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ABSTRACT

Aims. Quasar catalogues from photometric data are used in a variety of applications including those targeting spectroscopic follow-up,
measurements of supermassive black hole masses, Baryon Acoustic Oscillations, or non-Gaussianities. Here, we present a list of quasar
candidates including photometric redshift estimates from the miniJPAS Data Release constructed using SQUEzE. miniJPAS is a small
proof-of-concept survey covering 1 deg2 with the full J-PAS filter system, consisting of 54 narrow filters and 2 broader filters covering
the entire optical wavelength range.
Methods. This work is based on the machine-learning classification of photometric data of quasar candidates using SQUEzE. It has the
advantage that its classification procedure can be explained to some extent, making it less of a ‘black box’ when compared with other
classifiers. Another key advantage is that the use of user-defined metrics means the user has more control over the classification. While
SQUEzE was designed for spectroscopic data, we have adapted it for multi-band photometric data; that is we treat multiple narrow-band
filters as very low-resolution spectra. We trained our models using specialised mocks. We estimated our redshift precision using the
normalised median absolute deviation, σNMAD, applied to our test sample.
Results. Our test sample returns an f1 score (effectively the purity and completeness) of 0.49 for high-z quasars (with z ≥ 2.1) down a
to magnitude of r = 24.3 and 0.24 for low-z quasars (with z < 2.1), also down to a magnitude of r = 24.3. For high-z quasars, this goes
up to 0.9 for magnitudes of r < 21.0. We present two catalogues of quasar candidates including redshift estimates: 301 from point-like
sources and 1049 when also including extended sources. We discuss the impact of including extended sources in our predictions (they
are not included in the mocks), as well as the impact of changing the noise model of the mocks. We also give an explanation of SQUEzE
reasoning. Our estimates for the redshift precision using the test sample indicate a σNMAD = 0.92% for the entire sample, reduced to
0.81% for r < 22.5 and 0.74% for r < 21.3. Spectroscopic follow-up of the candidates is required in order to confirm the validity of our
findings.

Key words. quasars: general – methods: data analysis – techniques: photometric – cosmology: observations

1. Introduction

In recent years we have seen the appearance of several very large
spectroscopic surveys, including hundreds of thousands of spec-
tra. Among these are dedicated cosmology programmes such as
the Baryon Oscillation Spectroscopic Survey (BOSS; Dawson
et al. 2013), which is part of the third extension of the Sloan
Digital Sky Survey (SDSS-III; Eisenstein et al. 2011), where the
spectra of quasars play a key role in constraining cosmological
parameters. Indeed, BOSS quasars were used in the first baryon
acoustic oscillations (BAOs) measurement using the Lyman α
(Lyα) forest auto-correlation (Busca et al. 2013; Slosar et al.
2013; Kirkby et al. 2013) and its cross-correlation with quasars
(Font-Ribera et al. 2013).

These Lyα BAO measurements were refined in the extended
BOSS Survey (eBOSS; Dawson et al. 2016), part of SDSS-IV
(Blanton et al. 2017), leading to their measurements on the
16 Data Release (DR16) by du Mas des Bourboux et al. (2020).
Quasars in eBOSS were also used to perform BAO clustering
analysis (Hou et al. 2021; Neveux et al. 2020). Both analyses

were included in the final cosmological results from eBOSS
(Alam et al. 2021).

These large spectroscopic surveys use multi-object spec-
troscopy to achieve such a large number of objects in a reason-
able amount of time. In practice, this requires the identification
of quasars (or any other object of interest) in photometric sur-
veys to know where to place the optical fibres. The same is true
for the next generation of surveys aiming to construct a large
spectroscopic quasar sample. The next generation of surveys has
already started collecting data.

This next generation includes the Dark Energy Spectro-
scopic Instrument (DESI; DESI Collaboration 2016a,b), which
uses targeting data from the DESI Legacy Survey programmes
(Dey et al. 2019), and the WEAVE-QSO Survey (Pieri et al.
2016), part of the William Herschel Telescope Enhanced Area
Velocity Explorer Collaboration (WEAVE; Dalton et al. 2016),
which will use targeting data from the Javalambre Physics of
the Accelerating Universe Astrophysical Survey (J-PAS; Benitez
et al. 2014). They will observe a sample of quasars unparalleled
in size.
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Table 1. Summary of the samples used in this work.

Type Sample Objects Star Galaxy Quasar

Real data

All 40 805 . . . . . . . . .
Point-like 10 282 . . . . . . . . .
SDSS cross-match 272 115 40 117
SDSS cross-match & point-like 254 27 40 113

Mocks

Training 297 959 99 931 99 109 98 919
Validation 29 783 9991 9901 9891
Test 29 779 9995 9897 9887
Test 1 deg2 9036 2187 6347 502

Notes. The first column specifies the type of sample (mocks or real data). The second and third columns give the name of the sample and the
number of objects it contains. Where available, in the following columns we also provide the number of stars, galaxies, and quasars separately.

While being a photometric survey, J-PAS has the particu-
larity of using many narrow-band filters spaced approximately
every 100 Å producing pseudo-spectra (or j-spectra) of the
observed objects. Therefore, in addition to providing a target
sample for WEAVE-QSO, J-PAS promises to deliver a sample of
sufficient quality to enable various quasar analyses from J-PAS
data alone (e.g. Abramo et al. 2012). J-PAS is currently undergo-
ing commissioning, but the authors have released the data taken
with their pathfinder camera, the miniJPAS data release (Bonoli
et al. 2021).

Up until now, we have discussed the use of photometric
quasar catalogues as targeting catalogues in large spectroscopic
surveys as this is our main motivation to build this catalogue.
However, we note that photometric quasar catalogues are also
interesting in their own right. There are plenty of uses for
quasars in photometric surveys, including measuring supermas-
sive black hole masses (e.g. Chaves-Montero et al. 2022), BAO
(e.g. Abramo et al. 2012), and non-Gaussianity (e.g. Leistedt
et al. 2014).

Previous papers in this series (Rodrigues et al. 2023;
Martínez-Solaeche et al. 2023) introduced different types of
machine-learning algorithms to construct a catalogue from mini-
JPAS data. Here, we present the classification of SQUEzE (Pérez-
Ràfols et al. 2020). SQUEzE is a machine-learning code designed
to identify spectra of quasars that can be extended to using the
j-spectra from J-PAS (Pérez-Ràfols & Pieri 2020). The particu-
larity of SQUEzE is that it does not only perform the classification
of quasars but also provides photometric redshift estimates.

Having redshift estimates is a key feature as they are essen-
tial if this catalogue is to be used, for example, to measure
BAOs (Abramo et al. 2012). In general, previous efforts to
obtain photometric quasar redshift estimates used quasar tem-
plates. Examples of this are Wolf et al. (2003) on COMBO-17
data, Salvato et al. (2009, 2011) on COSMOS data, Matute
et al. (2012) and Chaves-Montero et al. (2017) on ALHAMBRA
data, or Mendes de Oliveira et al. (2019) on S-PLUS data.
Other surveys such as J-PLUS (Cenarro et al. 2019; Spinoso
et al. 2020) detect the position of the Lyman α emission line
to estimate the redshifts of Lyman α emitters. However, by
analysing a single emission line they are susceptible to inter-
lopers. Also, even if the detected line is indeed Lyman α
emission, they cannot distinguish between different types of
Lyman α emitters (i.e. star-forming galaxies and quasars). We
used an alternative method that mimics the visual inspection
of quasar spectra by quasar experts. Searches are performed
using SQUEzE by finding multiple emission lines, their relative

wavelengths and strengths. In doing so, we simultaneously
provide quasar identification and redshift estimation.

We start by describing the data we used in Sect. 2. Then,
we describe SQUEzE behaviour and its particularities when run-
ning it on J-PAS j-spectra in Sect. 3 and present the results on
synthetic data (mocks) in Sect. 4. We present our catalogues of
quasar candidates in Sect. 5 and discuss our findings in Sect. 6.
Finally, we summarise our conclusions in Sect. 7.

2. miniJPAS data and mocks

In this Section, we describe the datasets used in this work. The
number of objects in each sample is summarised in Table 1.
Where known, we also give the number of quasars, galaxies, and
stars separately. We now describe each of these samples.

In this work, we used data from the First Data Release of
J-PAS, also known as the miniJPAS survey (Bonoli et al. 2021).
The miniJPAS survey is a photometric survey using 56 filters,
of which 54 are narrow band filters with a Full Width at Half
Maximum of ∼140 Å and two are broader filters extending to
the ultraviolet and the near-infrared. These 56 filters are comple-
mented by the u, g, r and i SDSS broadband filters. The survey
covers ∼1 deg2 on the AEGIS field.

For this work, we used the sources identified using the soft-
ware SEXTRACTOR (Bertin & Arnouts 1996) using its dual mode.
This means that the positions and sizes of the apertures used
to estimate the photometry are derived from the reference fil-
ter (SDSS r-band). We refer the reader to Bertin & Arnouts
(1996) and Bonoli et al. (2021) for more detailed explanations
of the software and object detection. The observations were
carried out with the 2.55 m T250 telescope at the Observato-
rio Astrofísico de Javalambre, a facility developed and operated
by the Centro de Estudios de Física del Cosmos de Aragón
(CEFCA) in Teruel (Spain) using the pathfinder instrument. This
is a single CCD direct imager (9.2k × 9.2k, 10µm pixel) located
at the centre of the T250 field of view with a pixel scale of
0.23 arcsec pix−1, vignetted on its periphery. It provides an
effective FoV of 0.27 deg2.

In this dual catalogue, there are a total of 64 293 identi-
fied objects1. A fraction of these objects are flagged as having
known issues (see Bonoli et al. 2021 for a description of the
flags). We discarded flagged objects to construct a clean sam-
ple of 46 440 objects. However, since high-redshift quasars are

1 Available at https://archive.cefca.es/catalogues/
minijpas-pdr201912
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typically point-like sources, our main sample is limited to point-
like sources by using the stellarity index constructed from image
morphology using Extremely Randomised Trees (ERT; Baqui
et al. 2021). Following Queiroz et al. (2023), Rodrigues et al.
(2023), and Martínez-Solaeche et al. (2023), we require objects
to be classified as stars (point-like sources) with a probability
of at least 0.1, defined in their catalogue as ERT ≥ 0.1. In some
cases, the ERT classification failed (identified as ERT = –99.0).
In these cases, we used the alternative classification using the
stellar-galaxy locus classifier from López-Sanjuan et al. (2019),
requiring a minimum probability of SGLC ≥ 0.1. 11 419 objects
meet this point-like source criterion and constitute our point-like
sample.

A small number of the objects observed in miniJPAS have
spectroscopic observations from other surveys. This allows us
to have a spectroscopically confirmed classification of these
objects. In particular, 272 objects were also observed by SDSS,
117 of which are quasars, 40 are galaxies, and 115 are stars. Of
these, 18 were not classified as point-like sources following the
aforementioned criteria, four are quasars, one is a star, and 13 are
galaxies.

In this work, apart from using miniJPAS data, we also used
synthetic data (mocks). This is necessary because larger data
volumes with associated truth tables are needed than are cur-
rently available. The mocks we used are based on SDSS spectra
convolved with the J-PAS filters and with added noise to match
miniJPAS expected signal-to-noise ratios. More details on the
mocks can be found in Queiroz et al. (2023). There are a total
of 360 000 objects distributed between the training (300 000),
validation (30 000), and test (30 000) sets. They are evenly split
among quasars, galaxies, and stars. Additionally, we have a spe-
cial 1 deg2 test set that has the expected relative fraction for
each type of object. In general, we used the mocks generated
using noise model 11, since that is the noise model believed to
be closest to the actual noise distribution from miniJPAS data,
but we checked the impact of choosing a different noise model
in Appendix A.

Both in data and in mocks, we restricted ourselves to
r-band magnitudes 17.0 < r ≤ 24.3. In the process of creat-
ing the mocks, the original spectra are rescaled to match the
expected magnitude distribution. Noise is added after this rescale
is done, modifying the reported values of the flux (and thus the
magnitudes). This means that a few of the mocks end up with a
magnitude that is fainter than 24.3. We discarded these spectra.
Overall, we analysed 40 805 miniJPAS sources, 10 282 of which
meet the criterion of being point-like sources. 272 sources have
spectroscopic observations from SDSS, 254 of which meet the
criterion of being point-like sources. SQUEzE is trained using
99 931 stars, 99 109 galaxies, and 98 919 quasars and validated
using 9991 stars, 9901 galaxies, and 9891 quasars. The test sam-
ple contains 9995 stars, 9897 galaxies, and 9887 quasars. The
special 1 deg2 test sample contains 2187 stars, 6347 galaxies,
and 502 quasars.

3. SQUEzE description and setup

In this section, we provide a brief description of SQUEzE and
explain the particularities of applying it to photometric data
from J-PAS. A full, detailed description of SQUEzE is given in
Pérez-Ràfols et al. (2020). SQUEzE is a quasar classifier that
works in three steps. In the first step, we identify peaks in the
spectra. We then assign trial redshifts to these peaks in the
second step, and we end by classifying these trial redshifts to

discriminate between the correct and incorrect identifications.
We now detail each of the steps.

3.1. Peak identification

The first step is peak identification. In this step, emission lines
are identified in the spectra. In SQUEzE, this step is performed
using a very simple peak finder: each spectrum is first smoothed,
and then peaks are located by finding those pixels with higher
flux than the two nearby pixels.

miniJPAS data contain j-spectra with data in 56 filters, and
the broad emission lines are typically expected to cover three
filters (though some very broad quasar emission lines can span
more than three J-PAS filters; see e.g. Fig. 2 of Chaves-Montero
et al. 2022). This means that any smoothing we apply will typ-
ically decrease the signal-to-noise ratio of the peak detection.
However, using this simple peak finder, we have many peaks that
are purely arising from noise: cases where a filter has more flux
than their neighbours.

To solve this, we developed a new, more refined peak finder2

(see Appendix B for details of its performance compared to the
original peak finder). The new peak finder works as follows.
First, a power-law fit is applied to reproduce the continuum emis-
sion. Outliers to this fit, defined as the data points that are off
the fit by more than N sigma, are discarded, and the process is
repeated until convergence is reached that is when no data points
are discarded in an iteration. Here, N is the minimum signifi-
cance to detect outliers, and we choose N = 2 as our fiducial
choice (see Appendix C.2). Upon fit convergence, the outliers
below the model are discarded and the outliers above the model
are kept as emission peaks. Contiguous peaks (i.e. with pixel
number i, i + 1, i + 2, ...) are compressed into a single peak by
performing a weighted average of their wavelengths. The weights
are defined by the significance of the outliers. Sometimes, too
many pixels are discarded as outliers and the power-law fit fails.
In those cases, no emission peaks are reported and the spectra
are discarded. The overall performance of SQUEzE is improved
when the new peak finder is used (see Appendix B).

3.2. Trial redshifts

Once the peaks have been identified, a list of trial redshifts is
generated. For each peak of each spectrum, a trial redshift, ztry,
is computed assuming that the peak corresponds to the Lyα,
C IV, C III], Mg II, Hα, and Hβ emission lines. Negative trial red-
shifts are immediately discarded. Line metrics are computed for
each of the remaining trial redshifts as described in Eqs. (1)–(3)
of Pérez-Ràfols et al. (2020). These metrics describe the ampli-
tude of the line, its significance, and the slope at the base of the
line. For each trial redshift, we compute the metrics for 17 bands
(see Table C.1) corresponding to the predicted position of quasar
emission lines and other relevant features (see Appendix C.3
for details). These bands are defined at the potential quasar rest
frame, and therefore the spectral coverage of these bands will
change as a function of redshift. Figure 1 shows this evolution as
the number of filters used in line metrics as a function of redshift.

The wavelength bands used to compute line metrics were
designed and optimised for spectra from BOSS, with a resolution
of ∼1 Å, while here the resolution is 140 Å and the separation
between filter centres is 100 Å. We therefore explored whether
the size of the bands impacts the classification performance. The
boundaries of these bands have been tuned to a more reliable
2 The new peak finder is now included in the SQUEzE package.
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Fig. 1. Number of J-PAS filters used to compute the metrics as a func-
tion of redshift. The blue line shows the number of unique filters used
in the computation of the metrics. Given that some bands are overlap-
ping, the total number of filters used is generally larger, as shown by the
orange line.

separate peak from the side band in the data of this resolu-
tion. Furthermore, given our limited use of the filters available,
we added bands to allow the machine learning algorithm (see
Sect. 3.3) access to information on the absence of emission lines
as well as the presence of them. These ‘flat-emission-line’ met-
rics are placed at wavelengths where redshift confusion leads to
an emission line arising where one should not occur. The desired
lack of emission line signal can hence be part of the random for-
est classification (see Appendix C.3 for more details on the tests
that led to our selection of this ‘wide+extra’ set of wavelength
bands). We note that even with our more inclusive approach, only
a relatively small number of the filters (out of a total of 60 avail-
able) are used to compute the metrics and, thus, to identify the
quasars (see the left panel in Fig. C.3).

3.3. Classification

Once we have a list of trial redshifts and associated metrics, they
are fed to the random forest classifiers. In training mode, trial
redshifts are flagged as correct peaks if the spectra are that of a
quasar with trial redshift at most ∆z = 0.10 away from the true
redshift. Pérez-Ràfols et al. (2020) used a larger value of 0.15
for this criterion, but we obtained better redshift errors (with-
out a decrease in performance) by using a tighter constraint (see
Appendix C.5).

Pérez-Ràfols et al. (2020) used two different classifiers,
one for high-redshift quasars and another one for low-redshift
quasars. The split in redshift was performed at z = 2.1 since this
is where the Lyα emission line enters the spectra. They argued
that a single classifier could be used but that they observed bet-
ter performance when splitting by redshift. The reason for this is
that high-redshift quasars have more emission lines compared to
low-redshift quasars. We checked that this statement is also valid
for our dataset (see Appendix C.4) and decided to also use two
random forests. In SQUEzE default choices, only the metrics are
passed to the random forest classifiers. However, we note that by
also passing the trial redshift and the r-band magnitude we obtain
slightly better results (see Appendix C.6). Thus, we adopted this
change of the default settings.

The final stage in the classification is to select, for each spec-
trum, the trial redshift with the highest probability. At this point,

Fig. 2. Magnitude distribution of trial redshifts in the training sample.
This distribution does not match the distribution of objects as there are
typically a few trial redshifts per object.

it is worth noting that it is more convenient to separate quasars
by their observed r-band magnitude as the faint quasars domi-
nate the training set. This can be seen in Fig. 2, where we show
the magnitude distribution of the list of trial redshifts. Here, we
note that this distribution is different from the distribution of
objects, as each object will typically have a few trial redshifts. As
explained in detail in Appendix C.1, we ran SQUEzE in four mag-
nitude bins: r ∈ (17.0, 20.0], r ∈ (20.0, 22.5], r ∈ (22.5, 23.6] ,
and r ∈ (23.6, 24.3].

4. Performance

We assessed the performance of SQUEzE based on the test sam-
ple results. In any sample (either from mocks or from real data),
there are quasars, galaxies, and stars. However, we need to keep
in mind that here we were interested in creating a quasar cata-
logue. Thus, in terms of performance, we do not need to penalise
the cases where stars are classified as galaxies and vice versa. We
measured our performance level based on the correctly classi-
fied quasars. However, for a correct classification, we required
not only that the object be a quasar, but also that its redshift
be correct. Formally, we require ∆z =

∣∣∣ztrue − ztry
∣∣∣ < 0.10 (see

Appendix C.5), as this is enough to ensure that we are not suf-
fering from line confusion (i.e. finding a true emission line but
failing to label it correctly). We note, however, that the actual
redshift precision is typically better (see below).

We define purity p as the number of true quasars (at the cor-
rect redshift) in the catalogue over the total number of sources
classified as quasars, and completeness c as the number of true
quasars in the catalogue (again, at the correct redshift) over the
total number of true quasars in the sample analysed. For each of
the classifications, we also have the confidence of the classifica-
tion, given by the fraction of decision trees that agree with that
classification. To some extent, we can tune the purity and com-
pleteness of the sample by applying some cuts on this confidence
of classification.

A higher confidence requirement will result in a purer but
less complete sample. Similarly, a lower confidence requirement
will result in a more complete, but less pure, sample. Even
though the choice of a confidence threshold can be tuned for
specific analysis, a common general-purpose choice is to balance
purity and completeness. An optimised balance can be found by
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maximising the f1 score, which is defined as

f1 =
2pc
p + c

. (1)

We note that with this definition performance is expected to
be worse than the other classifiers presented in the companion
papers (Rodrigues et al. 2023; Martínez-Solaeche et al. 2023).
Part of the reason for this is that they have a more relaxed
criterion to determine good classifications. Since they are not
measuring redshifts, they require the quasars to be correctly clas-
sified as high-redshift quasars (z ≥ 2.1) or low-redshift quasars
(z < 2.1). We also adopt this criterion to make a more direct
comparison. We denote this criterion as f ∗1 .

4.1. Test sample

The top panels in Fig. 3 show the performance as a function of
limiting magnitude. Blue solid lines correspond to the f1 score,
whereas the orange dashed lines show the more relaxed criterion
f ∗1 . For each limiting magnitude, we perform a cut in the con-
fidence threshold of the classification such that the f1 score is
maximised (green dotted lines). As expected, the performance
drops as fainter objects are added to the sample. This is because
fainter objects are more difficult to classify as they are nois-
ier and have a larger number of filters with non-detections. The
f1 score including all objects down to r = 24.3 is 0.49 (with
a confidence threshold of 0.55) for high-z quasars and 0.24 for
low-z quasars (with a confidence threshold of 0.39). The val-
ues of f ∗1 are higher than those of f1, as expected. Including all
objects down to r = 24.3 its values are 0.56 for high-z quasars
(with a confidence threshold of 0.58) and 0.41 for low-z quasars
(with a confidence threshold of 0.32).

The comparison of these results with those obtained by the
algorithms from Rodrigues et al. (2023) and Martínez-Solaeche
et al. (2023) is not straightforward. They report the averaged
f1 score including the f1 for high-z quasars, low-z quasars, galax-
ies and stars. Here, by using f ∗1 , we can only compute equivalent
quantities for high-z quasars and low-z quasars. As such, only
a qualitative comparison is possible. Even so, we provide our
measurement of f ∗1 using the same magnitude bins in Fig. 4.
This figure should be compared with the top panel of Fig. 4 of
Rodrigues et al. (2023) and with Fig. 1 of Martínez-Solaeche
et al. (2023).

We can see that SQUEzE performance is qualitatively higher
than the RF from Rodrigues et al. (2023). It has a qualitatively
similar performance level compared to LGMB and CNN1 (with-
out errors), also from Rodrigues et al. (2023), and is qualitatively
lower than CNN1, CNN2 from Rodrigues et al. (2023), and the
classifiers from Martínez-Solaeche et al. (2023). However, this
is expected as our method tackles the harder problem of solving
both the redshift estimation and the classification problems.

We now move on to analysing the contaminants of our sam-
ple. To do so, we split it into four different magnitude bins:
17 < r ≤ 20 (bin 1), 20 < r ≤ 22.5 (bin 2), 22.5 < r ≤ 23.6
(bin 3), and 23.6 < r ≤ 24.3 (bin 4). For each of the bins,
we plot the predicted redshift, ztry, against the true redshift,
ztrue, to study the contaminants. We include only quasars with
confidence levels greater than 0.39 when ztry < 2.1 and 0.55
when ztry ≥ 2.1, corresponding to the confidence thresholds
mentioned above. Figure 5 shows galaxies, stars, and quasar
contaminants as orange up-pointing triangles, green squares,
and blue down-pointing triangles, respectively. Black dots show
correct classifications, i.e., those that fulfil the criteria of

∆z =
∣∣∣ztrue − ztry

∣∣∣ < 0.10 (red band). Grey bands also signal the
areas where quasar contaminants (blue down-pointing triangles)
are correctly classified in the relaxed classification criterion, i.e.,
without a redshift requirement.

Bin 1 behaves as expected. Correct classifications are found
very close to the red line, showing that the redshift precision
is significantly better than the required value of 0.10 (indicated
in the plot by the red stripe). Quasar contaminants are rare and
follow straight lines showing that there is some degree of line
confusion, i.e. we correctly find a quasar emission line but we
fail to identify the line responsible for the emission (and thus
the redshift error). Galactic contaminants also follow the same
straight lines as quasars, suggesting that these galaxies might
contain active galactic nuclei (AGNs) with broad emission lines
or – more likely – star-formation emission lines (Hα, Hβ, O [III],
O [II]) that are misidentified as QSO emission lines (Chaves-
Montero et al. 2017). Stellar contaminants are distributed at
trial redshifts lower than 2.1. This indicates that only the low-z
classifier is adding stellar contaminants.

This simple picture starts to break as we go to bin 2. We see
two effects. First, while we still see clear line confusion, we also
see some quasar and galactic contaminants that are no longer
distributed along these lines, indicating that we are no longer
able to always distinguish real emission line peaks from noise
peaks. Apart from this, we see by eye that the redshift precision
of the correct classifications is significantly worse (see below
for a more quantitative statement). This suggests that the cho-
sen redshift tolerance was too large. We discuss this further in
Appendix C.5, where we conclude that this is not the case.

This issue is aggravated as we go to bin 3. Now we are not
able to see the confusion lines as clearly as before (though some
can still be seen). This suggests that our ability to distinguish
real peaks from noise peaks starts to break somewhere around
magnitude r ∼ 22.5 (see also Appendix B). We note that in this
bin we see an apparent cut of the contaminants in the redshift
at z = 1.5. Below this redshift, the C IV line is not observable in
our spectral coverage. Together with the Lyα line, they are the
stronger lines. Thus, the confidence in classification is generally
lower whenever they are not present. In practice, this means that
many of the trial redshifts below this redshift either do not meet
the minimum required classification confidence; otherwise other
trial redshifts for the same quasar are preferred.

Finally, for bin 4, there is a strong decrease in the number of
contaminants. There are two reasons behind this. First, we are at
the faint end of our sample and therefore the number of objects
decreases compared to bin 3. Second, the spectra are so noisy
that we obtain very few confident classifications.

Overall, a significant fraction of the redshift confusion is
causing high-z quasars (with z ≥ 2.1) to be classified as low-z
quasars. This can be seen in the upper left quadrants in Fig. 5.
In lower numbers, the same occurs in the opposite direction
(lower right quadrants). This can explain the drop in perfor-
mance compared to the results from Rodrigues et al. (2023) and
Martínez-Solaeche et al. (2023) even when we consider the same
relaxed criteria f ∗1 . However, the fact that there is more than one
trial redshift per quasar indicates that if the high- or low-redshift
classification could be fixed by these other algorithms, SQUEzE
can still be used to provide a redshift estimate (see Pérez-Ràfols
et al., in prep.).

We now turn our attention to the redshift precision. As
explained in Sect. 3, we formally require a precision of 0.10, but
the performance is expected to be much better. Figure 5 shows
that this is not the case for the fainter bins. We now quantify
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Fig. 3. Performance as function of limiting magnitude. All objects brighter than the magnitude cut in the r band are considered to compute the f1
score. Blue solid lines show the f1 score as defined in Eq. (1), and the orange dashed lines show the more relaxed statistic f ∗1 (see text for details).
Green dotted lines show the confidence threshold used to compute the f1 score. From top to bottom, we show results for the test sample (Sect. 4.1),
the 1 deg2 test sample (Sect. 4.2), and the SDSS cross-match sample (Sect. 4.3). We note that in the bottom panels, the lines stop at magnitude
23.4; the sample does not have fainter objects.

this statement. We take the correct classifications and measure
the distribution of ∆z for the different magnitude bins. Results of
this exercise are shown in Fig. 6 and in the first block of Table 2.
Indeed, the redshift error increases as we go to fainter magni-
tudes. In fact, our bright bin (bin 1, with 17.0 < r ≤ 20.0) has a

typical redshift error of ∼2800 km s−1, which is less than two-
thirds of the typical error in our faint bin (bin 4, ∼4700 km s−1).
We also see that there is no significant bias in our measurement
of the redshift (the mean offset is an order of magnitude smaller
than the typical error).
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Table 2. Statistics of the redshift precision.

Sample Mag bin ∆v (km s−1) σ∆v (km s−1) σNMAD (per cent) N

Test

17.0 < r ≤ 20.0 704.69 2833.20 0.71 504
20.0 < r ≤ 22.5 809.09 3083.64 0.94 2265
22.5 < r ≤ 23.6 859.76 4333.32 1.51 983
23.6 < r ≤ 24.3 372.16 4702.21 1.56 183

1 deg2 test

17.0 < r ≤ 20.0 1558.23 2753.08 0.75 35
20.0 < r ≤ 22.5 787.62 3212.02 0.86 104
22.5 < r ≤ 23.6 2121.36 4577.93 1.80 58
23.6 < r ≤ 24.3 2954.34 5542.67 1.41 9

SDSS cross-match sample
17.0 < r ≤ 20.0 1667.23 2361.88 0.73 22
20.0 < r ≤ 22.5 1263.28 2625.00 0.88 61
22.5 < r ≤ 23.6 1084.38 NaN 0.53 1

Notes. Mean redshift offset (∆v), dispersion measured (σ∆v), normalised median absolute deviation (σNMAD), and number of correctly classified
quasars (N) in the samples test, 1 deg2 test, and SDSS cross-match. The mean offset indicates potential biases of our redshift estimate and the
dispersion indicates our typical redshift error. The number of objects indicates how reliable the measured statistics are.

Fig. 4. f ∗1 measured using the same bins as Rodrigues et al. (2023) and
Martínez-Solaeche et al. (2023). The solid orange line shows the f ∗1
score for high-z quasars and the dashed blue line for low-z quasars.

We also provide, in Table 2, the normalised median absolute
deviation, σNMAD, defined by Hoaglin et al. (1983) as

σNMAD = 1.48 ×median


∣∣∣ztry − ztrue

∣∣∣
1 + ztrue

 . (2)

This quantity is less sensitive to redshift outliers than the stan-
dard deviation. Nevertheless, we observe the same trend here as
we do for the standard deviation.

4.2. 1 deg2 test sample

We now focus on the special 1 deg2 test sample, which dif-
fers from the normal test sample in the relative number of
objects. This sample has the number of quasars, stars, and
galaxies expected in a square degree on the sky. Thus, in propor-
tion, the number of quasars is significantly smaller. The middle

panel of Fig. 3 shows the performance as a function of limiting
magnitude. We see a similar trend as for the test sample. The
f1 score including all objects down to r = 24.3 is 0.38 (with
a confidence threshold of 0.72) for high-z quasars and 0.16 for
low-z quasars (with a confidence threshold of 0.56). The val-
ues of f ∗1 including all objects down to r = 24.3 are 0.42 (with a
confidence threshold of 0.83) for high-z quasars and 0.21 for low-
z quasars (with a confidence threshold of 0.68). This decrease
compared to the test sample is expected as we now have a larger
fraction of contaminants.

We now analyse the redshift precision in this sample. As for
the test sample, we compute the distribution of ∆z for different
magnitude bins. The results are shown in Fig. 7 and tabulated in
the second block of Table 2. The distribution of redshift errors
in bins 1, 2, and 3 are similar to those of the test sample. For the
faint bin, we clearly do not have enough statistics to say anything
meaningful.

4.3. SDSS cross-match sample

More interesting than the performance with regard to mock data
is that on real data. However, we are limited in this assessment
by the lack of a large sample with an available truth table. The
only samples with reliable spectroscopic confirmation of the
object classes are the SDSS cross-match samples (including and
excluding extended objects). We note that both samples are very
small (see Table 1) and that they are biased as they only con-
tain the brightest objects. Even though they are not included in
the mocks, we include the 18 objects not classified as point-like
sources in the performance assessment to have a sample as large
as possible. We note that the results stay the same including or
not including these 18 objects.

The performance as a function of magnitude is given in the
bottom panel of Fig. 3. The distribution of ∆z for the classifica-
tions in Fig. 8 and summarised in the third block of Table 2. Due
to the small size of the sample, the measured f1 score distribu-
tion is much noisier than in the mock test sample. However, the
results suggest a similar performance to the 1 deg2 test sample.
The redshift distribution is also noisier.

This sample does not include any object for the faintest bin
(bin 4) and only one object for bin 3. This is important as the
algorithm has more difficulties when classifying objects in these

A144, page 7 of 22



Pérez-Ràfols, I., et al.: A&A, 678, A144 (2023)

Fig. 5. SQUEzE trial redshift, ztry, versus true redshift, ztrue, for the test sample. Black dots indicate correct classifications. Blue down-pointing
triangles, orange up-pointing triangles, and green squares indicate the quasar, galactic, and stellar contaminants respectively. The red solid line
shows the perfect classification line and the red stripe show the redshift offset tolerance (∆z = 0.10). Grey squares indicate the area where quasar
contaminants are deemed as correct in the relaxed classification scheme (see text for details). From top to bottom and left to right, panels show the
data split in four different magnitude bins: 17 < r ≤ 20, 20 < r ≤ 22.5, 22.5 < r ≤ 23.6, and 23.6 < r ≤ 24.3. We note that stellar contaminants
(green dots) are always found at ztrue = 0.

fainter bins. In order to properly assess the performance on data,
a larger sample of spectroscopic observations would be needed,
particularly including the objects at the faint end.

5. miniJPAS quasar catalogue

After assessing the performance of SQUEzE, we shifted our atten-
tion to the actual catalogue. We created two different catalogues:

one including only point-like sources and one including extended
sources as well (sample all). These samples are described in
Sect. 2 and in Table 1.

We ran SQUEzE on these two samples and added objects with
a classification confidence higher than the cut to the catalogue
(green dotted lines in the top panel of Fig. 3). Here, we used the
thresholds from the test sample. Even though the number of con-
taminants in the data should be closer to the 1 deg2 test sample,
this sample is too small for its cuts in classification confidence to
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Fig. 6. Distribution of ∆z =
∣∣∣ztrue − ztry

∣∣∣ < 0.15 for the test sample for
four magnitude bins: 17 < r ≤ 20, 20 < r ≤ 22.5, 22.5 < r ≤ 23.6, and
23.6 < r ≤ 24.3.

Fig. 7. Same as Fig. 6, but for the 1 deg2 test sample.

Fig. 8. Same as Fig. 6, but for the SDSS cross-match sample.

be statistically robust. Thus, we chose those of the test sample.
For the final catalogue, we also dropped entries flagged as dupli-
cated to keep only one entry per object. For some objects, no
peaks were found, and thus they did not enter the random forest
classifiers. This occurred for 906 objects in the point-like sample
and 3665 objects in the entire sample. These are dropped from
our final catalogue.

The final catalogue contains 301 quasar candidates for
the point-like sample and 1049 when also including extended
sources. Applying the same criteria for the 1 deg2 test sample,
we obtain a catalogue of 412 quasar candidates. These num-
bers should be compared to those of the point-like sample,
as the mocks were built to match that sample. The similarity
between the number of candidates could be suggestive of similar
behaviour of SQUEzE on data and mocks.

To go further, we compared the magnitude and redshift
distributions of the candidates in the point-like sample to the
distributions of the candidates in the 1 deg2 test sample (Fig. 9).
We started with the magnitude distribution (left panel of Fig. 9).
There is a deviation of the point-like sample towards fainter mag-
nitudes. While small deviations are expected given the relatively
small sample sizes, this could also indicate SQUEzE performs dif-
ferently in data and mocks at the faint end. Mocks were created
from brighter SDSS data, so it would not be surprising if a differ-
ent type and/or distribution of contaminants appears at the faint
end. A different population of contaminants could easily induce
a different behaviour in the classifier. A spectroscopic follow-
up of these sources is needed to confirm or deny this apparent
discrepancy.

The redshift distribution of the samples point-like and all
(right panel of Fig. 9) are similar, except for a peak at z ∼ 3,
present only when extended sources are included. This could
hint that SQUEzE performance on extended sources is similar
to that of point-like sources, even if it was only trained on
point-like sources. There are two possible explanations for this
behaviour. First, the algorithm to separate point-like sources
from extended sources has a certain degree of confusion, lead-
ing to some extended sources entering the point-like sample.
This does seem to be happening to some degree. For instance,
in the SDSS cross-matched sample we have 115 stars, of which
only 27 are classified as point-like sources. This would mean that
their properties are indeed included in the training sample, thus
explaining the similarity between the two distributions. This is
expected to happen to some degree, particularly at the faint end,
where it is not always trivial to separate the actual source from
the sky contribution.

Another possible explanation is that the properties of
extended and point-like quasars, as seen by SQUEzE, are similar.
This also makes sense as SQUEzE focuses on the emission lines
in specific spectral regions. Observing the galactic emission (and
making them extended objects) would not change how SQUEzE
sees the quasars. However, we note that this could change the
way contaminants are seen. Most likely, the truth lies some-
where between the two explanations, but we require a larger
sample, with spectroscopic confirmation of the classifications,
to ascertain this.

6. Discussion

6.1. Comparison with previous performance estimates

Pérez-Ràfols & Pieri (2020) studied the potential performance of
SQUEzE in different surveys including tests for a generic narrow-
band survey. In particular, they mentioned that realistic JPAS
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Fig. 9. Solid histograms show distribution of magnitude (left) and redshift (right) for the quasar candidates for the ‘point-like’ and ‘all’ samples
(see Table 1). Both distributions look similar, except for a peak at z ∼ 3, present only when extended sources are included, suggesting the code
might also work for extended sources. For comparison, empty histograms show the same distributions for the 1 deg2 test sample. We note that the
redshift used here is the best trial redshift for each candidate.

mocks, such as those we use here, would be required to asses
the performance of SQUEzE on JPAS data. Nevertheless, they
suggested that their rebin100+noise4 could be used as an ini-
tial test of this performance. Based on this, they predicted the
purity and completeness to be greater than 0.9. This is clearly
in conflict with the results obtained here, where this statement
only holds to a magnitude of r < 21.1. The simplest explanation
for this discrepancy lies in the spectra used to asses this per-
formance. To construct their rebin100+noise4, Pérez-Ràfols &
Pieri (2020) rebinned SDSS spectra and added noise in a crude
simulation of miniJPAS-like data. In this work, we assessed the
performance using a set of refined mocks from Queiroz et al.
(2023) that are tailored to match the observations. This dis-
crepancy in the performance would be expected if the initial
estimates from Pérez-Ràfols & Pieri (2020) were optimistic in
the expected signal-to-noise ratio.

In order to test this, we rebuilt the train and test samples
but instead of using the miniJPAS mocks outlined here, we fol-
low the Pérez-Ràfols et al. (2020) prescription for building the
rebin100+noise4 mocks. We computed the mean signal-to-noise
ratio for our regular test sample and for the test sample rebuilt
here. Figure 10 shows the histogram of these signal-to-noise
ratios. We clearly see that the estimates from Pérez-Ràfols &
Pieri (2020) have higher signal-to-noise ratios, confirming our
hypothesis.

To further test that changes to SQUEzE are responsible for
an apparent decline in performance, we reran the classification
using the rebuilt samples to train and classify the code. For this
run, the f1 score including all objects down to magnitude r =
24.3 is 0.91 for high-z quasars (with a confidence threshold of
0.30) and 0.47 for low-z quasars (with a confidence threshold of
0.29). This is significantly higher than our regular estimates and
it is in agreement with the previous results from Pérez-Ràfols &
Pieri (2020). Thus, the discrepancy found here can be accounted
for by the better signal-to-noise ratio in the mocks used in the
previous work (though we stress that the mocks we use here are
more realistic).

6.2. Explainability of the classifiers

One of the main problems of using machine learning algorithms
for classification problems is that often they are used as black

Fig. 10. Normalised distributions of the mean signal-to-noise ratio for
the spectra of the test sample (blue) and the rebuilt test sample (orange).
We rebuilt the test sample following the Pérez-Ràfols et al. (2020) pre-
scription for building the rebin100+noise4 mocks.

boxes offering no explainability as to how the classification is
being done. Because of the way SQUEzE is built, it provides some
degree of explainability. Moreover, the results of this paper also
offer some degree of explainability regarding the classifiers pre-
sented in the previous papers in the series. We analysed SQUEzE
training to review this.

To explain SQUEzE behaviour, the most important thing is
the coupling between classification and redshift estimation. The
classification is done using a random forest classifier on a set
of features. However, contrary to standard random forest usage,
each spectrum can enter the random forest classifier multiple
times. The key element here is that what we are classifying are
not spectra, but trial redshifts. These are derived from the posi-
tion of emission peaks found. This means that one of the key
elements for SQUEzE to correctly identify the quasar spectra is its

A144, page 10 of 22



Pérez-Ràfols, I., et al.: A&A, 678, A144 (2023)

ability to detect real emission lines. Indeed, as shown in Fig. 3,
our ability to detect the emission lines declines with increasing
magnitude leading to worse performance.

Having confirmed that only emission peaks drive the classifi-
cation (which is not necessarily the case in Rodrigues et al. 2023
and Martínez-Solaeche et al. 2023), we now explore a feature
importance analysis for each of the two random forest classifiers
in SQUEzE in the four magnitude bins. This is performed by com-
puting the mean (across the different trees in the forest) decrease
in impurities when a particular feature is included or not. Higher
values for the mean decrease indicate higher importance of the
feature.

The results of this exercise are shown in Figs. 11 and 12.
Section 3 describes three metrics for each of the lines (but see,
in more detail, Eqs. (1) to (3) in Pérez-Ràfols et al. 2020). In
terms of SQUEzE outputs, the amplitude of line X is labelled as
X_LINE_RATIO, its significance as X_LINE_RATIO_SN, and
the slope at the base of the line as X_LINE_RATIO2.

Generally speaking, the most important lines for high-z
objects are Lyα, C IV, and C III], in this order. Their amplitudes
are the most important characteristics, followed by the signal-to-
noise ratio. This makes sense as these are the most prominent
emission lines, and these are the lines a human visual inspec-
tor usually looks for. This is suggestive that SQUEzE is indeed
in agreement with the visual inspection analysis by a human
expert. We see that the red and blue halves of the C IV line
are also relatively important. This line is most affected by the
presence of broad absorption line (BAL) features, and there-
fore these lines are important for including BAL quasars in
our sample.

At fainter magnitudes, the importance of these emission
lines decreases in favour of the trial redshift and the magni-
tude. Because we are no longer able to distinguish real emission
line peaks from noise peaks, it seems that SQUEzE is relying
more on the magnitude and redshift distribution of the objects.
This explains why adding these two columns helps to improve
the results (see Appendix C.6). The use of these two columns
is equivalent to having priors on their expected distributions.
We warn the reader that this could potentially bias us towards
the expected distributions and that we might be misled into
overestimating the use of these parameters.

Similarly, for low-z objects, the most important lines are
Mg II and C III], in this order. Interestingly, the extra bands
that we added to avoid line confusion, in particular, LC3, LC4,
and LC5 (see Table C.2) have a non-negligible importance. For
instance, the mean decrease for these lines is similar to real lines
such as the Hα or Hβ+O [III]. They are also more important than
the Lyβ, Lyα, Si IV, and C IV lines, but this is expected as these
are high-z lines.

This explains the improvement seen when changing the
default set of lines (see Appendix C.3). As expected, when going
fainter in magnitude we see a similar behaviour to that for high-z
candidates.

6.3. Redshift precision

In this section, we discuss the estimated redshift precision of
our catalogue and compare it with previous results from the
literature. The typical redshift errors of our correctly classified
quasars are discussed in Sect. 4, but there we analyse the entire
sample, and not only the objects that would enter the quasar cat-
alogue. Later, in Sect. 5, we explain how we build our quasar
catalogue. We follow the same procedure to build catalogues for

Table 3. Normalised median absolute deviation, σNMAD, of the correct
classifications for the test and 1deg2 test samples.

Sample Name σNMAD (per cent) N

Test

All 0.92 2694
High-z 0.99 1451
Low-z 0.80 1243
r < 22.5 0.81 2075
r < 21.3 0.74 1289

1 deg2 Test

All 0.88 139
High-z 0.88 71
Low-z 0.90 68
r < 22.5 0.79 102
r < 21.3 0.75 69

Notes. For each sample, we give the values for the entire sample, for
high-z quasars, and low-z quasars only, and for two bright samples with
r < 22.5 and r < 21.3, respectively (see text for details).

the test and 1 deg2 test samples, where the redshift and the clas-
sification are known, to estimate the precision of our redshift
estimates. We quantify this precision in terms of σNMAD (see
Eq. (2)).

We computedσNMAD considering only correct classifications
for the entire sample, and we did this for high-z quasars and low-z
quasars separately. We also computed σNMAD for two bright sub-
samples. For the first one, we considered r < 22.5, i.e. including
bins 1 and 2, where the emission lines are clearly detected (see
Sect. 4). For the second bright sample, we considered quasars
with r < 21.3, where we expect a much higher level of purity (in
particular >0.90 for high-z quasars).

Table 3 summarises the results of this exercise. As expected,
The results are similar in the test and 1 deg2 test samples. In
particular, the dispersion is lower for low-z quasars and also for
brighter objects. Overall, our results are below the percentage
level. This is an order of magnitude better than the reported val-
ues of σNMAD = 9% by Matute et al. (2012), who analysed a
similar sample of quasars in the ALHAMBRA survey down to
magnitude r = 24. These results are comparable to the findings
by Chaves-Montero et al. (2017), where they getσNMAD = 1.15%
and σNMAD = 0.91% for their AGN-X sample in the 2-line
and 3-line detection mode, respectively. For their AGN-S sam-
ple, they find σNMAD = 1.01% and σNMAD = 0.86% for the
2-line and 3-line detection modes. However, we note that their
quasars have magnitudes F814W < 22.5 for the AGN-S sam-
ple and F814W < 23 for the AGN-X sample. While there is no
direct comparison between r-band magnitudes and F814W mag-
nitudes, they have generally brighter quasars. If we compare their
results to our brighter samples, we see that we recover σNMAD
values that are ∼5−20% lower (depending on the exact compared
samples).

7. Summary and conclusions

In this work, we analysed miniJPAS data using SQUEzE. We
present the particularities of applying SQUEzE to this dataset
and a catalogue of quasar candidates. Following previous papers
in this series (Rodrigues et al. 2023; Martínez-Solaeche et al.
2023), we trained the models on the miniJPAS mocks devel-
oped by Queiroz et al. (2023) for this purpose. We tested the
performance on three different datasets, two of them synthetic
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Fig. 11. Feature importance analysis performed on SQUEzE training based on the mean decrease in impurity. Higher values indicate that the feature
is more important. From top to bottom, the different panels show the result for the first three magnitude bins, with 17 < r ≤ 20, 20 < r ≤ 22.5, and
t22.5 < r ≤ 23.6. The results for the remaining magnitude bin are shown in Fig. 12.
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Fig. 12. Same as Fig. 11, but for the fourth magnitude bin, with 23.6 < r ≤ 24.3.

and one of them using the relatively small subset of miniJPAS
data with spectroscopic counterparts from SDSS. Finally, we
compared our results to previous estimates of SQUEzE per-
formance, attempted to explain the reasoning behind SQUEzE,
assessed the impact of using different noise models to build the
mocks, and evaluated the redshift precision of our samples. Our
main conclusions are as follows.

– Our results in the test samples suggest that the f1 score
including all objects down to r = 24.3 is 0.49 for high-z
quasars and 0.24 for low-z quasars. For high-z quasars, this
is increased to 0.9 for magnitudes of r < 21.0.

– While SQUEzE performance is lower than some of the other
classifiers of the series, it provides us with redshift estimates.

– We assesed our redshift precision using the normalised
median absolute deviation, σNMAD. For our test sample, we
reach a value of 0.92%, an order of magnitude better than
similar samples in the literature. For brighter samples, this
decreases further to 0.81% (r < 22.5) and 0.74% (r < 21.3).

– Contrary to other machine-learning classifiers, the SQUEzE
decisions can be explained: as we go fainter in magnitude
SQUEzE is no longer able to distinguish real emission lines
from noise peaks and more weight is given to the magnitude
and redshift distributions.

– It is possible that SQUEzE is able to run on extended sources
with similar levels of performance even if the training
set only characterises point-like sources. This could imply
that the photometric properties of extended and point-like
quasars are similar or that the criteria used to split between
extended and point-like sources occasionally fail.

– Changing the noise model used to create the mocks has an
impact mostly at the faint end and sometimes results in lower
redshift estimates.

– We computed a catalogue of quasar candidates for both
point-like sources, with 301 candidates, and also includ-
ing extended sources, with 1049 candidates. While extended
sources are not included in our mocks, the comparison of the
magnitude and redshift distributions of both catalogues sug-
gests that SQUEzE could show a similar performance level on
extended objects compared to point-like objects.

– A spectroscopic follow-up of a large number of objects is
crucial to verify the results of this work and could lead to
improvements in the classifiers.

Summing up, we found that SQUEzE can complement the other
classifiers presented in this series. Even if it has slightly lower
performance levels than some of the other classifiers, it pro-
vides us with redshift estimation. This is crucial for many science
cases. We remark that SQUEzE might work when presented with
extended sources, but a spectroscopic follow-up is needed to
verify our findings.
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Appendix A: Effect of the noise model in mocks

As mentioned in Section 2, the mock sets used are described
in detail in Queiroz et al. (2023). In particular, we used the noise
model 11, which is precisely the one closest to the observed data.
Here, we explore the impact of using a different noise model. We
trained SQUEzE using the second-best noise model (model 1) to
assess the performance on the respective test sample (computed
also using the alternative noise model).

Figure A.1 shows the change in f1 score when the different
noise models are used. The alternative noise model performs
slightly better. Including objects at all magnitudes, there is an
increase in the performance of 0.08 for high-z quasars and 0.04
for low-z quasars. However, the noise model 1 is simpler than
the 11th, and the test sample is also rerun for each noise model.
Because noise model 1 is simpler, it is not unexpected that the
performance is slightly better, as the classifiers have to learn
a simpler distribution. However, we stress that noise model 11
is closer to the actual measurement of the noise distribution
and thus should be more realistic (hence our choosing it as our
fiducial model).

Perhaps more interesting is the impact of using these noise
models on real data. Table A.1 shows the number of candidates
recovered when using the different noise models to train the

Table A.1. Number of quasar candidates in different noise models.

noise model point-like candidates all candidates

11 301 1049
1 419 1514

Number of quasar candidates computed using different noise
models in the mocks to train our classifier. Noise model 11 is
the closest to the observed data (see Queiroz et al. 2023).

classifiers. Using model 11 results in a smaller number of can-
didates (by ∼ 30%). A similar decrease is observed for both the
point-like and the entire samples. We explored this difference
further for the point-like sample by analysing the distributions
of redshift and magnitude (Figure A.2). The magnitude distri-
butions are essentially the same, but we observe some small
differences in the redshift distribution. Model 1 seems to slightly
favour larger redshifts. Clearly, one of the models has better red-
shift precision. One would tend to think that model 11, being a
more realistic noise model, would produce better redshifts, but
a spectroscopic follow-up of the objects is required to know for
certain.

Fig. A.1. Change in the f1 score when different noise models are used to generate the mocks. Note that the change is applied both to the train and
the test samples. The left (right) panel shows the performance for the low (high) redshift quasars.

Fig. A.2. Distribution of magnitude (left) and redshift (right) for the quasar candidates computed using different noise models in the mocks to train
our classifier. Noise model 11 is the closest to the observed data (see Queiroz et al. 2023).

A144, page 15 of 22



Pérez-Ràfols, I., et al.: A&A, 678, A144 (2023)

Appendix B: Performance of the peak finders

We stress that one of the key elements of SQUEzE is the peak
finder. In this work, we changed the original peak finder of
SQUEzE by a new peak finder (see Section 3.1). Here, we discuss
the performance of the peak finders.

We start by performing a qualitative assessment based on the
performance of a few bright objects (see Figure B.1). The first
example shows the performance of both the new peak finder and
the original one on a synthetic spectrum of a quasar. We can see
that the new peak finder provides a smaller number of peaks and
that they are at the expected positions. The other two examples
show the performance of synthetic spectra of a galaxy and of a
star, where the assumption of a power-law continuum does not
necessarily hold here. Nevertheless, the number of noise peaks
is significantly reduced.

These examples correspond to a relatively bright spectrum,
and the peak identification is less successful on fainter objects
as the noise is louder. Nevertheless, we find that the new peak
finder better filters the noise peaks.

To estimate the performance of the peak finders we used
three quantities. First, we considered the completeness after the
peak finder step. As mentioned above, quasars for which we fail
to detect the correct peak here will not be recovered at a later
stage. Thus, we want this quantity to be as high as possible. Apart
from completeness, it is also important to consider the number
of correctly identified peaks and the total number of peaks.

Figure B.2 shows the result of this exercise. The complete-
ness level of the new peak finder is lower than that of the original
one. For high-z quasars, the decrease is 0.014 at magnitudes of
r < 22.1, where the original peak finder has a completeness of
one. As we go fainter in magnitude, the difference increases up
to 0.14 at magnitudes of r < 24.3, where the original peak finder
completeness level remains at 0.99. For low-z quasars, we see a
similar trend albeit with a larger decrease: 0.043 at magnitudes
of r < 22.1 and 0.23 at magnitudes of r < 24.3.

This decrease in completeness is compensated by a drastic
reduction in the number of incorrect peaks when the new peak
finder is used. We see a decrease of a factor of ∼ 3 for high-z
quasars and a factor of ∼ 2 for low-z quasars. At the same time,
the number of correct peaks per spectrum stays roughly constant.
This means that the random forest algorithms will have an eas-
ier job finding the correct entries. Indeed, we see an increase in
performance when using the new peak finder (see Figure B.1).
We conclude that this decrease in the number of incorrect peaks
more than compensates for the decrease in completeness.

Fig. B.1. Example of performance of new peak finder compared to the
original one. To illustrate the difference between peak finders, we show
a quasar with magnitude r = 19.9224 and redshift of z = 2.12 (top
panel), a galaxy with magnitude r = 19.4995 and redshift of z = 0.07
(mid panel), and a star with magnitude r = 19.4182. Blue circles show
the peaks as detected by the original peak finder. Orange squares are
the peaks detected by the new peak finder. Dashed lines indicate the
expected position of the main emission lines. For the quasar, from left
to right, they indicate the Lyα, Si IV, C IV, C III], and Mg II. For the
galaxy, also from left to right, they indicate the O [III] and Hα.
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Fig. B.2. Top panels show level of completeness after peak finder step. The bottom panels show the number of peaks per spectrum as solid lines
and the number of correct peaks per spectrum as dashed lines. To compute the latter, only spectra of quasars are counted, whereas to compute the
former all spectra are considered. The results for the old (new) peak finder are shown via blue (orange) lines.

Fig. B.3. Changes in performance ( f1 score) of SQUEzE when training with the different peak finders. The orange line shows the performance of
the original peak finder, PeakFinder, compared to the peak finder developed here, PeakFinderPowerLaw, our fiducial choice. The left (right)
panel shows the performance for the low (high) redshift quasars. For the original peak finder, we use the following parameters: four magnitude bins,
no smoothing, a minimum significance of zero, using the default set of lines, using two random forests, and adding columns ztry and magnitude r.
These parameters are selected following the approach described in Appendix C for the new peak finder.
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Appendix C: Robustness of the chosen SQUEzE
parameters

Section 4 shows the results of SQUEzE on the miniJPAS mocks.
Then, in Section 6.1 we discuss the reasons behind the decrease
in the performance compared to the previous estimates from
Pérez-Ràfols & Pieri (2020). The performance decrease is
attributed to the data being noisier than assumed by the rough
estimates of Pérez-Ràfols & Pieri (2020). In the subsequent sub-
sections, we review the main choices for the different parameters
and conclude that only minor tweaks to SQUEzE parameters
are required in order to achieve the optimal configuration and
that this configuration is only marginally better than the default
choices. This supports the universality of SQUEzE models stated
in Pérez-Ràfols & Pieri (2020).

Throughout this section, we use the validation set to justify
the different choices we made. We change one parameter at a
time to evaluate the effect of changing this parameter, fixing
the rest to our fiducial choice, as described in Section 3. Com-
parisons are made using the f1 score as defined in Equation 1.
We checked that in all cases the purity and completeness remain
roughly stable, i.e. that the f1 score does not increase with a sig-
nificantly higher level of purity at the cost of lower completeness
level or vice-versa. However, for clarity, we only show the f1
score here.

C.1. Training in magnitude bins

In Section 3.3 we classify objects separately based on their
r-band magnitude. Here, we explore the reasons behind this
choice. The main argument to justify splitting the sample is that
brighter objects have higher signal-to-noise ratios and thus emis-
sion lines are easier to detect. On top of this, faint objects are
substantially more numerous, thus dominating the training set.
It is therefore reasonable to think that the random forest could
learn to identify the low signal-to-noise quasars better and lower
the performance at the bright end.

To test if this is indeed the case, we ran SQUEzE in three
scenarios. First, we took all the objects in a single magni-
tude bin, r ∈ (17.0, 24.3]. Second, we split the bin in two:
r ∈ (17.0, 22.5] and r ∈ (22.5, 24.3]. Third, we further split each
of the bins: r ∈ (17.0, 20.0], r ∈ (20.0, 22.5], r ∈ (22.5, 23.6],
and r ∈ (23.6, 24.3]. We trained SQUEzE in each of these magni-
tude bins and combined the results into the larger single bin to
compare.

Results of this exercise are shown in Figure C.1, where we
compare the performance of the models with one and two bins
to that of the fiducial model with four bins. When objects at
all magnitudes are included, the performance drops for low-z
quasars by ∼ 0.015 and ∼ 0.005 when using one or two bins,
respectively. When cutting at different limiting magnitudes, we
find the performance to be generally higher in the four-bin model
by ∼ 0.02 and ∼ 0.01 for low-z and high-z quasars, respectively.
An even finer magnitude split might yield even better results, but
larger amounts of data would be necessary, so we leave this for
future studies.

C.2. Significance threshold for peak finding

In Section 3.1 we explain that peaks are identified by selecting
outliers with a minimum significance from a power-law fit of the
spectrum continua. Here, we justify the choice of N = 2 in our
standard runs.

Table C.1. Intervals added to help with identified line confusions.

Real line Assumed line Interval(s) added

Lyα C IV LC1 (Mg II)
C IV C III] LC1 (Mg II), LC5 (Hα)
C IV Lyα LC2 (C III]), LC7 (Hα)
C III] C IV LC2 (C III]), LC6 (Hα)
C IV Mg II LC4 (Hα)
Mg II Hβ LC4 (Hα)
Lyα Mg II -

C III] Hβ LC3 (Hα)

The first column gives the real line and the second column gives
the assumed line. The third column gives the intervals added to
help remove the line confusion. In parentheses, we show the line
whose peak is expected to appear in the interval if the assumed
line is correct.

We compare the performance when taking different cuts
in the peak significance. We explore a cut of 1.5 to 3.0 (both
included) in steps of 0.5. We compare the performance of those
models against the fiducial model, with a significance cut of
2.0. Results of this exercise are shown in Figure C.2. The
performance using different significant cuts is showing some
fluctuations around a 0.01 change in the performance level. The
fiducial choice seems to be marginally better than the other cases
studied.

C.3. Optimisation of the line bands

As shown in Section 3.2, for each of the trial redshifts we com-
puted a set of line metrics based on the predicted position of the
emission lines of interest. The line bands used on the main results
were optimised for BOSS data and our j-spectra have a signif-
icantly different resolution. We tested if the same line bands
should be used here, as seems to be indicated by the results in
Pérez-Ràfols & Pieri (2020).

We changed the line bands with the following criteria. First,
we removed the weak emission lines that cannot be resolved in
the mean spectrum of miniJPAS quasars (Martínez Uceta et al.
In prep.). Then, we expanded the bands to include more than
one filter. This is important as there are non-detections in some
of the filters, more so at the faint end. Having more than one
filter in each of the bands allowed us to measure the line metrics
even when a few of these faulty measurements are present in the
spectra. We label this set of lines as ‘wide’.

On top of widening the bands, we also added a few new
‘emission lines’. These are added in intervals where we do not
expect an emission line, but where we would expect it if we had
line confusion (see Table C.1). With these, we not only increase
the number of filters used to classify the j-spectra, but we also
could potentially improve the existing line confusion. We label
this set of lines as ‘wide+extra’.

The chosen set of line bands is given in Table C.2. To
compare with the number of filters used in our fiducial choice
(Figure 1) we give this quantity for the default bands (left panel
of Figure C.3) and when we only use the wider bands (right panel
of Figure C.3). In both the ‘wide’ and the ‘wide+extra’ line bands
the number of filters used is higher than in the default case (see
Figure 1).

We test the performance of the new sets of lines (using only
the wider bands and using both the wider and extra bands) and
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Fig. C.1. Changes in SQUEzE performance ( f1 score) when training with the different number of magnitude bins. The magnitude bins are r ∈
(17.0, 24.3] for the model with one bin (blue lines), r ∈ (17.0, 22.5] and r ∈ (22.5, 24.3] for the model with two bins (orange lines), and r ∈
(17.0, 20.0], r ∈ (20.0, 22.5], r ∈ (22.5, 23.6], and r ∈ (23.6, 24.3] for the model with four bins (green lines). The left (right) panel shows the
performance for the low (high) redshift quasars. The fiducial model, with four bins, is the best performing.

Fig. C.2. Comparison of SQUEzE performance ( f1 score) when the minimum peak significance is 1.5 (blue lines), 2.0 (orange lines), 2.5 (green
lines), and 3.0 (red lines). The left (right) panel show the performance change for the low (high) redshift quasars. We see fluctuations in the
performance at the percentage level.

Fig. C.3. Same as Figure 1, but using the default bands (left panel) and using only the wider bands (right panel). Both cases use a smaller number
of filters compared to the fiducial set of lines (Figure 1).
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Table C.2. Alternative line bands used by SQUEzE to compute the metrics.

LINE WAVE START END BLUE_START BLUE_END RED_START RED_END

Lyβ 1,033.03 1,000.00 1,080.00 890.00 990.00 1,103.00 1,159.00
Lyα 1,215.67 1,190.00 1,260.00 1,103.00 1,159.00 1,295.00 1,350.00
Si IV 1,396.76 1,370.00 1,417.00 1,295.00 1,350.00 1,432.00 1,494.50
C IV 1,549.06 1,515.00 1,575.00 1,432.00 1,494.50 1,603.00 1,668.00

C IV blue 1,549.06 1,515.00 1,549.06 1,432.00 1,494.50 1,603.00 1,668.00
C IV red 1,549.06 1,549.06 1,575.00 1,432.00 1,494.50 1,603.00 1,668.00

C III] 1,908.73 1,865.00 1,940.00 1,756.00 1,835.00 1,970.00 2,060.00
Mg II 2,798.75 2,720.00 2,816.00 2,570.00 2,690.00 2,851.00 2,984.00

Hβ+O [III] 4,862.68 4,800.00 5,020.00 4,640.00 4,740.00 5,060.00 5,145.00
Hα 6,564.61 6,480.00 6,650.00 6,320.00 6,460.00 6,750.00 6,850.00

LC1 2,233.88 2,140.00 2,315.00 2,060.00 2,110.00 2,335.00 2,385.00
LC2 2,392.05 2,280.00 2,470.00 2,200.00 2,260.00 2,490.00 2,550.00
LC3 2,576.78 2,520.00 2,630.00 2,420.00 2,500.00 2,640.00 2,710.00
LC4 3,705.86 3,600.00 3,790.00 3,510.00 3,580.00 3,800.00 3,900.00
LC5 5,327.61 5,280.00 5,400.00 5,160.00 5,250.00 5,480.00 5,570.00
LC6 8,088.82 7,980.00 8,230.00 7,870.00 7,960.00 8,280.00 8,550.00
LC7 8,364.91 8,280.00 8,550.00 8,120.00 8,260.00 8,650.00 8,790.00

In the first block, intervals of major lines have been widened to ensure continuous coverage at a given range of redshift. Minor
lines (e.g. NeIV and Ne V) have been removed. OIII and Hβ lines have been merged into a single wider line. In the second block,
additional line intervals have been added to help deal with identified line confusion (see Table C.1). All quantities are given in Å.

Fig. C.4. Comparison of SQUEzE performance ( f1 score) when using the default set of line bands and the two new sets of line bands (using wider
bands and using both wider bands and some extra bands), specified in Table C.2. Both cases are computed with a minimum peak significance of
2. The left (right) panel shows the performance for the low (high) redshift quasars. The fiducial model, using the wide+extra line bands is the best
performing.

compare it to the default lines. This comparison is shown in
Figure C.4. The ‘wide+extra’ lines are superior, but only
marginally, with an increase of the order of 0.01-0.02, seen
mostly for bright magnitudes. This fact supports the predic-
tions by Pérez-Ràfols & Pieri (2020) on the universality of their
model, where only marginal improvements are expected when
changing the parameters of the model.

C.4. Single classifier versus redshift split classifier

In Pérez-Ràfols et al. (2020), they argue that using two dif-
ferent random forest classifiers, one for high redshift, ztry and
one for low redshift, ztry, they obtain a better level of per-
formance as opposed to using a single classifier. Since our
datasets have significantly different properties (in particular

magnitude and resolution), this statement does not necessar-
ily hold here. In order to check this, we redid our analysis
using a single random forest classifier. The options passed
to SQUEzE are {"criterion": "entropy", "max_depth":
10, "n_jobs": 3, "n_estimators": 1000}. We compare
the results from this new run with our fiducial in Figure C.5.
There is a consistent increase of ∼ 0.03 − 0.04 in the perfor-
mance at low redshift when using two random forest classifiers.
For high-redshift quasars, the improvement in the performance
is smaller, reaching only ∼ 0.02. Thus, we decided to stick with
using two random forest classifiers.
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Fig. C.5. Comparison of SQUEzE performance ( f1 score) when using one or two random forest classifiers. When two are used, the first one is
charged with classifying the low-z quasars and the second one, the high-z quasars. The left (right) panel shows the performance for the low (high)
redshift quasars. The fiducial model, using two random forests, is the best performing.

Table C.3. Statistics of the redshift precision for different redshift precision requirements.

∆z mag bin ∆v (km/s) σ∆v (km/s) σNMAD (per cent) N

0.15

17.0 < r ≤ 20.0 224.30 4,282.73 0.77 520
20.0 < r ≤ 22.5 968.87 3,834.35 0.99 2209
22.5 < r ≤ 23.6 1,349.70 6,016.32 1.66 1061
23.6 < r ≤ 24.3 1,603.68 6,355.87 1.86 210

0.10

17.0 < r ≤ 20.0 457.03 2,870.53 0.74 517
20.0 < r ≤ 22.5 711.28 3,121.52 0.95 2198
22.5 < r ≤ 23.6 1,015.71 4,209.44 1.42 957
23.6 < r ≤ 24.3 889.00 4,802.76 1.55 184

0.05

17.0 < r ≤ 20.0 463.10 2,188.32 0.69 491
20.0 < r ≤ 22.5 461.34 2,274.05 0.79 1998
22.5 < r ≤ 23.6 352.09 2,642.76 1.12 747
23.6 < r ≤ 24.3 5.51 2,624.00 1.10 125

Mean redshift offset and dispersion for the different magnitude bins. The mean offset indicates potential biases of our redshift
estimate and the dispersion indicates our typical redshift error. Each block shows the results when running with different values for
∆z. We note that our fiducial model has a significance level of ∆z = 0.15.

C.5. Impact of redshift tolerance

Section 4 shows that as we go fainter in magnitude, the redshift
precision decreases. This suggests that the redshift tolerance
used could be too large. On the other hand, Pérez-Ràfols & Pieri
(2020) used an even larger redshift tolerance (0.15). Here, we
discuss the possible effect of using different cuts on the red-
shift tolerance. We ran SQUEzE using ∆z =

∣∣∣ztrue − ztry
∣∣∣ < 0.15,

∆z < 0.10 (our fiducial choice) and ∆z < 0.05.
Table C.3 shows the mean redshift offset and the dispersion

measured in each of these three cases. As expected, the redshift
precision increases as tighter constraints in ∆z are used. How-
ever, when the constraints are too tight, performance is impacted.
For instance, Figure C.6 shows that using ∆z of 0.10 and 0.15
results in very similar performance levels, but using ∆z of 0.05
implies a performance drop of ∼ 0.10 for the high-z quasars. Nat-
urally, the comparison here is not so simple, as the criteria for
correct classifications change with the chosen ∆z. While this is
true, this should only affect those quasars in which the trial red-
shift is close to the true redshift. In cases where line confusion

occurs, then the chosen ∆z is irrelevant as the redshift error is
much larger. The line confusion plots (Figure 5) indicate that the
latter is driving the performance. We conclude that the fiducial
∆z = 0.10 is the optimal threshold choice as it performs similarly
to ∆z = 0.15, but with better redshift precision.

C.6. Passing extra features to the random forest classifiers

To finalise the revision of our choices, we assessed the impact
of adding extra features to the random forest classifiers. In par-
ticular, we explored adding the trial redshift and/or the r-band
magnitude to the list of parameters fed to the classifiers. We com-
pared our fiducial choice (adding both parameters) with the cases
where only one of the two features is passed, and when none is.
The results of this exercise, shown in Figure C.7, indicate that
the code does indeed perform optimally when both features are
added. However, the performance change is at the percentage
level, as in previous cases.
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Fig. C.6. Comparison of SQUEzE performance ( f1 score) when using different redshift requirements to define correct classifications. Our fiducial
choice is 0.10. The left (right) panel shows the performance for the low (high) redshift quasars. The performance of the fiducial model, with
∆z = 0.10, is marginally worse than the performance with ∆z = 0.15, but the redshift errors are significantly smaller (see Table C.3).

Fig. C.7. Comparison of SQUEzE performance ( f1 score) when we feed different columns to the random forests. We compare SQUEzE default
choice, i.e. only feeding the metrics with the cases where we also feed it the trial redshift, the r-band magnitude, or both (our fiducial choice). The
left (right) panel shows the performance for the low (high) redshift quasars. The fiducial model is the best performing.
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