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Abstract

Background/Objectives: In recent work, we have demonstrated that principal compo-
nent analysis (PCA) and Fourier Transformation Infrared (FTIR) spectra are powerful
tools for analyzing the changes in microorganisms at the biomolecular level to detect
changes in bacteria with resistance to antibiotics. Here biochemical structural changes
in Staphylococcus aureus were analyzed over exposure time with the goal of identifying
trends inside the samples that have been exposed to antibiotics for increasing amounts
of time and developed resistance. Methods: All studied data was obtained from FTIR
spectra of samples with induced antibiotic resistance to either Azithromycin, Oxacillin, or
Trimethoprim/Sulfamethoxazole following the evolution of this development over four
increasing antibiotic exposure periods. Results: The processing and data analysis with
machine learning algorithms performed on this FTIR spectral database allowed for the
identification of patterns across minimum inhibitory concentration (MIC) values associated
with different exposure times and both clusters from hierarchical classification and PCA.
Conclusions: The results enable the observation of resistance development pathways for
the sake of knowing the present stage of resistance of a bacterial sample. This is carried
out via machine learning methods for the purpose of faster and more effective infection
treatment in healthcare settings.

Keywords: antibiotic-resistant bacteria; Staphylococcus aureus; Fourier Transformation
Infrared; minimum inhibitory concentration; machine learning algorithms

1. Introduction
Surveillance data on cases of antimicrobial-resistant microorganisms has reported

significant increases over the years [1]. The first metric for checking antibiotic suscepti-
bility is determining the minimum inhibitory concentration (MIC), corresponding to the
concentration capable of killing or inhibiting microbiological growth [2–4]. Antimicrobial
resistance threatens the effective prevention and treatment of an ever-increasing range of
infections caused by bacteria, parasites, viruses, and fungi [5–12]. Several mechanisms
can lead to the development of resistance due to molecular and cellular modifications
that can be acquired by genetic transfer via plasmid conjugation, bacteriophages [13–16],
spontaneous mutations, or inappropriate exposure to antibiotics [14–16].
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Most pathogenic microorganisms can develop resistance to at least some antimicrobial
agents [14–16]. The main mechanisms of resistance are limiting uptake of a drug, mod-
ification of a drug target, inactivation of a drug, and active efflux of a drug [9,10,12,17].
These mechanisms may be native to microorganisms or acquired from other microorgan-
isms [9,10,12,17]. For example, bacteria in water, soil, and air can acquire resistance follow-
ing contact with resistant microorganisms [2,13,15,16,18,19]. When bacteria become resis-
tant to antibiotics, treating the infection is often harder and more expensive [11–13,16,19–23].
Administering treatment without the risk of therapeutic failure is challenging, as patients
often need immediate intervention before the results of antimicrobial tests are available.
This involves a labor-intensive process where microorganisms must be cultured to identify
them and assess their response to various classes of antimicrobials [5,6,8–11,23]. These
practical limitations can lead to treatment failures and contribute to the development
of antimicrobial resistance [1,20,24–30]. For this reason, optimizations of the process of
identifying the antimicrobial susceptibility pattern are necessary.

A current challenge in antimicrobial resistance is the increasing resistance of bacteria
to antibiotics and the search for ways to reduce it and improve the effectiveness of infection
therapies [5,6,8–12,23]. Reports describe the emergence of microorganisms that are resistant
to antibiotics and include surveillance studies collecting MIC values of different drugs [1].
An increase in MIC indicates increased resistance and, therefore, less susceptibility to
specific antibiotics. In this study we introduced the use and application of the protocol
regarding MIC values acquired for various times to the various antibiotics implemented
by Soares et al. [31]. Here, we utilized statistical methods to analyze complex datasets of
FTIR spectra for samples of S. aureus treated with three different kinds of antibiotics for
four different exposure times across three biochemical windows. This was carried out by
reducing dimensionality and identifying patterns in antibiotic resistance.

In this study, we built on the previous study which involved utilizing robust machine
learning foundations to differentiate antimicrobial resistance [31–35]. FTIR spectral data
provides a multidimensional database that can be analyzed by machine learning methods to
consistently identify antibiotic susceptibility patterns in Gram-positive and Gram-negative
microorganisms [31–35]. Here, we expand the analysis with additional machine learning
tools and with the use of statistical tools and algorithms like principal component anal-
ysis (PCA) and hierarchical dendrograms with truncated clustering on FTIR spectra of
methicillin-resistant S. aureus (MRSA). Samples were treated with Azithromycin (Azy),
Oxacillin (Oxa), or Trimethoprim/Sulfamethoxazole (Trim) antibiotics, with exposure times
of 0, 24, 72, and 120 h, creating a database of one thousand FTIR spectra.

Patterns were explored across FTIR data for the different antibiotics and the associated
MIC values, which were measured in the samples analyzed for each antibiotic and time
point [31]. To identify trends across the MRSA samples exposed to antibiotics, which
generated resistance, we followed the development of the bacterial behavior when it was
exposed to antibiotics for increasing amounts of time. Additionally, to analyze patterns in
specific biomolecules, we isolated three smaller windows within the spectra that contained
carbohydrates, proteins, and fatty acids. The acquisition of this large FTIR spectra dataset
displaying resistance development over time allowed for the possibility of exploring and
refining, via analysis with machine learning, the best course of action in cases of antibiotic
resistance in real infections to improve treatment efficacy and speed. In this paper, the time-
dependent development of resistance in S. aureus and its connection to MIC is explored in
FTIR data utilizing hierarchical clustering and PCA.
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2. Results
The S. aureus strain kept growing in the presence of antibiotics for 120 h, renewing

the medium and the concentration of the antimicrobial every 12 h. In Figure 1, it is
observed that MIC values vary over time. The continuous exposure of the strain to different
antibiotics induces a less effective response of the antibiotic in the bacteria, as the MIC
values at each new interval were higher, indicating an increase in antibiotic resistance. This
behavior is notable for the antibiotics Azy and Trim. However, in the case of Oxa, the
induction of resistance is observed to take place up to 72 h, after which the response to the
antibiotic returns to approximately the initial level, so that the induced resistance has not
been established in the bacterial culture.

Figure 1. Representation of MIC values obtained for antibiotics (a) Azithromycin (Azy),
(b) Trimethoprim/Sulfamethoxazole (Trim), and (c) Oxacillin (Oxa); data can be found in Table S1 in
Supplemental Materials.

Given that the response to the antibiotic differs over the cultivation time of S. aureus, it
is suggested that molecular and cellular changes are associated with this antibiotic-bacteria
interaction. The molecular structure and mechanism of action of the antibiotics utilized are
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introduced in Table 1. Figure 2 shows the spectra obtained from the bacteria at different
antibiotic cultivation intervals.

Table 1. Molecular structure and mechanism of action for the antibiotics used in this study.

Antibiotic Chemical Structure Properties

Azithromycin (Azy)
C38H72N2O12

[36]

In order to replicate, bacteria require
a specific process of protein synthesis
enabled by ribosomal proteins.
Azithromycin binds to the 23S rRNA
of the bacterial 50S ribosomal
subunit. It stops bacterial protein
synthesis by inhibiting the
transpeptidation/translocation step
of protein synthesis and by inhibiting
the assembly of the 50S ribosomal
subunit. Azithromycin is highly
stable at a low pH, giving it a longer
serum half-life and increasing its
concentrations in tissues compared
to erythromycin [36].

Oxacillin (Oxa) C19H19N3O5S
[37]

By binding to specific penicillin-
binding proteins (PBPs) located
inside the bacterial cell wall,
Oxacillin inhibits the third and last
stage of bacterial cell wall synthesis.
Cell lysis is then mediated by
bacterial cell wall autolytic enzymes
such as autolysins; it is possible that
Oxacillin interferes with an
autolysin inhibitor [37].

Trimethoprim/Sulfamethoxazole
(Trim) C14H18N4O3

[38]

Trimethoprim is a reversible inhibitor
of dihydrofolate reductase, one of the
principal enzymes catalyzing the
formation of tetrahydrofolic acid
(THF) from dihydrofolic acid (DHF).
Tetrahydrofolic acid is necessary for
the biosynthesis of bacterial nucleic
acids and proteins and ultimately for
continued bacterial
survival—inhibiting its synthesis,
which then results in bactericidal
activity. Trimethoprim is often given
in combination with
sulfamethoxazole, which inhibits the
preceding step in bacterial protein
synthesis. Given together,
sulfamethoxazole and trimethoprim
inhibit two consecutive steps in the
biosynthesis of bacterial nucleic acids
and proteins [38].
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Figure 2. (a) FTIR spectra for one hundred samples of S. aureus with induced antibiotic resis-
tance expose to Azithromycin for 24 h. (b) Result of applying the second derivate to FTIR spectra
for one hundred samples of S. aureus with induced antibiotic resistance expose to Azithromycin
for 24 h. (c–f) Visualization of normalized FTIR spectrum into proteins spectral regions between
1500 and 1800 cm−1 for (c) one hundred spectra of MRSA samples with no antibiotic exposure 0 h,
(d) one hundred FTIR spectra of S. aureus with induced antibiotic resistance expose to Azithromycin
for 24 h, (e) one hundred FTIR spectra of S. aureus with induced antibiotic resistance expose to
Azithromycin for 72 h, (f) one hundred FTIR spectra of S. aureus with induced antibiotic resistance
expose to Azithromycin for 120 h.

In Figure 2a we show the entire FTIR for all samples of S. aureus treated with
Azithromycin (Azy) at 24 h. In Figure 2b we show the result after the second deriva-
tive process for the entire FTIR spectra. After both of these process the Normalization by
maximum value of FTIR absorption intensity is performed in each one spectrum individu-
ally. Following the process to extract the window interval group, it is conforming the array
of one hundred FTIR absorption spectra intensity for each exposition time to antibiotic
with the same wavelength values. To illustrate the spectra obtained into protein window
from FTIR spectra for the time exposition antibiotic Azithromycin (Azy) at 0 h 24 h, 72 h,
120 h the items Figure 2c–f are shown.

The FTIR spectrum identifies fingerprint regions of biomolecules in the bacterial
cell structure, such as the carbohydrate spectral regions (950–1200 cm−1), fatty acids
(2800–3100 cm−1), and proteins (1500–1800 cm−1). The processing of spectral data based
on derivation and normalization (Figure 2) allows us to verify the differences of each
biomolecule for each cultivation time (Figure 2c–f) of the bacteria in the presence of the
different antibiotics. This process was developed utilizing tools in MATLAB [39].

The FTIR spectrum identifies fingerprint regions of biomolecules in the bacterial cell
structure, such as carbohydrates, proteins, and fatty acids. The processing of spectral data
based on derivation and normalization (Figure 2) allows us to verify the differences of each
biomolecule for each cultivation time (Figure 2c–f) of the bacteria in the presence of the
different antibiotics. This process was developed utilizing tools in MATLAB [39].
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Hierarchical clustering methods and PCA (including PCA-center, or average PCA)
machine learning tools were applied to the FTIR database of S. aureus with induced antibi-
otic resistance to Azy, Oxa, and Trim. The analysis of the FTIR spectra focused on specific
biomolecular groups of carbohydrates between 950 and 1200 cm−1, fatty acids between
2800 and 3100 cm−1, and proteins between 1500 and 1800 cm−1. The connection between
the spectral behavior of samples treated with the three antibiotics for four times was then
studied. To develop the analyses, machine learning algorithms were implemented utilizing
both supervised and unsupervised methods. A detailed description of these implemented
methods is introduced in the materials and methods section. Machine learning algorithms
have been developed in R [40–48] and Python (3.12.3) [49–51].

Hierarchical clustering was conducted utilizing the “Ward” linkage method, which
minimizes the sum of squares differences within clusters [52]. This method is partic-
ularly effective for spectroscopic data since it tends to highlight the natural grouping
based on spectral similarity. The truncated dendrogram method was applied to fo-
cus on the major cluster formations of the FTIR spectra in the protein (Figures 3–8),
carbohydrate (Figures S1–S3, Supplementary Materials) and fatty acid (Figures S4–S6,
Supplementary Materials) biochemical windows.

Figure 3. (a) Hierarchical dendrogram for the protein window with truncated clustering for all
samples treated with Azithromycin at 0 h, 24 h, 72 h, 120 h. (b) Protein distribution of samples across
each cluster for Azithromycin (Azy) at 0 h, 24 h, 72 h, 120 h.
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Figure 4. (a) Hierarchical dendrogram for the protein window with truncated clustering for all
samples treated with Oxacillin at 0 h, 24 h, 72 h, 120 h. (b) Protein distribution of samples across each
cluster for Oxacillin (Oxa) at 0 h, 24 h, 72 h, 120 h.

Figure 5. Cont.
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Figure 5. (a) Hierarchical dendrogram for the protein window with truncated clustering for all
samples treated with Trimethoprim/Sulfamethoxazole at 0 h, 24 h, 72 h, 120 h. (b) Protein distribution
of samples across each cluster for Trimethoprim/Sulfamethoxazole (Trim) at 0 h, 24 h, 72 h, 120 h.

Figure 6. Circlized dendrogram for the protein region into the FTIR spectra for all samples of
S. aureus treated with Azithromycin (Azy) at 24 h, 72 h, 120 h and the average MRSA samples with
no antibiotic exposure (0 h).

Figure 7. Circlized dendrogram for the protein region into the FTIR spectra for all samples of
S. aureus treated with Oxacillin (Oxa) at 24 h, 72 h, 120 h and the average MRSA samples with no
antibiotic exposure (0 h).
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Figure 8. Circlized dendrogram for the protein region into the FTIR spectra for all samples of S. aureus
treated with Trimethoprim/Sulfamethoxazole (Trim) at 24 h, 72 h, 120 h and the average MRSA
samples with no antibiotic exposure (0 h).

Circlized dendrograms were obtained to capture the classifications of all FTIR spectra
with more than four main branches. In the initial calculation steps, four main branches were
expected due to the four acquisition times present in the data. However, due to dynamic bio-
chemical properties and antibiotic resistance mechanisms present, the dendrogram exhibits
seven main representative branches, with a significant mix of time points present in each
branch for proteins (Figures 4–8), carbohydrates (Figures S7–S9, Supplementary Materials),
and fatty acids (Figures S10–S12, Supplementary Materials). To easily identify the variety
of time points represented in each cluster (branch), the samples were labeled such that
numbers 1–100 correspond to samples obtained at 0 h, 101–199 to those obtained at 24 h,
200–298 to those obtained at 72 h, and 299–397 to those obtained at 120 h. Clusters are
shown in different colors into circlized dendrogram representation in Figures 4–8 and
Figures S7–S12 in Supplementary Materials.

The data analyzed with PCA methods generated plots with the first two principal
components that correspond to the largest amounts of variance in the data in proteins
(Figures S9–S11), carbohydrates (Figures S13–S15, Supplementary Materials), and fatty
acids (Figures S16–S18, Supplementary Materials) FTIR spectra windows. As a result, PCA
can reveal patterns across resistances for the three different implemented antibiotics. Here,
the groups are referred to as 0 h, 24 h, 72 h, 120 h, and iB (the control, non-methicillin
resistant sample). The PCA calculation and the data visualization were carried out in
R [40–48] and Python [49–51].

3. Discussion
The plots in Figure 1 displaying MIC changes over time for all three antibiotics indicate

the need to be able to distinguish between different exposure times for the sake of improved
treatments. For Azy and Trim, the MIC grows at an increasing rate with exposure time, but
for Oxa the MIC peaks at 72 h and then nearly declines to initial values as time goes on.
This difference is significant and suggests that different behaviors might be discovered in
spectral analysis. These different behaviors of resistance development necessitate different
time windows be considered for the study of the evolution of induced antibiotic resistance.

The control strain, which is susceptible to the antibiotics evaluated, differs from all
of the PCA data obtained from the resistant strains. Furthermore, the PCA data obtained
demonstrates that the influence of each antibiotic affects each biomolecule differently. Dur-
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ing the first 24 h, the interaction with the antibiotics causes cellular stress that leads to
changes in the vibrational modes of the biomolecules [53,54], as evidenced by the dis-
tinct quadrant of the 24 h data for most of the biomolecules from the different antibiotic
cultures. However, the biological response is not homogeneous for all cells within a pop-
ulation under stress conditions. There will be a portion of the population that will be
more susceptible and another that will be resistant. This explains why hierarchical clus-
terization results in more than four clusters, with each containing a mix of samples from
various time points in the branch of the dendrograms. This behavior is then also visible
in the PCA spatial classifications (Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8,
Figure 9(i–iii), Figure 10(i–iii) and Figure 11(i–iii), respectively). With an increase in the
MIC value (Figure S1 and Table S1 in Supplementary Materials), the responses’ hetero-
geneity increases, leading to a large dispersion of data in the PCA plots (Figures 9–11).
Consequently, over time, the bacterial culture can solidify with resistance to certain classes
of antibiotics or can increase its susceptibility, which the average PCA visualization shows
with some centers of mass for 120 h close to those for 0 h.

Figure 9. (i) Principal component analysis PCA (a) with variances in (b) and (ii) PCA-center calcula-
tions results to protein region into the FTIR spectra for MRSA samples with no antibiotic exposure
(0 h), and for all samples of MRSA treated with Azithromycin (Azy) at 24 h, 72 h, 120 h. (iii,iv) PCA
and PCA-center calculation results obtained to protein region into the FTIR spectra for MRSA samples
with no antibiotic exposure (0 h), for all samples of MRSA treated with Azithromycin (Azy) at 24 h,
72 h, 120 h, and for all non-methicillin-resistant S. aureus samples (iB). Each data group analyzed into
protein region at 0 h, 24 h, 72 h, 120 h and iB contains one hundred FTIR spectra samples.
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Figure 10. (i) Principal component analysis PCA (a) with variances in (b) and (ii) PCA-center
calculations results to protein region into the FTIR spectra for MRSA samples with no antibiotic
exposure (0 h), and for all samples of MRSA treated with Oxacillin (Oxa) at 24 h, 72 h, 120 h.
(iii,iv) PCA and PCA-center calculation results obtained to protein region into the FTIR spectra for
MRSA samples with no antibiotic exposure (0 h), for all samples of MRSA treated with Oxacillin
(Oxa) at 24 h, 72 h, 120 h, and for all non-methicillin-resistant S. aureus samples (iB). Each data group
analyzed into protein region at 0 h, 24 h, 72 h, 120 h and iB contains one hundred FTIR spectra samples.

Though it is not fully explored in this analysis, the difference over time indicated in
the principal components suggests that a value could be calculated and plotted over time
such that it would mirror the MIC behavior. This would allow resistance to be predicted
in a sample from its FTIR spectrum without having to carry out time-consuming MIC
experiments. The most prominent obstacle in this pursuit is the clear presence of overlap
across time points as demonstrated in the dendrogram results with window intervals for
proteins, carbohydrates, and fatty acids. An increase in exposure time does not provide a
unified increase in resistance across all samples. This poses a significant challenge when it
comes to experimentally identifying observable and consistent changes in structure.

Hierarchical clustering methodology involves building clusters by measuring the
similarities between data. The hierarchy of clusters is shown by combining and splitting
groups at different levels of similarity. The chosen clustering algorithms, therefore, need to
be efficient [55]. The methodology implemented in the current study is a new processing
tool that helps to improve the methodology previously used on samples with antibiotic
susceptibility studied in a single period [32,35]. This allows for a study of S. aureus samples
with various levels of antibiotic susceptibility that takes into account the evolution over
time with machine learning algorithms.
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Figure 11. (i) Principal component analysis PCA (a) with variances in (b) and (ii) PCA-center
calculations results to protein region into the FTIR spectra for MRSA samples with no antibiotic
exposure (0 h), and for all samples of MRSA treated with Trimethoprim/Sulfamethoxazole (Trim) at
24 h, 72 h, 120 h. (iii,iv) PCA and PCA-center calculation results obtained to protein region into the
FTIR spectra for MRSA samples with no antibiotic exposure (0 h), for all samples of MRSA treated
Trimethoprim/Sulfamethoxazole (Trim) at 24 h, 72 h, 120 h, and for all non-methicillin-resistant
S. aureus samples (iB). Each data group analyzed into protein region at 0 h, 24 h, 72 h, 120 h and iB
contains one hundred FTIR spectra samples.

Truncated dendrogram results offer a simplified and insightful view into the most
dominant data groupings that emerged in the time ranges of the analysis to identify the
intrinsic array of the samples with induced antibiotic resistance to proteins (Figures 3–5),
carbohydrates (Figures S1–S3, Supplementary Materials) and fatty acids (Figures S4–S6,
Supplementary Materials). This approach demonstrated the complex nature of the spectral
data being studied and the relationships of its clusters, which indicates the need for a
classification based on multiple features to effectively cluster the data into resistance
categories. This statistical procedure implemented into the algorithm has provided a clear
picture of the dynamics and the hierarchical structure of the FTIR spectral data. Cluster
percentage tables obtained by S. aureus in individual time (0 h, 24 h, 72 h, and 120 h) to the
antibiotics are show in Supplementary Materials (Tables S2–S10).

The circlized dendrograms show that the antibiotic resistance mechanism is somewhat
unique in each sample. The samples have reacted to the surrounding medium that con-
tains different antibiotics for different amounts of time. The variation is due to dynamic
biochemical properties and antibiotic resistance mechanisms developed in the various time
periods. Furthermore, these behaviors likely also appear, and create this kind of variety,
in exposure times outside of the four explored in this study. This behavior is perceived in
proteins (Figures 4–8), carbohydrates (Figures S7–S9, Supplementary Materials), and fatty
acids (Figures S10–S12, Supplementary Materials).

Results obtained from the truncated and circlized dendrograms demonstrate strong
agreement with the PCA classification of the samples. The overlapping of samples with



Antibiotics 2025, 14, 729 13 of 20

various exposure time is due to the fact that microorganisms can have different activation
periods and react to specific antibiotics with different interacting mechanisms (Table S1,
Supplementary Materials). It displays a high dependence between microorganisms and
antibiotics due to the biochemical reactions with the surrounding medium. Additionally, it
is to be expected that the entire sample does not have the same response to the antibiotic
at the same time. It is interesting to note that this biochemical behavior is reflected in all
our results obtained from the supervised and unsupervised machine learning algorithms
used here.

All results obtained here display a high dependence on time. The results show a
temporal correlation between the development of resistance and changes in the FTIR
spectra, identified in the PCA and machine learning analyses. The overlapping of groups
in the PCA plots is related to the idea that as resistance develops over time, it becomes
more difficult to distinguish between these levels of induced resistance. There is, however,
a prominent difference between samples with no exposure and those with any amount
of exposure.

When the first and second principal components are plotted for all of the samples
with no averaging, it becomes almost impossible to distinguish between any of the MRSA
samples visually, though the control sample stands out as a clear separate group when
included. These patterns generally hold true for the Oxa and Trim samples as well, though
the variation between the first and later time points is mainly present in the windows
for carbohydrates and fatty acids, and less so for proteins (Figures S7(i,iii)–S9(i,iii) and
S13(i,iii)–S18(i,iii) in Supplementary Materials, respectively). The first principal component
in the protein windows generally explains a much smaller percentage of the variance
than those of the other two windows across all three antibiotics. The bulk of the explained
variance, therefore, for proteins is distributed across more of the principal components. This
indicates that relationships are more difficult to capture in this window with two principal
components and might help to explain this observation of less observable variation.

The PCA-center plots for the Azy samples clearly show that for each of the three
biochemical windows (carbohydrates, fatty acids, and proteins), the average MRSA sample
with no antibiotic exposure (0 h) varies noticeably from the later time points (24 h, 72 h,
120 h) (Figure 9ii). Additionally, if the average control sample, or non-methicillin-resistant
S. aureus sample is included (iB), it shows significant variation from the four average MRSA
samples (Figure 9iv). The later time points generally vary less from each other and do not
display a clear pattern of difference, though some variation is still present.

Notably, since the control sample (iB) varied significantly from the MRSA samples,
which then showed internal variation, it can be concluded that the FTIR spectra change
enough with the accumulation of resistances such that classification is still possible with the
presence of many overlapping resistances to different antibiotics. Additionally, the fact that
significant amounts of variance are explained by principal components beyond the first two
in the biomolecular windows indicates the potential to explore the present relationships
in PCA in more than two dimensions. This might prove helpful in the exploration of
molecular changes over time with antibiotic exposure.

4. Materials and Methods
4.1. Samples Preparation and FTIR Spectra Acquisition
4.1.1. Resistance Induction

Staphylococcus aureus (NIST 0023) was cultured in brain heart infusion agar, from which
colonies were collected for preparation of the inoculum in Mueller Hinton Cation Adjusted
(MHCA) medium, standardized at 108 colony forming units (CFU/mL) from optical density
at 600 nm. Antibiotic concentrations corresponding to 1.5 times the Minimum Inhibitory
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Concentration (MIC) of Azy, Trim, and Oxa were added to the inoculum. Every 12 h,
the culture was centrifuged for 10 min, 3000 rpm, and resuspended in a new medium
containing antibiotic. In this interval, samples were collected and plated to determine
the MIC.

4.1.2. Minimum Inhibitory Concentration

In a 96-well plate, the antibiotic concentrations were diluted 2-fold in MHCA medium,
and then the bacterial culture collected at different cultivation intervals was added, ensuring
a maximum concentration in the wells of 106 CFU/mL. After 24 h, the MIC was determined
with the aid of resazurin.

4.1.3. Fourier Transformation Infrared (FTIR) Spectra Acquisition

Susceptibility to antibiotic samples was prepared. FTIR spectrum samples were
acquired following the protocol by Soares et al. [33,34] for all utilized samples of S. aureus.
From the plated samples, the colonies were kept growing at 37 ◦C for 24–48 h so that the
colonies reached sufficient sizes to be deposited on the crystal in the FTIR equipment by
Attenuated Total Reflection (ATR) on the Agilent Cary 630 FTIR Spectrometer® instrument
(Agilent Technologies, Billerica, MA, USA) in the wavelength range of (650–4000) cm−1.
The dry sample was scanned 250 times, with a resolution of 4 cm−1. All of these samples
together made up one thousand and one hundred FTIR spectra.

4.2. Methodology and Machine Learning Algorithms
4.2.1. Machine Learning—Data Processing

Code written in Python was utilized to read and process the raw FTIR data. Initially,
in order to highlight variation, the second derivative was taken and a Savitzky–Golay
smoothing filter was applied. The data was then normalized using min-max normalization
before the spectral windows for carbohydrates (900–1200 cm−1), proteins (1500–1800 cm−1),
and fatty acids (2800–3100 cm−1) were isolated. The derivatives, normalization, and
window isolation for visualizations were performed manually in MATLAB R2022b [48]
and Python (3.12.3) [45], while the smoothing was performed with functions from the SciPy
open-source library in Python [45,46].

Details about the supervised and unsupervised learning machine learning algorithms
implemented in this study can be consulted in our previous research work about identifi-
cation of antibiotic resistance in microorganism [31–35], into methodology sections “FTIR
Absorption Spectrum of S. aureus Acquisition and Data Process in MATLAB”, “Super-
vised/Unsupervised Machine Learning Algorithms Applied to Spectrum Analysis” and
“Machine learning algorithms” in [32] and sections “FTIR Spectra Database Analysis Process
Overview” and “Machine Learning Algorithms into the methodology” section in [35].

4.2.2. Machine Learning—Hierarchical Clustering

Given a set of FTIR spectra data to be clustered, the distance matrix or similarity matrix
is created. Here, the Euclidean distance and the Ward linkage methods were implemented
into the hierarchical clustering routine section of the machine learning algorithm developed
to carry out the agglomeration process. In Ward’s method, successive clustering steps are
used to minimize the increase in error in the sum of squares at each step.

A function was created to cluster the data based on their intensity patterns using
hierarchical clustering method. This method builds a hierarchy of clusters by iteratively
merging the closest pairs of clusters, starting with individual data points as their own
cluster. This function was used in exploratory data analysis to identify natural groupings or
patterns in spectral data across multiple samples and within specific time groups (0 h, 24 h,
72 h, and 120 h). By visualizing the dendrogram, the data structure was better understood
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and informed decisions on the number of clusters representing the grouping data can
be made. Additionally, another function was created in which truncated dendrograms
were implemented with the “lastp” truncated mode and the “Ward variance minimization
algorithm” to join different clusters. The truncated dendrograms only display the last p
merged clusters of the hierarchical clustering process, which simplifies the dendrogram to
help focus on the significant cluster formations at the final stages of the hierarchy.

The circlized dendrogram process begins by taking each spectrum as a single indepen-
dent cluster. It then applies Euclidean distance as a metric to measure similarity between
the points that constitute each spectrum, finding the two closest FTIR spectra in the ana-
lyzed biochemical window and combining them into a cluster. It continues combining the
clusters based on similarities between the spectrum values until there is only one cluster
containing all of the spectra. The method uses agglomerative clustering steps that follow a
bottom-up approach.

4.2.3. Machine Learning—Principal Component Analysis

PCA and PCA-center data analyses take into account the entire FTIR spectra sample
with induced antibiotic resistance for each biochemical group of interest. All of the data
from each biomolecular window (carbohydrates, fatty acids and proteins) for each antibi-
otic are transformed from a large number of spectrum values into a set of two principal
components. The most significant variations are found within the spectrum data for each
window for each kind of antibiotic used on S. aureus for four exposure times. This allows us
to interpret and visualize data arrays across many variables. This means that, for example,
the carbohydrate spectral regions were analyzed (950–1200 cm−1) for one hundred spectra
of MRSA samples with no antibiotic exposure (0 h), one hundred FTIR spectra samples of
S. aureus with 24 h of exposure, one hundred FTIR spectra samples of S. aureus with 72 h
of exposure, and one hundred FTIR spectra samples of S. aureus with 120 h of exposure
to antibiotic.

Four hundred samples for each antibiotic were, therefore, then studied in each corre-
spondent analysis for the carbohydrate windows. With the group at 0 h being the control
group for due to the lack of exposure to antibiotics, and the groups called 24 h, 72 h, 120 h
corresponding to samples of MRSA exposed to antibiotics for these time periods. The iB
data contains one hundred spectra from non-methicillin-resistant S. aureus and is added for
comparison. Wherever the iB data is not shown, the PCA calculation was carried out on
only the four hundred MRSA spectra. Where the iB data is present, this was a new PCA
calculation on five hundred spectra including all MRSA spectra and the iB spectra.

The same methodology was applied to the FTIR spectral regions for fatty acids
(2800–3100 cm−1), and proteins (1500–1800 cm−1). In the main article, results of PCA
for the protein windows for all samples treated with the antibiotics Azithromycin, Oxacillin
and Trimethoprim/Sulfamethoxazole at 0 h, 24 h, 72 h, and 120 h are shown. The results
for carbohydrates and fatty acids are shown in the Supplementary Materials of this article
(Figures S13–S18).

Code written in R and Python were applied to perform principal component analysis
(PCA). This was carried out utilizing the processed (second derivative, normalized, and
smoothed) data for samples in every exposure time group for each window. PCA was
performed with functions from the Scikit-learn open-source library in Python [45,47]. The
data reduction process is performed in our analysis of FTIR spectra with PCA in R Project
for Statistical Computing (4.2.3) [40–48], Matlab R2022b [39] and Python (3.12.3) [45,47].
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5. Conclusions
The MIC value is an important metric of resistance to different antibiotics in bacteria.

The MIC values obtained with continuous exposure of the strain to the antibiotics Azy and
Trim at each new interval were higher, indicating an increase in antibiotic resistance. In
the case of Oxa, however, the induction of resistance is observed up to 72 h, after which
the response to the antibiotic returns to approximately the initial level, so that the induced
resistance has not been established in the bacterial culture.

The different behavior of MIC values in response to the antibiotics (Figure 1) is con-
nected to the specific biochemical reaction of the samples in each time period. This mecha-
nism is reflected in the hierarchical clustering of the samples as well as the spatial distribu-
tion of PCA-centers for the FTIR spectra of the samples (Figures 9–11). A high congruence
is demonstrated between the intrinsic biochemical antibiotic resistance mechanism of the
studied samples and the arrangement of the samples in the agglomeration in the truncated
dendrogram, the branches of the circlized dendrogram, and the spatial distribution in the
PCA space.

If the results from this analysis were to be utilized for the purpose of selecting a
treatment plan, it would be important to determine what is considered “resistant” and
“non-resistant.” While the appropriate binary classifications are not explored here, the
need for them is significant and demonstrates the importance of distinguishing between
the different antibiotic exposure ranges of time analyzed in our samples. This significant
application sets the stage for more studies regarding the behavior of antibiotic reaction
mechanisms over time in microorganisms.

Though it is not fully explored in this analysis, the difference over time indicated in
the principal components suggests that a value could be calculated and plotted over time
such that it would mirror the MIC behavior. This is challenging, however, as an increase in
exposure time does not provide a unified increase in antibiotic resistance across all samples.
The data demonstrates that this failure of bacteria to develop resistance uniformly can
mean that a sample exposed to antibiotics for a long period of time can have a biomolecular
composition that is more similar to samples with no exposure than to samples with the
same long exposure time that happened to develop resistance.

Additionally, the fact that significant amounts of variance are explained by principal
components beyond the first two in the biomolecular windows indicates the potential to
explore the present relationships in PCA in more than two dimensions. This might prove
helpful in the exploration of molecular changes over time with antibiotic exposure.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/antibiotics14070729/s1; Table S1. MIC values obtained by
S. aureus in individual time and to the three-antibiotic implemented into the study. Table S2. Proteins
Cluster percentage table obtained by S. aureus in individual time (0 h, 24 h, 72 h, and 120 h) and
Azithromycin (Azy) exposure. Table S3. Protein Cluster percentage table obtained by S. aureus
in individual time (0 h, 24 h, 72 h, and 120 h), and Oxacillin (Oxa) exposure. Table S4. Proteins
Cluster percentage table obtained by S. aureus in individual time (0 h, 24 h, 72 h, and 120 h) and
Trimethoprim/ Sulfamethoxazole (Trim) exposure. Table S5. Carbohydrates Cluster percentage table
obtained by S. aureus in individual time (0 h, 24 h, 72 h, and 120 h) and Azithromycin (Azy) exposure.
Table S6. Carbohydrates Cluster percentage table obtained by S. aureus in individual time (0 h,
24 h, 72 h, and 120 h), and Oxacillin (Oxa) exposure. Table S7. Carbohydrates Cluster percentage
table obtained by S. aureus in individual time (0 h, 24 h, 72 h, and 120 h) and Trimethoprim/ Sul-
famethoxazole (Trim) exposure. Table S8. Fatty Acids Cluster percentage table obtained by S. aureus
in individual time (0 h, 24 h, 72 h, and 120 h) and Azithromycin (Azy) exposure. Table S9. Fatty
Acids Cluster percentage table obtained by S. aureus in individual time (0 h, 24 h, 72 h, and 120 h)
and Oxacillin (Oxa) exposure. Table S10. Fatty Acids Cluster percentage table obtained by S. aureus

https://www.mdpi.com/article/10.3390/antibiotics14070729/s1
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in individual time (0 h, 24 h, 72 h, and 120 h) and Trimethoprim/ Sulfamethoxazole (Trim) exposure.
Figure S1. (a) Carbohydrates Hierarchical dendrograms with truncated clustering to the entire sample
for Azithromycin (Azy) at 0 h, 24 h, 72 h, 120 h. (b) Carbohydrates Distribution of Samples Across
each Cluster for Azithromycin (Azy) at 0 h, 24 h, 72 h, 120 h. Figure S2. (a) Carbohydrates Hierarchical
dendrograms with truncated clustering to the entire sample for Oxacillin (Oxa) at 0 h, 24 h, 72 h,
120 h. (b) Carbohydrates Distribution of Samples Across each Cluster for Oxacillin (Oxa) at 0 h, 24 h,
72 h, 120 h. Figure S3. (a) Carbohydrates Hierarchical dendrograms with truncated clustering to the
entire sample for Trimethoprim/ Sulfamethoxazole (Trim) at 0 h, 24 h, 72 h, 120 h. (b) Carbohydrates
Distribution of Samples Across each Cluster for Trimethoprim/ Sulfamethoxazole (Trim) at 0 h,
24 h, 72 h, 120 h. Figure S4. (a) Fatty Acids Hierarchical dendrograms with truncated clustering to
the entire sample for Azithromycin (Azy) at 0 h, 24 h, 72 h, 120 h. (b) Fatty Acids Distribution of
Samples Across each Cluster for Azithromycin (Azy) at 0 h, 24 h, 72 h, 120 h. Figure S5. (a) Fatty
Acids Hierarchical dendrograms with truncated clustering to the entire sample for Oxacillin (Oxa)
at 0 h, 24 h, 72 h, 120 h. (b) Fatty Acids Distribution of Samples Across each Cluster for Oxacillin
(Oxa) at 0 h, 24 h, 72 h, 120 h. Figure S6. Fatty Acids Hierarchical dendrograms with truncated
clustering to the entire sample for Trimethoprim/ Sulfamethoxazole (Trim) at 0 h, 24 h, 72 h, 120 h.
(b) Fatty Acids Distribution of Samples Across each Cluster for Trimethoprim/ Sulfamethoxazole
(Trim) at 0 h, 24 h, 72 h, 120 h. Figure S7. Circlized dendrogram results for carbohydrates region
into the FTIR spectra for all samples of S. aureus treated with Azithromycin (Azy) at 24 h, 72 h, 120 h
and the average MRSA samples with no antibiotic exposure (0 h). Figure S8. Circlized dendro-
gram results for carbohydrates region into the FTIR spectra for all samples of S. aureus treated with
Oxacillin (Oxa) at 24 h, 72 h, 120 h and the average MRSA samples with no antibiotic exposure (0 h).
Figure S9. Circlized dendrogram results for carbohydrates region into the FTIR spectra for all samples
of S. aureus treated with Trimethoprim/Sulfamethoxazole (Trim) at 24 h, 72 h, 120 h and the average
MRSA samples with no antibiotic exposure (0 h). Figure S10. Circlized dendrogram results for fatty
acids region into the FTIR spectra for all samples of S. aureus treated with Azithromycin (Azy) at 24 h,
72 h, 120 h and the average MRSA samples with no antibiotic exposure (0 h). Figure S11. Circlized
dendrogram results for fatty acids region into the FTIR spectra for all samples of S. aureus treated with
Oxacillin (Oxa) at 24 h, 72 h, 120 h and the average MRSA samples with no antibiotic exposure (0 h).
Figure S12. Circlized dendrogram results for fatty acids region into the FTIR spectra for all samples
of S. aureus treated with Trimethoprim/Sulfamethoxazole (Trim) at 24 h, 72 h, 120 h and the average
MRSA samples with no antibiotic exposure (0 h). Figure S13. (i) Principal component analysis PCA
(a) with variances in (b) and (ii) PCA-center calculations results to carbohydrates region into the FTIR
spectra for MRSA samples with no antibiotic exposure (0 h), and for all samples of MRSA treated
with Azithromycin (Azy) at 24h, 72h, 120h. (iii,iv) PCA and PCA-center calculation results obtained
to carbohydrates region into the FTIR spectra for MRSA samples with no antibiotic exposure (0 h), for
all samples of MRSA treated with Azithromycin (Azy) at 24 h, 72 h, 120 h, and for all non-methicillin-
resistant S. aureus samples (iB). Each data group analyzed into carbohydrates region at 0 h, 24 h,
72 h, 120 h and iB contains one hundred FTIR spectra samples. Figure S14. (i) Principal component
analysis PCA (a) with variances in (b) and (ii) PCA-center calculations results to carbohydrates region
into the FTIR spectra for MRSA samples with no antibiotic exposure (0 h), and for all samples of
MRSA treated with Oxacillin (Oxa) at 24 h, 72 h, 120 h. (iii,iv) PCA and PCA-center calculation
results obtained to carbohydrates region into the FTIR spectra for MRSA samples with no antibiotic
exposure (0 h), for all samples of MRSA treated with Oxacillin (Oxa) at 24 h, 72 h, 120 h, and for
all non-methicillin-resistant S. aureus samples (iB). Each data group analyzed into carbohydrates
region at 0 h, 24 h, 72 h, 120 h and iB contains one hundred FTIR spectra samples. Figure S15.
(i) Principal component analysis PCA (a) with variances in (b) and (ii) PCA-center calculations results
to carbohydrates region into the FTIR spectra for MRSA samples with no antibiotic exposure (0 h),
and for all samples of MRSA treated with Trimethoprim/ Sulfamethoxazole (Trim) at 24 h, 72 h, 120 h.
(iii,iv) PCA and PCA-center calculation results obtained to carbohydrates region into the FTIR spectra
for MRSA samples with no antibiotic exposure (0 h), for all samples of MRSA treated Trimethoprim/
Sulfamethoxazole (Trim) at 24 h, 72 h, 120 h, and for all non-methicillin-resistant S. aureus samples
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(iB). Each data group analyzed into carbohydrates region at 0 h, 24 h, 72 h, 120 h and iB contains one
hundred FTIR spectra samples. Figure S16. (i) Principal component analysis PCA (a) with variances
in (b) and (ii) PCA-center calculations results to fatty acids region into the FTIR spectra for MRSA
samples with no antibiotic exposure (0 h), and for all samples of MRSA treated with Azithromycin
(Azy) at 24 h, 72 h, 120 h. (iii,iv) PCA and PCA-center calculation results obtained to fatty acids
region into the FTIR spectra for MRSA samples with no antibiotic exposure (0 h), for all samples
of MRSA treated with Azithromycin (Azy) at 24 h, 72 h, 120 h, and for all non-methicillin-resistant
S. aureus samples (iB). Each data group analyzed into fatty acids region at 0 h, 24 h, 72 h, 120 h and
iB contains one hundred FTIR spectra samples. Figure S17. (i) Principal component analysis PCA
(a) with variances in (b) and (ii) PCA-center calculations results to fatty acids region into the FTIR
spectra for MRSA samples with no antibiotic exposure (0 h), and for all samples of MRSA treated
with Oxacillin (Oxa) at 24 h, 72 h, 120 h. (iii,iv) PCA and PCA-center calculation results obtained to
fatty acids region into the FTIR spectra for MRSA samples with no antibiotic exposure (0 h), for all
samples of MRSA treated with Oxacillin (Oxa) at 24 h, 72 h, 120 h, and for all non-methicillin-resistant
S. aureus samples (iB). Each data group analyzed into fatty acids region at 0 h, 24 h, 72 h, 120 h and
iB contains one hundred FTIR spectra samples. Figure S18. (i) Principal component analysis PCA
(a) with variances in (b) and (ii) PCA-center calculations results to fatty acids region into the FTIR
spectra for MRSA samples with no antibiotic exposure (0 h), and for all samples of MRSA treated with
Trimethoprim/ Sulfamethoxazole (Trim) at 24 h, 72 h, 120 h. (iii,iv) PCA and PCA-center calculation
results obtained to fatty acids region into the FTIR spectra for MRSA samples with no antibiotic
exposure (0 h), for all samples of MRSA treated Trimethoprim/ Sulfamethoxazole (Trim) at 24 h, 72 h,
120 h, and for all non-methicillin-resistant S. aureus samples (iB). Each data group analyzed into fatty
acids region at 0 h, 24 h, 72 h, 120 h and iB contains one hundred FTIR spectra samples.
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