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 A B S T R A C T

Architected lattice structures often exhibit pronounced size effects that challenge conventional modelling 
strategies. This contribution presents a combined experimental and numerical investigation of size effects in 3D-
printed lattice beams under three-point bending. Specimens with triangular and square unit cells, manufactured 
using affordable Fused Deposition Modelling (FDM) with polyethylene terephthalate glycol (PETG), are tested 
at different lattice refinements while maintaining constant overall dimensions and solid volume fraction. 
The experiments reveal clear size-dependent behaviour in terms of stiffness, strength, and failure modes. 
To model these effects, three numerical strategies are employed: Direct Numerical Simulations (DNS), and 
multi-scale approaches based on first- and second-order computational homogenisation (FE2).DNS provides 
accurate predictions but is computationally expensive for fine lattices. Second-order FE2 captures size effects 
more efficiently, particularly when micro-scale periodic boundary conditions are applied, although it may 
overestimate responses for coarser lattices. This work critically assesses the accuracy and applicability of each 
modelling approach, providing valuable insight into the design and simulation of architected structures where 
scale-dependent behaviour is significant.
1. Introduction

Architected structures are characterised by their morphology, which 
consists of a pattern of repeated unit cells with specific morphology (a 
lattice structure). The size of the unit cell may range several length 
scales (e.g., meso-scale, micro-scale and/or nano-scale architecture) 
and the combination of the underlying materials properties of the solid 
phase with its geometric features and the interaction with the global 
loading conditions dictate the mechanical behaviour of the architected 
structure. Therefore, it is possible to tailor the mechanical behaviour 
of architected metamaterials, enabling the design of innovative lattice 
structures to achieve exceptional structural efficiency and unprece-
dented mechanical properties, beyond those of conventional natural 
materials (Jiao et al., 2023). For instance, cellular and lattice materials 
offer high strength-to-weight ratio, large deformability, specific energy 
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absorption, vibration control, thermal management and sound absorp-
tion (Fleck et al., 2010; Schaedler and Carter, 2016; Andersen et al., 
2021; Benedetti et al., 2021; Li et al., 2021; Qi et al., 2021; Zhang et al., 
2022; Yavas et al., 2022; Wang et al., 2022; Yin et al., 2023; Wang 
et al., 2024). Furthermore, these classes of material can be designed to 
attain more lightweight and sustainable structural solutions, reducing 
material usage and energy consumption (Nazir et al., 2019; Wu et al., 
2023a), with potential applications in the civil engineering (Chica and 
Alzate, 2019; Tiwari et al., 2024), automotive (Tay et al., 2014; Tilley 
et al., 2024), and aerospace (Ferro et al., 2018; Opgenoord and Willcox, 
2021; Smeets et al., 2021) industries, as well as in biomedical applica-
tions (Mahmoud and Elbestawi, 2017; Ataollahi, 2023). Nevertheless, 
there are still obstacles to overcome in the design and manufacturing of 
architected materials due to possibly intricate geometries and resulting 
complex mechanical behaviour.
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Regarding their manufacturing, Spadaccini (2019) highlights chal-
lenging aspects related to the morphological complexity of many three-
dimensional structures, multiple length scales, the possibility of incor-
porating different material constituents and the overall manufactur-
ing throughput. The above-mentioned characteristics reveal limitations 
of conventional manufacturing technologies for fabricating more ad-
vanced architected structures, leading to highly complex and costly 
structure-based designs (Nazir et al., 2019). Nevertheless, new develop-
ments in the context of additive manufacturing (AM), also referred to as 
3D printing, have opened up new possibilities for the development and 
design of sophisticated architected structures. Thus, the advancement 
of 3D printing technologies enables more feasible tailored structures 
with multi-functional properties provided by the precise control of 
the microstructural unit cell (Benedetti et al., 2021; Uribe-Lam et al., 
2021; Yang et al., 2024; Bhat et al., 2024). It is worth noting that 
economically efficient structures with optimal shapes have been de-
signed by combining topology optimisation strategies with additive 
manufacturing (Nazir et al., 2019; Plocher and Panesar, 2019; Pan 
et al., 2020; Kladovasilakis et al., 2023).

A wide variety of materials, encompassing metals, polymers, ceram-
ics, and polymer-composite materials, have been employed to fabricate 
architected structures through additive manufacturing (Benedetti et al., 
2021). Depending on the application and feedstock, various additive 
manufacturing techniques can be used to fabricate architected struc-
tures, including Fused Filament Fabrication (FFF) or Fused Deposition 
Modeling (FDM), Stereolithography (SLA), Material Jetting, Binder 
Jetting, Selective Laser Sintering (SLS), Selective Laser Melting (SLM), 
and Directed Energy Deposition (DED) (Kladovasilakis et al., 2022). In 
particular, FDM is an attractive manufacturing process for customised 
structures made from polymeric architected materials (Cuan-Urquizo 
and Silva, 2023), combining ease of manufacturing and cost efficiency 
to produce lightweight components with suitable mechanical perfor-
mance; hence, it is the technique adopted in the present contribution. 
This 3D printing process is based on building a physical object layer by 
layer, where a thermoplastic material is melted and extruded through a 
heated nozzle. In this case, polymeric materials such as PETG, polylac-
tic acid (PLA), acrylonitrile butadiene styrene (ABS), and thermoplastic 
polyurethane (TPU) can be used as feedstock, for instance.

It is also worth noting that architected structures, particularly those 
with thin-walled elements, exhibit complex mechanical behaviour com-
prising strain localisation mechanisms and stress concentrations, as 
well as boundary layer phenomena, size effects and deformation mode 
coupling (Iltchev et al., 2015; Kladovasilakis et al., 2022; dell’Isola 
et al., 2019; Korshunova et al., 2021; Pham and Hütter, 2021; dos 
Santos et al., 2024). Therefore, standard macroscopic simulations with 
conventional homogenised constitutive laws may not capture their 
mechanical response accurately. A possible approach to overcome that 
issue involves DNS models, consisting of detailed single-scale simula-
tions where the solid part at the micro-architecture level is explicitly 
discretised into fine elements. Although DNS finite element models 
show good agreement with the experimental results, the numerical 
simulations can be computationally expensive and even prohibitive 
for complete modelling of complex architected structures in industrial 
applications (Tekoglu and Onck, 2005; Iltchev et al., 2015). This is 
particularly critical considering that optimal unit cells may be designed 
by combining topology optimisation strategies based on iterative simu-
lations with additive manufacturing (Plocher and Panesar, 2019; Nazir 
et al., 2019; Pan et al., 2020; Kladovasilakis et al., 2023).

It has been shown that multi-scale models based on computational 
homogenisation (FE2), where both the macro-scale and the micro-
scale domains are with distinct but coupled finite element problems, 
may significantly reduce the computational effort of the simulation of 
architected metamaterials (dos Santos et al., 2023), compared to DNS 
approaches. The macroscopic structure is assumed to be a homogenised 
continuum with effective constitutive behaviour derived from average-
based homogenisation theory applied to the microscopic fields. The 
2 
micro-architecture is represented using the concept of a Represen-
tative Volume Element (RVE), whose geometry and distribution of 
constituents must be statistically representative of the micro-scale. In 
the present case, the micro-scale domain is modelled by a unit cell of 
lattice structures. The term RVE is avoided here since the unit cell size 
approaches the limit of the Principle of Scale Separation, required to 
define an RVE. The applicability of traditional first-order homogenisa-
tion is limited by a strong separation of the scales, which may not be 
verified in architected materials. Second-order homogenisation relaxes 
the Principle of Scale Separation and introduces an implicit characteris-
tic length (Rodrigues Lopes and Andrade Pires, 2022b), making it better 
suited for the analysis of materials showing size effects.

Therefore, second-order homogenisation and other multi-scale the-
ories based on generalised continua that include strain gradients have 
been employed to model architected materials. Nguyen and Noels 
(2014) investigated the micro-buckling of thin components and macro-
scopic localisation for cellular materials, where the continuous Galerkin 
method was employed to solve the strain gradient continuum at the 
macro-scale. Rahali et al. (2015) and dell’Isola et al. (2019) demon-
strated that the homogenised model for pantographic metamaterials 
requires a second gradient continuum model for accurate predictions. 
Weeger (2021) obtained the effective constitutive parameters for linear 
elastic second-gradient models of cubic 3D beam-lattice metamate-
rials. Yang and Müller (2021) and Yang et al. (2022) explored a 
computational framework based on a second-order asymptotic ho-
mogenisation method to capture both stiffening and softening size 
effects in mechanical architected metamaterials. Wu et al. (2023b) 
studied non-linear cellular materials and metamaterials using a second-
order computational homogenisation strategy, employing an equivalent 
homogenised volume to model strain-gradient effects. Recently, dos 
Santos et al. (2023, 2024) extended a variationally consistent second-
order homogenisation formulation for the analysis of porous materials, 
implemented it for FE2 analysis, investigated thin-walled architected 
structures with coupled deformation modes and size effects.

The abovementioned studies are purely computational and the link 
between additive manufacturing and advanced multi-scale numerical 
models accounting for size effects remains underexplored, despite being 
essential to design and investigate the complex behaviour of architected 
materials.  Yildizdag et al. (2020) manufactured pantographic lattice 
blocks by selective laser sintering, performed three-point bending tests 
and showed the accuracy of second gradient models, but size effects 
have not been addressed. Ciallella et al. (2023) performed a similar 
analysis, employing Digital Volume Correlation to obtain more de-
tailed comparisons between numerical and experimental results, further 
emphasising the ability of strain gradient models to capture exotic cur-
vature modes due to the coupling elongation and flexural deformations. 
For instance, Korshunova et al. (2021) studied the bending behaviour of 
additively manufactured octet-truss lattice structures – fabricated using 
SLM technology with stainless steel powder SS 316L-0407 – through 
experimental validation and numerical modelling via finite element 
analysis and the Finite Cell Method, incorporating higher-order contin-
uum theories to account for size effects. Aziz et al. (2021) investigated 
size effects on the mechanical properties of 3D-printed body-centred 
cubic lattice structures – manufactured using the FFF technique with 
polymer PLA – coupling mechanical experiments and classical finite 
element analyses. More recently, Molavitabrizi et al. (2023) employed 
periodic second-order homogenisation to obtain the properties of an 
effective strain-gradient continuum representative of a cubic lattice 
material that was produced using Multi Jet Fusion technology with 
polyamide PA-12. They explored size effects observed under three-point 
bending computationally, with DNS and strain-gradient isogeometric 
simulations, but the experimental results have been obtained for one 
unit cell size, limiting the numerical validation. Furthermore, as ob-
served in dos Santos et al. (2024), effective properties may vary with 
the unit cell deformation and that effect can only be captured with 
finite strain coupled multi-scale simulations. A research question the 
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still remains is whether the predictions of size effects obtained with 
different classes of numerical models accurately model the physical 
behaviour, or not, and what are their limitations.

Therefore, a detailed experimental and numerical study of size 
effects, combining three-point bending experiments of two lattice struc-
tures with advanced modelling strategies, including DNS and second-
order FE2 simulations, is presented here. The lattice structures’ spec-
imens are manufactured using a more affordable approach that com-
bines FDM 3D printing technique with a commercially available PETG 
filament, which is a material flexible, strong, simple to print and well-
suited for different applications, such as mechanical parts, printer parts, 
and protective components (Iftekar et al., 2023). In the authors best 
knowledge, a direct comparison between experimental and numerical 
analysis for lattice beams 3D printed with FDM and PETG filament, en-
compassing different unit cell sizes, has not been performed before. This 
is fundamental to address the research question. Therefore, specimens 
have been manufactured and tested while maintaining constant macro-
scale dimensions and solid volume fraction, but with varying unit cell 
sizes. Their mechanical response, including reaction curves, strength 
values and failure mode are analysed in detail. All the experiments 
are modelled using an in-house finite element code, employing three 
modelling strategies: (i) DNS finite element models, and (ii) coupled 
multi-scale strategies based on first-order homogenisation and (iii) 
also based on second-order computational homogenisation through the 
recent variational framework developed by dos Santos et al. (2023). In 
particular, this second-order approach accounting for a scale param-
eter, in which RVE-based kinematic constraint, including the periodic 
and minimal models, are systematically derived. It is worth mentioning 
that three-dimensional FE2 multi-scale second-order analyses remain 
scarcely explored in the computational modelling of the mechanical 
behaviour of additively manufactured lattice materials with size effects. 
The impact of macroscopic mesh refinement, of particular importance 
in the context of second-order analyses, is evaluated in multi-scale 
simulations. Lattice morphologies with different solid material config-
urations at the outer boundary of the unit cell were investigated to 
evaluate the effect of micro-scale boundary conditions applied to the 
unit cell models in multi-scale analyses. Thus, the comparative analysis 
of numerical results enables the assessment of accurate models for 
capturing size effects in additively manufactured architected structures, 
along with the advantages and limits of applicability of each modelling 
strategy. Moreover, coupling 3D printing with advanced modelling 
options represents a powerful approach towards enhancing the design 
and fabrication of architected structures in order to achieve the desired 
mechanical properties.

In summary, this paper is organised as follows. Details of the 
characterisation of the mechanical properties of the printed PETG, 
along with the main aspects of 3D printing and the experimental and 
computational methods to perform and simulate three-point bending 
tests of two different architected structures, are presented in Section 2. 
The experimental and numerical results, the latter encompassing both 
DNS and FE2 strategies, are presented in Section 3, focusing on the 
reaction curves, failure mode and size effects. A critical comparison 
of the numerical results, using the experimental observations for their 
assessment, is performed in Section 4. presents the results and discus-
sion focusing on size effects on the mechanical behaviour of the studied 
structures, including a comparison between the experimental and nu-
merical responses. Finally, Section 5 summarises the main conclusions 
of this experimental and numerical study.

2. Material and methods

2.1. Additive manufacturing of architected structure by FDM

The FDM-based additive manufacturing method was chosen to fabri-
cating the architected structures. This technique enables the creation of 
complex and customised geometries for polymer-based materials. Since 
3 
Table 1
Material properties of the commercially available PETG filament (feedstock) provided 
by the manufacturer (3D Lab, Brazil).
 Material properties of the PETG filament Value Method  
 Density 1.27 g/cm3 ASTM D792  
 Fusion temperature 240 ◦C–260 ◦C ASTM D3418 
 Glass transition temperature or Tg 70 ◦C ASTM D1525 
 Modulus of elasticity 2100 MPa ASTM D790  
 Tensile stress at yield 50 MPa ASTM D638  
 Flexural strength 70 MPa ASTM D790  
 IZOD impact strength 101 J/m ASTM D256  

FDM offers flexibility in material selection, it allows for the choice of 
thermoplastic materials tailored to achieve the mechanical, thermal, 
and chemical properties required for specific applications of architected 
structures. Furthermore, FDM is generally more affordable due to lower 
equipment and material costs when compared to other additive man-
ufacturing techniques. The Sethi3D AiP A3 printer, equipped with a 
direct drive extruder and a brass nozzle (0.4 mm), was used for all 
3D printing of the architected structures and standard test specimens 
(material characterisation).

A commercially available PETG filament with uniform opaque 
colour supplied by the manufacturer 3D Lab (Brazil) was selected as 
the feedstock for the 3D prints. This amorphous polymer, commonly 
used in additive manufacturing, also offers other attractive features, 
such as good printability, cost-performance efficiency, a balanced com-
bination of strength and deformability, and chemical resistance, among 
others. The typical material properties of the filament provided by the 
manufacturer are shown in Table  1. Simplify3D software was used to 
control the printing process by converting 3D CAD models into G-code. 
After conducting calibration tests, the following printing parameters 
were defined: (i) heatbed temperature of 75◦, (ii) nozzle temperature 
of 250◦, (iii) infill 100% rectilinear 0◦/90◦ (xy plane), (iv) layer height 
of 0.2 mm, (v) extrusion factor of 0.96, (vi) three perimeters, and (vii) 
print speed of 50 mm/s.

2.2. Characterisation of the mechanical properties of the printed polymer

Even though the PETG filament’s mechanical properties are pro-
vided, the mechanical properties of the printed polymer depend on 
the printing conditions. Therefore, characterisation tests are conducted 
on standardised specimens, following ASTM D638, produced with the 
same printing conditions employed to manufacture the lattice struc-
tures to obtain realistic properties of the base material that can be 
used in the numerical models. The uniaxial tensile tests were carried 
out using five type I specimens with length overall 𝐿𝑂 = 165 mm, 
width overall 𝑊𝑂 = 19 mm, and thickness 𝑇 = 7 mm (see Fig.  1). 
The set of tensile tests aimed to determine the modulus of elasticity (𝐸), 
tensile stress at yield (𝜎0), tensile strength at failure (𝜎𝑏), and elongation 
at failure (𝜀𝑏). The tests were conducted at a speed of 5 mm/min 
using an Instron 5969 Dual Column Testing System equipped with a 
5 kN load cell. As shown in Fig.  2(a), a mechanical strain gauge was 
employed to measure the longitudinal deformations. Fig.  2(b) shows 
the broken test specimens after the uniaxial tensile tests. The results 
depicting the constitutive behaviour in terms of tensile stress versus 
tensile strain (𝜎𝑡 versus 𝜀𝑡) are presented in Fig.  3. The results of 
material characterisation of five Type I specimens manufactured with 
PETG by 3D printing are shown in Table  2.

The average results for each material parameter are presented in 
Table  3, including the standard deviation (SD) and the coefficient of 
variation (CV). In particular, the experimental data associated with 
the Poisson’s ratio (𝜈) were obtained by dos Santos et al. (2025), 
where an optical extensometer-based method was employed to measure 
the transverse and longitudinal deformations of Type I test specimens 
fabricated with PETG from the same manufacturer (3D Lab, Brazil). It 
is important to note that the elastic parameters 𝐸 and 𝜈 are essential for 
performing elastic finite element numerical simulations of architected 
structures manufactured via FDM-based 3D printing.
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Fig. 1. Type I specimens for uniaxial tensile test.

Fig. 2. Uniaxial tensile tests for five Type I specimens.

Fig. 3. Tension stress versus tensile strain (𝜎𝑡 versus 𝜀𝑡) for uniaxial tensile test considering five test specimens (# 1, # 2, # 3, # 4 and # 5).
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Table 2
Mechanical properties from tensile tests of five 3D-printed Type I specimens manufac-
tured with PETG.
 Specimen 𝐸# (MPa) 𝜎#

𝑚𝑎𝑥 (MPa) 𝜎#
𝑏 (MPa) 𝜀#𝑏  

 # 1 1654 35.07 34.97 2.63% 
 # 2 1519 36.80 36.74 3.05% 
 # 3 1652 33.28 33.05 2.60% 
 # 4 1747 35.33 34.05 3.31% 
 # 5 1690 35.26 34.22 3.01% 

Table 3
Mechanical properties from tensile tests of 3D-printed Type I specimens manufactured 
with PETG.
 Mechanical properties Value SD CV  
 𝐸 1652 MPa 83.61 MPa 5.06%  
 𝜈a 0.33 0.08 24.71% 
 𝜎𝑚𝑎𝑥 35.15 MPa 1.25 MPa 3.56%  
 𝜎𝑏 34.61 MPa 1.36 MPa 3.97%  
 𝜀𝑏 2.92% 0.30% 10.33  
a Value reported by dos Santos et al. (2025).

Table 4
Solid volume (𝑉 𝑠

𝑀 ) and solid volume fraction (𝑓 𝑠
𝑀 ) for lattice beams.

 Geometry Beam 𝑉 𝑠
𝑀 (mm3) 𝑓 𝑠

𝑀  
 Model 1 (UC Size 1) 61 440 0.64 
 Triangle-shaped Model 2 (UC Size 2) 61 440 0.64 
 Model 3 (UC Size 3) 61 440 0.64 
 Model 1 (UC Size 1) 61 440 0.64 
 Square-shaped Model 2 (UC Size 2) 61 440 0.64 
 Model 3 (UC Size 3) 61 440 0.64 

2.3. Specimens and experimental apparatus for three-point bending tests

Three-point bending experimental mechanical tests were conducted 
for two sets of architected structures: (i) lattice beams composed of with 
a triangle-shaped micro-architecture unit cells (triangular lattice, see 
Fig.  4), and (ii) lattice beams composed of unit cells with a square-
shaped micro-architecture (square lattice, see Fig.  5). The beams have 
equal overall dimensions, with a longitudinal length of 𝐿𝑥 = 240 mm 
and a cross-section of 𝐿𝑦 = 20 mm by 𝐿𝑧 = 20 mm. Regarding the 
setup for the three-point bending test, a distance of 𝐿𝑠 = 200 mm 
is set between the two supports at the bottom of the lattice beams. 
To assess the size effect on the architected structures, three specimen 
configurations were designed for each type of lattice, considering dif-
ferent unit cell (UC) sizes, denoted by 𝑙𝜇 . The specimen configurations 
are characterised by: (I) UC size 1 (𝑙𝜇 = 20.00 mm), composed of 12 
unit cells (12 × 1 × 1), (II) UC size 2 (𝑙𝜇 = 10.00 mm), composed 
of 96 unit cells (24 × 2 × 2), and (III) UC size 3 (𝑙𝜇 = 6.67 mm), 
composed of 324 unit cells (36 × 3 × 3). Cellular beam specimens 
with more unit cells (i.e., more refined micro-architected arrangements) 
were discarded due to poor 3D print quality, which highlighted the 
limitations of the equipment and technique used in the fabrication 
process.

It is worth noting that the unit cells and lattice beams have the same 
total solid volume fraction (i.e., only the unit cell size is modified). 
Tables  4 and 5 present details of the solid volume and solid volume 
fraction for lattice beams and unit cells, respectively.  Furthermore, 
the solid outer surface area of the triangular-shaped unit cell (𝐴▵

𝑜𝑢𝑡𝑒𝑟) 
is 22.73% lower than that of the square-shaped unit cell (𝐴□

𝑜𝑢𝑡𝑒𝑟), 
i.e., 𝐴▵

𝑜𝑢𝑡𝑒𝑟 = 0.7727𝐴□
𝑜𝑢𝑡𝑒𝑟. The compared area values encompass the 

outer solid surfaces of the unit cells, including the front, back, left, 
right, top, and bottom faces (see details in Fig.  6 and Table  6). 

Figs.  7 and 8 present photos of the 3D-printed architected speci-
mens, illustrating the different configurations manufactured for both 
triangular and square lattice beams, respectively. Three test specimens 
5 
Table 5
Solid volume (𝑉 𝑠

𝜇 ) and solid volume fraction (𝑓 𝑠
𝜇) for unit cells.

 Geometry UC 𝑉 𝑠
𝜇  (mm3) 𝑓 𝑠

𝜇  
 Size 1 5120.00 0.64 
 Triangle-shaped Size 2 640.00 0.64 
 Size 3 189.63 0.64 
 Size 1 5120.00 0.64 
 Square-shaped Size 2 640.00 0.64 
 Size 3 189.63 0.64 

were printed for each beam configuration to assess the representative-
ness of the mechanical results. Three-point quasi-static bending tests 
were performed on a universal testing machine (Instron 5969 Dual 
Column Testing System) at a speed of 2 mm/min, using a 5 kN static 
load cell. The load cell was positioned in the centre of the lattice beams. 
The purpose of the experimental tests is to obtain the mechanical 
behaviour associated with flexural stress versus flexural strain curves 
(𝜎f - 𝜀f). Finally, Figs.  9 and 10 show the lattice beam models positioned 
for the three-point bending tests.

2.4. Modelling strategies for numerical simulation of the three-point bending 
test

Computational modelling is carried out through numerical simula-
tions in an in-house FEM code using a computer with an Intel® Xeon®
E5-2650 v4 processor, consisting of 24 physical cores (48 virtual cores) 
and 128 GB of RAM, which was used to conduct the numerical anal-
yses. Initially, conventional simulations were conducted by full-scale 
DNS models, where the architected structure is represented in detail 
through an arrangement of unit cells. Afterwards, coupled multi-scale 
FE2 simulations, incorporating first- and second-order computational 
homogenisation, were performed employing the unit cell concept (UC) 
to model the underlying architected microstructure. All simulations 
were conducted under the assumption of finite strains within a geo-
metrically nonlinear setting. The matrix material was modelled using 
a hyperelastic constitutive law, which establishes a linear relationship 
between the Kirchhoff stress tensor 𝝉 and the logarithmic strain tensor 
𝜺, defined via the elastic tensor 𝗗𝑒:

𝝉 = 𝗗𝑒 ∶ 𝜺, (1)

𝜺 = ln
(

𝑭𝑭 𝑇 ) . (2)

Moreover, the first Piola–Kirchhoff stress tensor 𝑷 , which is used in the 
homogenisation formulation (see Eq.  (4)), can be written as follows: 
𝑷 = 𝝉𝑭 −𝑇 =

(

𝗗𝑒 ∶ ln
(

𝑭𝑭 𝑇 )) ⋅ 𝑭 −𝑇 , (3)

with 𝑭  denoting the deformation gradient. Inelastic phenomena are not 
considered in the simulations.

2.4.1. DNS – Direct numerical simulations
The geometry of the DNS models for the architected structures 

consists of an arrangement of periodic unit cells. Four different DNS 
models of lattice beams were used in the three-point bending numer-
ical tests: (I) DNS model with UC size 1, containing 12 unit cells 
(12 × 1 × 1), (II) DNS model with UC size 2, containing 96 unit cells 
(24 × 2 × 2), (III) DNS model with UC size 3, containing 324 unit cells 
(36 × 3 × 3), and (IV) DNS model with UC size 4, containing 768 unit 
cells (48 × 4 × 4). Therefore, the structures are made of unit cells with 
different sizes (𝑙𝜇 = 20 mm, 𝑙𝜇 = 10 mm, 𝑙𝜇 = 6.67 mm and 𝑙𝜇 =
5.00 mm), following the 3D-printed models (see Figs.  4 and 5) with 
the addition of a smaller unit cell size. However, memory limitations 
of the computer used for processing the numerical simulations did not 
allow the simulation of the full DNS model with UC size 4. Therefore, 
symmetry conditions on the x–y and y–z planes were imposed on this 
DNS model to reduce the computational cost, resulting in 192 unit 
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Fig. 4. Dimensions (𝐿𝑥 = 240 mm, 𝐿𝑠 = 200 mm, 𝐿𝑦 = 20 mm and 𝐿𝑧 = 20 mm) and boundary conditions for architected structures with triangular-shaped unit cells.
Table 6
Outer surface areas for unit cells.
 UC geometry Case Outer surface areas (mm2)

 Front Back Left Right Top Bottom Total  
 Size 1 256.00 256.00 160.00 160.00 400.00 400.00 1632.00 
 Triangle-shaped Size 2 64.00 64.00 40.00 40.00 100.00 100.00 408.00  
 Size 3 28.44 28.44 17.78 17.78 44.44 44.44 181.32  
 Size 1 256.00 256.00 400.00 400.00 400.00 400.00 2112.00 
 Square-shaped Size 2 64.00 64.00 100.00 100.00 100.00 100.00 528.00  
 Size 3 28.44 28.44 44.44 44.44 44.44 44.44 234.64  
6 
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Fig. 5. Dimensions (𝐿𝑥 = 240 mm, 𝐿𝑠 = 200 mm, 𝐿𝑦 = 20 mm and 𝐿𝑧 = 20 mm) and boundary conditions for architected structures with square-shaped unit cells.
cells (24 × 4 × 2). The difficulty in modelling more refined unit cell 
arrangements highlights the limitation of DNS models, where a high 
computational cost, primarily in terms of memory requirements, arises 
due to the large number of degrees of freedom needed to discretise 
the lattice structures. Twenty-node hexahedral finite elements (H20) 
with 8 integration points were used for mesh discretisation of DNS 
models. Figs.  11 and 12 illustrate the mesh of the DNS models with 
UC size 1, for the triangular and square lattice beams, respectively. The 
details of the finite element meshes for all DNS models are provided in 
Tables  7 and 8. Regarding the loading programme applied to the lattice 
7 
beams, a prescribed vertical displacement of 𝑢0 = 6.0 mm is imposed 
in 10 equally-spaced increments, simulating the load cell used in the 
experimental test.

2.4.2. FE2 – multi-scale simulations based on first- and second-order ho-
mogenisation

Fig.  13 presents an illustrative scheme of multi-scale approaches 
based on first- and second-order computational homogenisation for a 
porous solid. In this case, two scales are considered for the multi-scale 
representation of the non-homogeneous material: (i) the macro-scale or 
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Fig. 6. Representation of outer solid surface areas for unit cells.

Fig. 7. Configurations of 3D-printed triangular lattice beams produced for three-point bending tests.

Fig. 8. Configurations of 3D-printed square lattice beams produced for three-point bending tests.
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8 



W.F. dos Santos et al. European Journal of Mechanics / A Solids 114 (2025) 105728 
Fig. 9. Experimental apparatus for three-point bending tests on triangular lattice beams.
Fig. 10. Experimental apparatus for three-point bending tests on square lattice beams.
Fig. 11. Finite element mesh of DNS model with UC size 1 (𝑙𝜇 = 20.00 mm), for the triangular lattice beam, with 𝐿𝑥 = 240 mm, 𝐿𝑠 = 200 mm, 𝐿𝑦 = 20 mm and 𝐿𝑧 = 20 mm: 
mesh composed of 8160 elements (H20) and 46274 nodes.
macro-continuum with characteristic length 𝐿 and domain 𝛺, and (ii) 
the micro-scale modelled based on the RVE concept with characteristic 
length 𝑙𝜇 and domain 𝛺𝜇 , consisting of the solid part 𝛺𝑠

𝜇 and the void 
part 𝛺𝑣

𝜇 (i.e., 𝛺𝜇 = 𝛺𝑠
𝜇 ∪ 𝛺𝑣

𝜇). Note that each macro-point of the 
macro-continuum is modelled through an RVE, which incorporates the 
presence of voids observed at the micro-scale of the non-homogeneous 
material.

Moreover, 𝒖𝟎 and 𝒕𝟎 indicate the Newman and Dirichlet boundary 
conditions, respectively, applied at the macro-scale.
9 
In the first-order approach (see Fig.  13(a)), the Cauchy continuum 
theory (first gradient-based) is assumed for both scales (i.e., macro-
scale and micro-scale). The macroscopic deformation gradient 𝑭  is 
incorporated into the RVE model in the down-scaling process. Then, 
the RVE equilibrium problem is solved using convenient boundary 
conditions, which define different multi-scale models. For example, 
the subsequent multi-scale models can be derived from micro-scale 
boundary conditions imposed on the RVE (Lopes et al., 2021): (i) uni-
form traction boundary condition (lower bound); (ii) periodic boundary 
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Fig. 12. Finite element mesh of DNS model with UC size 1 (𝑙𝜇 = 20.00 mm), for the square lattice beam, with 𝐿𝑥 = 240 mm, 𝐿𝑠 = 200 mm, 𝐿𝑦 = 20 mm and 𝐿𝑧 = 20 mm: 
mesh composed of 7680 elements (H20) and 41561 nodes.
Table 7
Mesh data (H20 element) for DNS models with triangular-shaped unit cells.
 DNS Elements Nodes  
 Model 1 - Size 1 8160 46274  
 Model 2 - Size 2 65280 341995  
 Model 3 - Size 3 220320 1123324 
 Model 4 - Size 4a 130560 669069  
a With symmetry conditions in the x–y and y–z planes.

Table 8
Mesh data for DNS models with square-shaped unit cells.
 DNS Elements (H20) Nodes  
 Model 1 - Size 1 7680 41561  
 Model 2 - Size 2 61440 304881 
 Model 3 - Size 3 207360 998761 
 Model 4 - Size 4a 122880 594841 
a With symmetry conditions in the x–y and y–z planes.

displacement fluctuations; (iii) linear boundary displacements (upper 
bound). Afterwards, the homogenisation process allows obtaining the 
first Piola–Kirchhoff stress tensor 𝑷  (the energetic conjugate of 𝑭 ) 
and the corresponding constitutive consistent tangent 𝗔. Since no scale 
parameter is introduced in this type of approach, the first-order strategy 
does not capture size effects. It is important to highlight that the 
Principle of Scale Separation must be satisfied, where the RVE length 
(micro-scale length, 𝑙𝜇) must be much smaller than the length of the 
macroscopic structure (i.e., 𝑙𝜇 ≪ 𝐿), so that constant macroscopic 
deformation gradient can be assumed.

The multi-scale second-order homogenisation is an extension of the 
first-order homogenisation-based model. In general, the macro-scale 
is enriched through the consideration of the second-gradient contin-
uum theory (see Fig.  13(b)), while the micro-scale local behaviour is 
still modelled by the Cauchy continuum theory. In the down-scaling 
process, the deformation descriptors 𝑭  and 𝗚 (second gradient of the 
displacements) are inserted into the RVE model. An RVE equilibrium 
problem must also be solved with micro-scale constraints imposed over 
the RVE, where distinct models can be defined for the multi-scale 
strategy. For instance, the second-order approach presented by dos 
Santos et al. (2023) enables the definition of the following multi-scale 
models from micro-scale constraints imposed on the RVE: (i) minimal 
constraint (lower bound); (ii) periodic constraint; (iii) direct constraint 
(upper bound). The homogenisation procedure enables the recovery of 
the conjugate stresses 𝑷  and 𝗤 (higher-order stress tensor), as well as 
the respective consistent tangents (𝗔, 𝗔𝗚, 𝗛, and 𝗛𝑭 ). In particular, 
a characteristic length scale parameter is naturally incorporated in 
the constitutive relations. As a consequence, the second-order strategy 
captures size effects, and allows for regularisation of moderate strain 
localisation (Rodrigues Lopes and Andrade Pires, 2022b). Moreover, 
the Principle of Scale Separation is relaxed such that the RVE length can 
10 
be increased up to a value where a linear evolution of the macroscopic 
deformation gradient is observed in the RVE.

Further details on first- and second-order multi-scale strategies 
based on computation homogenisation explored in this work can be 
found in Lopes et al. (2021) and dos Santos et al. (2023), respectively. 
In summary, variationally consistent formulations across the scales are 
derived using the Method of Multi-Scale Virtual Power (Blanco et al., 
2016) to define RVE-based multi-scale models. In particular, it is worth 
mentioning that the first Piola–Kirchhoff stress and the homogenised 
higher-order stress tensors are obtained through the average-based 
homogenisation theory, resulting in 

𝑷 = 1
𝑉𝜇 ∫𝛺𝑠

𝜇

𝑷 𝜇𝑑𝑉 , (4)

and 

𝗤 = 1
𝑉𝜇 ∫𝛺𝑠

𝜇

(

𝑷 𝜇 ⊗ 𝒀
)𝑆 𝑑𝑉 , (5)

with ∙𝑆 denoting the right-hand symmetry operator, 𝒀  representing the 
vector of reference coordinates over the RVE, and 𝑉𝜇 indicating the RVE 
volume.

Furthermore, the homogenised consistent tangents (𝗔, 𝗔𝗚, 𝗛, and 
𝗛𝑭 ), which must be defined to solve the non-linear macroscopic equi-
librium problem using the Newton–Raphson method, can be derived by 

𝗔 = 𝜕𝑷
𝜕𝑭

, 𝗔𝗚 = 𝜕𝑷
𝜕𝗚

, 𝗛 = 𝜕𝗤
𝜕𝗚

, 𝗛𝑭 = 𝜕𝗤
𝜕𝑭

. (6)

In this context, coupled multi-scale approaches based on first- and 
second-order computational homogenisation were also explored for 
the numerical modelling of the mechanical behaviour of architected 
structures. Since the lattice structures are composed of arrangements of 
unit cells, the micro-scale is modelled using the concept of the unit cell 
(UC) in multi-scale analyses. In the remainder Figs.  14 and 15 present 
illustrative schemes of multi-scale modelling for three-point bending 
tests, incorporating geometry, dimensions, and boundary conditions. 
It is important to note that the UC size has no influence on first-
order multi-scale simulations. On the other hand, a scale parameter 
is naturally incorporated into the second-order multi-scale formulation 
presented by dos Santos et al. (2024). To evaluate the influence of 
the size effect, six different UC sizes (equivalent to the unit cell sizes) 
were considered at second-order multi-scale simulations: (i) Size 1 (𝑙𝜇 =
20.00 mm), (ii) Size 2 (𝑙𝜇 = 10.00 mm), (iii) Size 3 (𝑙𝜇 = 6.67 mm), 
(iv) Size 4 (𝑙𝜇 = 5.00 mm), (v) Size 5 (𝑙𝜇 = 3.33 mm), and (vi) Size 6 
(𝑙𝜇 = 2.50 mm). In this study, the multi-scale simulations enabled the 
analysis of more UC sizes for lattice beams compared to DNS models 
that were limited to sizes 1–4 due to computer memory constraints.

FE2 multi-scale analyses require finite element simulations at both 
the macro-scale and micro-scale. First-order coupled multi-scale anal-
yses are conducted using macro- and micro-level meshes composed 
of H20 elements. On the other hand, second-order coupled multi-
scale analyses require C1 continuity to address the second-gradient 
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Fig. 13. Porous material modelled through multi-scale approaches.
Fig. 14. Multi-scale scheme for determining the homogenised macroscopic behaviour of lattice beams (𝐿𝑥 = 240 mm, 𝐿𝑠 = 200 mm, 𝐿𝑦 = 20 mm and 𝐿𝑧 = 20 mm) with a 
triangular-shaped UC.
Fig. 15. Multi-scale scheme for determining the homogenised macroscopic behaviour of lattice beams (𝐿𝑥 = 240 mm, 𝐿𝑠 = 200 mm, 𝐿𝑦 = 20 mm and 𝐿𝑧 = 20 mm) with a 
square-shaped UC.
equilibrium problem. Thus, a mixed finite element named H20F8L1 
(hexahedron twenty node-based shape functions, eight linear inter-
polation functions for the relaxed deformation gradient and constant 
Lagrange multipliers) was defined for numerical simulations at the 
macro-scale (see more details in Rodrigues Lopes and Andrade Pires 
(2022a)). Furthermore, the micro-scale is still adopted as a classical 
continuum, allowing to use H20 elements for UCs in second-order 
multi-scale analyses. Details of the macroscopic meshes are shown in 
11 
Fig.  16, while the UC mesh data are presented in Figs.  17 and 18. 
In particular, two meshes are defined at the macro-scale to assess the 
convergence of the numerical results. The micro-scale meshes have 
characteristics similar to those defined for the unit cells in the DNS 
models. A preliminary study using more refined micro-scale meshes 
revealed minimal impact on the numerical results. In the numerical 
simulation, the loading program was defined by applying a total pre-
scribed displacement of 𝑢 = 6.0 mm divided into 10 increments. The 
0
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Fig. 16. Meshes studied at the macro-scale for multi-scale simulations.
Fig. 17. Triangular-shaped UC: geometry and mesh composed of 680 elements (H20) and 4012 nodes.
Fig. 18. Square-shaped UC: geometry and mesh composed of 640 elements (H20) and 3776 nodes.
following multi-scale models were employed in the simulations: (i) 
first-order approach: uniform traction boundary condition and peri-
odic boundary displacement fluctuations; (ii) second-order approach: 
minimal constraint and periodic constraint. Since upper bound models 
are too restrictive, the multi-scale models of linear boundary displace-
ment (first-order theory) and direct constraint (second-order theory) 
12 
were not explored in this work, contributing to reduce the amount of 
three-dimensional multi-scale simulations.

3. Results

This section presents the experimental and numerical results ob-
tained for three-point bending of lattice beams, with particular focus 
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Fig. 19. Experimental results of the mechanical behaviour, considering the flexural stress and the flexural strain (𝜎f – 𝜀f) for triangular-shaped structures of size 1, size 2, and 
size 3 (with # indicating the specimen for each structure).
on size effects. The flexural stress (𝜎f) and the flexural strain (𝜀f) are 
calculated as follows: 
𝜎f =

3𝑅𝐿
2𝑏𝑑2

, (7)

and 
𝜀f =

6𝐷𝑑
𝐿2

, (8)

where, 𝑅 and 𝐷 represent, respectively, the reaction force and the 
maximum deflection at the centre of the beam, 𝐿 is the distance 
between the two outer supports span at the bottom of the beam (𝐿𝑠 =
200 mm), 𝑏 is the width of test beam (𝐿𝑧 = 20 mm), and 𝑑 is the 
thickness of tested beam (𝐿𝑦 = 20 mm). 

For the experimental results, in addition to the flexural stress and 
strain curves, the failure mode is also analysed. The numerical predic-
tions obtained with DNS are briefly compared with the experimental 
data before failure. Finally, the FE2 results are reported for different 
macroscopic finite element meshes, different formulations (first and 
second-order homogenisation), and for different micro-scale boundary 
conditions.

3.1. Experimental results

3.1.1. Triangular lattice
Fig.  19 depicts the experimental curves of flexural stress versus 

flexural strain (𝜎f – 𝜀f) for 3D-printed lattice beams with a triangular-
shaped geometry. This experimental mechanical behaviour is presented 
for all the manufactured specimen configurations, with UC sizes 1, 2, 
and 3. In particular, an approximately linear 𝜎f – 𝜀f relationship is 
observed in the experimental results up to 𝜀f = 1.8%, which justifies the 
elastic behaviour assumption taken in the numerical models. Moreover, 
different values of flexural stress are observed at the same level of 
flexural strain for each case size. At 𝜀f = 1.8%, the lattice beam with 
size 1 has superior stiffness, the structure with size 3 is more flexible. 
Therefore, the experimental investigation indicates that this type of 
architected structure exhibits the so-called size effect.

On the other hand, the experimental results up to rupture highlight 
the complexity of the mechanical behaviour of the triangular-shaped 
lattice beams, manufactured by 3D printing using the FDM technique. 
In the context of failure analysis, the architected structures of size 1 
exhibit superior stiffness and strength, although they show lower ductil-
ity. The lattice beams of size 2 display intermediate stiffness, along with 
lower strength and ductility. Finally, the structures of size 3 exhibit 
lower stiffness, intermediate strength, and enhanced ductility. Fig.  20 
shows the lattice beams with triangular-shaped unit cells near rupture 
13 
in the three-point bending experimental tests, where the curvature 
associated with the bending is visible. Furthermore, Fig.  21 presents 
the beams after rupture in the experimental tests. The failure occurs 
near the centre of the architected structure, where the load cell was 
positioned to apply the prescribed displacement. At around 𝜀f = 3.0%, 
the lattice beam of size 3 exhibited local buckling in the region of the 
load cell, which led to localised deformations and contributed to a more 
ductile rupture compared to sizes 1 and 2. It is worth mentioning that 
instabilities are commonly observed in architected structures composed 
of thin-walled elements. However, the modelling of such effects is 
not addressed in the present work. Further details on addressing local 
instabilities in three-point bending tests can be found in Yildizdag et al. 
(2020), for instance. It is worth noting that no strain localisation was 
observed in the regions near the lower supports.

The local buckling observed for unit cell size 3 shows that Digital 
Image Correlation (DIC) (Popł awski et al., 2025) and Digital Vol-
ume Correlation (DVC) (Ciallella et al., 2023) could be valuable for 
investigating complex 3D-printed lattice morphologies. For instance, 
DIC and DVC could provide a more detailed understanding of local 
micro-deformation fields and the initiation of damage. Thus, these 
techniques are valuable for enhancing the mechanical characterisation 
of such artificial structures. In the present study, the lattice struc-
tures are designed with unit cell lengths ranging from 20.00 mm to 
6.66 mm, which are relatively large when compared to typical micro-
architectures. However, future studies will explore structures with more 
complex morphologies and smaller unit cell lengths, further justifying 
the incorporation of image-based approaches. Regarding potential lim-
itations, the optical access and resolution required for the successful 
application of DIC or DVC can still provide experimental challenges, 
primarily due to the internal geometry and out-of-plane strains in 
3D-printed lattice materials.

Table  9 shows the average flexural stress results at a flexural strain 
of 1.8% (prescribed displacement of 6.0 mm). Although only three 
specimens of each case size were tested in the laboratory, the low 
standard deviation and coefficient of variation values indicate good 
representativeness of the results. Therefore, the 3D printing process us-
ing the FDM technique provided good reproducibility of the architected 
structures in terms of mechanical behaviour.

3.1.2. Square lattice
Fig.  22 presents the experimental mechanical behaviour (𝜎f versus 

𝜀f) of 3D-printed square lattice beams with UC sizes 1, 2, and 3. The 
size effect is also evident in the lattice beams, as different flexural 
stress values are observed for the same level of prescribed displacement 
(e.g., see results up to 𝜀 = 1.8% associated with 𝑢 = 6.0 mm). In 
f 0
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Fig. 20. Architected structures with triangular-shaped close to rupture in the three-point bending experimental tests.
Fig. 21. Triangular-shaped beams after failure in the three-point bending experimental tests.
Table 9
Averaged experimental flexural stress (𝜎f), including 𝑆𝐷 and 𝐶𝑉 , for triangular-shaped lattice beams considering 𝜀f = 1.8% (𝑢0 = 6.0 mm).
 Configuration Specimen ID ▵ 𝜎#

f  (MPa) 𝜎f (MPa) SD (MPa) CV  
 # 1 20.338  
 Size 1 # 2 19.436 19.95 0.466 2.335% 
 # 3 20.089  
 # 1 14.478  
 Size 2 # 2 14.780 14.65 0.156 1.062% 
 # 3 14.694  
 # 1 13.348  
 Size 3 # 2 13.129 13.05 0.344 2.633% 
 # 3 12.675  
summary, decreasing the unit cell size results in architected structures 
with reduced stiffness, strength, and ductility. The experimental data 
indicate curves with an approximately linear behaviour between 𝜎f
and 𝜀f. The curvature associated with bending can be observed in 
Fig.  23, which shows the lattice beams nearing rupture during the 
experimental tests. As shown in Fig.  24, the failure occurs near the 
middle of the architected structures. In this case, no strain localisation 
was observed in the lower regions of the supports or in the upper region 
corresponding to the position of the load cell.

The average flexural stress value at a flexural strain of 1.8% (pre-
scribed displacement of 6.0 mm) is presented in Table  10. Similar to 
the triangular lattice beam, only three specimens have been tested 
for each size but low scatter is obtained in the results. Hence, good 
reproducibility of the results is also verified in this case.
14 
3.2. DNS results

The mechanical behaviour of the DNS models composed of
triangular- and square-shaped unit cells is shown in Figs.  25 and 26, 
respectively. Note that different unit cell sizes result in distinct flexural 
stress values, where the reduction in unit cell size leads to lower 
flexural stress values. Therefore, the size effect is captured through 
numerical simulations of lattice beams using DNS models. Moreover, 
the mechanical behaviour demonstrates a linear relationship between 
the flexural stress and the flexural strain for all cases, revealing that 
nonlinear geometric effects are not significant for lattice beams under 
bending. Finally, it is worth mentioning the high computational cost 
as a disadvantage of DNS models, particularly associated with memory 
demand, which made simulations of lattice beams with smaller unit cell 
lengths unfeasible due to the limitation of the processing computer.
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Fig. 22. Experimental results of the mechanical behaviour, considering the flexural stress and the flexural strain (𝜎f – 𝜀f) for square-shaped structures with size 1, size 2 and size 
3 (with # denoting the specimen for each structure).

Fig. 23. Architected structures with square-shaped close to rupture in the three-point bending experimental tests.

Fig. 24. Square-shaped beams after failure in the three-point bending experimental tests.

European Journal of Mechanics / A Solids 114 (2025) 105728 
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Table 10
Averaged experimental flexural stress (𝜎f), encompassing 𝑆𝐷 and 𝐶𝑉 , for square-shaped lattice beams considering 𝜀f = 1.8% (𝑢0 = 6.0 mm).
 Configuration Specimen ID □ 𝜎#

f  (MPa) 𝜎f (MPa) SD (MPa) CV  
 # 1 17.324  
 Size 1 # 2 17.308 17.315 0.008 0.048% 
 # 3 17.313  
 # 1 14.571  
 Size 2 # 2 14.578 14.586 0.021 0.144% 
 # 3 14.610  
 # 1 11.353  
 Size 3 # 2 11.417 11.394 0.035 0.309% 
 # 3 11.412  
Fig. 25. Mechanical behaviour (𝜎f - 𝜀f) for DNS models composed of triangular-shaped 
unit cells with sizes 1, 2, 3 and 4.

Fig. 26. Mechanical behaviour (𝜎f - 𝜀f) for DNS models composed of square-shaped 
unit cells with sizes 1, 2, 3 and 4.

3.3. Multi-scale results

3.3.1. Macro-scale mesh convergence
Initially, it is important to assess the convergence of numerical re-

sponses in FE2 multi-scale simulations with respect to the finite element 
mesh. Tables  11 and 12 present a comparison of the flexural stress 
results for the two investigated macro-scale meshes. In the context 
of second-order multi-scale simulations, a mesh refinement study was 
conducted for UC size 3. Since first-order multi-scale analyses are 
independent of the UC length, the mesh refinement investigation of 
such models is applicable to all UC sizes. Overall, meshes 1 and 2 yield 
flexural stresses that are in close agreement, as demonstrated by the 
small relative differences observed between the meshes. Therefore, to 
reduce the computational cost of the multi-scale analyses, mesh 1 was 
16 
Table 11
Mesh refinement study assessing 𝜎f for beams (𝜀f = 1.8% associated with 𝑢0 = 6.0 mm) 
composed of triangular-shaped UCs.
 Multi-scale model 𝜎f (MPa) Differences 
 Mesh 1 Mesh 2  
 Second-order: Periodic - Size 3 14.49 14.27 1.50%  
 Second-order: Minimal - Size 3 13.90 13.67 1.65%  
 First-order: Periodic - All sizes 12.06 12.02 0.28%  
 First-order: Uniform traction - All sizes 10.11 10.00 1.03%  

Table 12
Mesh refinement study assessing 𝜎f for beams (𝜀f = 1.8% associated with 𝑢0 = 6.0 mm) 
featuring square-shaped UCs.
 Multi-scale model 𝜎f (MPa) Differences 
 Mesh 1 Mesh 2  
 Second-order: Periodic - Size 3 14.18 14.05 0.88%  
 Second-order: Minimal - Size 3 7.01 6.85 2.29%  
 First-order: Periodic - All sizes 11.79 11.75 0.30%  
 First-order: Uniform traction - All sizes 4.59 4.58 0.23%  

selected for obtaining the remaining numerical results of the lattice 
beams under bending.

3.3.2. Size effect, multi-scale formulation and type of micro-scale constraint
Figs.  27 and 28 show the mechanical behaviour (𝜎f - 𝜀f) of the 

architected structures from multi-scale simulations, obtained with both 
first and second-order homogenisation, encompassing different UC sizes 
and underlying type of micro-scale constraint. Since the numerical re-
sults reveal a linear relationship between 𝜎f and 𝜀f, geometric nonlinear 
effects appear to be negligible for the lattice beams under bending. As 
expected, due to the scale parameter introduced in the formulation, the 
second-order multi-scale models exhibit mechanical behaviour with a 
size effect. In summary, increasing the UC size leads to higher flexural 
stresses for a given level of flexural strain. For smaller UC sizes, the 
numerical results indicate a convergence of the second-order multi-
scale models towards the first-order multi-scale models. The type of 
microscopic constraint also plays a role, with the uniform traction and 
minimal constraints providing responses that are more compliant, com-
pared to the periodic conditions. A more detailed analysis is provided 
in Section 4.

4. Discussion of the results

4.1. Influence of unit cell on the experimentally observed size effects

In this section, the size effects observed in the experimental results 
are discussed, considering the influence of the lattice structure mor-
phology. To that end, the experimental flexural stress obtained at a 
flexural strain of 1.8% (associated with the enforced displacement of 
6 mm), in the three-point bending tests, is analysed with respect to 
unit cell size (𝜎f versus unit cell length) and architecture of the lattice 
structure in Fig.  29. It is observed that the triangular lattice beam 
exhibits a linear relationship between 𝜎  and the unit cell size, whereas 
f
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Fig. 27. Multi-scale predictions of the mechanical behaviour (𝜎f - 𝜀f) of triangular lattice beams with UC sizes 1 to 6.
Fig. 28. Multi-scale predictions of the mechanical behaviour (𝜎f - 𝜀f) of square lattice beams with UC sizes 1 to 6.
this relationship is non-linear for the square lattice beam. Two possible 
reasons are hypothesised for this difference: (i) the non-linearity is 
introduced by the geometry of the unit cell or (ii) it is due to the effects 
of the manufacturing process, such as some anisotropy caused by the 
printing directions. The analysis of the numerical results will shed some 
light on this topic.
17 
4.2. Comparison of DNS predictions with experimental results

DNS results and experimental data for lattice beams composed of 
triangular-shaped unit cells are compared in Fig.  30, with the flexural 
stress obtained at a flexural strain of 1.8% (prescribed displacement of 
6 mm) for different unit cell sizes. Table  13 shows a comparison in more 
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Fig. 29. Size effect experimental study (𝜎f versus UC length) considering 𝜀f = 1.8% 
(𝑢0 = 6.0 mm): triangular and square-shaped lattice beams.

Table 13
Comparison of flexural stress for triangular-shaped lattice structures considering 𝜀f =
1.8% (𝑢0 = 6.0 mm).
 Unit cell 𝜎f (MPa) Differences 
 Experimental (1) DNS model (2) (2) to (1)  
 Size 1 19.95 20.66 3.55%  
 Size 2 14.65 14.23 2.84%  
 Size 3 13.05 12.95 0.75%  
 Size 4 – 12.49 –  

detail, including relative differences in modulus (Differences). The com-
parative study reveals that the DNS predictions are in close agreement 
with the experimental data, with relative differences lower than 3.5%, 
demonstrating the robust predictive capability of the full-scale models 
to capture the size effect in lattice structures. The relationship between 
flexural stress and unit cell size predicted with DNS is approximately 
linear, as observed in the experiments. Even though for the lowest unit 
cell size there is no experimental data, the predicted response follows 
the trend.

Regarding the square lattice beams, DNS results are compared with 
experimental data in Fig.  31 and Table  14. Overall, the numerical 
results of the DNS models are close to the experimental data, al-
though some differences in responses are observed, with larger relative 
errors, compared to the triangular lattice. DNS predicts an approxi-
mately linear relationship for the size effect, which differs from the 
experimental results. Therefore, considering the hypotheses introduced 
in Section 4.1, it may be concluded that the non-linear relationship 
observed in the experiments is not due to the geometrical effects, 
otherwise these would be captured by the simulation. This may indicate 
that the manufacturing process significantly influences the experimen-
tal investigation of architected structures with different unit cell sizes. 
In particular, it is noteworthy that some voids were observed in the 
square-shaped lattice beams composed of unit cells of size 3 (𝑙𝜇 =
6.67 mm), which may have contributed to a reduction in the exper-
imental stiffness of this structure. Thus, differences in results can be 
attributed to manufacturing defects and the anisotropy induced by 
the 3D printing process, as well as uncertainties arising from material 
characterisation.

4.3. Multi-scale results: a comparison with experimental data and DNS 
predictions

Fig.  32 and Table  15 show the multi-scale simulation results com-
pared to experimental data and DNS predictions for triangular-shaped 
lattice beams. Furthermore, Table  16 presents a more detailed compar-
ative analysis, including the relative differences (in modulus), between 
18 
Fig. 30. Size effect study (𝜎f versus UC length) for triangle-shaped structures consid-
ering 𝜀f = 1.8% (𝑢0 = 6.0 mm): experimental results versus DNS predictions.

Fig. 31. Size effect study (𝜎f versus UC length) for square-shaped lattice beams 
considering 𝜀f = 1.8% (𝑢0 = 6.0 mm): experimental results versus DNS predictions.

Table 14
Comparison of flexural stress for square-shaped lattice structures considering 𝜀f = 1.8% 
(𝑢0 = 6.0 mm).
 Unit cell 𝜎f (MPa) Differences 
 Experimental (1) DNS model (2) (2) to (1)  
 Size 1 17.32 18.06 4.32%  
 Size 2 14.59 13.55 7.08%  
 Size 3 11.39 12.54 10.04%  
 Size 4 – 12.17 –  

the approaches explored in this study. For the visualisation of numer-
ical results, colour maps with displacement magnitude and effective 
Cauchy stress for triangular-shaped lattice beams with size 3 are shown 
in Figs.  33 and 34, respectively.

In addition, taking into account the size effect investigation for 
square-shaped lattice beams, a comparative analysis between computa-
tional modelling approaches (multi-scale models and DNS models) and 
experimental data is presented in Fig.  35. Numerical values and relative 
differences (in modulus) between the approaches are detailed in Tables 
17 and 18, respectively. Colour maps with displacement magnitude and 
effective Cauchy stress for square-shaped lattice beams with size 3 are 
shown in Figs.  36 and 37, respectively.

Second-order multi-scale models capture the size effect, whereas 
first-order multi-scale models exhibit the same response regardless 
of the UC size. Furthermore, it is worth highlighting that second-
order multi-scale models (periodic and minimal) converge towards 
their corresponding first-order multi-scale models (periodic and uni-
form traction) for smaller UC sizes.
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Table 15
Comparison of the flexural stress (𝜎f) associated with UC size for triangular-shaped lattice beams considering 𝜀f = 1.8% (𝑢0 = 6.0 mm).
 Analysis type 𝜎f (MPa)
 Size 1 Size 2 Size 3 Size 4 Size 5 Size 6 
 Experimental 19.95 14.65 13.05 – – –  
 DNS model 20.66 14.23 12.95 12.49 – –  
 First-order - Periodic (Per.) 12.06 12.06 12.06 12.06 12.06 12.06  
 First-order - Uniform traction (Trac.) 10.11 10.11 10.11 10.11 10.11 10.11  
 Second-order - Periodic (Per.) 32.04 17.40 14.49 13.45 12.70 12.43  
 Second-order - Minimal (Min.) 31.08 16.77 13.90 12.87 12.13 11.87  
Table 16
Relative differences (in modulus) between multi-scale results, experimental data, and DNS responses for triangular-shaped lattice beams 
considering 𝜀f = 1.8% (𝑢0 = 6.0 mm).
 Case Differences compared to experimental Differences compared to DNS
 First-order Second-order First-order Second-order

 Per. Trac. Per. Min. Per. Trac. Per. Min.  
 Size 1 39.59% 49.36% 60.57% 55.73% 41.66% 51.09% 55.06% 50.39% 
 Size 2 17.72% 31.02% 18.79% 14.45% 15.31% 29.01% 22.26% 17.80% 
 Size 3 7.63% 22.57% 11.02% 6.50% 6.93% 21.98% 11.86% 7.31%  
 Size 4 – – – – 3.51% 19.12% 7.64% 3.04%  
 Size 5 – – – – – – – –  
 Size 6 – – – – – – – –  
Fig. 32. Size effect study (𝜎f versus UC length) for triangular-shaped architected 
structures considering 𝜀f = 1.8% (𝑢0 = 6.0 mm): comparison of experimental data 
and DNS results with multi-scale numerical simulation outcomes. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version 
of this article.)

The UC morphology played an important role in the comparisons 
between the multi-scale models. For triangular-shaped lattice beams, 
second-order multi-scale models (periodic and minimal) yield similar 
results. The same conclusion is observed for the first-order multi-scale 
models (periodic and uniform traction). In fact, Fig.  34 indicates a 
similar distribution of effective Cauchy stresses between the deformed 
UCs associated with the different multi-scale models. The UC with 
triangular-shaped contains a significant portion of voids on its external 
surface, where the boundary conditions are defined. Consequently, the 
reduced amount of solid material on the UC outer boundary smoothes 
the influence of the boundary condition over the effective mechanical 
behaviour. On the other hand, significant differences are observed 
between the second-order multi-scale models as well as between the 
first-order multi-scale models for square-shaped lattice beams. This can 
be attributed to the substantial portion of the UC outer boundary being 
composed of solid material, which increases sensitivity of the results 
regarding the boundary conditions. Furthermore, the differences in the 
distribution of the effective Cauchy stresses for the deformed UCs (see 
Fig.  37) help explain the discrepancy between the multi-scale models.

Larger UC lengths result in significant differences between the 
experimental data and the multi-scale outcomes. For size 1 (𝑙𝜇 =
20.00 mm), the second-order models overestimate the flexural stress, 
19 
whereas the first-order models underestimate it. This occurs because 
the UC length (𝑙𝜇) is not sufficiently smaller than the macro-scale char-
acteristic length (𝐿), thereby violating the Principle of Scale Separation. 
In general, multi-scale models tend to provide results more consistent 
with experimental data for smaller UC sizes (size 2 and size 3), indi-
cating that the Principle of Scale Separation is better established for 
the architected structure. Specifically, the numerical predictions from 
the second-order minimal multi-scale model are in close agreement 
with experimental results for triangular-shaped lattice beams. Although 
the size effect was not captured, the first-order periodic multi-scale 
model also provided good results. With regard to square-shaped lattice 
beams, the numerical results from periodic models (first- and second-
order) demonstrate better agreement with the experimental data. The 
curvature direction and smoothness in the numerical responses also 
suggests that the anisotropy induced by 3D printing influenced the ex-
perimental data, where possibly the response for size 3 was excessively 
flexible. In addition, the minimum constraint model (second-order) 
and the uniform traction model (first-order) proved to be excessively 
flexible, failing to yield satisfactory results. Despite the lattice mate-
rial displaying a size effect, the second-order approach did not show 
substantial advantages. This suggests that the second-order approach 
can be more suitable for architected materials exhibiting a pronounced 
size effect, such as structures with smaller thicknesses. For instance, dos 
Santos et al. (2024) highlights the significant advantages of the second-
order multi-scale approach over the first-order multi-scale strategy for 
analysing size effects in thin-walled structures.

The multi-scale strategies provided satisfactory results compared 
to DNS models for coupled architected structures that adhere to the 
Principle of Scale Separation. In this context, the numerical results from 
second-order minimal and first-order periodic multi-scale models are 
in close agreement with DNS predictions for triangular-shaped lattice 
beams. Moreover, this similarity in results is linked to the distribution 
of effective Cauchy stresses for the deformed UCs in the multi-scale 
models and the unit cell results from the DNS model (see Fig.  34). 
Concerning square-shaped lattice beams, the numerical results from the 
periodic multi-scale models (particularly for the first-order approach) 
were more aligned with the DNS responses for smaller UC sizes. In 
this case, the distribution of effective Cauchy stresses in the deformed 
configuration of the multi-scale periodic UCs shows good agreement 
with the unit cell results from the DNS model (see Fig.  37).

Finally, it is worth noting that the DNS models were restricted 
to a size 4 due to computer memory limitations. This emphasises a 
drawback of DNS models, which may require an excessive number of 
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Fig. 33. Displacement magnitude (mm) for different computational modelling options for triangular-shaped lattice beams with size 3 considering 𝜀f = 1.8% (𝑢0 = 6.0 mm).
Fig. 34. Effective Cauchy stress (MPa) for different computational modelling options for triangular-shaped lattice beams with size 3 considering 𝜀f = 1.8% (𝑢0 = 6.0 mm).
finite elements to discretise all the unit cells in full-scale models. Unlike 
DNS models, UC sizes 5 and 6 were investigated exclusively using 
multi-scale approaches. Since the macro and micro meshes remain the 
same in multi-scale simulations, the computational cost of multi-scale 
models does not increase significantly for smaller UC sizes. Therefore, 
multi-scale strategies may offer advantages compared to infeasible DNS 
models due to their high computational cost.

5. Conclusions

Size effects have been investigated in the mechanical behaviour of 
additively manufactured architected structures under bending through 
experimentation and computational modelling approaches, encompass-
ing DNS finite element models and FE2 multi-scale simulations based 
20 
on first- and second-order homogenisation derived from the variational 
framework recently proposed by dos Santos et al. (2023). Lattice beams 
with different unit cell morphologies and the same solid volume frac-
tion were fabricated using the FDM additive manufacturing technique 
with a commercially available PETG filament. In this context, the 
present study addressed aspects related to the three-point bending 
of distinct lattice morphologies, more affordable 3D printing manu-
facturing, the comparison of advanced modelling strategies, and the 
evaluation of different micro-scale boundary conditions imposed on the 
UC in multi-scale analyses.

Material characterisation tests were conducted based on dumbbell-
shaped specimens, allowing the determination of the elastic constitu-
tive properties of the thermoplastic polymer. Regarding the three-point 
bending experiments, the good reproducibility of the 3D-printed lattice 
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Table 17
Comparison of flexural stress (𝜎f) associated with UC size for square-shaped lattice beams considering 𝜀f = 1.8% (𝑢0 = 6.0 mm).
 Analysis type 𝜎f (MPa)
 Size 1 Size 2 Size 3 Size 4 Size 5 Size 6 
 Experimental 17.32 14.59 11.39 – – –  
 DNS model 18.06 13.55 12.54 12.17 – –  
 First-order - Periodic (Per.) 11.79 11.79 11.79 11.79 11.79 11.79  
 First-order - Uniform traction (Trac.) 4.59 4.59 4.59 4.59 4.59 4.59  
 Second-order - Periodic (Per.) 30.65 16.99 14.18 13.16 12.41 12.15  
 Second-order - Minimal (Min) 22.45 9.79 7.01 5.98 5.22 4.95  
Table 18
Relative differences (in modulus) between multi-scale results, experimental data, and DNS responses for square-shaped lattice beams considering 
𝜀f = 1.8% (𝑢0 = 6.0 mm).
 Case Differences compared to experimental Differences compared to DNS
 First-order Second-order First-order Second-order

 Per. Trac. Per. Min. Per. Trac. Per. Min.  
 Size 1 31.92% 73.51% 76.99% 29.67% 34.74% 74.61% 69.66% 24.30% 
 Size 2 19.19% 68.55% 16.47% 32.86% 13.03% 66.16% 25.35% 27.74% 
 Size 3 3.46% 59.74% 24.43% 38.51% 5.98% 63.42% 13.08% 44.12% 
 Size 4 – – – – 3.11% 62.30% 8.15% 50.89% 
 Size 5 – – – – – – – –  
 Size 6 – – – – – – – –  
Fig. 35. Size effect study (𝜎f versus UC length) for square-shaped architected structures 
considering 𝜀f = 1.8% (𝑢0 = 6.0 mm): comparison of experimental data and DNS results 
with multi-scale numerical simulation outcomes. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)

beams was confirmed by low coefficient of variation values relative 
to the experimental data on the mechanical behaviour of the tested 
architected structures. In general, a mechanical behaviour with ap-
proximately elastic response was observed before the failure of the 
beams under bending. Three-point bending tests revealed the size 
effects on the mechanical behaviour of lattice beams, where a de-
crease in unit cell size leads to a reduction of the flexural stress in 
the architected structures. Regarding the size effect study, the lattice 
beam with triangular-shaped unit cells showed an approximately linear 
relationship between the unit cell size and the flexural stress, whereas 
the lattice beam with square-shaped unit cells exhibited a nonlinear 
behaviour.

DNS predictions showed good agreement with experimental data. 
Nevertheless, DNS models became unfeasible for lattice beams com-
posed of unit cells with smaller sizes due to the memory limitations 
of the computer used for performing the numerical simulations. Since 
a significant number of finite elements are required to obtain the 
numerical results, full-scale models of architected structures with more 
refined unit cell arrangements were computationally expensive.

Overall, the main conclusions of the FE2 multi-scale simulations 
for modelling the lattice beams under bending can be summarised as 
follows:
21 
• UC-based multi-scale models: The numerical results for the 
investigated lattice beam morphologies indicate a sensitivity of 
the micro-scale constraints with respect to the solid material 
portion at the outer boundary of the UC. The results suggest a 
larger gap between the predictions of periodic and minimal multi-
scale models for the UC with a higher proportion of solid material 
on the outer boundary, and a smaller gap for the UC with a higher 
proportion of voids on the outer surface. This conclusion was 
observed in both the second-order and first-order approaches.

• Size effect: Second-order multi-scale models capture the size ef-
fect in lattice beams, with numerical results converging to the cor-
responding first-order multi-scale models as the UC sizes decrease. 
Despite capturing the size effect, the second-order multi-scale 
approach cannot offer significant advantages compared to the 
classical first-order multi-scale approach. In general, the second-
order strategy tends to over-estimate the effective mechanical 
behaviour of the architected material for larger UC sizes. This 
aspect, combined with thicker lattice beams, can result in stiffer 
responses when compared to experimental data. On the other 
hand, second-order framework explored in this work can of-
fer significant advantages for modelling thin-walled architected 
materials.

• Applicability: In summary, the Principle of Scale Separation 
is a key factor to provide satisfactory results when applying 
multi-scale approaches. In general, the multi-scale numerical re-
sults converge to the experimental data and DNS predictions 
for smaller UC sizes, where the Principle of Scale Separation is 
better established for the lattice beams under bending. Multi-
scale strategies enabled the evaluation of smaller UC sizes without 
a significant increase in computational cost, offering an advan-
tage over the DNS models that were limited by lack of memory 
requirements of the processing computer used in the numerical 
simulations. Furthermore, multi-scale approaches can be a valid 
modelling option compared to expensive or even unfeasible lab-
oratory experiments, particularly for micro-architected materials 
that are challenging in terms of manufacturing process.

Finally, the numerical results and experimental data show that 
the combination of additive manufacturing experiments and numerical 
modelling strategies discussed here represent a path towards the de-
velopment of innovative micro-architected structures. The advantages 
of each approach can be combined for the design of advanced engi-
neering structures, expanding the range of applicability of architected 
materials.
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Fig. 36. Displacement magnitude (mm) for different computational modelling options for square-shaped lattice beams with size 3 considering 𝜀f = 1.8% (𝑢0 = 6.0 mm).
Fig. 37. Effective Cauchy stress (MPa) for different computational modelling options for square-shaped lattice beams with size 3 considering 𝜀f = 1.8% (𝑢0 = 6.0 mm).
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