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ON THE PROBLEM OF JASKOWSKI AND
THE LOGICS OF tUKASIEWICZ.

by J. KOTAS and N. C. A. da COSTA.

ABSTRACT: In this paper we extend_the results of }. M. L. D'Ottavi-
ano and N. C. A. da Costa, Sur urn probleme de Jadkowsk{, C. R, Acad. Sc.
Paris, 270 A {1970}, 1349-1353; by means of the generalized fogics of
tuhasiewicz, new solutions of the so called Jaskowski's problem are pres-
ented and discussed.

INTRODUCTION.

Let £ denote agiven language containing negation. Any set of formulas
of £ is called a propositional system {or simply, a system) of L. The ele-
ments of a system § are called theses of $.

A system S is said to be inconsistent if it contains at least two the-
ses, such that one is the negation of the other: in the oppositecase, § is
called consistent. S is said to be trivial (or overcomplete) if any formu-
la of £ is also a thesis of S: otherwise, 8 is nontrivial (or not over-
complete).

A propositional system which has an underiying logic, i. e., that is
based on a logic, is called a deductive system. If in such system the rule:
"From a and not-c, infer B" is permissible, then it is inconsistent if and
only if it is trivial. This is precisely what happens with deductive sys-
tems based on classical Togic and on several other categories of Togics,
as, for example, the intuitionistic.

Of course, trivial systems have no practical importance. But the situa-
tion is complietely different in connection with consistent systems, which
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128 J. KOTAS and N. C. A, da COSTA

are of fundamental relevance from the theoretical as well as from the
practical points of view, Nonetheless, there are relatively few systems of
which we really know that they are consistent. We cannot give absolute
proofs of consistence even for certain rather efementary mathematical sys-
tems. The situation is still worse when we consider systems based an re-
sults of experimental research. These facts and other stronger reasons mo-
tivated Jaskowski to formulate in [8] the problem: To construct logics sa-
tisfying the following conditions: 1) when they are employed as underlying
Toegics of inconsistent proposi onaltsystems, inconsistency does not nec-
essarily imply triviality; 2) they are rich enough to make possible most
common inferences,

In [8] and [9], JaSkowski presented a solution for his problem at the
level of the propositional calculus: in effect, he introduced the so called
discussive propoditional caleulus D, , defined by means of an appropriate
interpretation in the modal system S6& of Lewis. Therefore, JaSkowski's so-
lution depends on standard modal logic. Results by Furmanowski (see [71},
Perzanowski (see [12] and Btaszczuk and Dziobiak (cf. [1], [2] and [3] )
showed that we obtain very interesting solutions toJaSkowski's problem using
other modal systems instead of 85 . In [5], a completely distinct solution
to the problem is described, where a hierarchy of Togical systems not re-
stricted to the propositional calculus is studied and developed up to the
construction of inconsistent but apparently nontrivial set theories. D'0t-
taviano and da Costa in [6] studied still another solution, the calculus
Q3 , which is founded on tukasiewicz three-valued Tlogic.

In every-day 1ife the process of assertion of sentences is very complex.
We may suppose that we consider any sentence as true when our conviction
about 7ts truth is strong enouah or, 1is other words, when a "logical val-
ue" sufficiently large corresponds to the sentence. Clearly, the assertion
of a sentence as probable is made analogously. If we restrict ourselves to
D, or J;, then we have to consider as probable all sentences which have
(in our conviction, of couse) a "logical value" greater than O, and more-
over we are constrained to assume that "to be probable" and "to be true"
have practically the same meaning. This attitude, although convenient and
full of interesting consequences, is only a crude approximation to the
actual procedure. Also, we do not Took at sentences which we believe to
have sufficiently small "logical values" as probable. To introduce finer
distinction than it is possible with the help of D, and M3, we study in
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this paper some new Jogical calculi.

In fact, the aim of our work is to show that if we take as bases the
finite or infinite logics of tukasiewicz, then it is possibie to define a
class of logical calculi, some of which are solutions of Jaskowski's prob-
Jem. Therefore, this paper contains a generalization of D 'Ottayviano — da
fosta's results. It seems worthwhile to observe that the method of charac-
terizing logical calculi employed here and applied to Lukasiewicz logics,
can be extended to other Togical calculi.

JASKOWSKI'S PROBLEM AND THE LOGICS OF +UKASIEWICZ.

Let M he a finite or infinite-valued matrix of tukasiewicz, i.e., a
matrix of the form:

(A, {1}, =, ),

where A= {0, 1/n, ..., n-1/n, 1}, n>1,0r A is the set of all real
numbers x such that 0 < x < 1, and the operaticns = and 71 are defined as
usual. Let M&,b ,0<a=s1, 0<bs<1l, be the matrix obtained from ¥ by
the addition to its two operations, of the new operations U, n, and C,
defined as follows: for any x,y € A, x Uy = max(x,¢), x Ny =minlx,y ,
Cax = 0 for x<a and Cyx =1 for x=>a, and by replacing {1} by
the set of all x € A such that x = b. i, p will be called a gencralized
matrnix of tukasicwicz, and may be a finité or an infinite-valued matrix.

We note that U and N are definable in terms of = and 71 in any matrix of
fukasiewicz, since for any x,4 € A, we have: x Uy = (x=>¢g)=y and x Ny
=(7Tx U Ty), but that Cq is definable only in finite-valued matrices.

Let p, g, 4, ... be propositional variables and = ,V , A, ~ and Of,
0 < a<1l, be the symbols of implicatien, disjunction, conjunction, ne-
gation and a-possibility, respectively. F will dencte the set of formulas
defined in the usual mamner, and a, B, Y, ... will be variables whose val-
ues are formulas.

The set of all formulas valid in My p, 0 <a<1, 0< 6 <1, symbolized
by £, b ,will be called a genenratized Enﬂac of tukasdemwicz. Inthe case that
a p s a finite-valued matrix the notion just defined coincides with the
concept of a generalized logic of fukasiewicz, as introduced in [14] by
Rosser and Turquete. If Ma,b is a finite-valued matrix, then Sa,b can also
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be defined as a discussdve system, to wit, Ea,b can be interpreted as the
set of all formulas o such that Opa s valid in M.

[t is easy toverify that in those systems in which all sentences having
"logical values* at least equal to b, 0< b <1,are considered as true,that
is, as having distinguished values, the implication of tukasiewicz {—)
does not have some of the fundamental properties commonly associated with
the notion of implication; for instance, the rule of modus ponens is not
valid. This rule can be applied in connection with -, only if the sen-
tences considered true have the value 1. Intuitively, this means that as-
sertion has an absolute character: we accept as true only sentences about
which we are absolutely confident that they are true. Obviously, such con-
dition is almost never satisfied in empirical systems. In particular, con-
cerning the logic £a,b , where a < b and Ma,b is finite-valued, it oc-
curs that there are formulas o and B such that o and a—g are valid, but
B is not. To obtain the formulas o and B, we can make use of the criterion
of the definability of functions in matrices of tukasiewicz given by
McNaughton in [t1] or the criterion formulated by Prucnal in [13].

Since the rule of modus ponens plays an important role in deductive Sys-
tems, the question arises, whether we can define in £a,b a hinary opera-
tion which could be accepted as an implication. We want, especially, that
the rule of detachement {medus ponens), relative to such operation, when
applied to formulas of Ea,b » would always give formulas belonging to
Ea,t;' For this purpose, we proceed precisely as JaSkowski in [8}. where
he defines the discussive implication; we extend the language of £a,b by
the addition of the following operation, which it is natural to call
a-discussive implication {or simply discussive implication):

DEFINITION 1. g e B = Ca0 = B

def

This definition is analogous to JaSkowski's definition of discussive
implication in Dy, and has a similar meaning. If ©q is interpreted as
possibility, then 7 coincides with discussive implication.

The Togic obtained from fa,b by extending its language with the addi-
tion of 2, according the above definition, will still be denoted by the

symbol Ea,b )
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THEOREM 1. 14 a< b, then the following rubes of inference are permis-
aibte in &g pt

(1) T4 o and o 7 B, then B.

(2) T4 o, then B .

(3) I az®B and Bzy,then o F Y-
(4) 14 o and R, then aAB.

(5} 14 oAB, then a; Lf aAB, then B.
(6 I aZBand a7y, then o 7 BAY.
(7) 14 a, then aVB; 44 B, Zhen ovVR
(8) If gy and B 2, then oVB Y-

PROOF of (1): Let us suppose that a, a 7B & &, 4, i,e, , for every valu-
ation ¢, we have 9(a) > b and o{a 7 B} > b. Then, we have alse #(g) = b,

because ¢{a 2> B) = #(%q0 >Ry =8{C 0 )=23(R)=Cid(a)=>d(B) = 1 =

#(B) = #(B).
The proofs of (2)-(8) are similar. ®

It is rather interesting that, if a < b, then the formulas corresponding
to the rules of inference of Theorem 1 do not belong to £, 4 (we assume,
for example, that (pA(p 2 ¢)) 7 ¢ corresponds to rule (1) and that p >
(¢ 7 p) corresponds to rufe (2)). Usually those formulas are considered as
characteristic of a good implication. Thus, the implication 3 apparently
cannot find fundamental applications in deductive systems, because the set
of formulas of £, p in which 2 occurs is "poor". However, it is known
that in the app]'ice,ition of logical caiculi to propositional systems, the
rules of the calculi are more important than their theses. Then, Theorem 1
says that the implication o is actually not so weak, and that Ea,b is apt
to be used as underlying Togic of deductive systems (in which the basic

implication is 2 and not -}

DEFINITION 2. TForany o, BE IF,
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o =B .{f and onby if o 7 B € f5 p and B&""Eia,b ;

THEOREM 2. =.4 an equivafence relation if and onby if a = b. Moreover,
under Lhis hypothesis, if oy =8y and ay; = By, then a1V ooy =R VBs ,
Ay Aey =B AR, and oy 7oy ~ B 2 By, but it s not trwe that o) — a,
= By = By and ~op = ~o,.

PROOF: If a < b, then = s not reflexive, because b 7 p does not belong
to £g,p. and if a>b, then ~ is not transitive, owing to the fact that
it is not true that if a7 BE Sa,b and B Y€ Ea,b’ then o zy €5a,b-
(It follows from Prucnal's criterion that in the case of a finite-valued
generalized tukasiewicz logic we can find formulas o, 8 and ¥ such that
o~ B and B =~ vy, but not o =~ v.) Supposing a=b, o =B is true if and
only if for any valuation ¢ one has ¢(a) < a and #{B}) <a, ordf{a)>® a
and #(B) ® a. Therefore, it follows that in this case the relation = has
the properties required by the theorem. m

We observe that aFBe £a,bs with a > b, if and only if, for any val-
uation 9, we have #{a) <a or #(B) > b. Consequently:

THEOREM 3. I§ a = b, then the following formulas belong o £a,bi
(i) palezp),
Gy (pgazglezr) gz,
Giy {(pzgad zr)gr,
(iv)  pveg(lpzalza),
) (lpza)zga) 7pve,
i) phg e,
wii)  pAg zaq,

(viiiy p > (¢ 7 pAq).

£, 0<a<1, will designate the set of all formulas of Ea’a in which,



JASKOWSKI'S PROBLEM AND ILUKASIEWICZ LOGICS 133

besides propositional variables and parentheses, only the symbols 71,V , A,
and 7. occur. Let £, 0<a < 1, be the subset of £, containing all for-
mulas in which negation does not appear. Ez will he called the positive

part of f,.

1t is a consequence of Theorem 1 that the rule of detachement for 2
is permissible in SZ. Evidentiy, E& is a set of formulas closed under sub-
stitution (limited to the set of formulas of the language iz}. According
to a result of Sobocinski [16], the formulas Tisted in Theorem 3 together
with substitution and detachement constitute an axiomatization for the
classical positive propositional calculus, which, by Theorems 1 and 3, 1is
contained in 5;- But if o€ EJ, then o is a thesis of the classical prop-
ositional calculus and, eo ipso, of the classical positive propositional
caleulus, since for 0 and 1 the operations of ¥, ,, corresponding to the
logical connectives V ,A and 7, have the same values as the appropriate
operations of the two-valued classical matrix. Hence, we have proved the
following:

THEOREM 4. £, 0<a<1, is the classical positive propositional
caloulus .

The algebraic version of the classical positive propositional calculus
is constituted by the notion of classical implicative lattice (as well as
by the concept of a Boolean ring; see l4] and [15]). Denoting by.tz, D<a
< 1, the afgebaa 04 formubas i; , we deduce from Theorems 2 and 4 that:

COROLLARY 1. The quotient afgebra t; /=, 0<a<l, 46 a classical im-
plicative Latiice.

It is not difficult to prove the following proposition:

THEOREM 5. Suppose that a < 1/2; then, The following fommufas axre not

theses of 5, (a<>B8=, . (@>BIA(B >a)):

ef
P (~e7al {(pA ~p) 74,

gz lpg~ag ~r (pza) 2 {~ag ~n),
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(b 7a) 7 (~p 7 ~aq), BV (gN ~q)) p,

(pga)~pVg, {p7a) 5 ~(pAh ~q).

Theorem 4 shows that £,, 0 <= a <1, is a rather rich calculus, since
its positive part coincides with the classical positive propositional cal-
culus. However, f,, 0 <a <1, is not rich enough so as to make it impos-
sible to found on it inconsistent nontrivial systems; on the contrary, by
Theorem 5, £,, 0 < a < 1/2, can be used as underlying logic for those sys-
tems. Hence, we have:

COROLLARY 2. Eveny £4, 0<a <1/2, constitufes a solution to

Jaskowski's probiem.
We shall denote hy Mézg) the 2k-valued generalized matrices of

tukasiewicz; it is clear that 1/2 does not belong to the set of elements

(2R} . (2k) (2k)
b

of Ma,b 7 Ea,b symbolizes the set of valid formulas in Ma,

, (2k) .
LEMMA 1. (1) i (~pa>q) € £a,b it and only 44 a > 1/2;

Ny RN (2k) . )
(ii) (~Pa}9)ar3€£a,b if and enby if b < a<1/2

ok a+b<l and a> 1/2.

PROOF of (i): In this case a > 1/2. Hence, for any valuation &, if 9(p) <
a, then (p > (~p 7 ¢)) =1, and if 8(p) > a, then also o (p Z(~pgal)
=1, because #(~p) = 1-8(p) < 1l-a<a. Conversely, supposing that
a<1/2, it follows that for a valuation @ which satisfies the conditions
a=d(p) <1/2 and #{g) = 0, we have: d(~p)=1-8(p) > 1/2>a and d(p 3
(2k)
(~p ;q)) = 0; hence, p 2> (~p EQ) does not belong to Sa,b ;
PROOF of (ii): Admit that b < a < 1/2; then, we have for any valuation ¢:
8l~p 7 p) T p)=1fordp)<a, andd((~pZp) gp)=a=b for #p)
Za. Ifa>1/2and a+ b<1, then we have, for any valuation #:
3{(~p gp) Zp)= b ford(p) <l-a, and H(~pFp)ZpI=1l-a>a > b

for 8 (p)>1- a.We candirectly verify that (~p TRl ep ¢ Ea,b for values
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of a and b different from those especified in the lemma . ®

The proof of the following propositions offers no difficulty:

LEMMA 2. The 4ommulas
iy pVg g (~p 74,
(i1) phg<p ~(p 7 ~4),

(2R)

bel fo % .
efong o /2. 1/2

It is known that (p 7 q) 7 ((a 22 2 (P2 M), p g (~p 7z @) and
{(~p 2 p) 7 p. together with the rules of substitution and modus
ponens, constitute an axiomatization for the classical propositional cal-
culus with implication and negation as the sole primitive connectives. In
order for the above formulas to belong to % p and for the rules of sub-
stitution and of modus ponens to be permissible in £ p , we must have:
a=b=1/2 and Ma,b has 2f elements, as Theorems 1 and 3, and Lemma 1
show. Therefore, the classical propositional calculus with implication and

negation as the sole primitive connectives is contained in 5322 12 But
from Lemma 2 we deduce that aff classical propositional calculus is in-
cluded in 1522 12 Obviously, if o€ ESET 12’ o is a thesis of the
classical propositional calculus, since the operations of ME,Z’? 1/2 which
corresponds to V, A, e and ~ have the same values for 0 and 1 as the
analogous operations of two-valued classical matrix. Consequently, Eﬁi/z

is contained in the classical propositional calculus., Thus, we proved the
following:

(2k)

THEOREM 6. £1/2, 1/2

L8 the classical propoditionak caleulus .,

As we have already noted, the connective ¢,, 0 <a <1, is definable

in any finite-valued logic £ (n)

of fukasiewicz. Then, if we have an axiom-
atization for S(n), we have also an axiomatization for this Togic enriched

by the definition of ¢, : both are essentially the same. Rosser and
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Turquette, in [14], were the first to give an axiomatization for the fi-
nite-valued generalized logics of tukasiewicz. Now we present another, for-
mally simpler, axiomatization of such legics.

A proof that the finite-valued Togic of 4ukasiewicz, £, which is the

set of all formulas valid in the matrix ([0,1], {1}, =,7), was given by
Wajsberg (see [10]).

The axioms of Wajsberg are:

M. p~{qa—=p),

Ra. (p—>aq) = ((g=4x) = (p~n)),

Az. ({p=4q) »q) = ({g>p) ~p),

Aye (~p = ~q) > (q~>p),
and the primitive rules are substitution and medus ponens,

Tokarz proved in [17] that for every natural number w, n > 1, there
exists a formula a,, which is called axiom of Tokarz, such that A;-A,, Gy
and substitution and modus ponens form an axiomatics for E(H).

Let A be the following set of formulas:

1) Ci(p > (g ~>p)),

(i) 0 ({p>q) = (la>n) > (p 1)),

(iii) ¢ {(((p > q) = q) = ({g 7 p) > p))),

(i) O {l~p > ~q) > (¢ > p)),

() O10,, where o, 1is the axiom of Tokarz,

n
and let R be the set of rules (1}-(4) bellow:
(1} Substitution,
(2} If ¢, and Op(a — B), then O; 8,
(3) If ©;0, thena,

4 If anc, thena (0 <a=<1),

THEOREM 7. SC(LHI)} can be axiomatized by faking A as the set of axioms and
R as the set of rules,
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PROOF: Obviously, the calculus based on the axioms of A and on the rules

. . . (n} . .
of R is contained in £ . We have to prove that the cenverse inclusion

@,
holds. Assume that o€ Séﬂ; ; hence, there exists a finite seguence of
’

formulas

Bll 52! 33! T 3 BHB
which is a proof of ¢,a in the axiomatics of Tokarz, referred to above.
It is easy to see that the sequence

O]B-La 0182: LI oans Bﬂ’ o

is a proof of o in the calculus whose axioms belong to A and whose rules
of inference are members of R. Therefore, the theorem is proved.

OPEN QUESTIONS.

Concluding our paper, we present some open problems:

PROBLEM 1. Is Ea b when it is based on the infinite-valued +ukasiewicz
logic, axiomatizable?

PROBLEM 2. Are there axiomatizations of £, ; in which the sole primi-
E

tive connectives are , =, A, V and ~? {In this problem, Ea’b may be

a finite or infinite-valued logic.)

PROBLEM 3. What results of this paper can be extended to generalized
logics of tukasiewicz with quantification ? (Evidently, some of our

results can easily be adapted to the level of the predicate calculus.)
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