

ψ i
Ns

¼ ðψ i
Ns−1 þ ψ i

Nsþ1Þ=2;
ϕi
Ns

¼ ðϕi
Ns−1 þ ϕi

Nsþ1Þ=2: ð3:8Þ

The spacetime evolution of the axial gravitational pertur-
bations can be carried out using the finite difference method
which can be performed by specifying the initial conditions
for R0

BðxjÞ, Ṙ0
BðxjÞ, R0

CðxjÞ, and Ṙ0
CðxjÞ,

ψ0
j ¼ R0

Bðr� ¼ r�jÞ;
ψ1
j ¼ ψ0

j þ ΔtṘ0
Bðr� ¼ r�jÞ;

ϕ0
j ¼ R0

Cðr� ¼ r�jÞ;
ϕ1
j ¼ ψ0

j þ ΔtṘ0
Cðr� ¼ r�jÞ: ð3:9Þ

In Fig. 3, we represent the effective potentials for
different scenarios. In the top-left panel, it is observed that
the effective potential features a potential well for both VT
and VV by assuming the parameters so that the radius of
the star is smaller than the maximum of the vacuum

FIG. 3. Effective potentials VT ¼ VTðrÞ, UT ¼ UTðrÞ, VV ¼ VVðrÞ, and UV ¼ UVðrÞ evaluated using different parameters. Top left:
The resulting effective potential with a potential well, obtained by assuming cT ¼ cV ¼ 1, c14 ¼ 0.1, ρ ¼ 0.25, and Pc ¼ 1.2. Top right:
The resulting effective potential, which decreases exponentially with the radial coordinate, obtained by assuming cT ¼ cV ¼ 1,
c14 ¼ 0.1, ρ ¼ 1.2, and Pc ¼ 0.3, where the two propagation speeds are identical. Bottom-left: Similar to the top-right panel but
obtained using the parameters cT ¼ 1, cV ¼ 1.3, c14 ¼ 0.1, ρ ¼ 1.2, and Pc ¼ 0.3, where cT > cV . Bottom right: Similar to the top-
right panel but obtained using the parameters cT ¼ 1, cV ¼ 0.8, c14 ¼ 0.1, ρ ¼ 1.2, and Pc ¼ 0.3, where cT < cV .
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Schwarzschild-type solution. Conversely, as the star’s
radius increases and becomes more significant than the
could-have-been maximum, the effective potential
decreases monotonically with the radial coordinate. We
consider three cases for the latter scenario based on the
relative sizes of the propagation speeds of the bimodal
medium, as shown in the top-right, bottom-left, and
bottom-right panels. A discontinuity is present at the star’s
surface in all these cases. However, as elaborated below,
while the discontinuity does not have a sizable impact on
the waveforms for the scenario where the effective potential
possesses a potential well, it plays a crucial role in the cases
where the effective potential does not have a local
maximum.
In Fig. 4, we show the resulting spacetime evolutions

of the axial gravitational perturbations. Without loss of

generality, in our calculations, we consider stars with
a given radius r�ðrsÞ ¼ 31.93. For the initial conditions,
we consider RBðt ¼ 0Þ ¼ RCðt ¼ 0Þ ¼ e−2ðr�−r�CÞ2 and
ṘBðt ¼ 0Þ ¼ ṘCðt ¼ 0Þ ¼ 0. For the upper row, we choose
r�C ¼ 15 < r�ðrsÞ so that the initial perturbations are
placed inside the star. For the bottom row, we consider
r�C ¼ 50 > r�ðrsÞ so that the initial perturbations are
located outside the star. Echoes emerge as the waves are
repeatedly bounded back and forth between the potential’s
maximum (indicated by the dashed red horizontal line) and
the star’s center. At the potential’s maximum, both the
transmission and reflection waves are observed, while the
reflection part contributes to the echoes. We note that such a
phenomenon is consistently observed in all the panels of
Fig. 4. In other words, it persists for both degrees of
freedom associated with the effective potential VT and VV ,

FIG. 4. Numerical results of the spacetime evolutions of RB (left column) and RC (right column). The two rows represent results
obtained using different initial perturbations, as discussed in the text. The calculations are carried out using the parameters cT ¼ cV ¼ 1,
c14 ¼ 0.1, ρ ¼ 0.25, and Pc ¼ 1.2, corresponding to the effective potentials shown in the top-left panel of Fig. 3. The yellow dotted
horizontal lines correspond to the star’s surface, while the red dashed ones indicate the maximum of the effective potential.
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as well as for both initial perturbations. Specifically, if the
initial perturbations reside outside the star, the transmission
wave enters through the star and eventually triggers the
echoes. However, a visible reflection primarily takes place
at the potential’s maximum. As discussed below, the
discontinuity at the star’s surface (indicated by the yellow
dotted horizontal line) might also trigger echoes. This
explains why the reflection and transmission near the
potential’s maximum are less distinguishable than those
shown in Fig. 5. However, as the latter echoes are
attenuated, the potential’s maximum plays a more crucial
role in forming the echoes.
In Fig. 5, we take r�ðrsÞ ¼ 1.94 and adopt the initial

conditions RBðt ¼ 0Þ ¼ RCðt ¼ 0Þ ¼ e−200ðr�−r�CÞ2 and
ṘBðt ¼ 0Þ ¼ ṘCðt ¼ 0Þ ¼ 0. For the upper row, we
choose r�C ¼ 1 < r�ðrsÞ so that the initial perturbations
reside inside the star. For the bottom row, we consider

r�C ¼ 3 > r�ðrsÞ so that the initial perturbations are placed
outside the star. As shown in the top-right panel of Fig. 3,
the related effective potentials do not possess any local
maximum near the star’s surface. As a result, the echoes are
dictated by the star’s center and surface. This is indicated in
all the panels of Fig. 5. Again, this phenomenon persists for
both degrees of freedom and is irrelevant to the placement
of the initial perturbations.
For both scenarios, the echo period is governed by the ratio

between the characteristic length and the propagation speed,
namely, Techo ¼ relevant spatial distance=wave speed.
In Figs. 6 and 7, we choose r�ðrsÞ ¼ 1.94 and the

initial conditions RBðt ¼ 0Þ ¼ RCðt ¼ 0Þ ¼ e−200ðr�−r�CÞ2

and ṘBðt ¼ 0Þ ¼ ṘCðt ¼ 0Þ ¼ 0. Again, we consider
two different configurations for the initial condition, where
one assigns r�C ¼ 1 < r�ðrsÞ and r�C ¼ 3 > r�ðrsÞ,
respectively, to the first and second rows of the figures.

FIG. 5. Same as Fig. 4, but for the parameters cT ¼ cV ¼ 1, c14 ¼ 0.1, ρ ¼ 1.2, and Pc ¼ 0.3, associated with the effective potentials
shown in the top-right panel of Fig. 3.
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For these two cases, the system is bimodal and possesses
two different propagation speeds. This is indicated by the
difference in the slopes of the wave trajectories in the left
and right columns of the figures. Once again, echoes are
observed, which can be attributed to the repeated bouncing
of the perturbations between the center and surface of the
star. From Figs. 4 to 7, one also observes a half-wave loss
when the wave is reflected at the star’s center. This occurs
because the potential function at the center diverges, and
the waveform must vanish as a boundary condition. The
latter is readily satisfied by considering a superposition
with another wave moving toward a positive radial coor-
dinate but with an opposite phase. Such a phenomenon is
an analogy when the oscillations propagate on a string
whose other end is attached to a solid wall. Owing to the
distinct nature of wave propagation in a binodal system,

it might be utilized to extract metric parameters closely
associated with the observability of the propagation speed
and echo period.
It is well known that a shock wave might occur when a

source moves faster than the medium’s propagation speed.
For the present study, intuitively, a shock wave might be
present in a bimodal medium. Specifically, it seems
plausible that the formation of a shock wave is triggered
by the fast mode, acting as a source that moves at a
superluminal speed. Nonetheless, such a scenario depends
on the amplitude and initial conditions of the wave
disturbances. By assigning the initial perturbations exclu-
sively to the fast mode, one might explore how the energy is
transferred to the slow mode and whether a shock front can
be formed. However, while considering different model
parameters and initial conditions, our numerical simulation

FIG. 6. Same as Fig. 4, but for the parameters cT ¼ 1, cV ¼ 0.8, c14 ¼ 0.1, ρ ¼ 1.2, and Pc ¼ 0.3, associated with the effective
potentials shown in the bottom-left panel of Fig. 3.
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does not support such speculation. The initial waveform is
found to be gradually suppressed in time without triggering
any shock phenomenon.
Before closing this section, we discuss a particular

scenario where the Einstein-Æther parameters attain the
limit ci → 0. Moreover, as pointed out in [47], the obser-
vation of ultrahigh energy rays places a tight constraint on
the model parameters. Specifically, for the ultrahigh energy
cosmic rays to propagate for at least 10 Kpc before
fragmentation owing to gravitational Cherenkov or virtual
graviton-mediated processes, the model parameters must be
extremely small. In this case, one might speculate that the
model essentially falls back to general relativity, leading to
insignificant, if any, observational implications. In this
regard, we argue that it is still plausible for the two modes
governed by Eq. (3.4) to be distinguished from their general
relativity counterpart. While the speed of the tensor

mode always falls back to the unit at this limit, the vector
mode cV might attain a different value at the limit ci → 0
by satisfying all the constraints established in [47].
Specifically, one may adopt some particular but otherwise
arbitrary parameters that exhibit some features of the
Einstein-Æther theory under such circumstances.
Numerical calculations have been carried out to demon-
strate the above point, where one chooses the following set
of parameters:

c1 ¼ 1 × 10−40;

c2 ¼
9

4
× 10−40 − 1 × 10−60;

c3 ¼ −2 × 10−40;

c4 ¼
1

4
× 10−40; ð3:10Þ

FIG. 7. Same as Fig. 4, but for the parameters cT ¼ 1, cV ¼ 1.3, c14 ¼ 0.1, ρ ¼ 1.2, and Pc ¼ 0.3, associated with the effective
potentials shown in the bottom-right panel of Fig. 3.
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which satisfies the above-mentioned requirements
(cf. Eqs. (2.9)–(2.11) and (6.1)–(6.4) of [47]). One finds
cT → 1 and c2V → c1

c14
¼ 0.8. In Figs. 8 and 9, we show the

temporal and spacetime evolutions of the perturbations
using the parameters given by Eq. (3.10). The first column
of Fig. 8 shows the effective potentials associated with two
different types of echo mechanisms, as discussed in Fig. 3.
For both cases, two distinct modes are presented in the
middle and right columns, whose propagation velocities are
governed by Eq. (3.4). Besides, echoes associated with
these setups are observed in the two rows of Fig. 9.
Therefore, one concludes that both echoes and two distinct
modes may potentially persist in this limit. However, it is
important to note that the above feature associated with the
vector degree of freedom can hardly lead to any observa-
tional effect. The main reason is the smallness of the
coupling [47], in terms of the coefficients ci, between the

vector field and the gravitational sector. Since the detector
is constituted by ordinary matter, it does not directly
interact with the vector field; consequently, any nontrivial
effect of the vector field (even if it exists, such as a distinct
sound speed) will be significantly suppressed by these
coefficients. In fact, this can be formally demonstrated (as
pointed out by the anonymous referee and summarized
below in Appendix C). Specifically, as long as the matter
field does not directly interact with the vector field and the
vector field only weakly couples to the gravitational sector,
the dynamics of the matter and gravity largely revert to their
general relativity counterparts, even though the vector field
may admit some nontrivial solutions. In other words, the
detector only senses the vector field via the gravitational
field, which is further suppressed significantly by the
smallness of the coefficients ci, effectively eliminating
any observable implications.

FIG. 8. Numerical results of the effective potentials (first column) and spacetime evolutions of the vector (mid column) and tensor
modes (right column), associated with two distinct types (top and bottom rows) of echo mechanisms. The calculations are carried out
using the Einstein-Æther parameters Eq. (3.10). For the first type of effective potential shown in the top row, we consider rs ¼ 1.10657,
ρ ¼ 1.2, and Pc ¼ 0.3. The second type presented in the bottom row utilizes the parameters rs ¼ 3.20903, ρ ¼ 0.25, and Pc ¼ 1.2. The
spacetime evolutions are carried out for RB (mid column) and RC (right column) in a similar fashion shown in Fig. 4.
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IV. CONCLUDING REMARKS

This paper investigates the axial gravitational perturba-
tions of a uniform density star in Scalar-Einstein-Æther
gravity. The obtained results support the conclusions in
[33], which indicate two echo types. One type originates
from the existence of a potential well, and the other arises
from the discontinuity at the star’s surface. As discontinuity
is mainly present for most compact objects, the former type
of echo, when it is relevant, is always mixed with the
second type. Also, the potentials involved in forming a
potential well might have an irregular shape. This makes it
somewhat ambiguous to define the echo period rigorously.
However, this type of echo persists for an extensive period,
and it might be relatively straightforward to distinguish the
signals from the star’s quasinormal oscillations. In contrast,
the latter type of echo might possess an unambiguous
signal but might be short-lived. This is because the system
in question is more dissipative, as the star’s surface
generally does not efficiently confine the total energy.
We have also studied the properties of axial gravitational

perturbations in a bimodal system, which possesses two
distinct wave speeds, cV and cT . It is speculated that, owing
to the coupling between these two modes, a shock wave
might be formed. However, numerical simulations indicate

that such a phenomenon, if any, is significantly suppressed
and does not lead to any observable outcome. Nonetheless,
the trajectories of wave propagation at two distinct
speeds can be identified from the numerical calculations,
which might not vanish in the general relativity limit.
Unfortunately, the potential distinct properties of the vector
degree of freedom can hardly be utilized to extract or
constrain relevant model parameters of the Einstein-Æther
gravity, owing to the smallness of the couplings. We plan to
continue this line of research in future studies.
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FIG. 9. Numerical results of temporal evolutions of the vector (mid column) and tensor modes (right column), associated with two
distinct types (top and bottom rows) of effective potentials shown in Fig. 8, for which the same metric parameters are adopted. The
temporal evolutions of jRBj (left column) and jRCj (right column) are evaluated at r ¼ rs.
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APPENDIX A: ISRAEL JUNCTION CONDITIONS
AND THE STAR METRIC WITH A VANISHING

SCALAR FIELD

In this appendix, we show that the star metric ansatz
Eq. (2.6) does not accommodate a nontrivial scalar “hair.”
By using Eq. (2.6), one finds the following field equations:

h00 þ 2
h
f
3Pþ ρ

c14 − 2
−
h02

h
þ h0

rfðc14 − 2Þ ½r
2ρ

þ ð2c14 − 1Þr2Pþ ðc14 − 2Þðf þ 1Þ� ¼ 0;

f0 þ f

�
2

r
þ h0

h

�
þ 2

ð2 − c14Þr
½r2ρ

þ ð2c14 − 1Þr2P − 2þ c14� ¼ 0;

Ψ02 þ f−1 − 1

r2
þ P

f
−
h0

rh
−
c14h02

8h2
¼ 0: ðA1Þ

For the exterior of the star r > rs, we have ρ ¼ P ¼ 0, and
the vacuum solution reads,

fðrÞ ¼ hðrÞ ¼ 1 −
2M
r

;

ΨðrÞ ¼ Ψ0 þ
ffiffiffiffiffiffi
c14

p
2

ffiffiffi
2

p ln
r

r − 2M
; ðA2Þ

for a nonvanishing scalar field, where Ψ0 is a constant of
integration. The interior solution and the vacuum solution
are connected at the star’s surface by Israel’s junction
conditions:

finsideðrsÞ ¼ foutsideðrsÞ;
hinsideðrsÞ ¼ houtsideðrsÞ;
h0insideðrsÞ ¼ h0outsideðrsÞ;
ΨinsideðrsÞ ¼ ΨoutsideðrsÞ; ðA3Þ

together with a vanishing pressure PðrsÞ ¼ 0, which is a
generalization of Eq. (2.8).
A few comments are in order. The Israel junction

condition dictates the mathematical feasibility when one
glues two valid solutions of the Einstein field equations
together via a hypersurface. It was initially proposed for
metric solutions in the vacuum [37,38]. In the presence of a
scalar field [48], the second junction condition is gener-
alized to include a relation between the discontinuity of the
first-order derivative of the scalar field and that of extrinsic
curvature. Notably, for the present case, where the scalar
field is minimally coupled to the gravitational sector, it
implies that the jump in the first-order derivative of the
scalar field vanishes. However, the third line of Eq. (A1)
indicates that the scalar field satisfies a first-order ordinary
differential equation, and apparently, its boundary condi-
tion consists only of the first junction condition, which

demands the field to be continuous on the surface. In other
words, the continuity condition of its first-order radial
derivative, required by the second junction condition,
cannot be straightforwardly enforced as a part of the
boundary condition on the surface. In this regard, one
seems to encounter the following dilemma: enforcing the
second junction condition might lead to a trivial, namely,
vanishing scalar field. However, such difficulty is naturally
alleviated by noting that the third line of Eq. (A1) only
involves f, P, h, and h0, which are manifestly continuous
across the surface of the star. In other words, the second
junction condition for the scalar field, namely

Ψ0
insideðrsÞ ¼ Ψ0

outsideðrsÞ; ðA4Þ

is naturally derived from the third line of Eq. (A1).
Subsequently, in theory, the numerical solutions can be
obtained given the boundary condition appropriately
adapted to the Israel junction condition. Specifically, one
integrates numerically the field equations (A1) from the
star’s surface toward its center, with given hðrsÞ; h0ðrsÞ;
fðrsÞ;ΨðrsÞ regarding the boundary conditions Eq. (A3).
However, it can be shown, from a rather general

perspective, for the spherically symmetric case, the theory
does not accommodate a nontrivial scalar “hair,”minimally
coupled to the gravitational sector, owing to the regularity
condition of the scalar field. To be specific, the latter
implies that as r → 0, the radial derivative of the scalar field
must satisfy ∂rΨ → 0. The scalar field obeys the Klein-
Gordon equation, ∇μ∇μΨ ¼ 0, which reduces to

1ffiffiffiffiffiffi−gp ∂r

� ffiffiffiffiffiffi
−g

p
grr∂rΨ

� ¼ 0; ðA5Þ

by assuming spherical symmetry. In the interior region
where r > 0, both

ffiffiffiffiffiffi−gp
and grr must remain finite to ensure

the metric is invertible. Therefore, the Klein-Gordon equa-
tion implies that

ffiffiffiffiffiffi−gp
grr∂rΨ must be constant throughout

the interior. Taking the limit r → 0, this constant is found to
vanish, so we have

ffiffiffiffiffiffi
−g

p
grr∂rΨ ¼ 0 in the interior: ðA6Þ

Because both
ffiffiffiffiffiffi−gp

grr and ∂rΨ must be continuous at the
surface of the star, it follows that

ffiffiffiffiffiffi−gp
grr∂rΨ ¼ 0 also

holds in the exterior region. Again, since
ffiffiffiffiffiffi−gp

and grr are
nonzero outside the star, this condition enforces ∂rΨ ¼ 0 in
the exterior as well. Therefore, one concludes that ∂rΨ ¼ 0
everywhere, which is confirmed by explicit numerical
integration. By suppressing the scalar field, one falls back
to a system of first-order field equations given by (2.7), for
which only the first Israel junction conditions are involved.
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APPENDIX B: THE SPECIFIC FORMS OF THE EFFECTIVE POTENTIALS FOR AXIAL
GRAVITATIONAL PERTURBATIONS

In Eq. (3.3), the effective potentials are given by

VTðrÞ ¼
h
r2
ðL2 þ L − 3þ 3fÞ þ h

ρþ ð2c14 − 1ÞP
2 − c14

;

UTðrÞ ¼
2

ffiffiffi
h

p

rBf

� ffiffiffi
2

p
σf − 2f

�
;

VVðrÞ ¼
ð10c214 − 2þ 4c214c

2
T − 4c2VÞPh

c14c2Vðc14 − 2Þ −
c14ðc2V þ 13c2T − 1ÞPh

c14c2Vðc14 − 2Þ þ 2c2Y − 2 − c14ðc2V þ c2T − 1Þ
c14c2Vðc14 − 2Þ hρ

− 2
ffiffiffi
2

p ðc14 þ 2Þc2V þ ð3c14 − 4Þc2T
c214c

2
Vr

2
hσf þ

h
c214c

2
Vr

2

�
c14

�
4ðc14 − 1Þc2T þ ½2þ c14LðLþ 1Þ�c2V

�

þ 2f
�ð4þ c14Þc2V − 2ð2 − c14Þ2c2T þ c14ðc2Vþ2ðc14 − 1Þc2TÞr2Ψ0�
;

UVðrÞ ¼
c2Th

3=2B
c14c2Vr

3
ðL2 þ L − 2Þð

ffiffiffi
2

p
σf − 2fÞ ðB1Þ

where

σf ¼
ffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f½2 − c14ðr2Ψ02 − 2Þ� þ c14ðr2ρþ 1Þ

q
;

B0 ¼
	
2

r
−

1

rf
−
ð2c14 − 1ÞPþ ρ

c14 − 2

r
f



B: ðB2Þ

The above potential functions are very complex. However,
if we take ci ¼ 0, then c14 ¼ 0 and cT ¼ c ¼ 1, at which
point UT ¼ 0, the two master equations decouple, and one
of them falls back to that governing the axial gravitational
perturbations in general relativity.

APPENDIX C: THE FEASIBILITY OF
OBSERVING THE VECTOR DEGREE OF

FREEDOM IN THE PRESENT FRAMEWORK

Besides the specific model discussed in the present
study, one can show schematically that as long as the
coupling between the vector field and the gravitational
sector is small, the bimodal effect elaborated in this
manuscript can hardly lead to any observational implica-
tions. On the one hand, as discussed, the smallness of the
coupling, in terms of the coefficients cis, is attributed to the
constraints associated with the (lack of) Cherenkov radi-
ation [47]. On the other hand, as detectors are constituted
by ordinary matter which, in the present framework, does
not directly couple to the vector field, the strength of such
an indirect interaction is dictated by the coefficients cis via
the curved spacetime. By including more matter fields, one
may generalize Eq. (2.1) to the following schematic form

Stot ¼ Srest½ψ i; gμν� þ
Z

d4x
ffiffiffiffiffiffi
−g

p �
λðu2 þ 1Þ þ εKð∇uÞ2�

ðC1Þ

where ψ i represents the matter fields embedded in their
action Srest. The operator K symbolically indicates how the
two factors of ∇u are contracted. Specifically, in the case of
Eq. (2.1), we have K ∼ c1gαβgμν þ � � �. The overall scale of
the coefficients cis is denoted by ε, which we take to be small.
Formally, one can proceed to derive the field equations.

It is observed that the Lagrange multiplier scales as λ ∝ ε
[cf. Eq. (2.5)], which is obtained by contracting u with the
vector field equation. This implies that the dynamics of the
vector field is essentially governed by the relative magni-
tudes among the coefficients cis, as the overall scale ε does
not appear in the resulting field equation. The vector degree
of freedom might exhibit nontrivial behavior, such as
possessing a different sound speed. However, as one takes
the limit ε → 0, the field equations for the matter and metric
fields reduce to those of general relativity. This is because
the contribution from the vector field is suppressed by a
factor of ε, which is readily verified and already demon-
strated by taking such a limit in Eq. (2.2) for the scalar and
metric degrees of freedom.
As a result, the features associated with the vector degree

of freedom can hardly lead to any observational effects. We
are indebted to the anonymous referee for pointing out the
misunderstanding in the original version of the manuscript
while providing a comprehensive explanation, which clari-
fies the potential relevance of the present study.
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