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: 

ON THE PROBLEM OF JASKOWSKI AND 

THE LOGICS OF -r.UKASIEWICZ, 

by J. KOTAS and N. C. A. da COSTA. 

ABSTRACT, In this paper we extend the results of I. M. L D'Ottavi­
ano and N. C. A. da Costa, Su!t un pnob£eme de Jai~orw.,lu, C. R. Acad. Sc. 
Paris, 270 A (1970), 1349-1353; by means of the ge.neJtaU.ze.d lag-i.c6 06 
-t.ukcu,-i.e.w.lc.z, nevi solutions of the so called Jaskowski 's problem are pres­
ented and discussed. 

INTRODUCTION. 
Let£ denote a given langua!le containing negation. Any set of formulas 

of£ is called a propositional system (or simply, a system) of£. The ele­
ments of a system Sare called theses of S. 

A system Sis said to be inconsistent if it contains at least two the­
ses, such that one is the negation of the other; in the opposite case, S is 
called consistent.Sis said to be trivial (or overcomplete) if any formu­
la of£ is also a thesis of S; otherwise, sis nontrivial (or not over­
complete). 

A propositional system which has an underlying logic, i.e., that is 
based on a logic, is called a deductive system. If in such system the rule: 
"From a and not-a., infer S" is permissible, then it is inconsistent if and 
only if it is trivial. This is precisely what happens with deductive sys­
tems based on classical log ic and on several other categories of logics, 

as, for example, the intuitionistic. 
Of course, trivial systems have no practical importance. But the sHua­

tion is completely different in connection with consistent systems , which 
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128 J. KOTAS and N. C. A, da COSTA 

are of fundamental relevance from the theoretical as well as from the 

practical points of view. Nonetheless, there are relatively few systems of 
which we really know that they are consistent. We cannot give absolute 

proofs of consistence even for certain rather elementary mathematical sys­

tems. The situation is still worse when we consider systems based on re­

sults of experimental research. These facts and other stronger reasons mo­

tivated Jaskowski to formulate in [8] the problem: To construct logics sa­

tisfying the following conditions: 1) when they are employed as underlying 

logics of inconsistent proposi ionaltsystems, inconsistency does not nec­

essarily imply triviality; 2) they are rich enough to make possible most 

common inferences. 

In (8] and [9], Jaskowski presented a solution for hi s problem at the 
level of the propositional calculus: in effect, he introduced the so called 

cU.J.,c.LJ.6.6-<.ve. p!t0po6,di_ona£ c.ai.eu£LJ.6 D 2 , defined by means of an appropriate 

interpretation in the modal system S5 of Lewis. Therefore, Jaskowski's so­

lution depends on standard modal logic. Results by Furmanowski (see [7) ) , 

Perzanowski (see [12) and Blaszczukand □ziobiak (cf. [l], [2] and [3]) 

showed that we obtain very interesting solutions to Jaskowski's problem using 

other modal systems instead of S5. In [5], a completely distinct solution 

to the problem is described, where a hierarchy of logical systems not re­

stricted to the propositional calculus is studied and developed up to the 

construction of inconsistent but apparently nontr ivial set theories. D'Ot­

taviano and da Costa in [6] studied still another solution, the calculus 

Jr3 , which is founded on -tukasiewicz three-valued logic. 

In every-day life the process of assertion of sentences is very complex. 

We may suppose that we consider any sentence as true when our conviction 

about its truth is strong enough or, is other words, when a "l ogi cal val -

ue" sufficiently large corresponds to the sentence. Clearly, the assertion 

of a sentence as probable is made analogously. If we restrict ourselves to 

D2 or JI 3 , then we have to consider as probable all sentences which have 

(in our conviction, of cause) a "logical value" greater than 0, and more­

over we are constrained to assume that "to be probable" and "to be true" 

have practically the same meaning. This attitude, although convenient and 

full of interesting consequences, is only a crude approximation to the 

actual procedure. Also, we do not look at sentences which we believe to 

have sufficiently small "logical values" as probable. To introduce finer 

distinction than it is possible with the help of D2 and JI 3 , we study in 
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thi s paper some new logical calculi. 

In fact , the aim of our work i s to show that if we t ake as bases the 

finite or infinite logi cs of tukasiewicz, then it is poss ible to define a 

class of logical calculi, some of which are sol ut ions of Jaskowski 's prob­

lem. Therefore, this paper contains a generali zation of D'Ottaviano- da 

Costa's results. It seems worthwhile t o observe that the method of charac­

terizing logical calculi employed here and applied to Lukasiewicz logics , 

can be extended to other l ogical calculi. 

J ASKOWSKI's PROBLEM AND THE LOGICS OF ~UKASIEWICZ, 

Let M be a finite or infinite-valued matrix of tuk as iewi cz, i.e., a 

matrix of the form: 

( A, {l}, ~ , 7 ) , 

where A= {O, 1/n, ... , n- 1/n, l }, n ;;;, 1, or A is t he se t of all rea l 

numbers x such that O,;;; x ,;;; 1, and the operations => and 7 are defined as 

usual. Let Ma.,b , 0 < a ,;;; 1, 0 < b ,;;; 1, be the matrix obtained from M by 

the addition to its two operations, of the new operations u , n , and Ca. 

defined as follows: for any x,y E A, x u y = max(x,y), x n y = min(x , y) , 

Ca.x = 0 for x < a. and Ca x = 1 for x;;;, a., and by replaci ng {l } by 

the set of a 11 x E A such that x ;i, b. Ma, b wi 11 be ca 11 ed a gr 11C'.l!.a-t<.::c.d 

ma-t:M.x 06 i;uf;:M,<.e.uu.c.:: , and may be a finite or an infinite-valued matri x. 

We note t hat U and n are definable in t erms of = and 7 in any matri x of 

-tukasiewicz, since for any x. ,y EA, we have : x u y = ( x. = y) => tJ and x n y 

= 7( 7 x u 7 y) , but that Ca. is def inab l e only i n finite-va lued matr i ces . 

Let p, q , tc. , ... be propositional vari ables and ➔ , V , /\ , ~, and Oa. , 

0 < a ,;;; 1, be the symbols of impli cation, disjunction, conj unct ion, ne­

gation and a - poss ibili ty, respectively. IF wi ll denot e t he set of f ormulas 

defined in the usual manner, and a , B, y , ... will be variables whose val­

ues are f ormulas . 

The set of all formulas valid i n Ma.,b• 0 <a..;; 1, 0 < b ,;;; 1, symboli zed 

by £ab, will be called a ge.nMa.li z. C'.d .eog,<.c. 06 tu.liMie.vJ,<.c.:: . In the case that 
, 

Mab is a finite-valued matri x the notion just defined coi ncides wi th t h~, 
, 

concept of a generalized logic of tukas iewi cz, as introdu ced in [14} by 

Rosser and Turquete. If Ma.,b i s a f ini te-val ued matrix, then £a., b can al so 
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be defined as a fu c.Mi,.i.vi!. sys tern, to wit, £ ct b can be interpreted as the , 
set of all fonnu las a such that ◊ bo. is valid in M . 

It is easy to verify that in those systems in which all sentences having 
"logical values" at least equal to b, 0 < b,;:; 1, are considered as true, that 
is, as having di s tinguished values, the implication of -1:.ukasiewicz ( ➔) 
does not have some of the fundamental properties commonly associated with 
the notion of implication; for instance, the rule of modus ponens is not 
valid. This rule can be applied in connection with ➔, only if the sen­
tences considered true have the value 1. Intuitively, this means that as­
sertion has an absolute character: we accept as true only sentences about 
which we are absolutely confident that they are true. Obviously, such con­
di t ion is almost never satisfied in empirical systems. In particular, con­
cerning the logic .£ct b, where a. < b and Ma. b is fin i te-valued, it oc-• , 
curs that there are formulas a and f3 such that a and a➔S are valid, but 
S is not. To obtain the fonnulas a and 13, we can make use of the criterion 
of the definability of functions in matri ces of-1:.ukasiewicz given by 
McNaughton in [11] or the cri terion formulated by Prucnal in [13). 

Since the rule of modus ponens plays an important role in deductive sys­
tems, the question arises, whether we can define in £a. b a binary opera-, 
tion which coul d be accepted as an implication. We want, especially, that 
the rule of detachement (modus ponens ), relative to such operation, when 
applied to fonnulas of £ct b, would always give fonnulas belonging t o , 
£a b . For thi s purpose, we proceed precisely as Jaskowski in [8] , where , 
he defines the fueuAoi ve. ,i,mpliea,.Uon; we extend the language of ia,b by 
the addition of the following operation, which it i s natural to call 
a.-di scussi ve implication (or simpl y discussive implication): 

DEFINITION 1. a a B -def ◊ a.a ➔ S. 

Th i s definition is anal ogous to Jaskowski ' s definition of discussive 
implication in 0 2 , and ha s a similar meaning. If ◊a. is interpreted as 
possibility, then a coincides with discussive implication. 

The logic obtained from ia b by extending its language with the addi-, 
tion of a, according the above defi nition, will still be denoted by the 
symbol £a. b • , 
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THEOREM 1, I o a .,;;; b, then :the 60.U.ow.i.ng 1tu£v.. 06 J..n6M e.nc.e aJr.e pe1tmJ..-6 -

-6J..ble J..n £a, b : 

(1) 16 o: and a a S, .then 8, 

( 2 ) r 6 a, .then B a a.. 

( 3) 16 a;:tS and B;ty,then a.tY· 

( 4 ) I 6 a and B, the.n a/\ B . 

( s ) I 6 a I\ B, .then a.; i 6 a I\ B, .then B. 

( 6 ) 1 ti a ct S and et a y, then a a S /\ y. 

( 7 ) I 6 a , .then a VS; J..6 S, .then o: VB 

( 8 ) I ti o: °it y and S "it -y, .then o: V B ct -y. 

PROOF of (1): Let us suppose that a , a a SE £a b, i.e. , for every valu-, 
ation {}, we have {} (a) ;;, b and {} (a ct Bl;;, b. Then, we have also {J(S);;, b, 

bee au se t'> ( a ct B) = {} ( ◊ a a ➔ B) = t'> (◊a a ) => {} ( B) = Ca iJ ( a ) ,,.. {} ( 8 ) = 1 ,,.. 

{J(B) = {}(Bl. 
The proofs of (2)-(8) are similar. ■ 

It is rather interesting that, if a < b, then the formulas ·corresponding 
to the rules of inference of Theorem l do not belong to £a, b (we assume, 
for example, that (p /\ (pctq) ) ctci corresponds to rule (1) and that P el 

(q a. p) corresponds to rule (2)). Usually those formulas are considered as 
characteristic of a good implication. Thus, the implication -; apparently 
cannot find fundamental applications in deductive systems, because the set 
of formulas of £ab in which cI occurs is "poor". However, it is known , 
that in the application of logical calculi to propositional systems, the 
rules of the calculi are more important t han their theses. Then, Theorem 1 

says that the implication ct is actually not so weak, and that £a,b is apt 
to be used as underlying logic of deductive systems (in 1tJhich the basic 

implication is -;t and not -+), 

DEFINITION 2, FOIL any a., BE IF, 
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THEOREM 2. "" ,,u., an equ.i.vai.enc.e. 1Le1.a.Uan -i.6 and only -i.6 a = b. MaJt.e.avu, 
UY1.de/l. tw hypo:thv..,,u.,, .i.6 a 1 ""81 and a 2 ""82, :then a 1 V a 2 ""81 V 82 , 

ct1 /\ a 2 "" 81 /\ 82 a.nd a 1 "it a 2 "" 81 -; 82 , but .i.:t ,u., 1w:t .tltue. :tha.:t a 1 ➔ a 2 
""81 ➔ 82 a.nd ~a1 ""~a2 • 

PROOF : If a. < b, then "" is not reflexive, because p-;; p does not belong 
to £a. b• and if a.> b, then "" i s not transitive , owing to the fact t ha t , 
it i s not true that if a-; 8 E £a.,b and 8 ct y E .ta.,b • then a aY E .ta., b· 
(I t follows from Pr ucnal's criteri on that in the case of a finite -val ued 
generalized lukasiewicz logic we can find formulas a , 8 and y su c h that 
a "" 8 and 8 "" y, but not a "" y . ) Supposing a."' b, a "" B i s true if and 
only if for any valuation a one has a(a) < a and a( B) < a, or D{a) ;:;,, a 
and D(B) ;;., a.. Therefore, it follows that in th is case the relation "" has 
the properties requ i red by the theorem.• 

We observe that a -;t BE ia.,b • with a. ;.,, b , if and only if , for any val­
uati on a, we have a(a) < a. or a(s );;. b. Consequently: 

THEOREM 3 I 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(vi i i ) 

16 a. ;;, b, :then the. 6a.U.Ow.i.n.g 6aJzmu£.a6 be.£.ang ta £a., b; 

p "it (q-; p) , 

(p ➔ q ) ➔ ( (q ➔ It.) ➔ (p ➔ )[.)) a. a. a a. a. , 

p ➔ (q ➔ p/\q) . a. a 

!i , O <a. ..;; l, will designate the set of all formulas of S.a a in which, a , 
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besides propositional variables and parentheses, only the symbols 7, V ,/\, 
+ and;. occur. Let 5.a, O<a .a:; 1, be the subset of S.a containing all for-

mulas in which negation does not appear. s.: will be called the positive 

part of £a. 

It is a consequence of Theorem l that the rule of detachernent for -+ a 
is permissible in£~. Evidently , s.; is a set of formulas closed under sub-

stitution (limited to the set of formulas of the language £; }. According 

to a result of Sobocinski (16], the formulas listed in Theorem 3 together 

with substitution and detachernent constitute an ax iomatization for the 

classical positive propositiona l calculus, which, by Theorems 1 and 3, is 

contained in £~. But if o. Es.;, then o. is a thesis of the classical prop­

ositional calculus and, eo ipso, of the classical positive propositional 

calculus, since for O and 1 the operations of Ma,b, corresponding to the 

logical connectives V ,/\ and ct, have the same values as the appropriate 

operations of the two-valued classical matrix. Hence, we have proved the 

following: 

THEOREM 4, £;, 0 < a ~ l, ;.,~ the. da1.>liic.al po,1,itiv e. p11.o po,1,d:iona.£. 

c.a.£.c.u.lw., . 

The algebraic version of the classical positive propos itional calculus 

is constituted by the notion of classical implicative lattice (as well as 
+ 

by the concept of a Boo 1 ean ring; see I 4] and [ 15 I ) . Denoting by ta, 0 < a 
+ .a:; 1, the a.tge.b11.a 06 6011.mu.tM S.a , we deduce from Theorems 2 and 4 that: 

COROLLARY l , The. quot.le.Ht at9e.b11.a .t ~I""', 0 < a ~ l, .u., a cta.~1.>-<.ea£ -<.m­

puc.a.t.lve. ta.Wee. 

It is not difficult to prove the following proposition: 

THEOREM 5, Su.pp0.6 e. .:tha.t a < 1/2; then, .the. 6oUouu.ng 601Uriu.la.1.> a11. e. no.t 

t he,1.,u 06 .\:a (a 7 B =def (o. t B) /\ (B c[ a.)): 

(pct q) ct ((pct ~q ) ct ~p), (pct q ) ct (~q ct ~p), 
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(p c{ q ) 7 ~ p V q , 
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(pV (qi\ ~q))7 p, 

(p ➔ q) - ~ (p I\ ~ q) a. a. • 

Theorem 4 shows that £a., 0 ~ a.< 1, is a rather rich calculus, since 

its positive part coincides with the classical positive propositional cal­

culus. However, £a_, 0 <a.< 1, is not rich enough so as to make it impos­

sible to found on it inconsistent nontrivial systems; on the contrary, by 

Theorem 5, £a, 0 <a.< 1/2, can be used as underlying logic for those sys­

tems. Hence, we have: 

COROLLARY 2, Evuy £a., 0 < a< 1/2, c.0111.>-ti.tu.-tu a. 1.>o f. u..t.i_on -to 

Ja.JkawJ.>k-l'J.> p~ob.e.~m. 

We shall denote by M(
2k6) the 2k-valued generalized matrices of a., 

t.ukasiewicz; it is clear that 1/2 does not belong to the set of elements 

of M(
2

l2) £ (
2k) symbolizes the set of valid formulas in M(2l2) a.,b. a.,b a.,b 

l ( ) £ ( 212) , d .. o , I LEMMA , Ci) p; ~pc{ q E a.,b ,{,6 a.n a,.._y ,{,6 a.;;. 1 2; 

(ii) ( ~p-+ p) -+ p E £ (Zkbc) i6 a.rid onl.y i6 b <a.,;;; 1/2 
a. a a., 

an a + b < 1 a.nd a > 1/2. 

PROOF of ( i): In this case a ;;. 1/2. Hence, for any valuation .9, if iJ(p) < 
a, then (pa (~pa q)) = 1, and if i9(p) ;a, a, then also i9 (pd (~pa q)) 

= 1, because t'>(~p) = 1-lt(p) < 1-a. <a.Conversely, supposing that 

a < 1/2, it follows that for a valuation i9 which satisfies the conditions 

a ~ iJ(p) < 1/2 and i:>(q) = 0, we have: ll(~p)=l- ll(p) > 1/ 2 > a and ll(p a 
(2k) 

(~ p-+ q)) = O; hence, p-+ (~p-+ q) does not belong to £ b . a. a a a, 

PROOF of (ii): Admit that b.,:;; a..; 1/2; then, we have for any valuation iJ: 

i:>((~p c{ p);; p) = 1 for J(p) < a., and ll((~p -zt p) -;t p);;. a ;a, b for tJ(p) 

;;.a.. If a. > 1/2 and a+ b ..; 1, then we have, for any valuation 11: 

t9((~p-;p)tp);;s, b fori:>(p)..;;1-a, andit((~pctP)7tp) ;;. 1-a.;;. a. ;;. b 

for t'}(p)> 1-a..We can directly verify that ( ~p-; p);; p ¢ £a,b for values 
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of a. and b different from those especified in the lemma . ■ 

The proof of the following propositions offers no difficulty: 

LEMMA 2 , The. 601U11ula.6 

(i) pVq 7 (~p -;;_-q), 

(ii) pl\q7~(p-;;_-~q), 

be.long to S. (2k) 
1/2, 1/2 
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It is known that (p 7l q) ct ((q cttr.) a (p ct1t)), pa (~pa q) and 

(~pit p) it p, together with the rules of substitution and modus 

ponens, constitute an axiomatization for the classical propositional cal­

culus with implication and negation as the sole primitive connectives. In 

order for the above fonnulas to belong to S.a. b and for the rules of sub-, 
stitution and of modus ponens to be pennissible in S.a.,b, we must have: 

a= b = 1/2 and Mab has 21<. elements, as Theorems land 3, and Lemma l 
' show. Therefore, the classical propositional calculus with implication and 

negation as the sole primitive connectives is contained in S. (2
1

12) 
12

. But 
1 2, 1 

from Lemma 2 we deduce that a.U. classical propositional calculus is in-

1 d d • ~ (2k) Ob • l 'f S. (2k) • h • f h C U e 1n "- VlOUS y, l Cl E / / , Cl. 15 a t es1s O t e 
1/2, 1/2 • 1 2, 1 2 k 

classical propositional calculus, since the operations of M ~~/ 
112 

which 

corresponds to V, /\ , -;;_- and ~ have the same va 1 ues for O and 1 as the 
(2k) 

analogous operations of two-valued classical matrix. Consequently, £1/ / 
2,1 2 

is contained in the classical propositional calculus. Thus, we proved the 

following: 

THEOREM 6, 
( 2k) 

£ 
1 

/ 
2 

, 
1 

/ 2 ,u., ,the, cia-6J.i-i.c.a.£. p1top0o-Ulona.£. c.a.£.c.Ll£U/2. 

As we have already noted, the connective ◊a, 0 <a..,; 1 , is definable 

in any finite-valued logic S (n) of -tukasiewicz. Then, if we have an axiom­

atization for .1:C't), we have also an axiomatization for this logic enriched 

by the definition of ◊a: both are essentially the same. Rosser and 



136 J, KOTAS and N, C, A. da COSTA 

Turquette, in [14], were the first to give an axiomatization for the fi -
nite-valued generalized logics oftukasiewicz. Now we present another, for­
mally simpler, axiomatization of such logics. 

A proof that the finite-valued logic of -tukasiewicz, £, which i s the 

set of all formulas valid in the matrix <[ □ ,l) , {l}, ⇒, 7), was given by 
Wajsberg (see [10] ). 

The axioms of Wajsberg are: 

A1, p ➔ (q ➔ p), 

A2, (p ➔ q) ➔ ((q ➔ It) ➔ (p ➔ It)), 

A3. ( (p ➔ q) ➔ q) ➔ ((q ➔ p ) ➔ p)' 

A4. ( ~ p ➔ ~q ) ➔ ( q ➔ p) ' 

and the primitive rules are substitution and modus ponens. 

Tokarz proved in [17] that for every natural number n, n > 1 , there 
exists a formula an, which is called axiom of Tokarz, such that A1-A4 , a.

11 

and substitution and modus ponens form an axiomatics for s.<n) 

Let A be the following set of formulas: 

(i) ◊i(p ➔ (q ➔ p)), 

(ii) ◊1((p ➔ q) ➔ ((q ➔ 1t) ➔ (p ➔ 1t)), 

(iii) ◊i( ( (p ➔ q) ➔ q) ➔ ((q ➔ p) ➔ p))), 

(iv) ◊1((~p ➔ ~q) ➔ (q ➔ p)), 

(v) ◊1a. 11 , where a
11 

is the axiom of Tokarz, 

and let R be the set of rules (1)- (4) bellow: 

(1) Substitution, 

(2) If ◊1 a. and ◊ 1 (a. ➔ 13), then ◊1 B, 

(3) If 01 a.' then a, 

{4) If ◊ a.' .a. then a. ( O < a. ,.;; 1) . 

THEOREM 7, £ (nb) c.a.n be a.iuoma,t,Lzed by .ta.lung A M .the r..et o0 a.iuamr.. a.nd a., 

R M .the -& et o 6 JLui.eo . 
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PROOF: 

of R is 

holds. 

formulas 

Obviously, the ca lculus based on the axioms of A and on the rules 

(it) 
contained in £ b. We have to prove that the converse inclusion 

a, 
(n) . 

Assume that et ES. 6
; hence,there exists a finite sequence of 

a., 

which is a proof of ◊a.et in the ax iomati cs of Tokarz, referred to above. 

It is easy to see that the sequence 

is a proof of et in the cal culus whose axioms belong to A and whose rules 

of inference are members of R. Therefore, the theorem is proved. 

OPEN QUESTIONS, 

Concluding our paper, we present some open problems: 

PROBLEM 1 . Is £a b' when it is based on the infinite-valued -1:.ukasiewicz 
, 

logi c, axiomatizable? 

PROBLEM 2. Are there ax iomatizations of S.a,b in whi ch the sole primi -

tive connectives are a, .... , I\ , V and ~? ( In this problem, S.a., b may be 

a finite or infinite-valued log ic.) 

PROBLEM 3. What results of this paper can be extended to generalized 

logics of -tukasiewicz with qua nt ifi ca tion? ( Evidently, .1> ome of our 

results can easily be adapted to the level of the predicate calculus. ) 
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