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1. Introduction

Let & be an affine Kac—Moody algebra with a 1-dimensional center Z = Cc¢ and a
fixed Cartan subalgebra.

The main problem in the representation theory of affine Kac—Moody algebras is a
classification of all irreducible weight representations. Such classification is known in
various subcategories of weight modules, e.g. in the category O, in its generalizations
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[6,3,12], in the category of modules with finite dimensional weight multiplicities and
nonzero central charge [13]. An important tool in the construction of representations of
affine Lie algebras is a parabolic induction. The conjecture ([7], Conjecture 8.1) indicates
that induced modules are construction devices for irreducible weight modules. This con-
jecture is known to be true for A(ll) ([9], Proposition 6.3), for Ag), [2] and for all affine
Lie algebras in the case of modules with finite-dimensional weight spaces [13.4].

Simplest case of parabolic induction corresponds to the induction from Borel subal-
gebras. Standard examples of Borel subalgebras arise from taking partitions of the root
system. For affine algebras there is always a finite number of conjugacy classes by the
Weyl group of such partitions and corresponding Borel subalgebras. Verma type modules
induced from these Borel subalgebras were first studied and classified by Jakobsen and
Kac [14,15], and by Futorny [6,8], and were further developed in [3,12,7,9] and references
therein. We will consider a more general definition of a Borel subalgebra (see below).

Nontrivial (different from Borel) parabolic subalgebras are divided into two groups,
those with finite dimensional Levi subalgebras and those with infinite dimensional one.
In this paper we are interested in the second case in this paper. The simplest non trivial
example is given by a parabolic subalgebra whose Levi factor is the Heisenberg subalge-
bra together with Cartan subalgebra. Corresponding induced modules were studied in
recent papers [11] and [1]. It was shown that any irreducible Z-graded module over the
Heisenberg subalgebra with a nonzero central charge induces the irreducible ®-module.
In [10] a similar reduction theorem was shown for pseudo parabolic subalgebras. These
parabolic subalgebras give a particular class of non-solvable parabolic subalgebra of &
with infinite dimensional Levi factor. The main results of [10] states that in this case
the parabolic induction preserves irreducibility if the central charge is nonzero. The
technique used in the proofs in [10] and [11] are different and somewhat complimentary.

The main purpose of the present paper is to show that in the affine setting both these
cases of parabolic induction (and hence all known cases) can be extended to a more
general result for modules with nonzero central charge.

For any Lie algebra a we denote by U(a) the universal enveloping algebra of a.

Denote by G the Heisenberg subalgebra of & generated by all imaginary root sub-
spaces of &. Let P C & be a parabolic subalgebra of & such that P = [ & n is a Levi
decomposition and [ is infinite dimensional Levi factor. Denote by [Y the Lie subalgebra
of [ generated by all its real root subspaces and $). Let G(I) be a subalgebra of [© spanned
by its imaginary root subspaces. Then [ = [° + G| where G| C G is the orthogonal com-
plement of G(I) in G with respect to the Killing form, that is G = G(I) + Gy, [Gy,[°] = 0
and °N G| = Ce.

For a Lie algebra a containing the Cartan subalgebra $) we say that a module V is a
weight module if V' = @4V, where

V= {v € Vlhv = p(h)v,Vh € H}.
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We denote by W (respectively, W) the category of weight B-modules (respectively,
l-modules) with respect to the common Cartan subalgebra $) of both & and [. We say
that module V' from either category has a nonzero central charge if the central element
of & acts on V as a nonzero scalar. If N € W, then denote by indy (P, ®) the induced
&-module U(8) ®ypy N, where nN = 0. This defines a functor ind(P,®) from the
category W, to the category We. Denote by W[ the full subcategory of Wy consisting
of those modules on which central element ¢ acts injectively and let i?lvd(P, ®) be the
restriction of ind(P, &) onto Wi.

Since [ is a sum of two commuting Lie subalgebras [© and G| then a natural way to
construct irreducible modules in W[ is to take a tensor product of an irreducible weight
module L over [° with a Z-graded irreducible module T over G| with the same scalar
action of ¢. We will call such modules tensor.

For any positive integer k, denote &5 = (Gy)gs @ Cc @ (Gy)_ks (see notations in the
next section). We say that a &-module S is kd-surjective (respectively —kd-surjective)
if for any two elements s1, so € S there exist s € S and uy,us € U((Gy)gs) (respectively,
uy,ug € U((Gy)—gs) such that s; = u;s, i = 1,2. A Gr-module T is admissible if for any
positive integer k, any its cyclic &-submodule 7" C T is kd-surjective or —kd-surjective.

A tensor module L ® T is called admissible if T is admissible GG\-module. All known to
us examples of irreducible [-modules are admissible tensor modules. On the other hand
we do not have sufficient evidence to expect that admissible tensor modules exhaust all
irreducible modules in VN\/[ or even tensor modules.

Our main result is the following theorem:

Theorem 1. Let P C & be a parabolic subalgebra of & such that P = @& n is a Levi
decomposition and | is infinite dimensional Levi factor. Then ind N (P, ®) is an irreducible
B-module for any irreducible admissible tensor module N from Wi.

We see that this result is quite general allowing one to induce from an arbitrary
irreducible admissible tensor [-module with nonzero central charge and to construct
many new irreducible modules over &. This generalizes the results from [10,11,1]. In
fact, it is possible to go beyond the category of weight modules but some grading is
required in order to apply the same technique. Note that the proof of Theorem 1 in [11]
is only valid for admissible G-modules, it is a particular case of the theorem above.

All results in the paper hold for both untwisted and twisted affine Lie algebras.

2. Preliminaries

We address to [16] for the basics of the Kac—-Moody theory. The affine Lie algebra &
has the root decomposition

E=9H (®a€A®a)7
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where 6, = {z € &|[h,z] = a(h)z for every h € H} and A is the root system of &.
Let m be a fixed basis of the root system A. Then the root system A of has a natural
partition into positive and negative roots with respect to m, Ay and A_ respectively.
Let § € Ay (m) be the indivisible imaginary root. Then the set of all imaginary roots
is A" = {kd|k € Z\ {0}}. Let G = @pez {0}Brs © Ce, a Heisenberg subalgebra of &.
Then G has a triangular decomposition G = G_ @ Cc @ G4, where G4 = P0G 1.

Denote by g the underlined simple finite dimensional Lie algebra that has {a,...,
aN} C 7 as set of simple roots and A= A+ UA_ bea decomposition of the root system
A of g into positive and negatlve to this set of simple roots. When there are roots of two
lengths in g, we set A; and A, to be the long and short roots in A respectively. The real
positive roots A of A can be described as follows:

{a+nd|aecA,, necl},
if » =1 (the untwisted case),
{a+nd|aec(A)y,neZyU{a+nrd | ac(A)y,nel}
AF = if » = 2,3 and not A;i) type, (1)
{a+nd|ae(A)y,neZyU{a+2nd|ac(A),nel}
U{L(a+(2n—1)d) | a € (A)s,n €2}
if A;i) type.

3. Parabolic induction

In this section we consider our main tool of constructing new modules — parabolic
induction. We start with discussion of the Borel subalgebras.

3.1. Borel subalgebras

A subalgebra B C & is called a Borel subalgebra if it contains $) (and hence has a
root decomposition) and there exists an automorphism o of & satisfying

e 0(H) =9;
e B+ 0(B) = &;
e« BNo(B)=9

Note that this definition is more general than the usual definition of Borel subalgebras
associated with closed partitions of root systems [6,5].

Consider a subset P C A such that PN (—P) =) and PU(—P) = A. Denote by Bp
a Lie subalgebra of & generated by $) and the root spaces &, with a € P. We will say
that P is a quase partition of A if for any root a of Bp we have a € P. Note that in a
contrast with a usual concept of a partition of the root systems [6] we do not require P
to be a closed subset with respect to the sum of roots, that is whenever a and 3 are in

Please cite this article in press as: V. Futorny, I. Kashuba, Structure of parabolically induced modules
for affine Kac—Moody algebras, J. Algebra (2017), http://dx.doi.org/10.1016/j.jalgebra.2017.03.007




YJABR:16145

V. Futorny, I. Kashuba / Journal of Algebra e e e (e e e o) o0 0—0oe 5

P and a+ g is a root, then a+ 3 € P. A subset of all real roots of any quase partition is
closed with respect to the sum of the roots while it is not necessary for imaginary roots
(cf. [1]). Clearly, B p is a Borel subalgebra for any quase partition P. These subalgebras
are a main source of examples of Borel subalgebras, though they do not exhaust all of
them as shown in the following remark.

Remark 1. In each subspace Gis; we can choose a commuting basis zg1,. .., Zks, such
that [zx;,x_k;] = 0;; for any k and all ¢, j. We can define a triangular decomposition
of G: G = G1 ® C & G_1, where for each nonzero k Ggs C G; implies G_xs C G_;,
i = 1,—1. On the other hand we can obtain a more general triangular decomposition
by splitting for every k, xi; and z_j; between G1 and G_; for each j independently,
j = 1,...,s,. Each such triangular decomposition can be extended to the following
decomposition of &. Denote by By a Lie subalgebra of & generated by all root spaces
g, B €{a+kila e ATk € Z} and G4. Then

623_@5’3@B+

and B = ) @ B is a Borel subalgebra of &. In particular, if z; are in the same G; for

all positive k and all j = 1,..., s then B corresponds to a partition of the root system.
If for some positive k # m, x; and x.,, belong to different G; but for any &, xj; are in
the same G; for all j = 1,..., sk, then B corresponds to a quase partition of the root
system (cf. B7 , below).

Classification of partitions of the root system and corresponding Borel subalgebras
was obtained in [14] and [6]. Classification of quase partitions follows from [1]. Finally,
classification of all Borel subalgebras defined above can easily be deduced from Remark 1.

There are two extreme Borel subalgebras, the standard Borel subalgebra which cor-
responds to the partition P = AT and the natural Borel subalgebra %B,,; = Bp which
corresponds to the partition

Poat = {a + kdla € ATk € Z} U {nd|n > 0}.
These Borel subalgebras are not conjugated by the Weyl group. For other conjugacy
classes of Borel subalgebras by the Weyl group see [6]. We will be interested mainly in

Bt in this paper. Starting from this Borel subalgebra one can construct a family of
twisted subalgebras as in [1]. For ¢ : N — {£}, set

P ={a+kflac AT keZ}Uu{nd | neN,pn)=+}U{-md | meN, po(m)=—}

and BY . = Bp,. Further examples of Borel subalgebras can be obtained by combining
p-twisting with the procedure described in Remark 1.
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3.2. Parabolic subalgebras

A subalgebra P C & is called a parabolic subalgebra if it contains a Borel subalgebra.
There are essentially two types of parabolic subalgebras: those containing the standard
Borel and those containing one of twisted Borel subalgebras B7,,. We call them type I
and type II parabolic subalgebras respectively (cf. [7] for details). We address in the
paper the parabolic subalgebras of type II. Even though all the results of this paper are
valid for all parabolic subalgebras of type II we will assume for simplicity that a fixed
parabolic subalgebra P of type II contains B,,;. We will describe all such P’s which
contain properly B,,; (cf. also Proposition 3.3, [10]).

Let N be the rank of the underlined simple finite dimensional Lie algebra g and
o = {a1,...,an} C 7 the set of simple roots of g. Set I = {1,..., N} and choose any
proper subset J C I. Let 7/ = {a; € 7 | j € J}. Denote by A’ the finite root system
generated by the roots in w7/ (AJ = if J =0). Now consider the affinization

Al ={a+nseA|lacA) neZyu{ns|neZ\{0}},

of A7 (in A).

Define P = Buas +_,cns Ba- This is the parabolic subalgebra of type II associated
with J. Again it admits modifications as in Remark 1 but we will not consider it though
the main statement remains valid also in this case. If J = @) then Py = Bpay + G. The
parabolic subalgebra P; has the Levi decomposition P; = [; & n; where [; is a Lie
subalgebra generated by &, with o € A’ and n; = Zaepmt\AJ. Note that [p = G+ 9.

Denote npery = Zae—PD
ny®Py;=n5®l; ®ny. Note that this may not be a triangular decomposition in the

.\as- Then we have the following decomposition of &: & =

classical sense of [17]. Nevertheless this decomposition allows us to construct families of
induced modules.

We say that a subset a subset S C J is connected if the Coxeter-Dynkin diagram
associated to the simple roots «;, ¢ € S is connected. Then J = Ui Sy where Sy’s
are connected components of the Coxeter-Dynkin diagram associated to J. Each subset
S; gives rise to an affine root subsystem of A’ which generates affine Lie subalgebra
[;(St) C I;. Also denote by G; C G the orthogonal completion (with respect to the
Killing form) of the Heisenberg subalgebra G(I;) of [;. Then G = G;+G(l), [G1,l;] =0
and we have

= 1;(5)+Gs+89.

teT

3.8. Induced modules

We will assume that P is the parabolic subalgebra of type II associated with fixed
subset J, Py = [; ®ny. Let N be a weight (with respect to $) module over P; with a
trivial action of n;. Define the induced &-module
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M;(N) =ind(P,,; N).

This is the generalized Imaginary Verma module associated with J and N.

If N is irreducible then M;(N) has a unique irreducible quotient L (). Basis prop-
erties of modules M ;(N) are collected in the following proposition. Details of the proofs
can be found in [7].

Proposition 1. Let J C I and N irreducible weight [;-module. Then Mj;(N) has the
following properties.

(i) The module Mj(N) is a free U(nj)-module.

(ii) Let V' be a nonzero &-module generated by a weight vector v such that nyjv = 0. Set
N =U(l;)v. Then there exists a unique surjective homomorphism ¢ : Mj(N) — V
such that ¥(1 @ v) = v. If V is drreducible then N is irreducible [;-module and
V ~ L;(N).

(i) Mj(N) is a weight module. Moreover, 0 < dim M;(N), < oo if and only if j1 is a
weight of N and 0 < dim N, < oo.

(iv) If N is irreducible l-module then the subspace of nj-invariants in Lj(N) is the class
of 1® N.

(v) If J =0 and N is a highest weight G-module generated by a weight vector v such
that hv = A(h)v for any h € $ and some X € H* and ngv = 0 then My(N) is an
Imaginary Verma type module M()\) generated by an eigenvector for the natural
Borel subalgebra B¢ .

Remark 2.

(i) Generalized loop modules considered in [11] and, in particular, p-Imaginary Verma
modules [1] are partial cases of modules My(N) when N is irreducible G-module;

(ii) Pseudo-parabolic induction considered in [10] is a particular case of modules M ;(N)
where G ;N = 0.

Set M%(N):=1® N. This is the “top” part of M%(N) which generates M ;(N).

3.3.1. Tensor lj-modules

Denote I = >t € T1;(S;) + 9. Hence [; = 15 + Gy and [19,Gy] = 0. If V is an
irreducible weight [§-module and W is an irreducible Z-graded G ;-module with the
same central charge then V ® W is naturally an [j;-module, a tensor module. If the
central charge is a € C then V @ W is a module over the tensor product U(19)/(c —a) ®
U(G)/(c - a).

In the extreme case when J = () we have [9 = $H and Gy = G. Hence V is a
1-dimensional space and W is a Z-graded G-module. Parabolic induction functor from
G to & was considered in [11].
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Suppose now that J # (). Let N be an irreducible weight [;-module with a nonzero
central charge a. Assume that for each positive integer k either (Gj)gs or (Gy)—gs
acts trivially on N. Such [;-modules were considered in [10] when inducing from pseudo
parabolic subalgebras. We will show that any such irreducible module is a tensor module.
Without loss of generality we assume that (G;)ksN = 0 for all positive integer k.

Proposition 2. N is a tensor [j-module, that is N ~V QW where V is irreducible weight
(9 -module and W is irreducible Z-graded G j-module.

Proof. Choose nonzero element v € N. Denote V = U(I9)v and W = U(G )v. It
is standard that W is irreducible G j-module since the central charge is nonzero and
Gyv = 0. Suppose V is not irreducible and V' is a nonzero proper [§-submodule. Take
any nonzero v' € V’. Then v/ = zv for some z € U(l%). Since N is irreducible there
exists y € U(G ;) such that yzv = v. Moreover, we can assume that y € U(G ). But the
G j-module U(Gy)xv is irreducible. Hence, there exists y' € U(GT) such that y'yzv =
y'v = zv. But y’v = 0, thus v = zv = 0 which is a contradiction. We conclude that V'
is [9-module. Then V @ W is irreducible [;-module. Consider a map f: V@ W — N,
sending zv ® yv to zyv which is clearly a homomorphism since [9 and G commute. We
immediately see that f is surjective since N is irreducible. If zyv = 0 then choose 3’ as
above. We have 0 = y/yzv = zv and f is injective. Therefore, N~V @ W. O

These are all known cases when parabolic induction preserves irreducibility and in all
cases we induce from certain tensor modules. Combining techniques from [10] and [11]
we will extend the proof to all tensor modules.

4. Irreducibility of Generalized Imaginary Verma modules

In this section we prove our main result by finding conditions for module M ;(N) to
be irreducible.

Let Py =1; ®ny and N € W([). Denote by T;(N) the subspace of nj-invariants in
Mj(N), that is v € T;(N) if and only if nyv = 0.

Theorem 2. If U is an irreducible admissible tensor module in W, then T;(U) = MY(U).

The proof of Theorem 2 combines the proofs of Theorem 2 from [11] and Theorem 3.1
from [10] where particular cases of parabolic induction were considered.

For any subset w C I, let Q4 denote a semigroup of $* generated by +oy, ¢ € w. Set
Q7 = ®jesZa; ®Z5 and Q+ = QL. Then Q] = Q7 N Q.

Leta € @’ anda = — > jew ki, where each k; is in Z>o. We set ht;(a) = >0, kj,
the J-height of «.
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Let v € M;(N) be a nonzero weight element. Then

U= E UiVq,

i€ER

for some finite set R, where u; € U(nj) are linearly independent homogeneous elements,
v; € N, i € R. Since v is a weight vector then each u; is a homogeneous element of
U(ny). Its homogeneous degree is an element of Q‘i + Q7 + Z5. Suppose that w; has
homogeneous degree

Y = — Z kijaj + Z lijOéj + mié,

jeJ JjeJ

where k;; € Z>q not all zeros, [;; € Z and m; € Z. Since v is a weight vector then all ¢;
have the same J-height. We will call it the J-height of v and denote ht(v).

Lemma 1. Suppose U € W[ and v € M;(U) a nonzero weight element such that
ht;(v) > 1. Then there exists u € U(ny) such that wv # 0 and hty(uv) = hty(v) — 1.

Proof. Let v = ), puv;, where u; € U(njy) are linearly independent homogeneous
elements and v; € U are nonzero elements, i € R. We assume that for each i, u; has
homogeneous degree ¢; and all p; have the same J-height. Then we can apply exactly
the same argument as in the proof of the induction step in Lemma 5.3 in [1]. We refer
to [1] for details. O

It follows immediately from Lemma 1 that 7;(NN) can not contain nonzero elements
of J-height ht;(v) > 1. Indeed, any such element would generated a proper submodule
whose elements would have J-heights > ht;(v) which contradicts Lemma 1. Note that
the proof of Lemma 1 does not work in the case when ht;(v) = 1. This case requires a
more delicate treatment. We consider first the case when J = (). This case was treated
in [11] where the key point was Lemma 1. But the proof of this lemma is somewhat
incomplete so we address the proof here in more details.

Set =1 =G+ 5.

Lemma 2. Let W € W[ be an irreducible and admissible, v € W a nonzero element and
U, ..., us € U(G) nonzero homogeneous elements of nonzero degrees ks, ... ks respec-
tively, that is u; € U(G)k,s, such that wvo #0,1=2,...,s, k; # k; if i # j. Then there
exists N € Z for which

S
ZN = TNV + E TN—k; Ui # 0

=2

for any choice of nonzero xy € Grs such that [xg,x_x] # 0.
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Proof. Since W is admissible we can assume without loss of generality that k; + k; # 0
for all i # j. This implies [u;, u;] = 0 and [zn_p,,2_n—_k,] = 0 for all 4, j. Fix N € Z
and suppose that zy = z_y = 0. We will assume N sufficiently large. We have xyv =
=3 saN—guvand onv=—) ;7 ,x_N_ku;v. Then

S S
[en, z_N]v = (—2N Z T_N_kU TN Z TNk, UiV,
1=2 =2

since [y, U] = [x-N,u] = [*N—k;, T-N] = [N, T_N_k;] = 0.
Fix j = 2,...,s. Then ay_p,uv = —ryv — Z%#j TN_puiv and TN g ujv =
—ZT_NU — Z2<i¢j T_N_k,u;v. We have

(TN Ujy TNk Uj|V = =T NTN g, UjV — TN, E TNk, U UV +
2<i#j

+INT N U+ TN g, U ( E TNk Ug V.

2<i)
Since kj # 0, [xN—k;uj, 2N —p,;uj] = 0forall j = 2,...,s. We sum up all these equalities
forj=2,...,s:
S S
0= Z(—x_NxN_kj +INT N, UV — ZmN_kj( Z TNy U Ui )V
Jj=2 Jj=2 2<i#j
S
+Zx71\r71€j( Z fok,;ujUi)'U
=2 2<ij
Bl
= (—2_NTN_k; +TNT_N_,;)Ujv = —[TN,T_N]U # O
=2

which is a contradiction. Hence, zy = 0 or z_ = 0 which completes the proof. O

Corollary 1. Suppose J = 0, W € W[ is irreducible and v € M;(W) a nonzero weight
element such that hty(v) = 1. Then there exists d € U(ny) such that dv # 0 and
htj(d’l)) =0.

Proof. Since v € M;(W) a weight element then

V= Z dyrw,,

reR

where d,. € ny are linearly independent, w, € W, r € R. Fix 719 € R and assume
d;, € &,. Choose an integer N and let d € &_, ;s C ny be a nonzero element. Then
[d,d,] # 0 and we have
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dv = ddyywy, +d Y dew, =
rER,r#rg

= [d drJwr, + Y [dd]w,.
reR,r#rg

Since W is irreducible there exist u, € U(G), r € R such that w, = u,w,,. Note that
all u, have different homogeneous degrees as d, were linearly independent. Note that
[d,d,,] € Gns. Applying Lemma 2 for a sufficiently large N we obtain dv # 0 and
ht;(dv) =0. O

Next we consider the case J # 0.

Lemma 3. Let U be a tensor module in W[, U~V QW where V is irreducible weight
(% -module and W is irreducible Z-graded G j-module. Choose nonzero vy,...,vx € V and
nonzero wi,...,wy € W. Fiz an integer N > 0 and nonzero x4+ € Gins, such that
zin €19 and [xy,z_n] # 0. Then for any a;,b; € U(ly), i = 2,...,k and sufficiently
large N we have

k
r_n(v1 ®@wy) + Zaivi ®@w; #0
i=2
or
k
ry(v @wy) + Z biv; @ wy # 0.
i=2
Proof. Assume
k
z=x_n(vi ®@w) +Zaivi ®w; = 0.
i=2

Suppose first that [z, 9] =0, that is z4x € G ;. Then

k

INZ =V QTrNT_Nwy + Zaivi ®ryw; = 0.
i=2
If N is sufficiently large then xyw; have different gradings than wy, i = 2,...,k and thus
ryx_ywi = 0. Similarly, if v; ® xyw; + Zf:z b;v; ® w; = 0 then x_yzyw; = 0. But
this is a contradiction. Consider now a general case. We have x4y = x| \ + 2% y where
(2L x,19] = 0 and 2%, € 5. Moreover, 2} # 0 since 21y ¢ 14 and [z}, 2! \] # 0.
Then

k
1 2
z=v1 @x_ywr + 22501 Qwy + E a;v; ® w; =0
=2
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and
k
1. 1.1 2 1 1 —0
TNZ =01 QTNT_NyW1 + T2 Ny01 @ Tywy + a;v; ® xyw; = 0.
=2

Then we proceed as in the previous case and conclude zhz! yw; = 0. Replacing N by
—N we obtain z* yziw; = 0 implying w; = 0 which is a contradiction. This completes
the proof. O

Corollary 2. Let U ~ V ® W be a tensor module in W[, where V is irreducible weight
(9-module and W is irreducible G j-module. For a nonzero weight element v € M;(U)
with hty(v) =1 there exists u € U(ny) such that uv # 0 and hty(uv) = 0.

Proof. Let v = ) _pd (v, ® w,), where d, € nj are linearly independent, v, € V,
w, € W, r € R. We proceed as in the proof of Corollary 1. Fix rg € R and assume
dy, € &,. Choose an integer N and let t+n € &_,1+ns C 1y be nonzero elements. Then
21N = [ten,dr,] # 0. Moreover, [zy,2_y] # 0 and we have

t:I:NU = t:I:Ndro ('Uro ® wro) + t:I:N Z dr(vr & wr) -
reR,r#rg

= xiN('Uro X wro) + Z [tiNz dr](vr X wr)~
reR,r#rg

Applying Lemma 3 we conclude that at least one of ¢4 yv is not zero. Since htj(t1yv) =0
the corollary is proved. 0O

We can now prove Theorem 2.
4.1. Proof of Theorem 2

Let v € T;(U) be a nonzero weight element and hty(v) = s > 1. Consider a
®-submodule N of M;(U) generated by v, N'= U(®)v. Since nyv = 0 we have that '
is a proper submodule of M;(U) and all its weight elements have ht; greater or equal
than s. But this is a contradiction since by Lemma 1, Corollary 2 and Corollary 1 we
can always find u € (®) such that uv # 0 and hty(uv) = hty(v) — 1. Therefore ht;(v)
must be zero and T;(U) = M%(U).

Applying Theorem 2 we have

Corollary 3. If U is an irreducible admissible tensor module in W[ then the induced
module M;(U) is irreducible.

Corollary 3 immediately implies Theorem 1 which provides a powerful tool to con-
struct new irreducible representations for affine Lie algebras by inducing from irreducible
tensor modules from Wy. We conclude with the following observation.
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Remark 3. It would be interesting to see if Theorem 2 extends to any admissible tensor
module U in W[. This would lead to an equivalence of certain subcategories of -modules
and [;-modules. Another problem is to check if admissible tensor modules exhaust all
irreducible modules in W[.
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