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1. Introduction

Let G be an affine Kac–Moody algebra with a 1-dimensional center Z = Cc and a 
fixed Cartan subalgebra.

The main problem in the representation theory of affine Kac–Moody algebras is a 
classification of all irreducible weight representations. Such classification is known in 
various subcategories of weight modules, e.g. in the category O, in its generalizations 
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[6,3,12], in the category of modules with finite dimensional weight multiplicities and 
nonzero central charge [13]. An important tool in the construction of representations of 
affine Lie algebras is a parabolic induction. The conjecture ([7], Conjecture 8.1) indicates 
that induced modules are construction devices for irreducible weight modules. This con-
jecture is known to be true for A(1)

1 ([9], Proposition 6.3), for A(2)
2 , [2] and for all affine 

Lie algebras in the case of modules with finite-dimensional weight spaces [13,4].
Simplest case of parabolic induction corresponds to the induction from Borel subal-

gebras. Standard examples of Borel subalgebras arise from taking partitions of the root 
system. For affine algebras there is always a finite number of conjugacy classes by the 
Weyl group of such partitions and corresponding Borel subalgebras. Verma type modules 
induced from these Borel subalgebras were first studied and classified by Jakobsen and 
Kac [14,15], and by Futorny [6,8], and were further developed in [3,12,7,9] and references 
therein. We will consider a more general definition of a Borel subalgebra (see below).

Nontrivial (different from Borel) parabolic subalgebras are divided into two groups, 
those with finite dimensional Levi subalgebras and those with infinite dimensional one. 
In this paper we are interested in the second case in this paper. The simplest non trivial 
example is given by a parabolic subalgebra whose Levi factor is the Heisenberg subalge-
bra together with Cartan subalgebra. Corresponding induced modules were studied in 
recent papers [11] and [1]. It was shown that any irreducible Z-graded module over the 
Heisenberg subalgebra with a nonzero central charge induces the irreducible G-module. 
In [10] a similar reduction theorem was shown for pseudo parabolic subalgebras. These 
parabolic subalgebras give a particular class of non-solvable parabolic subalgebra of G
with infinite dimensional Levi factor. The main results of [10] states that in this case 
the parabolic induction preserves irreducibility if the central charge is nonzero. The 
technique used in the proofs in [10] and [11] are different and somewhat complimentary.

The main purpose of the present paper is to show that in the affine setting both these 
cases of parabolic induction (and hence all known cases) can be extended to a more 
general result for modules with nonzero central charge.

For any Lie algebra a we denote by U(a) the universal enveloping algebra of a.
Denote by G the Heisenberg subalgebra of G generated by all imaginary root sub-

spaces of G. Let P ⊂ G be a parabolic subalgebra of G such that P = l ⊕ n is a Levi 
decomposition and l is infinite dimensional Levi factor. Denote by l0 the Lie subalgebra 
of l generated by all its real root subspaces and H. Let G(l) be a subalgebra of l0 spanned 
by its imaginary root subspaces. Then l = l0 + Gl where Gl ⊂ G is the orthogonal com-
plement of G(l) in G with respect to the Killing form, that is G = G(l) +Gl, [Gl, l0] = 0
and l0 ∩Gl = Cc.

For a Lie algebra a containing the Cartan subalgebra H we say that a module V is a 
weight module if V = ⊕μ∈H∗Vμ, where
Vμ = {v ∈ V |hv = μ(h)v,∀h ∈ H}.
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We denote by WG (respectively, Wl) the category of weight G-modules (respectively, 
l-modules) with respect to the common Cartan subalgebra H of both G and l. We say 
that module V from either category has a nonzero central charge if the central element 
of G acts on V as a nonzero scalar. If N ∈ Wl then denote by indN (P, G) the induced 
G-module U(G) ⊗U(P) N , where nN = 0. This defines a functor ind(P, G) from the 

category Wl to the category WG. Denote by W̃l the full subcategory of Wl consisting 
of those modules on which central element c acts injectively and let ĩnd(P, G) be the 
restriction of ind(P, G) onto W̃l.

Since l is a sum of two commuting Lie subalgebras l0 and Gl then a natural way to 
construct irreducible modules in W̃l is to take a tensor product of an irreducible weight 
module L over l0 with a Z-graded irreducible module T over Gl with the same scalar 
action of c. We will call such modules tensor.

For any positive integer k, denote Gk = (Gl)kδ ⊕ Cc ⊕ (Gl)−kδ (see notations in the 
next section). We say that a Gk-module S is kδ-surjective (respectively −kδ-surjective) 
if for any two elements s1, s2 ∈ S there exist s ∈ S and u1, u2 ∈ U((Gl)kδ) (respectively, 
u1, u2 ∈ U((Gl)−kδ) such that si = uis, i = 1, 2. A Gl-module T is admissible if for any 
positive integer k, any its cyclic Gk-submodule T ′ ⊂ T is kδ-surjective or −kδ-surjective.

A tensor module L ⊗T is called admissible if T is admissible Gl-module. All known to 
us examples of irreducible l-modules are admissible tensor modules. On the other hand 
we do not have sufficient evidence to expect that admissible tensor modules exhaust all 
irreducible modules in W̃l or even tensor modules.

Our main result is the following theorem:

Theorem 1. Let P ⊂ G be a parabolic subalgebra of G such that P = l ⊕ n is a Levi 
decomposition and l is infinite dimensional Levi factor. Then ĩndN (P, G) is an irreducible 
G-module for any irreducible admissible tensor module N from W̃l.

We see that this result is quite general allowing one to induce from an arbitrary 
irreducible admissible tensor l-module with nonzero central charge and to construct 
many new irreducible modules over G. This generalizes the results from [10,11,1]. In 
fact, it is possible to go beyond the category of weight modules but some grading is 
required in order to apply the same technique. Note that the proof of Theorem 1 in [11]
is only valid for admissible G-modules, it is a particular case of the theorem above.

All results in the paper hold for both untwisted and twisted affine Lie algebras.

2. Preliminaries

We address to [16] for the basics of the Kac–Moody theory. The affine Lie algebra G
has the root decomposition
G = H⊕ (⊕α∈ΔGα),
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where Gα = {x ∈ G | [h, x] = α(h)x for every h ∈ H} and Δ is the root system of G. 
Let π be a fixed basis of the root system Δ. Then the root system Δ of has a natural 
partition into positive and negative roots with respect to π, Δ+ and Δ− respectively. 
Let δ ∈ Δ+(π) be the indivisible imaginary root. Then the set of all imaginary roots 
is Δim = {kδ|k ∈ Z \ {0}}. Let G = ⊕k∈Z\{0}Gkδ ⊕ Cc, a Heisenberg subalgebra of G. 
Then G has a triangular decomposition G = G− ⊕ Cc ⊕G+, where G± = ⊕k>0G±kδ.

Denote by g the underlined simple finite dimensional Lie algebra that has {α1, . . . ,
αN} ⊂ π as set of simple roots and Δ̇ = Δ̇+∪ Δ̇− be a decomposition of the root system 
Δ̇ of g into positive and negative to this set of simple roots. When there are roots of two 
lengths in g, we set Δ̇l and Δ̇s to be the long and short roots in Δ̇ respectively. The real 
positive roots Δre

+ of Δ can be described as follows:

Δre
+ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{α + nδ | α ∈ Δ̇+, n ∈ Z},
if r = 1 (the untwisted case),

{α + nδ | α ∈ (Δ̇s)+, n ∈ Z} ∪ {α + nrδ | α ∈ (Δ̇l)+, n ∈ Z}
if r = 2, 3 and not A(2)

2� type,
{α + nδ | α ∈ (Δ̇s)+, n ∈ Z} ∪ {α + 2nδ | α ∈ (Δ̇l)+, n ∈ Z}

∪ {1
2 (α + (2n− 1)δ) | α ∈ (Δ̇l)+, n ∈ Z}

if A(2)
2� type.

(1)

3. Parabolic induction

In this section we consider our main tool of constructing new modules – parabolic 
induction. We start with discussion of the Borel subalgebras.

3.1. Borel subalgebras

A subalgebra B ⊂ G is called a Borel subalgebra if it contains H (and hence has a 
root decomposition) and there exists an automorphism σ of G satisfying

• σ(H) = H;
• B + σ(B) = G;
• B ∩ σ(B) = H.

Note that this definition is more general than the usual definition of Borel subalgebras 
associated with closed partitions of root systems [6,5].

Consider a subset P ⊂ Δ such that P ∩ (−P ) = ∅ and P ∪ (−P ) = Δ. Denote by BP

a Lie subalgebra of G generated by H and the root spaces Gα with α ∈ P . We will say 
that P is a quase partition of Δ if for any root α of BP we have α ∈ P . Note that in a 
contrast with a usual concept of a partition of the root systems [6] we do not require P

to be a closed subset with respect to the sum of roots, that is whenever α and β are in 
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P and α+β is a root, then α+β ∈ P . A subset of all real roots of any quase partition is 
closed with respect to the sum of the roots while it is not necessary for imaginary roots 
(cf. [1]). Clearly, BP is a Borel subalgebra for any quase partition P . These subalgebras 
are a main source of examples of Borel subalgebras, though they do not exhaust all of 
them as shown in the following remark.

Remark 1. In each subspace Gkδ we can choose a commuting basis xk1, . . . , xksk such 
that [xki, x−kj ] = δij for any k and all i, j. We can define a triangular decomposition 
of G: G = G1 ⊕ C ⊕ G−1, where for each nonzero k Gkδ ⊂ Gi implies G−kδ ⊂ G−i, 
i = 1, −1. On the other hand we can obtain a more general triangular decomposition 
by splitting for every k, xkj and x−kj between G1 and G−1 for each j independently, 
j = 1, . . . , sk. Each such triangular decomposition can be extended to the following 
decomposition of G. Denote by B± a Lie subalgebra of G generated by all root spaces 
Gβ , β ∈ {α + kδ|α ∈ Δ+, k ∈ Z} and G±. Then

G = B− ⊕ H⊕B+

and B = H ⊕B+ is a Borel subalgebra of G. In particular, if xkj are in the same Gi for 
all positive k and all j = 1, . . . , sk then B corresponds to a partition of the root system. 
If for some positive k 
= m, xkj and xmr belong to different Gi but for any k, xkj are in 
the same Gi for all j = 1, . . . , sk, then B corresponds to a quase partition of the root 
system (cf. Bϕ

nat below).

Classification of partitions of the root system and corresponding Borel subalgebras 
was obtained in [14] and [6]. Classification of quase partitions follows from [1]. Finally, 
classification of all Borel subalgebras defined above can easily be deduced from Remark 1.

There are two extreme Borel subalgebras, the standard Borel subalgebra which cor-
responds to the partition P = Δ+ and the natural Borel subalgebra Bnat = BP which 
corresponds to the partition

Pnat = {α + kδ|α ∈ Δ+, k ∈ Z} ∪ {nδ|n ≥ 0}.

These Borel subalgebras are not conjugated by the Weyl group. For other conjugacy 
classes of Borel subalgebras by the Weyl group see [6]. We will be interested mainly in 
Bnat in this paper. Starting from this Borel subalgebra one can construct a family of 
twisted subalgebras as in [1]. For ϕ : N → {±}, set

Pϕ = {α + kδ|α ∈ Δ+, k ∈ Z} ∪ {nδ | n ∈ N, ϕ(n) = +} ∪ {−mδ | m ∈ N, ϕ(m) = −}

and Bϕ
nat = BPϕ . Further examples of Borel subalgebras can be obtained by combining 
ϕ-twisting with the procedure described in Remark 1.
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3.2. Parabolic subalgebras

A subalgebra P ⊂ G is called a parabolic subalgebra if it contains a Borel subalgebra. 
There are essentially two types of parabolic subalgebras: those containing the standard 
Borel and those containing one of twisted Borel subalgebras Bϕ

nat. We call them type I
and type II parabolic subalgebras respectively (cf. [7] for details). We address in the 
paper the parabolic subalgebras of type II. Even though all the results of this paper are 
valid for all parabolic subalgebras of type II we will assume for simplicity that a fixed 
parabolic subalgebra P of type II contains Bnat. We will describe all such P’s which 
contain properly Bnat (cf. also Proposition 3.3, [10]).

Let N be the rank of the underlined simple finite dimensional Lie algebra ġ and 
π0 = {α1, . . . , αN} ⊂ π the set of simple roots of ġ. Set I = {1, . . . , N} and choose any 
proper subset J ⊂ I. Let πJ = {αj ∈ π | j ∈ J}. Denote by Δ̇J the finite root system 
generated by the roots in πJ (Δ̇J = ∅ if J = ∅). Now consider the affinization

ΔJ = {α + nδ ∈ Δ | α ∈ Δ̇J , n ∈ Z} ∪ {nδ | n ∈ Z \ {0}},

of Δ̇J (in Δ).
Define PJ = Bnat +

∑
α∈ΔJ Gα. This is the parabolic subalgebra of type II associated 

with J . Again it admits modifications as in Remark 1 but we will not consider it though 
the main statement remains valid also in this case. If J = ∅ then P∅ = Bnat + G. The 
parabolic subalgebra PJ has the Levi decomposition PJ = lJ ⊕ nJ where lJ is a Lie 
subalgebra generated by Gα with α ∈ ΔJ and nJ =

∑
α∈Pnat\ΔJ . Note that l∅ = G +H.

Denote nbarJ =
∑

α∈−Pnat\ΔJ . Then we have the following decomposition of G: G =
nJ̄ ⊕ PJ = nJ̄ ⊕ lJ ⊕ nJ . Note that this may not be a triangular decomposition in the 
classical sense of [17]. Nevertheless this decomposition allows us to construct families of 
induced modules.

We say that a subset a subset S ⊆ J is connected if the Coxeter–Dynkin diagram 
associated to the simple roots αi, i ∈ S is connected. Then J = ∪t∈TSt where St’s 
are connected components of the Coxeter–Dynkin diagram associated to J . Each subset 
St gives rise to an affine root subsystem of ΔJ which generates affine Lie subalgebra 
lJ (St) ⊂ lJ . Also denote by GJ ⊂ G the orthogonal completion (with respect to the 
Killing form) of the Heisenberg subalgebra G(lJ) of lJ . Then G = GJ+G(lJ), [GJ , lJ ] = 0
and we have

lJ =
∑
t∈T

lJ (St) + GJ + H.

3.3. Induced modules

We will assume that PJ is the parabolic subalgebra of type II associated with fixed 
subset J , PJ = lJ ⊕ nJ . Let N be a weight (with respect to H) module over PJ with a 

trivial action of nJ . Define the induced G-module
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MJ(N) = ind(PJ ,G;N).

This is the generalized Imaginary Verma module associated with J and N .
If N is irreducible then MJ(N) has a unique irreducible quotient LJ(N). Basis prop-

erties of modules MJ(N) are collected in the following proposition. Details of the proofs 
can be found in [7].

Proposition 1. Let J ⊆ İ and N irreducible weight lJ -module. Then MJ(N) has the 
following properties.

(i) The module MJ(N) is a free U(nJ̄)-module.
(ii) Let V be a nonzero G-module generated by a weight vector v such that nJv = 0. Set 

N = U(lJ )v. Then there exists a unique surjective homomorphism ψ : MJ(N) �→ V

such that ψ(1 ⊗ v) = v. If V is irreducible then N is irreducible lJ -module and 
V � LJ(N).

(iii) MJ(N) is a weight module. Moreover, 0 < dimMJ(N)μ < ∞ if and only if μ is a 
weight of N and 0 < dimNμ < ∞.

(iv) If N is irreducible l-module then the subspace of nJ -invariants in LJ (N) is the class 
of 1 ⊗N .

(v) If J = ∅ and N is a highest weight G-module generated by a weight vector v such 
that hv = λ(h)v for any h ∈ H and some λ ∈ H∗ and n∅v = 0 then M∅(N) is an 
Imaginary Verma type module M(λ) generated by an eigenvector for the natural 
Borel subalgebra Bnat.

Remark 2.

(i) Generalized loop modules considered in [11] and, in particular, ϕ-Imaginary Verma 
modules [1] are partial cases of modules M∅(N) when N is irreducible G-module;

(ii) Pseudo-parabolic induction considered in [10] is a particular case of modules MJ(N)
where GJN = 0.

Set M t
J(N) := 1 ⊗N . This is the “top” part of M t

J (N) which generates MJ(N).

3.3.1. Tensor lJ -modules
Denote l0J =

∑
t ∈ T lJ (St) + H. Hence lJ = l0J + GJ and [l0J , GJ ] = 0. If V is an 

irreducible weight l0J -module and W is an irreducible Z-graded GJ -module with the 
same central charge then V ⊗ W is naturally an lJ -module, a tensor module. If the 
central charge is a ∈ C then V ⊗W is a module over the tensor product U(l0J)/(c − a) ⊗
U(GJ)/(c − a).

In the extreme case when J = ∅ we have l0J = H and GJ = G. Hence V is a 
1-dimensional space and W is a Z-graded G-module. Parabolic induction functor from 

G to G was considered in [11].
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Suppose now that J 
= ∅. Let N be an irreducible weight lJ -module with a nonzero 
central charge a. Assume that for each positive integer k either (GJ)kδ or (GJ)−kδ

acts trivially on N . Such lJ -modules were considered in [10] when inducing from pseudo 
parabolic subalgebras. We will show that any such irreducible module is a tensor module. 
Without loss of generality we assume that (GJ)kδN = 0 for all positive integer k.

Proposition 2. N is a tensor lJ -module, that is N � V ⊗W where V is irreducible weight 
l0J -module and W is irreducible Z-graded GJ -module.

Proof. Choose nonzero element v ∈ N . Denote V = U(l0J)v and W = U(GJ)v. It 
is standard that W is irreducible GJ -module since the central charge is nonzero and 
G+

J v = 0. Suppose V is not irreducible and V ′ is a nonzero proper l0J -submodule. Take 
any nonzero v′ ∈ V ′. Then v′ = xv for some x ∈ U(l0J). Since N is irreducible there 
exists y ∈ U(GJ) such that yxv = v. Moreover, we can assume that y ∈ U(G−

J ). But the 
GJ -module U(GJ)xv is irreducible. Hence, there exists y′ ∈ U(G+

J ) such that y′yxv =
y′v = xv. But y′v = 0, thus v′ = xv = 0 which is a contradiction. We conclude that V
is l0J -module. Then V ⊗W is irreducible lJ -module. Consider a map f : V ⊗W → N , 
sending xv⊗ yv to xyv which is clearly a homomorphism since l0J and GJ commute. We 
immediately see that f is surjective since N is irreducible. If xyv = 0 then choose y′ as 
above. We have 0 = y′yxv = xv and f is injective. Therefore, N � V ⊗W . �

These are all known cases when parabolic induction preserves irreducibility and in all 
cases we induce from certain tensor modules. Combining techniques from [10] and [11]
we will extend the proof to all tensor modules.

4. Irreducibility of Generalized Imaginary Verma modules

In this section we prove our main result by finding conditions for module MJ(N) to 
be irreducible.

Let PJ = lJ ⊕ nJ and N ∈ W (l). Denote by TJ(N) the subspace of nJ -invariants in 
MJ (N), that is v ∈ TJ(N) if and only if nJv = 0.

Theorem 2. If U is an irreducible admissible tensor module in W̃l then TJ(U) = M t
J(U).

The proof of Theorem 2 combines the proofs of Theorem 2 from [11] and Theorem 3.1 
from [10] where particular cases of parabolic induction were considered.

For any subset ω ⊂ I, let Qω
± denote a semigroup of H∗ generated by ±αi, i ∈ ω. Set 

QJ = ⊕j∈JZαj ⊕ Zδ and Q± = QI
±. Then QJ

± = QJ ∩Q±.
Let α ∈ QJ

− and α = − 
∑

j∈ω kjαj , where each kj is in Z≥0. We set htJ(α) =
∑n

j=1 kj , 

the J-height of α.
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Let v ∈ MJ(N) be a nonzero weight element. Then

v =
∑
i∈R

uivi,

for some finite set R, where ui ∈ U(nJ̄) are linearly independent homogeneous elements, 
vi ∈ N , i ∈ R. Since v is a weight vector then each ui is a homogeneous element of 
U(nJ̄). Its homogeneous degree is an element of QJ̄

− + QJ + Zδ. Suppose that ui has 
homogeneous degree

ϕi = −
∑
j∈J̄

kijαj +
∑
j∈J

lijαj + miδ,

where kij ∈ Z≥0 not all zeros, lij ∈ Z and mi ∈ Z. Since v is a weight vector then all ϕi

have the same J-height. We will call it the J-height of v and denote htJ(v).

Lemma 1. Suppose U ∈ W̃l and v ∈ MJ(U) a nonzero weight element such that 
htJ(v) > 1. Then there exists u ∈ U(nJ) such that uv 
= 0 and htJ(uv) = htJ(v) − 1.

Proof. Let v =
∑

i∈R uivi, where ui ∈ U(nJ̄) are linearly independent homogeneous 
elements and vi ∈ U are nonzero elements, i ∈ R. We assume that for each i, ui has 
homogeneous degree ϕi and all ϕi have the same J-height. Then we can apply exactly 
the same argument as in the proof of the induction step in Lemma 5.3 in [1]. We refer 
to [1] for details. �

It follows immediately from Lemma 1 that TJ(N) can not contain nonzero elements 
of J-height htJ(v) > 1. Indeed, any such element would generated a proper submodule 
whose elements would have J-heights ≥ htJ(v) which contradicts Lemma 1. Note that 
the proof of Lemma 1 does not work in the case when htJ (v) = 1. This case requires a 
more delicate treatment. We consider first the case when J = ∅. This case was treated 
in [11] where the key point was Lemma 1. But the proof of this lemma is somewhat 
incomplete so we address the proof here in more details.

Set l = l∅ = G + H.

Lemma 2. Let W ∈ W̃l be an irreducible and admissible, v ∈ W a nonzero element and 
u2, . . . , us ∈ U(G) nonzero homogeneous elements of nonzero degrees k2, . . . ks respec-
tively, that is ui ∈ U(G)kiδ, such that uiv 
= 0, i = 2, . . . , s, ki 
= kj if i 
= j. Then there 
exists N ∈ Z for which

zN = xNv +
s∑

i=2
xN−ki

uiv 
= 0
for any choice of nonzero xk ∈ Gkδ such that [xk, x−k] 
= 0.
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Proof. Since W is admissible we can assume without loss of generality that ki + kj 
= 0
for all i 
= j. This implies [ui, uj ] = 0 and [xN−ki

, x−N−kj
] = 0 for all i, j. Fix N ∈ Z

and suppose that zN = z−N = 0. We will assume N sufficiently large. We have xNv =
− 
∑s

i=2 xN−ki
uiv and x−Nv = − 

∑s
i=2 x−N−ki

uiv. Then

[xN , x−N ]v = (−xN

s∑
i=2

x−N−ki
ui + x−N

s∑
i=2

xN−ki
ui)v,

since [xN , ui] = [x−N , ui] = [xN−ki
, x−N ] = [xN , x−N−ki

] = 0.
Fix j = 2, . . . , s. Then xN−kj

ujv = −xNv −
∑

2≤i�=j xN−ki
uiv and x−N−kj

ujv =
−x−Nv −

∑
2≤i�=j x−N−ki

uiv. We have

[xN−kj
uj , x−N−kj

uj ]v = −x−NxN−kj
ujv − xN−kj

∑
2≤i�=j

x−N−ki
ujuiv +

+ xNx−N−kj
ujv + x−N−kj

uj(
∑

2≤i�=j

xN−ki
ui)v.

Since kj 
= 0, [xN−kj
uj , x−N−kj

uj ] = 0 for all j = 2, . . . , s. We sum up all these equalities 
for j = 2, . . . , s:

0 =
s∑

j=2
(−x−NxN−kj

+ xNx−N−kj
)ujv −

s∑
j=2

xN−kj
(
∑

2≤i�=j

x−N−ki
ujui)v

+
s∑

j=2
x−N−kj

(
∑

2≤i�=j

xN−ki
ujui)v

=
s∑

j=2
(−x−NxN−kj

+ xNx−N−kj
)ujv = −[xN , x−N ]v 
= 0

which is a contradiction. Hence, zN = 0 or z−N = 0 which completes the proof. �
Corollary 1. Suppose J = ∅, W ∈ W̃l is irreducible and v ∈ MJ(W ) a nonzero weight 
element such that htJ (v) = 1. Then there exists d ∈ U(nJ) such that dv 
= 0 and 
htJ(dv) = 0.

Proof. Since v ∈ MJ(W ) a weight element then

v =
∑
r∈R

drwr,

where dr ∈ n∅̄ are linearly independent, wr ∈ W , r ∈ R. Fix r0 ∈ R and assume 
dr0 ∈ Gϕ. Choose an integer N and let d ∈ G−ϕ+Nδ ⊂ n∅ be a nonzero element. Then 
[d, dr0 ] 
= 0 and we have
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dv = ddr0wr0 + d
∑

r∈R,r �=r0

drwr =

= [d, dr0 ]wr0 +
∑

r∈R,r �=r0

[d, dr]wr.

Since W is irreducible there exist ur ∈ U(G), r ∈ R such that wr = urwr0 . Note that 
all ur have different homogeneous degrees as dr were linearly independent. Note that 
[d, dr0 ] ∈ GNδ. Applying Lemma 2 for a sufficiently large N we obtain dv 
= 0 and 
htJ(dv) = 0. �

Next we consider the case J 
= ∅.

Lemma 3. Let U be a tensor module in W̃l, U � V ⊗ W where V is irreducible weight 
l0J -module and W is irreducible Z-graded GJ -module. Choose nonzero v1, . . . , vk ∈ V and 
nonzero w1, . . . , wk ∈ W . Fix an integer N > 0 and nonzero x±N ∈ G±Nδ, such that 
x±N /∈ l0J and [xN , x−N ] 
= 0. Then for any ai, bi ∈ U(lJ), i = 2, . . . , k and sufficiently 
large N we have

x−N (v1 ⊗ w1) +
k∑

i=2
aivi ⊗ wi 
= 0

or

xN (v1 ⊗ w1) +
k∑

i=2
bivi ⊗ wi 
= 0.

Proof. Assume

z = x−N (v1 ⊗ w1) +
k∑

i=2
aivi ⊗ wi = 0.

Suppose first that [x±N , l0J ] = 0, that is x±N ∈ GJ . Then

xNz = v1 ⊗ xNx−Nw1 +
k∑

i=2
aivi ⊗ xNwi = 0.

If N is sufficiently large then xNwi have different gradings than w1, i = 2, . . . , k and thus 
xNx−Nw1 = 0. Similarly, if v1 ⊗ xNw1 +

∑k
i=2 bivi ⊗ wi = 0 then x−NxNw1 = 0. But 

this is a contradiction. Consider now a general case. We have x±N = x1
±N + x2

±N where 
[x1

±N , l0J ] = 0 and x2
±N ∈ l0J . Moreover, x1

±N 
= 0 since x±N /∈ l0J and [x1
N , x1

−N ] 
= 0. 
Then

z = v ⊗ x1 w + x2 v ⊗ w +
k∑

a v ⊗ w = 0
1 −N 1 −N 1 1
i=2

i i i
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and

x1
Nz = v1 ⊗ x1

Nx1
−Nw1 + x2

−Nv1 ⊗ x1
Nw1 +

k∑
i=2

aivi ⊗ x1
Nwi = 0.

Then we proceed as in the previous case and conclude x1
Nx1

−Nw1 = 0. Replacing N by 
−N we obtain x1

−Nx1
Nw1 = 0 implying w1 = 0 which is a contradiction. This completes 

the proof. �
Corollary 2. Let U � V ⊗ W be a tensor module in W̃l, where V is irreducible weight 
l0J -module and W is irreducible GJ -module. For a nonzero weight element v ∈ MJ(U)
with htJ(v) = 1 there exists u ∈ U(nJ) such that uv 
= 0 and htJ(uv) = 0.

Proof. Let v =
∑

r∈R dr(vr ⊗ wr), where dr ∈ nJ̄ are linearly independent, vr ∈ V , 
wr ∈ W , r ∈ R. We proceed as in the proof of Corollary 1. Fix r0 ∈ R and assume 
dr0 ∈ Gϕ. Choose an integer N and let t±N ∈ G−ϕ±Nδ ⊂ nJ be nonzero elements. Then 
x±N = [t±N , dr0 ] 
= 0. Moreover, [xN , x−N ] 
= 0 and we have

t±Nv = t±Ndr0(vr0 ⊗ wr0) + t±N

∑
r∈R,r �=r0

dr(vr ⊗ wr) =

= x±N (vr0 ⊗ wr0) +
∑

r∈R,r �=r0

[t±N , dr](vr ⊗ wr).

Applying Lemma 3 we conclude that at least one of t±Nv is not zero. Since htJ(t±Nv) = 0
the corollary is proved. �

We can now prove Theorem 2.

4.1. Proof of Theorem 2

Let v ∈ TJ(U) be a nonzero weight element and htJ(v) = s ≥ 1. Consider a 
G-submodule N of MJ(U) generated by v, N = U(G)v. Since nJv = 0 we have that N
is a proper submodule of MJ(U) and all its weight elements have htJ greater or equal 
than s. But this is a contradiction since by Lemma 1, Corollary 2 and Corollary 1 we 
can always find u ∈ (G) such that uv 
= 0 and htJ(uv) = htJ(v) − 1. Therefore htJ(v)
must be zero and TJ(U) = M t

J(U).
Applying Theorem 2 we have

Corollary 3. If U is an irreducible admissible tensor module in W̃l then the induced 
module MJ(U) is irreducible.

Corollary 3 immediately implies Theorem 1 which provides a powerful tool to con-
struct new irreducible representations for affine Lie algebras by inducing from irreducible 

tensor modules from W̃l. We conclude with the following observation.



JID:YJABR AID:16145 /FLA [m1L; v1.210; Prn:24/03/2017; 9:40] P.13 (1-13)
V. Futorny, I. Kashuba / Journal of Algebra ••• (••••) •••–••• 13
Remark 3. It would be interesting to see if Theorem 2 extends to any admissible tensor 
module U in W̃l. This would lead to an equivalence of certain subcategories of G-modules 
and lJ -modules. Another problem is to check if admissible tensor modules exhaust all 
irreducible modules in W̃l.
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