IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 18 August 2025, accepted 9 September 2025, date of publication 12 September 2025,
date of current version 19 September 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3609404

== ToPicAL REVIEW

Time Series Information Visualization - A Review
of Approaches and Tools

EVANDRO S. ORTIGOSSA -2, FABIO F. DIAS 3, DIEGO C. NASCIMENTO "4,
AND LUIS GUSTAVO NONATO"“!, (Senior Member, IEEE)

Hnstitute of Mathematics and Computer Science, University of Sdo Paulo (ICMC-USP), Sao Carlos 13566-590, Brazil
2Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
3Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA

4NEOMA Business School, 76825 Mont-Saint-Aignan, France

Corresponding author: Evandro S. Ortigossa (evandro.scudeleti-ortigossa@weizmann.ac.il)
This work was supported in part by the Coordenagdo de Aperfeicoamento de Pessoal de Nivel Superior—Brasil (CAPES)-Finance

Code 001, in part by the National Council for Scientific and Technological Development (CNPq), and in part by The Paulo Pinheiro
de Andrade Fellowship.

ABSTRACT Time series data are prevalent across various domains and often encompass large datasets
containing multiple time-dependent features in each sample. Exploring time-varying data is critical for
data science practitioners aiming to understand dynamic behaviors and discover periodic patterns and
trends. However, the analysis of such data often requires sophisticated procedures and tools. Information
visualization is a communication channel that leverages human perceptual abilities to transform abstract
data into visual representations. Visualization techniques have been successfully applied in the context
of time series to enhance interpretability by graphically representing the temporal evolution of data. The
challenge for information visualization developers lies in integrating a wide range of analytical tools into
rich visualization systems that can summarize complex datasets while clearly describing the impacts of
the temporal component. Such systems enable data scientists to turn raw data into understandable and
potentially useful knowledge. This review examines techniques and approaches designed for handling time
series data, guiding users through knowledge discovery processes based on visual analysis. We also provide
readers with theoretical insights and design guidelines for considering when developing comprehensive
information visualization approaches for time series, with a particular focus on time series with multiple
features. As a result, we highlight the challenges and future research directions to address open questions in
the visualization of time-dependent data.

INDEX TERMS InfoVis, visual data analysis, user interfaces, interactivity, graphical properties.

I. INTRODUCTION

Time series data are frequently found in a wide variety
of applications. Exploration, analysis, and understanding
of their dynamic behaviors are valuable for data science
but require complex processing. Furthermore, time series
instances can have multiple correlated and uncorrelated
attributes (dimensions), varying over time [1], which hampers
data representation even in systems specifically designed for
handling multidimensional data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Orazio Gambino

Almost half of human neural tissue is directly and
indirectly associated with vision, enabling sophisticated
abilities related to pattern recognition, particularly when
visually stimulated [2]. Therefore, visualization emerges
as a natural strategy for representing complex data. The
area of Information Visualization (InfoVis) leverages human
cognitive abilities to transform abstract data patterns into
comprehensible visual representations. It reduces cognitive
effort to identify, interpret, and extract patterns from raw
data by depicting them as graphical elements [3], facilitating
data filtering and smoothing (modeling). Monitoring multiple
features over time is an important but challenging task, and
InfoVis has developed innovative techniques incorporating
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multi-view user interfaces to facilitate information extrac-
tion [4]. Such tools also leverage human visual capabilities
to generate knowledge about large datasets in an interactive
way [5].

Traditional visualization methods, such as line and bar
charts, have long represented temporal data in several
applications. However, line-based metaphors are not scalable
for treating multiple series, often leading to visual clutter-
ing and occlusion problems [6]. Specialists have applied
advanced InfoVis approaches to analyze data from different
contexts (e.g., business planning, social networks, climate,
pollution, finances, or criminal cases) [7], [8], [9], [10]. These
approaches help the identification of patterns and anomalies
to support informed decision-making procedures across
both unidimensional and multidimensional datasets [11].
By graphically representing information through computer
systems, these methods enable alternative visions for describ-
ing complex data structures [12]. However, a significant gap
persists between the current capacity of devices to generate
and store data and the ability of visual-analytical tools
to effectively process, organize, and display the extracted
information [13], [14].

The design of efficient visualization tools capable of
representing multiple time series depends on the specific
characteristics of the application domain [15]. This review
discusses multiple visualization approaches and techniques
employed to extract information from time series data,
emphasizing the conceptual, practical, and aesthetic consider-
ations of developing comprehensive tools for managing time-
oriented data graphically. Our review also introduces readers
to new concepts and modern InfoVis applications, with a
particular focus on multidimensional time-series analysis and
recent techniques based on user-interaction strategies that
dynamically connect data scientists with complex data.

In summary, the main contributions of this research are:

« A comprehensive discussion of aesthetic principles and
graphical properties that developers must consider when
designing efficient InfoVis systems.

« A presentation of critical challenges in visualizing time
series, especially the multidimensional ones, and tools
that can be used to interact with time-varying data.

« An in-depth review of approaches and applications for
time series InfoVis. All codes and data used to generate
the charts presented here are available online.

A. ORGANIZATION

The remainder of the paper is organized as follows: Section II
presents the research methodology adopted for collecting
literature; Section III presents previous reviews covering
different aspects of visualization for time series; Section IV
addresses the ground theory to understand the time series
domain and its applications, which includes formal defini-
tions (IV-A), dimensionality (IV-B), missing data (IV-C),
modeling approaches (IV-D), an introduction to the visual-
ization pipeline (IV-E), taxonomies and guidelines (IV-F),
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graphical properties (IV-G), interactivity (IV-H), and large-
scale datasets (IV-I); Section V describes visualization
methods and approaches designed for time series InfoVis;
Section VI extends the previous section and presents com-
posed interfaces applied to multidimensional time series in
the context of text and topics (VI-A), graphs (VI-B), financial
data (VI-C), environmental monitoring (VI-D), audio and
images (VI-E), and event sequences (VI-F); Section VII
discusses software tools for time series InfoVis (VII-A),
open challenges (VII-B), and suggests future research
directions (VII-C); finally, Section VIII provides our final
remarks.

Il. METHOD OF THE SYSTEMATIC REVIEW

We analyzed the literature to understand how visual tech-
niques have been used in time series analyses over the past
years. The systematic review process follows Moher et al.
[16], establishing objective criteria to define the scope of the
relevant literature and the appropriate report on the findings.
From the available literature, we identified and classified key
contributions to the time series field, clarifying current trends
and practices, and indicating research opportunities.

A. LITERATURE SEARCH PROCEDURE

The procedure combines four databases (IEEE Xplore Digital
Library, Association for Computing Machinery (ACM)
Digital Library, DBLP, and Elsevier’s Scopus) to search
time-oriented InfoVis. Such databases are well-regarded for
their comprehensive collections of peer-reviewed articles in
computer science. In association with these data, we used
Google Scholar, Elsevier’s ScienceDirect, and Web of
Science as search engines.

We queried about multidimensional time series and InfoVis
in publications’ titles, abstracts, and keywords, selecting
studies from (but not restricted to) the 2005-2024 period.
This period covers most of the recently published literature,
including seminal studies. In this context, the search out-
comes were evaluated using the following criteria to select
a set of publications for review:

« Papers published as articles in peer-reviewed journals
and conference proceedings from leading venues on
visualization, and available online in English. Besides,
we also used arXiv preprints, theses, and books;

« Studies explicitly addressing time series representation.
Articles that only cite InfoVis in keywords, do not
explain the methodology employed, or the time-oriented
data context were not included.

Papers that did not satisfy at least one of the selection
criteria were excluded. The queries returned 297 publications,
and duplicates were removed after a second filtering based on
abstract and introduction readings. For each selected paper,
we reviewed the main content and did not consider the
appendices or supplementary material. A total of 232 studies
were then read in full and, after a careful review of their
contents, 219 references are reported in this review.

VOLUME 13, 2025



E. S. Ortigossa et al.: Time Series Information Visualization—A Review of Approaches and Tools

IEEE Access

IIl. PREVIOUS VISUALIZATION REVIEWS

Research on data analysis and mining has introduced var-
ious approaches and methods for information visualization
(InfoVis). Several researchers have proposed comprehen-
sive discussions on the visualization environment, defining
categorizations and practical aspects of techniques. In this
section, we present an overview of previous works, from
more general surveys on visualization that also discussed time
series to those focused on the different aspects of time series
InfoVis.

Oliveira and Levkowitz [17] presented a foundational
study on data mining and exploratory strategies supported by
visualization methods, introducing the concept of visual data
mining. Kehrer and Hauser [7] conducted a broad survey of
methods for visualizing data that hold more diverse aspects,
including multidimensionality, multisource, and multitype
elements. They introduced the term multifaceted scientific
data and addressed several techniques for dealing with such
data.

Liu et al. [18] presented an introductory overview of
multiple approaches for InfoVis, focusing on data represen-
tation using interactive methods, in which users are active
participants in refining the exploratory process of visual
data. Cui [19] differentiated the multiple and closely related
research areas of visualization, highlighting the synergy
between visualization and interactive data exploration to
facilitate knowledge discovery. Recently, Shakeel et al. [20]
elaborated a survey on data visualization, categorizing its
research tasks. The paper also analyzed the advantages and
limitations of diverse programming tools and platforms used
to generate visualizations.

A common subject in the visualization literature concerns
large data collections and how to represent them effectively.
In this context, Liu et al. [21] focused their investigation on
high-dimensional data, proposing a taxonomy of techniques
for multidimensional visualization. Veras and Collins [22]
evaluated the perceptual effectiveness of visualization meth-
ods when faced with data scalability, i.e., the challenges
associated with distinguishing variations in information when
representing large datasets.

When visualizing large datasets, the volume of information
presented to users is a critical consideration since human
working memory has limitations. Cockburn et al. [23]
thoroughly reviewed visual exploration techniques based
on focus+context approaches, allowing users to work with
focused and contextual views by selectively presenting
content to reduce information load.

Previous works have addressed foundational concepts on
visualization as a broad area encompassing a wide range
of data. However, the specialized literature on temporal
data analysis, modeling, and visualization techniques is also
extensive, providing designers with valuable content on
mining [24], clustering [25], and aggregation [26] concepts
and approaches that can be applied to the development
pipeline of visualization tools devoted to exploring time
series. Ali et al. [27] reviewed a wide range of supervised

VOLUME 13, 2025

and unsupervised machine learning algorithms within visual
analytics frameworks. They demonstrated how integrating
interactive visualization methods can assist analysts in
refining classification and clustering tasks.

Representing and understanding the evolution of time-
dependent attributes imposes particular challenges on visu-
alization developers and data scientists. Aigner et al. [28],
[29] conducted remarkable surveys on the visualization
of time-oriented data and related interactive techniques to
capture the dynamic behavior of time-dependent features.
They provided a categorization based on the nature of
the temporal dimension with important considerations for
designing visual systems, such as data granularity (e.g.,
discrete-time and intervals) or periodicity (e.g., linear-time,
cyclic, and branching). Similar discussions can be found in
classical surveys [8] and books [9], [30] devoted to time series
visualization.

Recently, Fang et al. [31] presented a structured overview
of time series visualization, characterizing data into linear and
cyclic, point and interval, and sequential and branching types.
The authors also reviewed multiple visualization methods,
both static and animated, as well as interactive approaches.

Andrienko et al. [32] provided an early but comprehen-
sive taxonomy of spatiotemporal visualization techniques,
categorizing existing methods by data type, visual metaphor,
and analytical tasks. However, the authors underestimated
real-time interaction challenges. Recent works reviewed the
complexities of visualizing spatiotemporal data [33], [34],
[35]. Bai et al. [36] presented a systematic review of
time-varying volumetric data frequently used in scientific
visualization to understand the temporal evolution of com-
plex phenomena such as fluid dynamics, cosmology, and
climatology.

Despite the rich literature, effectively visualizing mul-
tidimensional time series remains a significant challenge.
This work focuses specifically on solutions for time series
information visualization (InfoVis). We provide an updated
discussion on techniques and tools for interactive visual
analysis that were previously unavailable or only recently
emerged. Therefore, this study provides developers with
a comprehensive overview, supporting the design of tools
that enable data scientists to better understand time-series
data and visually transform information into knowledge.
In addition, we have made all the code and data used to render
our visualizations publicly available in an online repository.

IV. GROUND THEORY

This section provides an overview of the time series
definitions that should be considered in the development
of visualization tools. The aim is to offer a comprehensive
review of time series InfoVis methods and approaches and
to address important characteristics and concepts for multidi-
mensional time-oriented data (or model) visualization.

! Available on GitHub at https://github.com/evortigosa/InfoVis
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FIGURE 1. Multidimensional time series can be conceptually represented as a data cube structure with samples
varying over time slices and having one or more features. This cube abstraction can be extended to higher dimensions
by adding spatial features (in terms of increasing algebraic space) and different temporal frequency bands.

A. TIME SERIES NOTATION AND NOMENCLATURE
Time-series data are generated and found in a wide range
of real-world application contexts, such as finance, health,
meteorology, astronomy, news, remote sensing and monitor-
ing, scientific experimental simulations, image collections,
and project planning and management. From a practical point
of view, each data context requires specific tools tailored
to support the information discovery process [28]. Formally,
a time series dataset can be expressed as

D= {(t], V1), (82, v2), ..., (tn, Vn)}

being #; the instant of time and v; = f <t,~) the time-
dependent vector (also called an instance or sample) that
can bear properties of different types (e.g., an integer, a real,
a categorical, an image, or a binary sequence) [37]. The term
“time series” is frequently used to refer to time-oriented
data comprising numerical values, while time-oriented data
consisting of categorical values is sometimes termed event
sequences [38]. To ensure terminological clarity and prevent
misunderstandings, we refer to time-dependent data of any
type as simple “‘time series” .

A time series dataset is considered unidimensional when
it contains only a single qualitative or quantitative feature,
also known as an attribute or variable. Although the temporal
evolution of ordered pairs (t;, v;) can be represented in a
Cartesian coordinate space, each instance of v; can also bear
a subset carrying an arbitrary number of features, expressed
as v; = {vi1,vip,...,vit}. These k elements define the
feature space of the time-dependent instances, thus leading
to a multidimensional time series dataset, since each instance
can be interpreted as a point in the m-dimensional space
where m = k 4 1 is the total number of elements in
(t;, v;), that is, the k time-dependent features and the time
component. Consequently, families of time-varying curves
for each feature of time-dependent instances can be produced
in the m-dimensional space [39].

Throughout this text, we reserve the term ‘‘parameter”
to identify any adjustable element used to configure a data
modeling or graphical object.
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B. MULTIDIMENSIONALITY

An important definition must be clarified before address-
ing the fundamentals of time series visualization. The
literature reports terms such as ‘“‘multidimensional,” “high-
dimensional,” ‘“multivariate,” or even ‘‘multivalued” to
describe datasets where each instance (time-dependent vec-
tors) comprises a subset of elements. However, these terms
are not used consistently [40]. By convention, we adopt
the term ‘“multidimensional”, equivalent to multivariate,
to denote datasets composed of multiple features, which may
or may not be dependent on each other at each time interval.

Due to the growing capacity of current devices and
sensors for data collection, storage, and transmission, time
series datasets tend to be large, not only in the number
of instances or time intervals but also in the number of
attributes (dimensions) associated with each instance, making
time series analysis a complex and cumbersome task [29],
[41]. Their difficult interpretation is closely related to data
dimensionality, i.e., an adequate representation of the many
elements linked to each time interval.

Figure 1 illustrates the structure of a multidimensional
time series dataset conceptually represented as a data cube.
Consider, for example, a simulation procedure that involves
parametric optimization, where a set of features is given as
input for multiple simulation methods at each time step. More
specifically, different vectors of input features are received
and processed by different algorithms, and then multiple
series of output vectors are produced. By recording both
inputs and outputs at each time step, we obtain a snapshot
of the simulation. Iterating this procedure over subsequent
time instants for modeling features and possible adjustments
to the simulation parameters generates a sequence of such
snapshots that contains all stimuli and outcomes processed
over time. When organizing these data as rows (series of
outputs), columns (features), and depth (temporal evolution),
we have a multidimensional time series that resembles a cube-
like temporal structure, as shown in Figure 1, which can
be extended by adding spatial features or stacking temporal
layers into the data structure.
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As the dimensionality of the “time cube” increases,
representing and interpreting its content becomes increas-
ingly challenging [42], as it may present time-varying
groups of relational structures. This increased complexity
complicates the analytical tasks related to extracting useful
information from the data. In particular, analyzing trends and
interdependencies among time-varying features is at the core
of multidimensional time series mining [43].

C. FRAGMENTED AND INTERMITTENT TIME SERIES
Real-world time series often contain noise and interruptions
due to sensor failure, communication loss, or irregular
sampling intervals. These interruptions produce missing
observations with distinct statistical characteristics that can
obscure the underlying patterns [44], which require explicit
treatment to avoid biased inference while preserving the
integrity of the temporal dynamic.

Approaches for handling fragmented time series fall into
two broad categories. First, classical statistical methods, such
as linear or spline interpolation, ARIMA and Kalman filters,
and state-space methods, estimate missing data points when
the missing spans are short and the underlying dynamics
are locally smooth [45], [46]. For example, Alexandrina
et al. [14] employed a spline interpolation approach to
represent fragmented points in an interactive system that
dynamically adjusts the visualizations. Second, modern data-
driven machine learning techniques directly learn temporal
and cross-series dependencies and can impute long or
structured gaps [47]. For example, Cao et al. [48] proposed
a bidirectional recurrent model that propagates information
in forward and backward directions, demonstrating effective-
ness in reconstructing missing extended segments.

From the visualization perspective, designers must balance
continuity and transparency, i.e., communicating data impu-
tation. Best practices can include: exposing the missingness
pattern and provenance (so analysts know which values were
measured versus inferred) [49]; rendering imputed values
together with explicit uncertainty encodings, such as error
bars or translucent bands [50]; and providing interactive
controls that allow users to switch between raw and imputed
views, to view per-segment confidence intervals, and to
inspect the imputation method and parameters on demand.

D. OVERLOOK THROUGH TIME SERIES MODELING
Before presenting the visual tools for time series InfoVis, it is
essential to mention that graphical representations can extend
beyond raw empirical dependent (observational) dynamics.
For example, visualizations can also be applied to compo-
nents derived from model outputs or filter states, such as
dynamics associated with time-varying parameters or phase
evolutions. In this context, time-series modeling falls into
two broad categories: time-domain and frequency-domain
approaches, with their goodness-of-fit results supported by
visualization.
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Time-domain methods decompose a time series/signals
into interpretable estimated/learned components (e.g., trend,
seasonality, cycles, and stochastic volatility), combined
additively or multiplicatively in equations indexed over time.
For instance, let us suppose a univariate (i = 1) collection of
observations indexed over time (v;), such as

1 2 -1
W = poD VB (1)

where the f'(-) function can be a combination of elements like
a simple explanation of the current event as a contribution of
the previous one (¢), plus a random noise (¢),

r—1
n @ -1 t—j
W= P g0 =D el T 40 @)
j=1
or more complex structures (components) like integration of
trend (B;) and season (s;) components,

@ -1
vgt) :f(vl(. ),vl(. ), ...,VEZ )|/3t,s,) 3)

where those elements are a time-dependent window com-
bined additively or multiplicatively. For the sake of illustra-
tion, the season component may carry information lagged
r-steps (and may also incorporate other components in
its structure, through A-functions, such as trend or change
points), measured by "),

r r
se = D o m O 1Bt or [ Tlemof 1801 4)
w=0 w=0

These breakdown components and how these elements
are constructed may explicitly describe a combination of
elements, such as level, trend, seasonal, and residual (through
the addition or multiplication of parameters). Classical sta-
tistical frameworks [51] include (S)ARIMA, GARCH, Holt-
Winters, SEATS, X-11 and variations, STL, ETS, (dynamic)
regression (e.g., Vector Autoregressive and dynamic factor
models), TBATS [52], hidden Markov models, harmonic
regression, and multivariate singular spectrum analysis
(mSSA). Modern machine learning literature presents several
tree-based ensembles, such as XGBoost [53], and popular
artificial neural network architectures (ANNs, based on
CNNs, LSTMs, GNNs, or LLMs) that are designed to capture
complex nonlinear dependencies, such as Prophet [54],
DeepAR [55], N-BEATS [56], EfficientNet-based [57],
Temporal Fusion Transformer [58], and Vision Transformer-
based [59].

From a frequency domain perspective, the same concept of
series decomposition applies to sinusoidal functions. It is seen
as an infinite summation replaced by an integral, focusing on
a function mapped from a set of integers, i.e., considering a
univariate time series

v = /ﬂ [cos(wt)dA(w) + sin(wt)dB(w)], 5)
w=0

where the combination of cosine and sine functions is
alongside functions A(-) and B(-) in terms of differentials
indexed on the continuous parameter w, easily extended
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from [0, 7] to [—m, m] domain, allowing the existence of
the spectral distribution/density function. There are standard
methods of frequency transformation (FT), such as the
discrete Fourier transform (DFT) or discrete cosine transform
(DCT), which can be used to detect periodicities and
frequency content.

Real-world time series often arise as wave-like patterns
in natural and engineered experiments, embedding concepts
from physics such as energy transfer, phase shifts, and oscil-
latory dynamics. In this context, wavelet transforms decom-
pose non-stationary series into time-frequency components,
localizing energy transfer and phase changes that Fourier
transforms can overlook, enabling time series visualization as
oscillatory waves. Cazelles et al. [60] applied the continuous
wavelet transform (CWT) to generate decompositions that
identify transient, non-stationary oscillatory behavior in
epidemiological time series. Priyadarshini et al. [61] used
wavelet packet decomposition (WPD) to detect and visualize
voltage disturbances in a computationally efficient power
quality monitoring approach.

In practice, time-domain components can be visualized
through coordinated views, supporting the dynamic explo-
ration of each element. Frequency domain visualizations
often focus on spectral plots of dominant periods, where
the number of observations between seasonal repetitions
(the “frequency’’) guides interpretation. Recent studies have
integrated spectral coefficients and ANN models to uncover
deeper frequency-based patterns [62], [63].

E. TIME SERIES AND INFORMATION VISUALIZATION

The vast volume of time series data introduces analytical
challenges that require sophisticated approaches to manage
and interpret large volumes of content [38]. Data mining
and InfoVis share the goal of improving data interpre-
tation; InfoVis specifically supports this process through
interactive visual representations and tools that reveal useful
patterns [17]. Visual mining is the union of techniques from
both research areas by embedding visual strategies into the
knowledge discovery process [64].

Figure 2 illustrates the basic steps of the visualization
pipeline. The process begins with data acquisition, where
raw data are collected, recorded, and organized in structured
formats. Data acquisition is often the most time-consuming
step, as it typically involves collecting data directly from
the real-world environment. The physical environment serves
as the data source, and the social context determines how
conventions from the environment are interpreted [65].
At first, raw data do not convey insights into the source envi-
ronment because of their complexity of direct interpretation.
At this stage, extensive pre-processing and transformation are
applied to extract relevant attributes (by manual selection or
automated methods).

Next, graphical algorithms are developed to model the
pre-processed content. These algorithms leverage visual
properties and graphical symbols to map sequences and
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generate adjustable representations that dynamically capture
temporal changes [66]. This step transforms numerical
and categorical attributes into visual formats that enable
monitoring of temporal evolution.

The final stage involves user interaction. Using an
input device, such as a computer mouse, analysts select
intervals of interest to explore through comparisons among
different data views, filtering out noise, and converting the
visualized information into actionable knowledge. Although
information tends to be cumulative, knowledge is selective.
Only the information displayed on a computer screen may
not be sufficient for making a decision, and an excess
of information can clutter the analysis. Therefore, when
performing an analysis, the analysts must know what to do
with the discovered information, since it is the foundation of
knowledge.

The connection of analysts with an interactive information
space drives the cognitive knowledge discovery process,
helping visual perception of previously unknown patterns
essential for informed decision-making. Using the knowledge
generated through selective information, users can under-
stand and, if necessary, modify the environment (data source).

For example, the classical map created by Charles Joseph
Minard in 1869 is one of the earliest effective multidi-
mensional time-series representations. Minard used a data
map to describe the flow of French army soldiers during
Napoleon’s disastrous 1812 war against Russia. According
to Tufte [67], Minard’s chart is probably one of the best
statistical representations ever made, since it simultaneously
integrates spatial, temporal, and quantitative variables (e.g.,
troop numbers and temperature), effectively summarizing the
conflict’s evolution. Minard’s chart uses a graphical approach
currently known as the Sankey diagram, which is discussed
further in Section V-F.

F. TIME SERIES INFOVIS TAXONOMIES AND GUIDELINES
Since the representation of multidimensional time series is a
persistent challenge, Aigner et al. [29] proposed a framework
that classifies the different approaches of visual temporal-
data analysis, while Javed et al. [68] categorized visualization
techniques for multiple series into two main categories,
namely shared-space and split-space.

In the shared-space approach, multiple time series are
plotted within the same graphical area [69]. A visualization
in which data features show overlapping curves on the same
axes can facilitate direct comparisons among values, since the
resultant chart is a visual summarization of multiple values
in a single and aggregated view [6]. However, the amount
of information to be simultaneously represented without
clutter is limited. Displaying more than four curves turns
the readability significantly challenging, causing cognitive
overload, especially when the number of data dimensions
demands the use of color codes with similar contrasts [68].

In split-space techniques, each series holds its own space
(or chart) — usually small multiples (views) — and the
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FIGURE 2. Schematic diagram of the interactive information visualization process. Visualization is closely related to data
knowledge discovery, as it supports data interpretation through graphical tools.

dimensions of a multidimensional time series with different
data types should be divided accordingly. Depending on
the context, the charts share similar structures (e.g., size
and type of metaphor), and side-by-side positioning can
enhance the estimation of temporal information, minimizing
the overloads generated by a single and complex visualiza-
tion, which may be cognitively tiring [11]. On the other
hand, the accuracy of information estimation may decrease,
as displaying multiple and simultaneous charts requires each
of them to be constructed in smaller portions of space, which
can lead to occlusions and reduced details [70].

Figure 3 shows examples of the shared- and split-space
visualization systems. The charts provide information on
unemployment rates in the United States, with attributes
related to economic sectors restricted to the years 2000—
2010.2 Figure 3a illustrates a Stream graph (see Section V-G),
a shared-space technique in which time-dependent attributes
are rendered as stacked layers, one on top of the other,
arranged along a central time axis [15]. Furthermore,
Figure 3b presents the same time-dependent features holding
their own space in small area charts, using the same graphical
metaphor for all charts. Notice that the aspect ratio of the
charts is homogeneous [71].

As examples of these categories, Wattenberg [72] identi-
fied techniques based on the space-filling concept. Typically,
the information area that fills a chart occupies only a
small portion of the total area between the axes (see
Figure 3). In contrast, space-filling strategies make use
of all (or virtually all) available space on a screen and
are considered efficient regarding space use [73]. Although
several space-filling techniques are devoted to hierarchical
data structures [74], [75], the growing demand for multidi-
mensional time series visualizations in limited spaces has
motivated the development of systems that apply the space-
filling concept [69], [71].

2https://www.bls. gov/, visited on June 2023
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Card et al. [66] classified visualization systems that
interconnect multiple visualization approaches to investi-
gate complex, conceptual, and/or heterogeneous entities as
hybrid approaches. These systems employ at least two
distinct approaches to improve the expressiveness capacity of
visualization information transmission [17]. In this context,
“different views” refer to distinct views that emphasize dif-
ferent aspects of a dataset and promote their comprehension
by the user [76].

Modern multi-view systems exploit data diversity by
integrating different views and graphical elements to build a
direct visual connection between the features and the time
axis. Such integration supports the exploratory process based
on interactive browsing, a critical component for building a
successful visual analysis [28]. By partitioning the data into
multiple interconnected views, exploratory strategies based
on the “divide and conquer” approach can be applied, thus
generating manageable segments of information that reduce
the memory effort required for the user to assimilate the
information on screen [76].

The spatial placement of interface elements must be
consistent toward minimizing the user’s need to continually
switch contexts [76], or browse views that are distant from
each other. The design must ensure that the user’s attention
remains focused on the right places. As an example, Gruendl
et al. [43] proposed a hybrid interface with four information
groups: a parameter setup panel, a parallel coordinates
panel, a time series repository, and a collection of charts
displaying interactively selected variables. This structure
enables users to explore multiple views, segmenting time-
dependent features according to different perspectives and
data granularities in a compact design.

User interaction and data presentation are critical com-
ponents for an effective data mining process [77]. Hybrid
systems are highly dependent on interaction techniques,
requiring coordination mechanisms that synchronize data
exploration across multiple graphical elements. In other
words, actions performed in one view must be fluidly
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FIGURE 3. Two graphical representations of the unemployment rate in the United States, across the economic

sectors, from 2000 to 2010.

propagated to all other views. Coordinating multiple views
requires sophisticated management strategies, which makes
the design of hybrid interactive interfaces particularly chal-
lenging [76]. Therefore, designers must carefully address
attention to coding errors while developing such environ-
ments, since errors can be propagated across interconnected
components and be difficult to fix due to the intricacy of the
graphical elements.

Presenting multiple levels of detail simultaneously pro-
vides users with a high-density context of information,
thus increasing the analytical power over the data by
enabling exploration from different perspectives [78]. Multi-
view systems improve exploratory performance by reducing
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the time required to access complex information, since
visual comparisons are cognitively easier for the user
than those relying only on working memory. This design
supports the discovery of unknown relationships in the
data through a linked and coordinated environment where
complex information is divided into multiple and simplified
views [79]. In this context, multiple views should be arranged
based on perceptual design principles and interconnected via
interaction tools, so that hybrid visualization interfaces with
coordinated views are emerging as a modern solution for
exploring complex multidimensional time series.

Visual metaphors related to time series are numerous
and, therefore, other authors have categorized representation
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techniques based on alternative properties related to the
geometrical aspects of the graphical elements, iconography,
and information access, among other visual structuring prop-
erties (layout). Comprehensive taxonomies for visualization
techniques can be found in Oliveira and Levkowitz [17] and
Grinstein et al. [80]. Additionally, Heer et al. [6] analyzed
space-efficient methods for multidimensional time series, and
Roberts [81] and Baldonado et al. [76] provided overviews
of design fundamentals and requirements for multi-view
systems.

G. GRAPHICAL PERCEPTION AND VISUAL PROPERTIES
Visualization aims to effectively communicate information to
human users [82]. Therefore, an InfoVis tool must transform
complex data into comprehensible information by leveraging
human graphical abilities through the exploration of visual
properties to enhance the clarity and accuracy of information
transmission. Several studies have addressed the limitations
of electronic device displays for providing information in a
two-dimensional domain. Researchers have created tools for
visualizing datasets with multiple attributes that cannot be
mapped on a Cartesian plane or even on three-dimensional
spatial coordinate systems [83]. This section addresses
aesthetic principles to consider when designing InfoVis tools
that enhance users’ comprehension and avoid distractions
during analysis.

Veras and Collins [22] defined discriminability as the
ability to differentiate the graphical elements that human
vision can perceive. Increasing the number of data curves
represented in the same space might drastically decrease
the capacity of individualized information perception; thus,
it becomes necessary to inspect the relationships among
the data series individually. More specifically, individual
contributions must be recognized, that is, series that pos-
itively or negatively influence the overall data trend [84].
The comprehensive exploration of multiple curves in a
line graph simultaneously is challenging, mainly due to
issues such as overlays and visual disorder [69]. Although
alternative metaphors (e.g., bars) can summarize large
volumes of data, they typically require more space per single
element. In addition to assessing correlation dynamics among
families of data curves, analysts must understand inter-series
relationships by individualizing them at different scales and
across distinct time intervals.

Following, visual scalability is defined as the ability of
visualization systems to effectively represent large datasets,
supporting increasing volumes of information in terms of the
number of instances and dimensions [85]. This aspect should
always be considered when developing visual approaches,
as human working memory can handle and interpret a
limited number of cognitive entities at once [68], [86], [87].
Occlusion refers to the obstruction of graphical symbols
caused by overlapping elements, and it is a recurring
scalability issue when handling large sets. In this sense,
effectively representing thousands of records within the
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limited visual space of computer screens remains one of the
major challenges in the InfoVis domain [88].

Figure 4 illustrates the “‘curse of dimensionality” [42] in
line charts: As the number of time-varying features increases
from three (Figure 4a) to ten (Figure 4b), individual legibility
decreases, resulting in visual disorder and clutter. The charts
in Figure 4 use the same unemployment rate data presented
in Figure 3. In a related study, Gogolou et al. [89] evaluated
how three variants of line-based charts (line chart itself,
horizon graphs [6], [68], [69], and color fields [90], [91])
influence the similarity perception abilities of humans in
dynamic time series analyses tasks. They compared such
charts with automatic similarity measures, highlighting good
performances of horizon graphs.
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FIGURE 4. Two visualizations with different numbers of features related

to unemployment rates in the United States per industrial sector
from 2000 to 2010.

Cleveland and McGill [92] defined visual perception as a
users’ ability to interpret graphic encodings to decode and
understand the information. Perceiving scenes and objects
through transmitted information is not merely a passive
observation procedure. Research on graphical perception
for reducing cognitive load in data visualization had been
conducted before computers transformed graphics into
interactive tools. In the early 20th century, the influential
Gestalt theory emerged from studies of fundamental laws in
behavioral psychology on elemental perceptual organization
and grouping. According to Gestalt theory, the brain is a
pattern and discrepancy detector that identifies, distinguishes,
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and groups graphical elements based on shared character-
istics to form more complex perceptual constructions [93],
[94]. Exploring the brain’s grouping capacity is valuable
for developers designing visualization tools that integrate
powerful communication elements to help users discover
patterns within large amounts of information.

Key perceptual properties that can guide the graphical
encoding include: (i) groups of units sharing similar goals
(e.g., common fate or proximity); (i7) groups of elements with
similar shape characteristics (e.g., size, color, orientation,
symmetry, or parallelism); (iii) groups of objects related
by the same action; (iv) smooth or curving elements
perceived as more visually friendly; and (v) groups of
elements enclosed within well-delimited boundaries. Figure 5
illustrates aesthetic principles based on Gestalt theory.

A comprehensive overview of the historical origins of
the theory, as well as a detailed discussion of organization
and visual perception by grouping objects, can be found
in Wagemans et al. [94]. Additionally, Wagemans et al.
[95] explored recent formulations related to Gestalt prin-
ciples related to efficient information structuring in visual
systems from neurological research on complex perceptual
states.

Moreover, Aigner et al. [96] found that visualization tools
exploring graphical properties demonstrate better capabilities
for information transmission when applied to complex tasks
involving multiple analyses, as observed when such tools
are contrasted to visualization techniques that do not explore
graphical properties. Thus, modern visualization systems
should consider aspects of visual perception, such as space
management, the use of familiar symbols and shapes related
to the application domain, data orientation, and visual con-
sistency among different elements under visualization; these
aspects should deal with the visual disorder generated by
large amounts of information displayed simultaneously [68],
[97].
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Hao et al. [71] analyzed the influence of alignment and
aspect ratios on multidimensional time series visualizations,
and claimed that elements placed at the top of the screen are
cognitively perceived as more important. Similarly, elements
on the left side are also considered important (where the
labels and other descriptive information related to the Y-axis
variables are usually placed). Spatial placement reveals the
order of the data and emerges as one of the most expressive
perceptual principles in visualization [11].

Besides, size is a critical information channel, with larger
elements typically perceived as more important than smaller
ones. Color is another highly influential graphical property.
Well-defined color contrasts facilitate accurate reading; that
is, adjacent objects representing different variables are more
easily distinguished when encoded with high-contrasting
color schemes, whereas the efforts required for the individ-
ualization of such objects tend to increase when the color
contrasting difference is smoother. Moreover, large graphical
areas, such as backgrounds, should display low saturation
levels (e.g., white or lighter shades) to provide a clear contrast
with the vivid colors used for symbols [65]. Figure 7 presents
an example where size and color communicate different data
attributes.

A colormap, or color encoding, is a sequential arrangement
of colors used to represent data values in a visualization [98].
One of the most common design mistakes in InfoVis is
overusing the rainbow colormap, which is probably the most
popular in visualization applications. According to [82], the
rainbow colormap is a poor choice because it can confuse
viewers for three primary reasons: (i) it is isoluminant for
large segments, and the lack of monotonic luminance can
obscure or distort data shapes; (ii) it is not perceptually
uniform, which can result in misleading interpretations of
data variations; and (iii) it is based on non-data-dependent
gradients, creating colored regions with artificial divisions
within the data. In addition, rainbow maps are difficult to
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make accessible, especially for viewers with color vision
deficiencies [98].

However, Ware et al. [98] presented a study that demon-
strated scenarios where improved rainbow colormap designs
(e.g., multihued maps [99]) could be useful, increasing
accuracy in visualization tasks (if carefully used). It is
important to notice that the choice of suitable color schemes
depends on the context. Reference [82] suggested more
suitable colormaps than rainbow-based. We recommend
checking ColorBrewer [100], a valuable guide to help
visualization designers select color encodings that align with
perceptual properties.

Following, investigations into cognitive perception princi-
ples for time series visualization, assess the extent to which
different graphical properties influence the analysts’ abilities
to compare multiple series effectively [91]. By carefully
considering these graphical properties, InfoVis developers
can optimize the interaction between data, visualization,
and analytical tasks, simplifying the communication process
that supports users’ engagement with the information space.
Adnan et al. [101] and Albers et al. [91] conducted com-
prehensive research on graphical perception and compiled
“good design practices” directions for visualization systems.
Similarly, Javed et al. [68] systematically investigated the
performance of several chart designs, documenting critical
graphical perception factors and providing recommendations
for selecting appropriate visualization methods for multidi-
mensional time series.

As discussed above, the human cognitive system is a
powerful machine; however, it has significant limitations.
Even in a visualization interface that explores advanced
graphical properties, excessive simultaneous information can
overload users and become unworkable, leading to visual
clutter and reduced clarity [68]. In such cases, visualization
systems should incorporate exploratory methods that support
selections and reorganizations of the content on the screen at
varying levels of granularity.

We refer to the books of Munzner [102] and Ware [65] for
comprehensive studies on design principles in information
visualization. The following section explores interactive
techniques designed to address human visual limitations in
dense visualizations.

H. INTERACTIVE EXPLORATORY TECHNIQUES

Modern visualization systems essentially comprise two
main components: visual representations (i.e., data mapping
in graphical structures) and interactive techniques (i.e.,
communication channels between users and systems) [103].
However, few studies have evaluated the impact of interactive
techniques in InfoVis systems related to visual perception
improvements. Most of the available literature focuses only
on classifying and developing interactivity [104]. Histori-
cally, the InfoVis community has concentrated on developing
graphical presentation methods, while the Human-Computer
Interaction (HCI) community has addressed interaction and
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design of components that influence user experience while
browsing in data mining tools [101].

Meanwhile, datasets are increasingly dense, and traditional
time series visualization approaches often suffer from visual
clutter and occlusion of details (see Section IV-G). These
methods often rely on page scrolling for users to access
the information contained in all data points [71]. Scrolling
through pages loaded with diversified data types depends on
the user’s working memory, and linking different pieces of
information that are not visible simultaneously can lead to a
fragmented overview of the data.

On the other hand, digital devices have evolved in terms of
graphical quality and computational power, thus supporting
the development of comprehensive multi-view systems and
refined user interaction techniques, which are crucial for
coordinating and integrating the information context on the
screen. These interaction mechanisms allow users to select
points of interest on one chart, which are then highlighted
across other linked views. Multiple levels of abstraction
and detail support dynamic exploration of data patterns and
anomalies [74]. In this sense, direct interaction with the
information space can reduce data complexity and control
the flow of information under analysis. Moreover, through
iterative knowledge acquisition and hypothesis refinement,
users can discover complex relations within dense datasets,
including accessing information on demand, without the need
to visualize all details at once [19].

To address the challenge of handling massive datasets with
effective interaction mechanisms, Shneiderman [1] intro-
duced the ‘““overview first, zoom and filter, then details-on-
demand” paradigm, one of the most remarkable and widely
recognized theoretical concepts in visual data exploration.
This approach assumes that some patterns and trends can be
observed only when data is analyzed from a broad, contextual
perspective. For example, regions of a dataset containing
local peaks/minima may be easily misinterpreted as global
maxima or minima, inducing analysts to draw conclusions
based on apparently adequate but incorrect information. In an
InfoVis application, the overview provides a broad context
of the dataset, presenting an overall picture of the entire
entity under visualization. However, the number of items
can easily scale to thousands when large datasets, such as
multidimensional time series, are visualized, which hinders
the effective detailing of individual elements [105].

After identifying the information of interest, users can
select it to verify its specific characteristics. “Details on
demand” refers to the selection of an individual object
or a group of objects for point-by-point detailing, allowing
users to selectively adjust the depth of detail, hiding,
or revealing the information [1]. Additionally, zoom and
filter are exploration operations that reduce visualization
complexity by removing non-essential information from
the visualization and reorganizing the on-screen representa-
tion [105]. Reducing the initial set of elements helps users
individually investigate the details of selected data more
effectively [1].
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TABLE 1. Conceptual elements of design for visual data exploration.

Design Concept

Description

Multi-view systems

Simultaneously display multiple coordinated visualizations to support comparison, cross-
referencing, and exploration across different aspects of time-series data without forcing
context switches.

Overview first, zoom and filter,
then details-on-demand

A visual exploration paradigm where users start with a high-level temporal summary to
identify macro-patterns, refine intervals of interest through zooming and filtering, and
finally access detailed data or segments selectively.

Focus+context

A visual exploration paradigm that combines localized detail (focus) regions within a
broader contextual view. Helps users maintain orientation while inspecting temporal
subsequences or anomalies in time series data.

Fluidity

Smooth, continuous transitions and immediate visual feedback during interactive opera-
tions. Improves user experience and preserves cognitive continuity during exploration of
temporal structures.

Intuitive design

Interface designs leveraging elements and interactions that align with user expectations,
requiring minimal instruction for a quick understanding of temporal trends and interac-

tions across views.

After a detailed overview of the original concept appli-
cation, Craft and Cairns [105] defined zoom as a filtering
method through data browsing. This approach supports
users in controlling content with no change in the overall
representational context, filtering out undesired items from
the current view. According to the authors, the dynamics
of the details-on-demand strategy is an abstraction process
that adheres to the Principle of Selective Omission [106].
The cognitive system processes sensory information into
manageable stages, i.e., complex data tends to be reduced
to manageable portions through organization or format
simplification. As a result, the brain processes the available
information quickly, allowing rapid responses to changes in
the environment.

In addition, the ‘“overview first, details-on-demand”
strategy fits when applied to multi-view systems, since it
aims to reduce visual complexity by revealing details of the
selected items without changing the overall representational
context. After selecting an element group or a specific time
interval, the corresponding data views are updated to display
detailed information about the chosen items. This action is
particularly important for steering the discovery of links and
seasonal patterns between two (or more) data dimensions,
building associations of the identified information with the
remaining parts of the dataset [105].

Cockburn et al. [23] summarized interface strategies
such as ““focus+context”, which integrate focal details and
contextual visualization in a multi-level composition where
all parts are visible in a single view. This principle relies
on magnification tools (e.g., lenses [107]) to distribute
content across multiple coordinated views where all focused
elements are visible while also displaying the surrounding
context. On the other hand, in the details-on-demand strategy,
zooming operations alter the scale of a view, relying
on users’ spatial memory to compare multiple pieces of
information [108].

161664

In this context, Kothur et al. [109] integrated cross-
correlation windows with a four-view design, while Krstajic
et al. [70] employed a focus+context technique associated
with a compact tool for visually analyzing multiple events
within temporal data. In their approach, a distortion lens
was used to verify areas with high data density. Distortion
lenses [107] are interactive techniques that magnify data;
their magnification level and spatial extent are configurable
so that they operate as local zoom tools, typically activated
and positioned using the mouse cursor. Zhao et al. [110]
extended the interactive capabilities of the lenses for temporal
data exploration, allowing an arbitrary number of series to
be used as lenses’ inputs. They integrated supplementary
interactive tools to compare and statistically analyze regions
of interest across one or multiple series. For an overview
of lens abstractions, Tominski et al. [111] identified related
studies and discussed their properties and approaches within
a general visualization context.

Aigner et al. [28] defined the coordination of multiple
views as the proper way to propagate an interaction from one
view to all other dependent views. An important matter arises
regarding the coordination among multiple views in interac-
tive tools, i.e., the difficulty in precisely tracking changes
when a delay occurs between interaction and transition
(adjustment in the views’ content after an interaction) [112].
User interactions should result in immediate responses from
the interface, which promptly update all coordinated elements
for a seamless interactive exploration process. However, these
visual changes must be smooth and not abrupt [11], i.e.,
modern InfoVis tools should work based on fluid interactions.

Elmqvist et al. [104] described the fluidity of visualization
systems as an intangible concept characterized by smooth
and continuous effects that allow charts to quickly react to
user commands. Due to its intangible nature, developing
tools with a fluid design is not a trivial task. The authors
argued fluidity is a powerful abstraction that can transform
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TABLE 2. Interactive tools and techniques for visual data exploration.

Exploratory tool \ Description

Zoom Interactive scaling of a selected time interval. Expands the temporal axis to reveal
intra-interval detail, allowing the inspection of fine-grained variations in the data.

Filter Dynamic inclusion or exclusion of series, temporal ranges, or categories, reducing clutter

and helping users focus on meaningful patterns.

Distortion lenses

Local magnification tools that locally enlarge dense areas around a cursor position without
losing surrounding context.

Brush selection

Manipulation tool to select temporal segments by directly dragging over plots. Enables
comparison, highlighting, or linking selected time intervals across coordinated views.

Tooltips On-hover text pop-ups displaying timestamped values, metadata, or analytic annotations.
Enable value inspection without requiring persistent visual changes.
Animations Smooth transitions between visual states or time intervals that guide users through changes.

Animations support mental mappings of evolving data, reducing jump disorientation.

the exploratory process into a comprehensive and enjoyable
experience, helping users compose an evolutionary mental
model of the information flow. Furthermore, they also
elaborated guidelines for building InfoVis systems that inte-
grate responsive interactions with graphical representations.
As the previous paragraphs present many different and dense
concepts, Table 1 summarizes elements that developers can
explore when creating modern visualization tools.

From a different perspective, the interactive information
search involves exploring data features to test and refine
hypotheses. If the visualization tool takes too long to render
the new layout after an interaction, users may lose track of
their initial expectations [42]. Several interactive techniques
can improve the user experience in visualization systems,
ranging from simple methods, such as highlighting (which
acts on visual control by capturing the user’s attention
to specific data elements [101]) to more sophisticated
animations that guide viewers through transition events.

Following this idea, Heer and Robertson [112] claimed
that animation is a promising strategy to enhance users’
perception of object changes across charts with correlated
information. Through supervised experiments, they evaluated
the advantages of animated transitions during operations
such as resizing axes and values rescaling, toward reducing
occlusions. However, animation effects do not automatically
guarantee effective exploratory performance, with Heer and
Robertson [112] recommending that graphical developers
avoid overly complex animations. The authors warned
that animations in statistical charts require careful studies,
since inappropriate transitions might induce analysts to
misinterpretations or errors when the actions violate the
visual semantics of the data. Furthermore, they suggest that
animations are preferable for making screen updates more
user-friendly, recommending transitions that take one to three
seconds as a response time.

Sadana and Stasko [78] designed interactive systems
featuring multiple coordinated views optimized specifically
for tablets, which have become very popular touch-screen
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mobile devices with no input tools such as a keyboard
or mouse. Despite their considerable computational power,
tablets and smartphones impose more space constraints than
a regular computer since their screens range roughly from
four to thirteen inches. User interaction on these devices
is addressed directly through the user’s touch, which may
lead to inaccuracies during data selection tasks, for example.
However, due to their widespread use, InfoVis systems can
exploit their resources to engage a wider audience. Sadana
and Stasko [78] also proposed a requirement analysis for
multi-view interfaces in addition to interaction techniques
considered suitable for data selection and view coordination
on small devices.

Figure 6 illustrates interaction commands for touch-
screen mobile devices with graphics based on visualizations
developed by Alexandrina et al. [14]. For example, to zoom,
the user should place two fingers on the screen and then move
them apart (Figure 6a). To define a selection area, the user
touches a region in the view and drags horizontally across the
view until the open area encompasses the items of interest
(Figure 6b).

Interactive techniques are integral to current analytical-
exploratory processes, with virtually all modern visualization
tools supporting some degree of data exploration through
dynamic mappings [17]. Pike et al. [113] described interac-
tivity as a science and identified challenges for developing
effective interactive tools. They argued that interactive tools
should act naturally, with interactivity-dependent objects
performing obvious-like actions without drawing the user’s
attention to the interactive operation mechanisms (even the
most sophisticated ones, as they can overload the user’s
attention). They also claimed that a good design should be
intuitive. Analysts must easily recognize elements across dif-
ferent views of a graphical interface during interactions and
understand the relationships between current and previous
data states [112].

To add more information to a visualization, Adnan et al.
[101] investigated the use of tooltips, which are text messages
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TABLE 3. User requirements and exploration challenges in time series visualization, and their mitigation using design concepts and interactive tools.

Requirement / Challenge

Description

Cognitive load

Users’ working memory is limited to a handful of items; high-density plots can overwhelm
analysts, requiring abstraction, progressive disclosure, and coordinated views to distribute
information processing effectively.

Screen constraints

Display area, resolution, and aspect ratio (especially on mobile or embedded devices)
restrict the number and size of simultaneous views, requiring adaptive layouts, responsive
controls, and aggregation techniques.

Latency and responsiveness

Interaction delays (network, rendering, data retrieval) degrade the exploratory loop;
maintaining short response times and smooth transitions is critical to keep users’ mental
models aligned with visual updates.
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FIGURE 6. Interactive visualization tools for exploring data presented on
touch-screen displays, such as tablets and smartphones.

displayed when a user hovers over a visual element with
the mouse. Such approaches help users identify data values
and characteristics. The authors found that tooltips can
enhance navigation in time series visualizations without loss
of efficiency or analytical accuracy. Their results showed that
some users prefer simple textual instructions about points of
interest over more complex interactions with a high learning
curve. Figure 7 presents an example of interactivity using
tooltips [14].

In addition, Goethem et al. [114] applied brush selection
as an interactive technique to facilitate trend detection in time
series data. Brushing allows users to select subsets of data
by interacting with graphical representations directly: toward
defining a selection area using brushing, the user clicks at a
starting point (where the target objects start), drags the cursor
until reaching a termination point (comprising all desired
target objects), and finally releases the mouse button to
complete the selection process. After the release moment, the
selected area is highlighted and the corresponding data can
be transferred to another verification method (see Figure 6b).
For an easy overview, Table 2 summarizes the interactive
tools discussed in this section.
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FIGURE 7. Accessing multiple information from a time point with an
interactive tooltip [14].

Generally speaking, visual analysis focuses on the con-
nection between data presentation and human cognition;
simply creating new graphical metaphors does not ensure
information perception [113]. Instead, graphical development
should be integrated with interactive approaches for assisting
users in discovering patterns and trends on demand in
multidimensional time series data. Transitions between the
states of visualization interfaces can be smoothly animated
toward an oriented and continuous analytical environment.
Table 3 summarizes the main challenges faced by modern
visualization systems in managing large, multidimensional
time series datasets.

Complementing the other studies presented in this section,
Yi et al. [103] outlined a taxonomy for interactivity objectives
in InfoVis, while McLachlan et al. [11] designed development
guidelines for interactive-based systems with multiple views,
in which time series can be side-by-side compared on the
same chart, under different levels of detail. Perin et al. [69]
compared static charts with interactive approaches to evaluate
the effectiveness of alternative representations applied to
multiple time series and found that even simple interactive
techniques applied to unify different views can substantially
improve exploratory tasks. Finally, Wu et al. [115] proposed
a declarative relational framework that incorporates asyn-
chronous events to support interactive visualization.

I. LARGE-SCALE AND REAL-TIME TIME SERIES
The proliferation of big data has generated extreme-scale
time series containing millions or even billions of samples,
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requiring techniques capable of handling such a large volume
of data while keeping computational efficiency, perceptual
clarity, and interactivity. Two complementary classes of
methods are commonly used in this context: aggrega-
tion/downsampling that reduces raw samples to a compact
representation and multi-view systems that progressively
refine visual detail on demand (see Section IV-H).

A straightforward aggregation is temporal binning, where
data points are grouped into fixed intervals (e.g., hourly
or daily bins) and summarized using averages, medians,
or densities, which reduces data volume while preserv-
ing high-level trends [116]. For example, imMens [117]
employed binned aggregation for the real-time querying of
massive datasets, allowing subsecond response times for
interactive explorations, while TiVy [116] provides visual
summaries through adaptive binning and summarization.
Similarly, curve-preserving downsampling algorithms select
representative points to conserve salient visual features.
In this context, M4 [73] performs query-level aggregation
to produce error-bounded line visualizations at very high
reduction rates.

Multidimensional (or even high-dimensional) time series
are ubiquitous in Industry 4.0, and alternative Symbolic Data
Analysis (SDA) representations for time series have emerged.
Nascimento et al. [118] summarized more than 1.5 billion
256-channel electroencephalogram (i.e., 256 time series)
observations into 15 million symbolic intervals (approxi-
mately 0.98% of the original size) through dynamic linear
modeling, discovering temporal patterns beyond simple
average trends. Moreover, questions of dynamic accommo-
dation, as observed in time series intervals in neuroscience
research, were revealed through visualizations of brain
activity patterns using an interactive graph that highlighted
the group communication of the brain’s Regions of Interest
(ROIs) across time, also obtained through quantile regression
on symbolic intervals. Given their flexibility and speed
in data convergence, SDA-based models can incorporate
dynamic events related to complex time-dependent data,
demonstrating computational efficiency to summarize, detect
outliers, and visualize high-dimensional time series.

In real-time contexts, systems must process data in (near)
constant time. Progressive partitioning and multidimensional
pattern extraction incrementally update aggregations through
operations that bin data on-the-fly [119], while deep learning-
based analytics approaches integrate visual analytics with
neural networks to handle massive datasets by extracting
embeddings for clustered visualization [120]. Refer to Ulmer
et al. [121] for a comprehensive overview of progressive
visualization and visual analytics.

V. VISUAL APPROACHES AND METHODS

Despite the multiple taxonomies addressed in the previous
section, categorizing visualization approaches nowadays is
challenging because time-varying data have become more
extensive in size and dimensionality. As a result, solutions
designed to manage such complex data have also become
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more sophisticated, often integrating multiple conceptual
frameworks.

To better organize our discussion on InfoVis methods
devoted to time series, we have partitioned the presentation
of approaches into two sections. This section provides
an overview of the different InfoVis techniques for time-
oriented data by grouping them according to specific (or
closely related) visual metaphors, while highlighting the main
strengths and limitations of each approach. In contrast, the
following section (Section VI) addresses interfaces composed
of multiple concepts and tools, grouping them according to
their respective application domains.

To begin with, visualizing similarities in time series is
essential in many application domains [122], and several
approaches deal with data organization. For example, some
tools create visualizations that group data according to
global similarities, relying on clustering methods [123] or
grid-adaptive layouts [124], helping users visually compare
different time series directly. Additionally, temporal data
can also be recursively mapped onto ordered subareas of
the screen according to the global importance of data
points [71], or transformed into thumbnail representations for
comparisons [125]. The following subsections cover several
of these variations within the context of time series InfoVis.

A. SPIRAL AND RADIAL CHARTS

To identify cyclical trends in time series, Weber et al.
[37] introduced spiral graphs, a space-filling metaphor
that supports the detection of previously unknown periodic
behaviors such as cyclical trends or recurring events by
arranging the temporal axis as a spiral based on concentric
rings. Later, Zhao et al. [126] refined this concept by
presenting a two-dimensional (2D) radial graph illustrating
a set of daily human activities (allocating one ring per day),
in addition to a central three-dimensional (3D) representation
of the 2D chart, communicating the magnitude of data
patterns over time.

Spiral charts provide continuous visualizations for multiple
overlapping cycles and are flexible to enable visualization at
different data granularities (e.g., days, hours, minutes, weeks,
or months). However, their effective use depends on careful
parameterization (e.g., data aggregation to reduce noise),
which can be a challenging task in contexts where there is no
previous knowledge of the data properties [127]. Moreover,
spiral metaphors can offer limited advantages when the time
series has long periodic cycles.

As an example, Figure 8 shows a ringmap, which is a
spiral-based chart with a central space, depicting ten years
(2007-2016) of daily minimum temperatures from Seattle,
WA, USA [128]. As we can see, the spiral approach is
able to effectively highlight clear seasonal patterns of lower
temperatures during the winter months (December to March).

Following these ideas, Zhao et al. [129] developed Kro-
noMiner, a tool for dynamic exploration of time series that
attempts to be flexible, supporting both complex analytical
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FIGURE 8. Spiral-based chart with daily minimum temperature in Seattle,
WA, USA, recorded from 2007 (inner-most) to 2016 (outer-most).

tasks and domain independence. It is based on a radial display
that enables direct data manipulation through interactive
selection, which simultaneously highlights and organizes
distinct segments of the series. Data details are revealed using
the MagicAnalytics Lens, a technique that performs zooming
and compares parts of time series in real-time. KronoMiner
has multiple interconnected components that support its
radial structure, providing multiple levels of detail, including
views with different levels of granularity (from general
overviews to more detailed views), tooltip messages, and pop-
up menus. Although KronoMiner deals with temporal data
in a generalized way, manipulating different types of data,
the tool has limitations in handling large data volumes and
lacks analytical features for more in-depth quantitative data
analysis.

B. CALENDAR VIEW AND HEATMAPS
Spiral charts are visually engaging, but they can add a
cognitive layer to be interpreted once they require users to
mentally map the spiral layout back to a linear one. Calendar-
based charts aggregate temporal data and present it within a
calendar-like grid. In addition to enabling a detailed overview
through fine-grained presentations (daily data), users can
recognize underlying patterns in a temporal chart organized
in a familiar calendar shape. However, calendar views are
restricted in their granularity and usually require more display
space compared to approaches such as the spiral-based. As an
example, Figure 9 also shows temperature data from Seattle
for the year 2016, but now presented in a calendar view. As we
can see, it is also straightforward to identify seasonal patterns
throughout the year in this visualization.

In this context, Wijk and Selow [77] developed a tool
integrating two main components: a calendar and a multiple-
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line chart. Initially, the interface segments the dataset into
daily sequences, and a clustering algorithm groups series
with similar patterns (objects or data units) according to
proximity measures between pairs. Each day on the calendar
is color-coded according to its day cluster, and the line chart
shows curves representing each time series group defined by
the clustering process. The approach was applied to a one-
year dataset regarding the daily frequency of employees in
a research laboratory in the Netherlands. Although the tool
provides a detailed overview of the information, it deals with
data bearing periodicity characteristics that fit into a calendar-
like format. Thus, it can have limitations when working with
time series that lack daily or weekly periodic patterns [130].

Calendar views are closely related to heatmaps [80],
a widely used space-filling visualization technique that
provides a compact design to represent large amounts of
data. Heatmaps are typically arranged as matrix layouts,
relying on color encodings to represent magnitude values.
The one-dimensional applications of heatmaps are often
referred to as colorfields [89], [91]. Figure 10 presents the
temperatures of Seattle in a twenty-year timeframe (1997—
2016). We aggregated daily measures into monthly averages
and visualized them in a heatmap.

Iram et al. [131] explored time series related to energy
consumption to identify utilization patterns. They organized
the data into a date x time heatmap, where color is used
to encode consumption rates. Despite the easily accessible
information on energy consumption behavior over time,
the fine-grained organization and lack of interactive tools
limit the visualization to a few attributes. Similarly, Zhang
et al. [132] converted energy time series data from heating
stations into heatmaps to identify temperature setbacks;
however, their proposal differs by using convolutional neural
networks (CNNs) fed with heatmap images for automated
pattern recognition. Such a solution is particularly interesting
because it leverages a visualization method to feed machine
learning models for automated time-series analysis instead of
only providing humans with charts for manual analysis.

Whereas conventional heatmaps render data in individual
cells, Pham et al. [133] evolved the visualization of extensive
time series data by developing a continuous abstraction
that sorts and groups multiple series based on proximity
similarities, resulting in a heatmap arranged with similar cells
next to each other. Although such continuous visualizations
achieve high levels of generalization, they depend on
additional exploratory tools to access detailed information.
Hao et al. [71] presented a matrix-based visualization method
that allocates space proportionally to the degree of interest
in specific data subintervals. Data+Shift [134] supports data
scientists when investigating changes in real-time data used
in machine learning tasks. A covariate detection algorithm is
applied to measure distributional shifts over time, which are
then visualized using a heatmap-based interface that enables
users to conduct detailed investigations on distribution
changes through feature selections.
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FIGURE 9. Calendar map with daily minimum temperature in Seattle, WA, USA, recorded in 2016.
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FIGURE 10. Heatmap with the average of the monthly minimum
temperature in Seattle, WA, USA, recorded from 1997 to 2016.

Andrienko et al. [135] investigated population mobility
during the COVID-19 pandemic with heatmaps to represent
the evolution of daily mortality indicators due to COVID-
19 in different countries. Although heatmaps can handle
large datasets, they often become cluttered and hard to
interpret when dealing with excessive data density. Such
scalability challenges can be mitigated by incorporating
clustering and hierarchical methods or by providing different
temporal resolutions to compress the data. Additionally,
given that heatmaps are 2D visualizations, it is critical to
enhance them with interactive tools or integrate them with
other visualization metaphors to explore multiple features.
In certain contexts, 3D views can also be applied to improve
the analytical capabilities of heatmaps. For example, Chu
et al. [136] proposed a framework for visualizing space-
time-varying wind fields. They used heatmaps to represent
experimental results, capturing both velocity and trajectory
of wind particles through a combination of color encoding
and symbolic representations.

Similarly to the spiral approaches discussed above, cal-
endars and heatmaps can leverage interactive tools such as
zooming, filtering, and tooltips (see Section IV-H) to allow a
more detailed exploration of specific time intervals.

C. TIME, SPACE, AND MAPS

Maps are a usual choice to visualize geospatial data; however,
how can temporal information be introduced to a map?
Boyandin et al. [137] designed Flowstrates, a visualization
system that analyzes temporal variations in georeferenced
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datasets containing data on origin-destination flows between
multiple locations. It utilizes two lateral, geographic-based
maps and a central heatmap to separately depict spatial and
temporal dimensions, allowing for independent exploration
of each aspect. Specifically, each row of the heatmap defines
an origin-destination pair, and its cells are color-encoded to
denote the magnitude of flows in each period. The heatmap
is surrounded on both sides by an origin map (left) and a
destination map (right), with both maps linked to the heatmap
to provide coordinated exploration of spatial and temporal
patterns.

In case studies, Boyandin et al. [137] demonstrated Flow-
strates with data on the displacement of Ethiopian refugees,
revealing that Somalia was historically the country with the
most expressive destination flow. They observed that after
1988, Ethiopian migration to Somalia drastically decreased,
following an increase in reverse migratory flow. Such a
reduction is attributed to the 1986 outbreak of the Somali
Civil War, whose peak of violence was between 1991 and
1993, when the main destination of Ethiopian migrants
shifted to Sudan and Kenya. Flowstrates provides an effective
visual summary of spatiotemporal patterns; however, it must
deal with occlusion issues and has limitations in transmitting
an accurate perception of real travel distances.

Similarly, Andrienko and Andrienko [138] used heatmaps
as mosaic glyphs on maps to represent temporal patterns of
daily flight counts from airports. Relying on multidimen-
sional projection embeddings [139], [140] and introducing
a time periodization approach, the authors investigated
complex dynamic phenomena related to temporal and
geographical patterns. However, the approach is limited to
the existence of periods and can suffer when handling high-
dimensional time series.

Thakur and Hanson [10] introduced a visualization sys-
tem with 3D interactive maps, where temporal data are
represented by geographically distributed polygons with disc-
based shapes. Each disc corresponds to a specific time
interval, and its color and size represent the evolution of the
data features normalized according to their values. Although
quite interactive, the system suffers from occlusion in its
graphical elements, a common problem in 3D visualiza-
tions. The authors added a 2D linked view representing
a regional classification to mitigate such occlusions. The
tool was demonstrated on unemployment rate data from
North Carolina, USA, where the stacked elements describe
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county-level trends over time. The users can then interactively
select stacks to inspect and compare individual or subgroups
of information.

Three-dimensional visualization approaches often use
space-time cube abstractions to represent the spatial evolution
of data over time. In a space-time cube abstraction, spatial
components are represented on the horizontal plane, whereas
temporal components are placed on the vertical plane, thus
creating an information volume. Bach et al. [141] reviewed
the literature on temporal data visualization, focusing on
operations related to the space-time cube, a study that
was later extended by Bach et al. [33]. Furthermore,
Andrienko and Andrienko [142] extensively reviewed tools
and methods for space-time representations, particularly from
the perspective of tracking the displacements and movements
of entities.

D. SCATTER PLOTS AND BOXPLOTS

Scatter plots [143] are well-known graphical tools that map
data instances to Cartesian coordinates to identify trends, pat-
terns, and correlations between two variables. Each instance
is represented as a point, and multiple instances or groups
can be differentiated within a scatter plot by using distinct
symbols or color encodings. Such characteristics make scatter
plots space-efficient approaches, as only a few pixels are
necessary to visualize each point (see Figure 6). Despite their
wide usage, scatter plots have significant limitations on visual
scalability when handling multidimensional data (similar to
line charts’ limitations discussed above). As the density of
points increases, occlusions and overlaps become significant
issues, especially when the density of points exceeds the
screen resolution [73], reducing the legibility of individual
data points.

In the context of multidimensional time series, the
limitations of scatter plots become more pronounced because
of the difficulty in simultaneously tracking the temporal
dynamics (e.g., seasonality) of multiple variables. In such
cases, revealing interaction effects among multiple series
can be challenging, which limits the depth of temporal
analysis based on standard scatter plots. Several strategies
can be applied to mitigate those limitations and allow for
more effective and insightful temporal analysis based on
scatter plots, including color encoding and size variations for
data points, incorporating interactive exploratory tools (e.g.,
filtering and zooming, see Section IV-H), and arranging small
multiples to track different dimensions across multiple scatter
plots [14]. Extending scatter plots into three dimensions can
be an alternative, although it can introduce further challenges
related to 3D perception and occlusion (see Section V-C).

Feng et al. [144] introduced a data aggregation method-
ology for scatter plots (and other visual metaphors) that
generates density plots through the blurring of visual
marks, mitigating visual clutter, and enhancing preattentive
pattern identification. The solution highlights regions of
high certainty and relies on interactive techniques for data
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selection, which can help analysts identify multidimensional
uncertainty.

According to Wang et al. [145], the choice between line
charts and scatter plots for time series visualization depends
on data characteristics, such as noise. For datasets with a high
frequency of outliers, scatter plots can depict temporal trends
more clearly, since excessive clutter is introduced in line
charts when data variance increases. The authors proposed
design guidelines and an algorithm to automatically select
between line graphs and scatter plots in time series contexts.

On the other hand, boxplots provide a compact statistical
summary of data distributions, including medians, quartiles,
central tendency measures, and outliers. They use box-
shaped symbols with extension lines called “whiskers” to
represent the range of data aggregated over predetermined
time intervals (e.g., daily, weekly, monthly). Thus, boxplots
are indicated to provide a high-level statistical summary of
time series data and compare different intervals, instead of
depicting the continuous temporal evolution of individual
data points. As an example, Figure 11 shows a temporal
boxplot summarizing the statistical components of Seattle’s
temperature variations, with daily measurements aggregated
in annual intervals.

Seattle temperature evolution by year (1997-2016)
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FIGURE 11. Boxplot describing the temperature variation of Seattle, WA,
USA, over a twenty-year timeframe, with information measured daily and
aggregated by years.

At a high level, scatter plots and boxplots provide com-
plementary perspectives that together can enrich the analysis
of complex multidimensional time series. Scatter plots
are typically applied to investigate fine-grained pointwise
relationships (detailed context), whereas boxplots summarize
statistical distribution measures across intervals (overview
context).

E. PARALLEL COORDINATES

Parallel coordinates are a classical technique applied to
multidimensional data visualization. However, in contrast
to spirals or calendar-based approaches, parallel coordinates
are rarely seen in the context of time-series data. Their
modern development began in the 1990s and was especially
noticed by the visualization community after the seminal
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work conducted by Inselberg and Dimsdale [146]. Since then,
they have been applied in a wide range of research aimed at
representing complex multidimensional data.

Parallel coordinates break the conventional single orthog-
onal Y-axis representation paradigm by arranging multiple
vertical axes evenly spaced and horizontally distributed on
the screen (i.e., parallel), with each axis (or coordinate)
corresponding to a different data attribute. Adjacent axes are
linked by straight-line segments that intersect each axis at the
position corresponding to the data instance’s measurement
for that attribute. The trajectory of each segment throughout
all parallel axes describes the profile of each data instance
across all dimensions.

The approach offers advantages in comparing attributes
with different magnitudes and in identifying patterns and data
trends. In theory, representing many data dimensions simul-
taneously is not a major concern for parallel coordinates;
however, in practice, visualizing high-dimensional datasets
using such an approach can lead to significant element
occlusion and visual clutter, which can impair the user’s
ability to perceive attribute correlations [40].

Several researchers have addressed efforts to mitigate these
limitations. Fua et al. [40] and Feng et al. [144] improved the
technique with interactive aggregation methods to structure
data into different abstraction levels to reduce density and
visual clutter, while Roberts et al. [147] implemented inter-
active brushing techniques to allow focused exploration of
subsets. Even with many advances, parallel coordinates have
traditionally struggled to reveal temporal data variations.
As an example, Tominski et al. [148] attempted to deal with
the temporal problem by reconfiguring parallel coordinates
into a radial layout with a central temporal axis and the other
feature axes around it. However, the approach suffers from
occlusions and has limitations in providing data overviews.

In contrast, Gruendl et al. [43] introduced an innovative
“pseudo-perspective” strategy by incorporating a temporal
panel into the parallel coordinates layout; the panel can be
opened between two or more axes and moved in and out,
simulating a time-varying effect. Specifically, the temporal
panel shows the series’ evolution by mapping time onto
screen depth, enabling analysts to observe attribute fluctua-
tions over time. In addition, the system provides interactive
tools to assist in comparing individual or grouped time series.
For a comprehensive overview of parallel coordinates in
visualization, we refer to Heinrich and Weiskopf [149].

F. SANKEY DIAGRAMS AND FLOW MAPS
A Sankey diagram is a type of node-link chart in which the
links represent flows between entities (nodes), and the width
of each link is proportional to the magnitude of the flow [150].
As a flow-based visualization, Sankey diagrams can be
naturally extended to represent time series data, providing an
understanding of how relative magnitudes change over time.
Cuba [151] aggregated the time component by year,
representing each year as a distinct node. In contrast, Lupton
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and Allwood [152] proposed a Sankey solution in which
the time-dependent attribute is represented as a single node,
distributing the values along that time node. Both approaches
yield layouts similar to parallel coordinates, which can limit
the effective perception of temporal evolution when dealing
with fine-grained time data.

Gilch and Miiller [153] simulated the probabilities that
each team would advance through different stages of
the 2018 FIFA World Cup, presenting the flow of all teams
throughout the tournament using a Sankey diagram. Although
the approach aims to illustrate probability flows instead of
temporal evolution, it cleverly outlines the tournament stages
and simultaneously reflects the progression of each team.
Figure 12 displays our version of a World Cup Sankey
diagram, but for the 2022 championship. In this diagram,
we used the 2022 FIFA World Cup dataset [154], where
link widths encode the number of goals scored by each team
between the tournament stages, and the size of the boxes with
country names represents their points during the group stage.

Sankey diagram - 2022 FIFA World Cup
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FIGURE 12. Sankey diagram representing the evolution of the 2022 FIFA
World Cup. The event took place in Qatar from November 20 to December
18, 2022, with 32 participating national football teams.

Despite their long history in visualization tasks, the design
of effective layouts based on Sankey diagrams remains a
challenge. Node placement is critical for achieving a clear
and interpretable design, as Sankey diagrams are prone to
clutter when the number of entities grows. In particular,
minimizing link crossings is essential to avoid visual clutter,
which can be challenging for highly interconnected nodes
and result in unreadable charts. Simplifying or even omitting
weak flow connections can reduce information overload,
along with exploring color encodings to distinguish flows
and node categories, and incorporating interactive tools
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such as zooming and selections for details-on-demand (see
Section IV-H), can enhance the readability.

Flow maps share similarities with Sankey diagrams but
use links to represent the movement of objects between
origin-destination locations. Flow maps are also prone to
clutter when applied to large datasets, in addition to long
flow links that can overlap and occlude shorter ones.
To mitigate such limitations, Zeng et al. [155] designed
enhanced flow maps specifically to visualize the temporal
information of passenger mobility in public transportation
systems. The solution allows users to track multiple metrics,
such as riding, waiting, and transfer times, by interactively
selecting route segments (pairs of origin-destination links).
Given that public transportation systems generate complex
spatiotemporal data, we refer to Andrienko et al. [35] for a
comprehensive review of methods.

G. STACKED GRAPHS

A stacked graph (also known as a “‘stacked area chart’)
is a technique for visualizing multidimensional data, which
stacks individual attributes on top of each other to share
the visual space. The result is a visual summarization that
provides an aggregated view of the data flow [6]. Several
graphical primitives can be used to compose a stacked graph;
for example, bars can be applied to represent categorical
attributes, while lines or areas are suitable for visualizing
time series. Stacked graphs emphasize summed or aggregated
values in contexts where that information is more important
than or equal to individual contributions.

Wattenberg [156] introduced NameVoyager, a web-based
tool that works with animated stacked graphs to explore
demographic data. It displays historical trends in baby
names, placing temporal variations on the horizontal axis
and stacking the popularity of individual names through
the vertical axis [104]. The tool updates the view to each
key pressed during the user’s searches. According to the
author, the immediate reaction saves the user from having
to click on a “submit” button and helps demonstrate how
data mining is executed in real-time. Each attribute (baby
names) is represented as alphabetically ordered colored
strips. A specific name stack can be selected through mouse
interactions, triggering smooth animations and a fluid user
experience [104]. NameVoyager has reached popularity due
to its responsive approach, similar to a game [156].

Figure 13 shows an example based on the US Baby Names
dataset [157], which tracks trends in the popularity of names
in the US. Such data came from the US Social Security
records and comprises thousands of names and their evolution
from 1880 to 2014. We selected a reduced set of names to
avoid visual clutter.

Havre et al. [158] developed the ThemeRiver prototype,
one of the first applications designed explicitly for visualizing
the evolution of multiple time series. Enhanced by Havre et al.
[159], ThemeRiver produces a fluid layout with soft curves.
Unlike conventional stacked graph approaches, ThemeRiver
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FIGURE 13. Stacked graph depicting part of the frequency of babies’
names in the US from 1880 to 2014.

centers its stacked layers around a horizontal baseline,
allowing the time axis to show information flows in both
directions (upper and lower dispersion) [15].

As a case study, Havre et al. [159] illustrated ThemeRiver
by applying it to a collection of Fidel Castro speeches
from 1959 to 1961. The visualizations highlight some of
Castro’s most frequently discussed topics, relating them to
history by overlaying a chronological sequence of events
related to the speeches’ period above the chart. The
design provides an enriched flow view that reveals general
trends and temporal changes in the content of historical
speeches, working as a “timeline” instead of only pointing
outliers [160].

The Stream Graph, introduced by Byron and Watten-
berg [15], refines ThemeRiver by optimizing the layer
ordering to improve readability. The approach became
popular when The New York Times (NYT) used a stream
graph to compare the box-office revenues of movies released
in 2007 with Oscar nominations. The NYT visualization
highlighted La Vie En Rose, a movie that won an Oscar
for Best Actress, but attracted a modest audience compared
to other high-grossing films such as Shrek the Third,
demonstrating that the public and the Academy sometimes
have divergent opinions. In particular, the NYT rotated its
chart 90 degrees, placing the time evolution vertically and
the gross earnings of the movies on the horizontal axis.
According to Byron and Wattenberg [15], this rotated layout
was specifically applied to fit the chart in the print media’s
column format. An online version of the visualization is
provided in Bloch et al. [161] but with a non-rotated layout.

Unfortunately, the NYT’s interactive visualization is no
longer available, but a static copy remains accessible in the
NYT archives [162]. To demonstrate the tool, we rendered a
stream graph following the NYT chart’s design using the US
Baby Names dataset described above. Figure 14 shows our
version, which fits nicely in a two-column layout and allows
users to track magnitude variations in name popularity over
time using a large chart.

Although Byron and Wattenberg [15] mathematically
discussed the stream graph approach, their layer ordering
and curve smoothing algorithms remained hard to understand
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FIGURE 14. Stream graph representing name tendencies between
1880 and 2014. Vertical positioning creates a fluid design that fits a large
chart in a two-column page layout.

and reproduce, with no fully disclosed solutions. Bartolomeo
and Hu [163] clarified those issues and, because of their
contributions, they received the Best Paper Award at the 18th
EG/VGTC Conference on Visualization (EuroVis), one of
the most influential visualization conferences, highlighting
the interest of the research community in ThemeRiver/stream
graph design.

However, stacked graphs and related variants are limited
in handling multiple, multidimensional time series simul-
taneously. Although stacked graphs efficiently represent
aggregated trends, they make it difficult to compare the
individual contributions of each series. Visual stacking is
not informative for some data types or values, especially
when handling negative values, which can often lead to
misinterpretations of the space between curves [6]. Byron and
Wattenberg [15] recommend ordering layers to mitigate such
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effects; however, it does not fully resolve them. To address
these limitations, designers can use small multiples (see
Figure 3) or horizon graphs [90] to encode positive and nega-
tive deviations. Braided graphs [68] can also be alternatives,
although they become confusing visualizations in very high-
dimensional scenarios.

Another drawback of stacked charts is their static nature
and limited interactivity. Shi et al. [164] developed RankEx-
plorer to mitigate such limitations by leveraging the abilities
of stacked charts to handle temporal evolution, but intro-
ducing dynamic comparisons between different information
groups. In RankExplorer, multiple data items are ranked in
a stacked graph, allowing users to compare the changing
flow over time through markers identifying position changes,
bar graphs showing classification oscillations, and lines that
provide statistical summaries. However, the rank grouping
can lead users to miss fine-grained patterns, in addition to not
providing explanations for the ranking step.

Dou et al. [165] and Cui et al. [166] integrated stream
graphs in textual analysis tools. HierarchicalTopics [165]
was demonstrated using news databases, where texts were
organized into main categories that can branch into specific
topics, creating a hierarchical tree-based structure [167].
Stream graphs were then used to describe the trend evolution
of topics selected by the user, relying on topic spectrum
timelines. However, the tool can suffer from clutter as the
number of topics grows.

VI. APPLICATIONS

This section presents a series of InfoVis applications in the
context of time series, focusing on composed interfaces,
i.e., multimodal visualization systems that integrate multiple
coordinated techniques. Effective visualizations should be
designed to support information acquisition, which means
that graphical interfaces must guide users in data inter-
pretation, according to their domain of knowledge [168].
Composed interfaces go further in mitigating the limita-
tions of single-method visualizations by actively combining
multiple visual and interactive components to leverage each
individual technique’s strengths. The applications discussed
in this section are grouped according to their application
domains to illustrate how these composite systems address
domain-specific challenges.

A. TEXTUAL DOCUMENTS AND TOPICS

Textual documents are often analyzed by correlating content
similarity, citation networks, or explicit hyperlinks to reveal
their relationships. In the context of the Internet, websites are
textual documents interconnected by hyperlinks, and a set of
densely related pages (a cluster) represents a web topic. These
connections evolve over time as pages are created, removed,
or modified. Text exploration on social networks presents
additional challenges, combining relevance detection with
the identification of trending topics. When the temporal
dependence of the publications is taken into account, the
complexity of such analyses increases substantially. Many
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researchers have developed visual metaphors for visualiz-
ing the spatiotemporal distribution of information [169].
However, these methods are often limited in facilitating the
visualization of relationships among multiple topics and their
dynamic propagation.

Sun et al. [170] introduced EvoRiver, an innovative
approach that enables users to visualize the evolution of
topic behaviors (cooperation and competition) over time. The
authors based the technique on a stream graph, extending
and improving the original concept by incorporating support
for positive (collaborative) and negative (competitive) topic
interactions, avoiding the illogical overlaps that traditional
stacked graphs can produce when negative values are
present [6], [170]. The EvoRiver is a visual composition
comprising two parts: a top layer containing topic streams
encoding positive (collaborative) behaviors and a bottom
layer encoding negative (competitive) behaviors. Topics can
migrate between layers when their behavior changes from
competitive to collaborative power (or vice versa). Time
intervals can be interactively selected to investigate the
relationships between topic pairs, which are visualized as
linking edges between stream segments [171].

Specifically, the interface includes four main compo-
nents: the EvoRiver chart itself, describing the flow of
topics’ evolution over time; a bivariate trend chart showing
variations in topics’ behaviors (positive/negative competi-
tion/collaboration power); edges linking related topics; and a
Word Cloud [172] presenting keywords for a selected topic,
with word size proportional to frequency. Sun et al. [170]
demonstrated the interface using Twitter data to analyze the
evolution of topics discussed during the 2012 US presidential
election. They found that the topics “Government” and
“Politics’” were often closely related, but under the influence
of “International issues,” ‘“Government,” and ‘Politics”
alternated between competitors and collaborators, thus allow-
ing analysts to understand the complex dynamics of the main
topics covered during that election process [173]. EvoRiver
relies on a sentiment classifier based on statistical methods
and expert labeling, which may introduce subjective bias to
the technique.

B. GRAPH-STRUCTURED TIME SERIES

Toyoda and Kitsuregawa [174] developed WebRelievo,
a system for visualizing the structural evolution of websites.
The interface represents data as a graph [175], with pages
as nodes and hyperlinks as edges, thus modeling the site’s
time series as a sequence of graphs. Users can interactively
analyze how site structures change over time, verifying when
topics are clustered or split. The interface displays temporal
variations in separate graph views representing different time
intervals, with the number of charts limited by the available
screen area. However, WebRelievo’s reliance on multiple
static graph panels makes it hard to follow continuous
evolution and suffers from occlusion when handling dense
web communities.
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Itoh et al. [176] proposed an alternative with similar
purposes but based on a 3D view to address the limitations.
The evolution of elements is obtained by a “slide planes”
technique that “slices” the time axis and displays the web
graph according to the position of the plane at a given
moment. Unfortunately, heavy edge crossings between planes
still result in occlusion and cognitive overload.

Stopar et al. [177] explored multidimensional climate
measurements and GPS trajectories’ time-varying data in
a visualization system that first applies agglomerative
clustering to reduce data dimensionality and then transforms
the time series as a continuous-time Markov chain (states
represent clusters, and transitions capture movement between
them). The states and transitions are hierarchically aggre-
gated and represented in a weighted graph, revealing the
transition patterns over time.

Visualizing graph-structured time series for large datasets
remains challenging due to the computational demands of
rendering their node-link structures and the tendency for
occlusions. Therefore, choosing an efficient layout algorithm
is critical to mitigate overlaps (force-directed with edge
bundling or hierarchical edge routing). Interactive tools such
as zooming or fisheye distortion could be used to navigate
between connections, in addition to color encodings to
highlight clusters (see Section IV-H).

Costa et al. [178] illustrate the use of probabilistic
graphical modeling as a Dynamic Bayesian Network (a
two-slice temporal Bayes net, 2TBN), which combines
multivariate time series using a graph-based structure with
a Kalman filter to estimate its dynamics. This study revealed
the ability to obtain effective brain connections, as illustrated
in resting-state and steady-state tasks of functional Magnetic
Resonance Imaging (fMRI) data, where visual elements, such
as time-varying graphs with dynamic arc lengths, represent
the translation of the brain’s Region of Interest (ROI)
communication estimated across time. Although resting-state
studies typically focus on functional connectivity, the authors
hypothesized that the proposed 2TBN with time-varying
parameters captures complementary aspects of intrinsic brain
activity.

C. FINANCIAL TIME SERIES
The application of InfoVis methods to finance and business
has been driven by the large numeric datasets generated
by public and private companies. Lei and Zhang [179]
introduced a ringmap-based system for visually analyzing
stock market data. Shares are clustered by a k-means-
based algorithm and displayed on a spiral-like map (see
Section V-A). The design can be seen as an intersection
of spiral graphs and heatmaps, where a variable number of
concentric rings represents multiple shares over the same
period. In addition, interactive zooming supports details-on-
demand exploration.

Lei and Zhang [179] demonstrated their interface using
Hang Seng Index data over a one-day business period.
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Each ring corresponds to the price evolution of a single
stock, and the ring lengths encode market capitalization.
The tool uses color encodings according to different sectors
and performance levels. Black denotes the index, orange
marks sectors that outperform the index, and gray indicates
declining stocks during the trading session.

Fu et al. [180] used a specialized binary tree (SB-tree)
to store time series containing the evolution of share
prices. Financial data is volatile and highly dimensional,
forcing visualization systems to process and update the
visualized data periodically, increasing computational power
demands. The approach processes data instances, calculates
(ranks) their importance, and generates an SB-Tree with
the most important data points. The representation incre-
mentally updates the tree and thus prioritizes visualization
of the most critical points without reprocessing the entire
series.

Chang et al. [160] developed WireVis, a multi-view system
to analyze time series related to daily bank transactions
and track fraud. The interface presents the relationships
among accounts, time, and transaction keywords, through
four coordinated views [181]. Specifically, it combines a
heatmap, a word evaluation network, a sampling search tool,
and a transaction descriptor to provide analysts with an
overview of all transactions, which can be manually selected
to handle specific details that update the visualization at
each interaction. User studies demonstrated that WireVis
enables the efficient detection of suspicious patterns in large
datasets [160]. However, tracking multiple synchronized
windows can be complex, as it imposes an increasing
cognitive and perceptual load, requiring users to divide their
attention between concurrent views (the multi-view trade-
off) [182]. Chang et al. [160] also conducted an extensive
survey on visual analytics requirements in the context of
the financial market to categorize tools, methodologies, and
tasks.

More recently, [183] developed a similar multi-view
interface to support tax auditors in exploring large-scale
corporate financial time series, but augmented machine
learning models to automate anomaly detection and forecast
trends, which helps to reduce context switching and enables
auditors to quickly detect suspicious points. The interface
is interactive and scalable, allowing users to adjust time
windows using sliders and filters for subset analysis.
However, the underlying models remain ‘“‘black boxes”,
lacking integration of explainability techniques [184], [185]
to improve trust.

There is a trend in current InfoVis solutions toward
embedding machine learning models into visualization tools
to support anomaly detection on a large scale and more
quickly than relying only on human analysts. Machine
learning models are able to bridge the gap between data
visualization and scalability; that is, as data volumes exceed
human capacity, automated models can pre-filter events,
and InfoVis tools present humans with visual confirmations.
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We discuss this subject in more detail in Future Directions
(Section VII-C).

D. ENVIRONMENTAL MONITORING

Li et al. [186] developed interactive tools to visualize daily
atmospheric pollution time series in Chinese cities, which
were collected over a four-year monitoring period. The
interface is based on a node-link tree structure [187] to
organize the monitoring stations of each city hierarchically,
allowing subdivision into districts. Users can inspect and
compare air quality features from multiple stations over
time. The system was demonstrated in daily pollution data
from Jinan (Shandong Province, China). Despite its effective
layout, the visualization tool suffers from limited screen
space utilization and scalability issues when representing
large, multidimensional time-series datasets.

Li et al. [188] refined the previous design to handle data
from more regions simultaneously. In this case, monitored
cities were placed on a panel based on hyperbolic tree
structures [189], where each city node can expand into
temporal disc modules, which radially encode air quality
time series for side-by-side comparison. Both studies apply
time series hierarchization to compare environmental datasets
through layered views, applying InfoVis methods to present
pollutant monitoring information and enhance the perception
of variations and pollutant source behavior [190]. The
interfaces summarize large environmental datasets; however,
they only support comparisons within the same city, i.e.,
cross-city analyses cannot be accomplished.

Yoon et al. [191] analyzed air pollution indices collected
by the US Environmental Protection Agency (EPA) between
1998 and 2007. They investigated correlations between lung
cancer incidence in particular regions of North America and
the concentration levels of particulate matter in those regions,
searching for relationships between lung cancer and exposure
history to pollutants. Even highlighting that particulate matter
is not the only risk factor for health, the authors used a simple
visualization scheme linking time series and geographic
views to confirm higher cancer risks in regions with elevated
air pollutant levels.

Alexandrina et al. [14] introduced an interactive web
interface for air quality analysis based on monitoring
particulate matter up to 10 pum (PMjg). The interface
comprises two main groups of visualizations: a top panel
with a scatter plot describing the PM( evolution over time,
alongside four coordinated area charts (small multiples [123])
showing related climate variables. The bottom panel mirrors
the structure of the top layout, but presents a different interval
of climate data for comparative exploration.

The authors designed a bivariate chart between the top
and bottom groups to link their information and provide
an intuition of the deviation between the two datasets. It is
based on the statistical principle of bivariate analysis and
visually contrasts two time series using an interpolation-
based strategy that creates two concurrent curves that
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highlight the differences with contrasting colors. The tool is
a coordinated multi-view interface that supports interactive
brushing and zooming, and encodes multiple information
channels simultaneously: seasonal color coding, tooltips,
PMj( concentration averages, and dynamically updated
legends.

Similarly, Fonseca et al. [192] applied a symbolic repre-
sentation to weather data from water-particle monitoring in
Chile’s Atacama Desert. Using a statistical process control
approach, they proposed a bivariate SDA (see Section IV-I)
control chart as a daily humidity monitoring tool.

E. AUDIO AND IMAGES

Gomi and Itoh [193] developed MIAOW, an image browser
inspired by Tree-map approaches [194], a space-filling
graphical metaphor. MIAOW is a 3D visualizer that hierar-
chically clusters and labels photographs according to their
geographic location (latitude and longitude) and capture
time. The visualization uses a space-time cube abstraction
(see Section V-C) to display groups of images on the
horizontal axis (delimited by rectangular nested areas), and
time variation on the vertical axis. Interactive features include
zooming, axis rotation, and clustered image browsing, but
MIAOW has some limitations. For example, many cameras
lack precise georeferencing, and clustering small thumbnails
can produce misleading visual groupings.

Javed and Elmgqvist [41] introduced stack zooming,
an interactive technique to visualize audio time series. The
approach hierarchically subdivides the information space,
enabling users to focus on multiple areas of the time series
through distinct detail levels [145]. When a user selects
a region of interest, a zoomed subchart is generated and
stacked beneath the original, preserving the overall context
while providing more details. Although it is not properly a
multi-focus technique, stack zooming enables the creation of
displays with reduced distortion while keeping the original
representation of information, i.e., the general vision [41].
However, stack zooming was designed for one-dimensional
spaces; extending it to 2D introduces considerable layout and
interaction complexity [195].

Continuous hierarchical zooming represents a significant
advance in conventional step-by-step data navigation. With-
out it, users must select the information of interest one level at
a time until the area of interest has been delimited, increasing
the interaction count and cognitive load [196]. Following this
principle, Walker et al. [197] developed TimeNotes, a system
that supports interactive hierarchical exploration of multiple
time series segments. Users can compare selected periods
with previously selected intervals, allowing for the clustering
and labeling of segments that contain trends or similar
behaviors [198]. Walker et al. [197] demonstrated TimeNotes
to 15-minute audio recordings of animal monitoring collected
by sensors mounted on birds, claiming that their solution is
efficient, since analysts can isolate the information space and
focus only on relevant data segments at desired granularities.
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The resulting views maintain a focus+-context history of the
analytical steps performed.

Itoh et al. [199] introduced SingDistVis, a focus+context
design to provide overall views of the distribution of
fundamental frequency trajectories in audio tapes by using
heatmaps and details of selected data in polyline charts. The
heatmap highlights the vocal range trajectories of different
voices, which can be further analyzed by drawing a selection
region to render polyline charts. The SingDistVis design
enables simultaneous comparison of multiple audio time
series, making it easier to detect differences in vocal range
between speakers or instruments.

F. EVENT SEQUENCES
ViDX [200] is an interface for monitoring industrial pro-
cesses. It interconnects multiple coordinated views centered
on a timeline based on Marey’s graph, a type of polyline
visualization originally used for train and bus schedules [67].
The timeline encodes processing times for each part of a
particular workstation, grouping normal cycles into shaded
bands rather than individual lines to reduce clutter while
highlighting anomalous processes. This primary view com-
prises a calendar for historical aggregate statistics, a radial
graph for real-time failure detection, and small multiple
histograms to display cycle times per workstation, providing
users with a situational overview of the assembly line. The
ViDX system exemplifies a robust visual solution combining
event-sequence timelines with multiple linked scenarios.
Recently, Bernard et al. [38] designed IVESA, an interface
for exploring event sequences in large multidimensional
time series. The system computes a set of event-based
metrics (such as frequency, duration, and co-occurrence)
and presents them on demand through multiple coordinated
views. Although effective in handling complex data from
multiple domains, IVESA requires substantial computational
resources for real-time analysis and may exhibit some latency
when processing high-dimensional time series.

VII. DISCUSSIONS AND FUTURE RESEARCH ON TIME
SERIES INFOVIS
This review addresses modern information visualization
(InfoVis) approaches for time series, with a particular empha-
sis on multidimensional time series. It demonstrates that
representing time-oriented data is a multifaceted challenge,
where different strategies are employed according to the
context and the interdependence behavior of the data under
analysis [40]. Modern and comprehensive tools usually
incorporate user interaction mechanisms designed to help
reduce the limitations imposed by high dimensionality. Some
limitations include the inability to track information or
conduct a systematic analysis of pattern detection, as many
techniques primarily aim on visualizing the relationships
between data records [201].

The larger the data dimensionality, the greater the number
of challenges in developing graphical interfaces that can
concisely and intuitively summarize the evolution of multiple
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features, even when employing a combination of different
graphical methods and exploratory techniques. Consequently,
this research differs from previous studies in several aspects,
such as a review and discussion of several interactive-based
tools, methods, and approaches specifically designed to
handle multidimensional time series.

A. SOFTWARE TOOLS AND LIBRARIES FOR INFOVIS

The creation of InfoVis solutions has become increasingly
accessible due to the availability of high-quality open-source
libraries in multiple programming languages. Matplotlib
(https://matplotlib.org/) is a Python library that provides a
wide range of highly customizable plotting functions, sup-
ported by extensive documentation and numerous implemen-
tation examples suitable for both beginners and experienced
developers. Similarly, Seaborn (https://seaborn.pydata.org/)
and Plotly (https://plotly.com/python/) are valuable Python
libraries used to generate complex, publication-quality visu-
alizations. Datashader (https://datashader.org/) is an open-
source Python library specifically designed to visualize very
large datasets.

R is a statistical programming language well-known for
its powerful data processing capabilities. For producing
visualizations in R, we refer to the ggplot2 grammar-based
package [202]. JavaScript is the standard programming
language for web applications and enables the creation of
interactive and responsive HTMLS objects [203]. In this
context, D3.js [204] is a well-documented JavaScript library
that enables dynamic data mapping and interactive visualiza-
tions using canvas and SVG graphical objects [205]. D3.js
allows visualization developers to create highly customizable
and interactive interfaces; however, it demands a solid
experience in web development with JavaScript. NetworkD3
(https://christophergandrud.github.io/networkD3/) is an R
package that leverages D3.js to create interactive graphs
rendered with HTML compatibility, bridging R programming
with web applications. Shiny (https://shiny.posit.co/) is an
open source package that integrates with ggplot2 from R and
Seaborn/Plotly from Python, allowing users to create high-
quality web applications for time series visualization based
on a reactive programming model, which supports real-time
updates and dynamic user interactions.

Tableau (https://www.tableau.com/) and Microsoft Power
BI (https://powerbi.microsoft.com) are advanced business
intelligence (BI) software tools used for data analysis and
the creation of interactive dashboards using a variety of
interactive visualization techniques. However, full-featured
versions of these tools require proprietary licensing and can
be expensive.

We are currently experiencing an intense evolution in
advanced generative approaches, such as ChatGPT [206],
Llama [207], and many other large language models (LLMs)
that can generate increasingly accurate textual content and
code. These models can be useful tools for InfoVis developers
because of their increasing ability to generate and review code

VOLUME 13, 2025

in various languages (e.g., Python, R, JavaScript), which can
reduce development time and minimize errors. In addition
to general-purpose LLMs, specialized generative models
focusing on visualization tasks have also emerged. Recent
studies demonstrate how natural language processing can be
integrated with visualization code synthesis [208] and chart
understanding [209]. These approaches assist in creating
interactive visualizations and also provide mechanisms to
verify and optimize the generated code.

Table 4 summarizes the strengths and limitations of each
tool described in this section. Several other solutions, ranging
from advanced platforms to straightforward and easy-to-use
options, can be found online for chart generation. Here,
we focus on widely used and well-documented tools and
libraries.

B. CHALLENGES AND OPEN QUESTIONS

Current visual exploration tools remain strongly based
on traditional visualization models, such as line charts,
histograms, pie charts, and bar charts [74]. Line graphs,
in particular, are among the simplest and most popular
methods for visualizing time-varying data, demonstrating a
great capacity to synthesize information. However, while
conventional line metaphors (even ordinary ones) effectively
represent a few time series in several experiments, multidi-
mensional time series demand the simultaneous observation
of multiple features. Exploring the temporal evolution of
multiple series is a common, yet challenging task in the
context of multidimensional data [68].

The main challenges in contemporary time series InfoVis
relate to dealing with the ‘“curse of dimensionality” and
visualizing big data [42], which has become increasingly
common in data analysis. Addressing these challenges
demands innovative techniques and tools for summarizing
and visualizing large datasets. In a systematic review of time-
oriented data visualization, Aigner et al. [28] argued that
modern visualization tools must enable the perception of
data’s temporal evolution by highlighting patterns and trends,
generating information, and deepening the understanding of
the underlying phenomena.

Another important aspect of time-oriented data is the
dynamic flow of information, which may require periodic
updates of the visualization [70]. Large datasets imply
longer processing and rendering times. A robust visualization
system must also be computationally scalable, i.e., its tools
must be responsive even when large amounts of data are
handled. Therefore, developing real-time visualization tools
is challenging, opening fundamental questions regarding the
construction of new interfaces that can integrate time-series
representation with fluid control of the exploratory process
while transmitting a clear vision of the information.

The detection of anomalies is an issue that attracts the
interest of data analysts. According to Lin et al. [210],
anomalous behavior in data mining refers to a substantial
deviation from the expected or ‘“normal” pattern within a
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TABLE 4. Summary of Tools and Libraries for InfoVis.

Tool | Description | Strengths | Limitations | Interactivity

Matplotlib Python library for customizable | Highly customizable; suitable | Complex coding for advanced | Low (static by default).
plotting functions. for publication-quality figures. | features; not optimized for very

large data.

Seaborn Python library built on Matplotlib | Simplifies creation of complex | Similar performance limitations | Low to moderate (static
for statistical visualizations. plots compared to Matplotlib. of Matplotlib with large data. focus).

Plotly Python library for interactive, | Enables dynamic and shareable | Complex coding for advanced | High (provides zoom and
web-ready visualizations. visuals; web integration. features. click events).

Datashader Python library for visualizing | Efficient for massive volumes; | Less intuitive for small data. Moderate (can integrate
very large data. produces high-fidelity images. with interactive tools).

ggplot2 Grammar-based R package. High-capable for statistical | R-specific. Low (static by default).

graphics; extensible.

D3.js JavaScript library for dynamic | SVG-native; flexible for custom | Requires strong skills in web de- | Very high (focus on inter-
data mapping. interfaces; supports animations. | velopment. activity).

NetworkD3 R package leveraging D3.js for | Bridges R coding with web in- | Small number of visualizations; | High (D3.js-based).
interactive graphs. teractivity. requires R and JavaScript skills.

Shiny Web app for data analysis and | User-friendly; integrates with | Complex coding for advanced | High (supports brushing,
interactive dashboards. R or Python ecosystems. features; free version is limited. | zooming, sliders).

Tableau BI software for data analysis and | User-friendly; dashboards with | Full features are expensive; pro- | Very high (built-in dash-
interactive dashboards. real-time updates. prietary licensing. boards).

Power BI BI software for data analysis and | User-friendly; supports collabo- | Full features are expensive; tied | Very high (built-in dash-
interactive dashboards. ration. to Microsoft environment. boards).

General-Purpose | Generative models for textual con- | Accelerates prototyping; helps | Outputs require strong verifica- | Text-based interaction for

LLMs tent and code. with error checking in coding. tion; potential inaccuracies. queries and answers.

Specialized Generative models focused on vi- | Automates development from | Lack maturity (emerging field). | High (interactive code

LLMs sualization code synthesis. natural language. generation).

data sequence. The authors further argue that definitions of
anomalies can vary significantly depending on the context,
making the detection of unknown patterns particularly
challenging. For a precise definition of anomalous behaviors
in time series mining, refer to Keogh et al. [211].

We noticed a lack of proposals for entirely new graphical
metaphors. For example, the stream graph, presented in
Section V-G, represents one of the last groundbreaking
novelties proposed as a standalone chart. On the other hand,
visualization designers continue to innovate by integrating
multiple metaphors and interactive tools to provide data
scientists with renewed and powerful exploratory resources.

C. FUTURE DIRECTIONS

According to Gestalt theory, the brain has a cognitive
tendency to complete missing information based on prior
visual memory when its form is implicit [94]. This process
depends on content stored in visual memory, which can
differ substantially among viewers and is highly affected
by their experiences and knowledge. However, a good
visualization system must exploit graphical mechanisms that
stimulate users’ attention capabilities in order to attenuate
the perceptual “noise” between the emitter (data source) and
observer, actively engaging users in the task of detecting
patterns and anomalies. When coupled with user interaction
paradigms, the visual exploration of time series can promote
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efficient hypothesis testing and problem solving that include
the discovery of patterns and anomalies [210]. Time-series
clustering via Bayesian modeling is a promising area, given
its flexibility and the inclusion of expert knowledge-based
information. Costa et al. [212] presented a class from
the Dynamic Bayesian Network (DBN), which enables
time series clustering using multilevel information and
decomposing different network-based structures, allowing
causal InfoVis, through a probabilistic graphical model.

When data dimensionality scales beyond the capabilities of
conventional tools to track many attributes simultaneously,
other visualization strategies must be considered. In this
scenario, Nonato and Aupetit [42] conducted extensive
research on multidimensional projection (MDP) methods
from the perspective of visual analytics. MDP techniques
are effective in reducing data dimensionality, transforming
it into visual patterns that preserve and reflect similarities
from the original data [140]. Modern InfoVis solutions for
time series can also be improved by incorporating techniques
in periodization [138], aggregation [26], clustering [25],
and by using methods for detecting correlations [213] and
anomalies [200].

Moreover, recent advances in machine learning have led
to models with remarkable performance rates in pattern
discovery within large datasets. Despite the high power
of such models in processing data from a wide range of
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domains, advanced machine learning models are non-linear
“black boxes” that are complex to explain [214], [215].
In response, significant research efforts have been directed
toward developing comprehensive explainable artificial intel-
ligence (XAI) methods [184]. The integration of machine
learning and visualization techniques has the potential to
significantly enhance the insights derived from data analysis,
since information visualization development is closely tied to
XAI goals.

Such a valuable fusion of information systems can be seen
in the works of Xu et al. [216], who designed a multi-view
interactive interface for evaluating machine learning models
in multidimensional time-series forecasts using XAI, and
Lundberg et al. [217], which integrated XAI and multidi-
mensional time-series visualization in the critical context of
surgery monitoring. Another example is [218], where additive
models were used to predict hospital readmission in large
time series with the support of visualization grids to explore
the additive components.

In summary, designing visualization interfaces that inte-
grate multiple and coordinated tools for data handling,
processing, and presentation is a process that needs to root the
design on a careful study of domain experts’ requirements and
aesthetic properties and represents a promising direction for
constructing powerful information analytical tools capable of
handling large and complex amounts of time series data we
are currently generating.

VIil. CONCLUSION
The analysis of temporal dependencies in large-scale,
multidimensional time series datasets presents significant
challenges in many application domains, as evidenced by
the references discussed in this review. Visualization has the
power to transform abstract phenomena into understandable
visual elements [1]. Therefore, well-designed visualization
is fundamental in transforming abstract, time-oriented phe-
nomena into perceptually intuitive representations, enabling
analysts to uncover hidden insights with clarity. In Sections V
and VI, we explored the role of visual approaches and
methods that address the complexity of time series data to
make implicit information explicit and comprehensive.
Several factors can impact the effectiveness of visual-
ization tools in communicating information, including the
selection of appropriate graphical metaphors (see Section V),
the implementation of interactive manipulation techniques
(see Section IV-H), user-centric designs that align with
cognitive capacities (see Section VI), and even the influence
of device quality and dimensions on rendering fidelity [219].
Addressing these factors is essential for enhancing the
potential of information visualization in data interpretation.
Table 3 synthesizes visualization concepts exploited to
mitigate the challenges related to visual data exploration,
while Sections VII-B and VII-C outline open questions
and future directions. Finally, we compared visualization
software and environments to create InfoVis tools, highlight-
ing their strengths for diverse applications (see Table 4).
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In particular, recent breakthroughs, such as generative visual-
ization models, have achieved prominent results in improving
the understanding, synthesis, and optimization of visual
representations (see Section VI). Therefore, developing visu-
alization tools that provide clear and comprehensible layouts
in an era of ever-growing data complexity is fundamental to
allow analysts to extract meaningful information.

ACKNOWLEDGMENT

The authors would like to thank Angela C. P. Giampedro from
the University of Sdo Paulo, for her valuable help. Figures 1,
2, and 5 were created with BioRender.com. The opinions,
hypotheses, conclusions, or recommendations expressed in
this material are their responsibility and do not necessarily
reflect the views of the funding agencies.

REFERENCES

[1] B. Shneiderman, “The eyes have it: A task by data type taxonomy for
information visualizations,” in Proc. IEEE Symp. Vis. Lang., Washington,
DC, USA, Apr. 1996, p. 336.

[2] D. D. Hoffman, Visual Intelligence: How We Create What We See.
New York, NY, USA: W. W. Norton and Company, 1998.

[3] M. Ward, G. Grinstein, and D. Keim, Interactive Data Visualization:
Foundations, Techniques, and Applications. Natick, MA, USA: A. K.
Peters, 2010.

[4] J. Heer and B. Shneiderman, “Interactive dynamics for visual analysis,”
Commun. ACM, vol. 55, no. 4, pp. 45-54, Apr. 2012.

[5] S. K. Badam, J. Zhao, S. Sen, N. Elmqvist, and D. Ebert, “TimeFork:
Interactive prediction of time series,” in Proc. CHI Conf. Hum. Factors
Comput. Syst. New York, NY, USA: ACM, May 2016, pp. 5409-5420.

[6] J. Heer, N. Kong, and M. Agrawala, ““Sizing the horizon: The effects
of chart size and layering on the graphical perception of time series
visualizations,” in Proc. SIGCHI Conf. Hum. Factors Comput. Syst.
New York, NY, USA: ACM, Apr. 2009, pp. 1303-1312.

[7] J. Kehrer and H. Hauser, ““Visualization and visual analysis of multi-
faceted scientific data: A survey,” IEEE Trans. Vis. Comput. Graphics,
vol. 19, no. 3, pp. 495-513, Mar. 2013.

[8] S.F. Silva and T. Catarci, ‘“Visualization of linear time-oriented data: A
survey,” in Proc. 1st Int. Conf. Web Inf. Syst. Eng., vol. 1, Washington,
DC, USA, Mar. 2000, pp. 310-319.

[91 W. Aigner, S. Miksch, H. Schumann, and C. Tominski, Visualization of
Time-Oriented Data, 1st ed., New York, NY, USA: Springer, 2011.

[10] S. Thakur and A. J. Hanson, “A 3D visualization of multiple time series
on maps,” in Proc. 14th Int. Conf. Inf. Visualisation, Washington, DC,
USA, Jul. 2010, pp. 336-343.

[11] P. McLachlan, T. Munzner, E. Koutsofios, and S. North, “LiveRAC:
Interactive visual exploration of system management time-series data,”
in Proc. SIGCHI Conf. Hum. Factors Comput. Syst. New York, NY, USA:
ACM, Apr. 2008, pp. 1483-1492.

[12] M. O. Ward, G. Grinstein, and D. Keim, Interactive Data Visualization:
Foundations, Techniques, and Applications. Boca Raton, FL, USA: CRC
Press, 2015.

[13] D. A. Keim, “Information visualization and visual data mining,” IEEE
Trans. Vis. Comput. Graph., vol. §, no. 1, pp. 1-8, Mar. 2002.

[14] E. C. Alexandrina, E. S. Ortigossa, E. S. Lui, J. A. S. Gongalves,
N. A. Correa, L. G. Nonato, and M. L. Aguiar, “‘Analysis and visualization
of multidimensional time series: Particulate matter (PMjo) from Sdo
Carlos-SP (Brazil),” Atmos. Pollut. Res., vol. 10, no. 4, pp. 1299-1311,
Jul. 2019.

[15] L.Byronand M. Wattenberg, ““Stacked graphs—Geometry & aesthetics,”
IEEE Trans. Vis. Comput. Graphics, vol. 14, no. 6, pp. 1245-1252,
Nov. 2008.

[16] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, ‘“Preferred
reporting items for systematic reviews and meta-analyses: The PRISMA
statement,” Ann. Internal Med., vol. 151, no. 4, pp. 264-269, 2009.

[17] M. C.F. de Oliveira and H. Levkowitz, “From visual data exploration to
visual data mining: A survey,” IEEE Trans. Vis. Comput. Graph., vol. 9,
no. 3, pp. 378-394, Jul. 2003.

161679



IEEE Access

E. S. Ortigossa et al.: Time Series Information Visualization—A Review of Approaches and Tools

[18]

[19]

[20]

[21]

[22]

[23]

24

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

S. Liu, W. Cui, Y. Wu, and M. Liu, “A survey on information
visualization: Recent advances and challenges,” Vis. Comput., vol. 30,
no. 12, pp. 1373-1393, Dec. 2014.

W. Cui, “Visual analytics: A comprehensive overview,” IEEE Access,
vol. 7, pp. 81555-81573, 2019.

H. M. Shakeel, S. Iram, H. Al-Agrabi, T. Alsboui, and R. Hill,
“A comprehensive state-of-the-art survey on data visualization tools:
Research developments, challenges and future domain specific visualiza-
tion framework,” IEEE Access, vol. 10, pp. 96581-96601, 2022.

S. Liu, D. Maljovec, B. Wang, P.-T. Bremer, and V. Pascucci, ‘“Visualizing
high-dimensional data: Advances in the past decade,” IEEE Trans. Vis.
Comput. Graph., vol. 23, no. 3, pp. 1249-1268, Mar. 2017.

R. Veras and C. Collins, “Discriminability tests for visualization
effectiveness and scalability,” IEEE Trans. Vis. Comput. Graphics,
vol. 26, no. 1, pp. 749-758, Jan. 2020.

A. Cockburn, A. Karlson, and B. B. Bederson, “A review of
overview-+detail, zooming, and focus+context interfaces,” ACM Comput.
Surv., vol. 41, no. 1, pp. 1-31, Jan. 2009.

P. Esling and C. Agén, “Time-series data mining,” ACM Comput. Surv.,
vol. 45, no. 1, pp. 1-34, 2012.

S. Aghabozorgi, A. Seyed Shirkhorshidi, and T. Y. Wah, “Time-series
clustering—A decade review,” Inf. Syst., vol. 53, pp. 16-38, Oct. 2015.
F. Nguyen, X. Qiao, J. Heer, and J. Hullman, “Exploring the effects
of aggregation choices on untrained visualization users’ generalizations
from data,” Comput. Graph. Forum, vol. 39, no. 6, pp. 33-48, Sep. 2020.
M. Ali, A. Alqahtani, M. W. Jones, and X. Xie, “Clustering and
classification for time series data in visual analytics: A survey,” IEEE
Access, vol. 7, pp. 181314-181338, 2019.

W. Aigner, S. Miksch, W. Miiller, H. Schumann, and C. Tominski,
“Visualizing time-oriented data—A systematic view,” Comput. Graph.,
vol. 31, no. 3, pp. 401-409, Jun. 2007.

W. Aigner, S. Miksch, W. Miiller, H. Schumann, and C. Tominski, ““Visual
methods for analyzing time-oriented data,” IEEE Trans. Vis. Comput.
Graph., vol. 14, no. 1, pp. 47-60, Jan. 2008.

R. H. Shumway and D. S. Stoffer, Time Series Analysis and its
Applications: With R Examples, 3rd ed., New York, NY, USA: Springer,
2011.

Y. Fang, H. Xu, and J. Jiang, “A survey of time series data visualization
research,” IOP Conf. Ser., Mater. Sci. Eng., vol. 782, no. 2, Mar. 2020,
Art. no. 022013.

N. Andrienko, G. Andrienko, and P. Gatalsky, ‘“Exploratory spatio-
temporal visualization: An analytical review,” J. Vis. Lang. Comput.,
vol. 14, no. 6, pp. 503-541, Dec. 2003.

B. Bach, P. Dragicevic, D. Archambault, C. Hurter, and S. Carpendale,
“A descriptive framework for temporal data visualizations based on
generalized space-time cubes,” Comput. Graph. Forum, vol. 36, no. 6,
pp. 36-61, Sep. 2017.

D. Wang, D. Guo, and H. Zhang, “Spatial temporal data visualization
in emergency management: A view from data-driven decision,” in Proc.
3rd ACM SIGSPATIAL Workshop Emergency Manage. Using, Nov. 2017,
pp- 1-7.

G. Andrienko, N. Andrienko, W. Chen, R. Maciejewski, and Y. Zhao,
“Visual analytics of mobility and transportation: State of the art and
further research directions,” IEEE Trans. Intell. Transp. Syst., vol. 18,
no. 8, pp. 2232-2249, Aug. 2017.

Z. Bai, Y. Tao, and H. Lin, “Time-varying volume visualization: A
survey,” J. Visualizat., vol. 23, no. 5, pp. 745-761, Oct. 2020.

M. Weber, M. Alexa, and W. Miiller, ‘“Visualizing time-series on spirals,”
in Proc. IEEE Symp. Inf. Visualizat., Washington, DC, USA, Mar. 2001,
pp. 7-13.

J. Bernard, C.-M. Barth, E. Cuba, A. Meier, Y. Peiris, and B. Shneider-
man, “IVESA—Visual analysis of time-stamped event sequences,” IEEE
Trans. Vis. Comput. Graph., vol. 31, no. 4, pp. 2235-2256, Apr. 2024.
Z. Konyha, A. Lez, K. Matkovi¢, M. Jelovi¢, and H. Hauser, “Interactive
visual analysis of families of curves using data aggregation and
derivation,” in Proc. 12th Int. Conf. Knowl. Manage. Knowl. Technol.
New York, NY, USA: ACM, Sep. 2012, pp. 1-8.

Y.-H. Fua, M. O. Ward, and E. A. Rundensteiner, “Hierarchical parallel
coordinates for exploration of large datasets,” in Proc. Visualizat., Los
Alamitos, CA, USA, Jan. 1999, pp. 43-508.

W. Javed and N. Elmqvist, ““Stack zooming for multi-focus interaction in
time-series data visualization,” in Proc. IEEE Pacific Visualizat. Symp.
(PacificVis). Taipei, Taiwan, Mar. 2010, pp. 33—40.

161680

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

L. G. Nonato and M. Aupetit, “Multidimensional projection for visual
analytics: Linking techniques with distortions, tasks, and layout enrich-
ment,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 8, pp. 2650-2673,
Aug. 2019, doi: 10.1109/TVCG.2018.2846735.

H. Gruendl, P. Riehmann, Y. Pausch, and B. Froehlich, “Time-series plots
integrated in parallel-coordinates displays,” in Proc. Eurographics/IEEE
VGTC Conf. Visualizat., vol. 35. Goslar, Germany: Eurographics
Association, Mar. 2016, pp. 321-330.

A.R.T.Donders, G. J. Van Der Heijden, T. Stijnen, and K. G. Moons, “A
gentle introduction to imputation of missing values,” J. Clin. Epidemiol.,
vol. 59, no. 10, pp. 1087-1091, 2006.

M. Lepot, J.-B. Aubin, and F. Clemens, “‘Interpolation in time series: An
introductive overview of existing methods, their performance criteria and
uncertainty assessment,” Water, vol. 9, no. 10, p. 796, Oct. 2017.

I. Pratama, A. E. Permanasari, I. Ardiyanto, and R. Indrayani, ““A review
of missing values handling methods on time-series data,” in Proc. Int.
Conf. Inf. Technol. Syst. Innov. (ICITSI), Oct. 2016, pp. 1-6.

J. Wang, W. Du, Y. Yang, L. Qian, W. Cao, K. Zhang, W. Wang, Y. Liang,
and Q. Wen, “Deep learning for multivariate time series imputation: A
survey,” 2024, arXiv:2402.04059.

W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li, “BRITS: Bidirectional
recurrent imputation for time series,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 1-11.

H. Song and D. A. Szafir, “Where’s my data? Evaluating visualizations
with missing data,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1,
pp. 914-924, Jan. 2019.

J. Hullman, “Why authors don’t visualize uncertainty,” IEEE Trans. Vis.
Comput. Graph., vol. 26, no. 1, pp. 130-139, Jan. 2020.

R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and
Practice. Melbourne, VIC, Australia: OTexts, 2018.

A. M. De Livera, R. J. Hyndman, and R. D. Snyder, “‘Forecasting time
series with complex seasonal patterns using exponential smoothing,” J.
Amer. Stat. Assoc., vol. 106, no. 496, pp. 1513-1527, Dec. 2011.

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining.
New York, NY, USA: ACM, Aug. 2016, pp. 785-794.

Facebook. (2023). Prophet: Automatic Forecasting Procedure. [Online].
Available: https://github.com/facebook/prophet

D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “DeepAR:
Probabilistic forecasting with autoregressive recurrent networks,” Int. J.
Forecasting, vol. 36, no. 3, pp. 1181-1191, Jul. 2020.

B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-BEATS:
Neural basis expansion analysis for interpretable time series forecasting,”
2019, arXiv:1905.10437.

S. Abbaspourazad, O. Elachqar, A. C. Miller, S. Emrani, U. Nallasamy,
and I. Shapiro, “Large-scale training of foundation models for wearable
biosignals,” 2023, arXiv:2312.05409.

B. Lim, S. O. Ark, N. Loeff, and T. Pfister, “Temporal fusion
transformers for interpretable multi-horizon time series forecasting,” Int.
J. Forecasting, vol. 37, no. 4, pp. 1748-1764, Oct. 2021.

G. Narayanswamy, X. Liu, K. Ayush, Y. Yang, X. Xu, S. Liao, J. Garrison,
S. Tailor, J. Sunshine, Y. Liu, T. Althoff, S. Narayanan, P. Kohli, J. Zhan,
M. Malhotra, S. Patel, S. Abdel-Ghaffar, and D. McDuff, “Scaling
wearable foundation models,” 2024, arXiv:2410.13638.

B. Cazelles, M. Chavez, G. C. D. Magny, J.-F. Guégan, and S. Hales,
“Time-dependent spectral analysis of epidemiological time-series with
wavelets,” J. Roy. Soc. Interface, vol. 4, no. 15, pp. 625-636, Aug. 2007.
M. S. Priyadarshini, M. Bajaj, and I. Zaitsev, “‘Energy feature extraction
and visualization of voltage sags using wavelet packet analysis for
enhanced power quality monitoring,” Sci. Rep., vol. 15, no. 1, p. 2226,
Jan. 2025.

Y. Gong, Y.-A. Chung, and J. Glass, “AST: Audio spectrogram
transformer,” 2021, arXiv:2104.01778.

K. Yi, Q. Zhang, W. Fan, L. Cao, S. Wang, G. Long, L. Hu, H. He, Q. Wen,
and H. Xiong, “A survey on deep learning based time series analysis with
frequency transformation,” 2023, arXiv:2302.02173.

P. C. Wong, “Guest editor’s introduction: Visual data mining,” [EEE
Comput. Graph. Appl., vol. 19, no. 5, pp. 20-21, May 1999.

C. Ware, Information Visualization: Perception for Design, 4th ed.,
San Mateo, CA, USA: Morgan Kaufmann, 2019.

S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in
Information Visualization: Using Vision to Think. San Mateo, CA, USA:
Morgan Kaufmann, 1999.

VOLUME 13, 2025


http://dx.doi.org/10.1109/TVCG.2018.2846735

E. S. Ortigossa et al.: Time Series Information Visualization—A Review of Approaches and Tools

IEEE Access

[67]

[68]

[69]

[70]

[71]

[72]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

E. R. Tufte, The Visual Display of Quantitative Information, 2nd ed.,
Cheshire, CT, USA: Graphics Press LLC, 2007.

W. Javed, B. McDonnel, and N. Elmqvist, “Graphical perception of
multiple time series,” IEEE Trans. Vis. Comput. Graph., vol. 16, no. 6,
pp- 927-934, Nov. 2010.

C. Perin, F. Vernier, and J.-D. Fekete, “Interactive horizon graphs:
Improving the compact visualization of multiple time series,” in Proc.
SIGCHI Conf. Hum. Factors Comput. Syst. New York, NY, USA: ACM,
Apr. 2013, pp. 3217-3226.

M. Kirstajic, E. Bertini, and D. Keim, “CloudLines: Compact display of
event episodes in multiple time-series,” IEEE Trans. Vis. Comput. Graph.,
vol. 17, no. 12, pp. 2432-2439, Dec. 2011.

M. C. Hao, U. Dayal, D. A. Keim, and T. Schreck, “Importance-driven
visualization layouts for large time series data,” in Proc. IEEE Symp. Inf.
Visualizat. (INFOVIS), Washington, DC, USA, Apr. 2005, pp. 203-210.
M. Wattenberg, ‘A note on space-filling visualizations and space-filling
curves,” in Proc. IEEE Symp. Inf. Visualizat., Washington, DC, USA,
May 2005, pp. 181-186.

U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl, “M4: A
visualization-oriented time series data aggregation,” Proc. VLDB Endow-
ment, vol. 7, no. 10, pp. 797-808, Jun. 2014.

J. Heer, M. Bostock, and V. Ogievetsky, ““A tour through the visualization
200,” Commun. ACM, vol. 53, no. 6, pp. 59-67, Jun. 2010.

J. Stasko and E. Zhang, “Focus+context display and navigation
techniques for enhancing radial, space-filling hierarchy visualizations,”
in Proc. IEEE Symp. Inf. Visualizat. (INFOVIS), Washington, DC, USA,
Mar. 2000, pp. 57-65.

M. Q. W. Baldonado, A. Woodruff, and A. Kuchinsky, “Guidelines for
using multiple views in information visualization,” in Proc. Work. Conf.
Adv. Vis. Interfaces. New York, NY, USA: ACM, May 2000, pp. 110-119.
J. J. Van Wijk and E. R. Van Selow, “Cluster and calendar based
visualization of time series data,” in Proc. IEEE Symp. Inf. Visualizat.,
Washington, DC, USA, May 1999, p. 4.

R. Sadana and J. Stasko, “‘Designing multiple coordinated visualizations
for tablets,” Comput. Graph. Forum, vol. 35, no. 3, pp.261-270,
Jun. 2016.

C. North and B. Shneiderman, “A taxonomy of multiple window
coordinations,” Univ. Maryland, College Park, MD, USA, Tech. Rep. CS-
TR-3854, 1998.

G. Grinstein, M. Trutschl, and U. Cvek, “High-dimensional visualiza-
tions,” in Proc. 7th Data Mining Conf. San Francisco, CA, USA: ACM,
2001, pp. 7-19.

J. C. Roberts, “State of the art: Coordinated & multiple views in
exploratory visualization,” in Proc. 5th Int. Conf. Coordinated Multiple
Views Explor. Visualizat. (CMV), Washington, DC, USA, Jul. 2007,
pp. 61-71.

D. Borland and R. M. T. Ii, “Rainbow color map (still) considered
harmful,” [EEE Comput. Graph. Appl., vol. 27, no. 2, pp. 14-17,
Mar. 2007.

M. Chalmers, “A linear iteration time layout algorithm for visual-
ising high-dimensional data,” in Proc. 7th Annu. IEEE Visualizat.,
Los Alamitos, CA, USA, Apr. 1996, p. 127.

Y. Wang, T. Wu, Z. Chen, Q. Luo, and H. Qu, “STAC: Enhancing
stacked graphs for time series analysis,” in Proc. IEEE Pacific Visualizat.
Symp. (PacificVis), Taipei, Taiwan, Apr. 2016, pp. 234-238.

S. G. Eick and A. F. Karr, ““Visual scalability,” J. Comput. Graph. Statist.,
vol. 11, no. 1, pp. 22-43, 2002.

G. A. Miller, “The magical number seven, plus or minus two: Some limits
on our capacity for processing information,” Psychol. Rev., vol. 63, no. 2,
pp. 357-372, 2003.

N. Cowan, “The magical mystery four: How is working memory capacity
limited, and why?” Current Directions Psychol. Sci., vol. 19, no. 1,
pp. 51-57, Feb. 2010.

B. Shneiderman, “Extreme visualization: Squeezing a billion records
into a million pixels,” in Proc. ACM SIGMOD Int. Conf. Manage. Data.
New York, NY, USA: ACM, Jun. 2008, pp. 3—-12.

A. Gogolou, T. Tsandilas, T. Palpanas, and A. Bezerianos, ‘“Comparing
similarity perception in time series visualizations,” [EEE Trans. Vis.
Comput. Graphics, vol. 25, no. 1, pp. 523-533, Jan. 2019.

T. Saito, H. N. Miyamura, M. Yamamoto, H. Saito, Y. Hoshiya, and
T. Kaseda, “Two-tone pseudo coloring: Compact visualization for one-
dimensional data,” in Proc. IEEE Symp. Inf. Visualizat. (INFOVIS),
Apr. 2005, pp. 173-180.

VOLUME 13, 2025

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

D. Albers, M. Correll, and M. Gleicher, “Task-driven evaluation of
aggregation in time series visualization,” in Proc. SIGCHI Conf.
Hum. Factors Comput. Syst. New York, NY, USA: ACM, Apr. 2014,
pp. 551-560.

W. S. Cleveland and R. McGill, “Graphical perception: Theory, experi-
mentation, and application to the development of graphical methods,” J.
Amer. Stat. Assoc., vol. 79, no. 387, pp. 531-554, Sep. 1984.

D. Chang, K. Nesbitt, and K. Wilkins, “The gestalt principles of similarity
and proximity apply to both the haptic and visual grouping of elements,”
in Proc. 8th Australas. Conf. User Interface, vol. 64, 2007, pp. 79-86.

J. Wagemans, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson,
M. Singh, and R. von der Heydt, “A century of gestalt psychology in
visual perception: 1. Perceptual grouping and figure-ground organiza-
tion,” Psychol. Bull., vol. 138, no. 6, pp. 1172-1217, 2012.

J. Wagemans, J. Feldman, S. Gepshtein, R. Kimchi, J. R. Pomerantz,
P. A. van der Helm, and C. van Leeuwen, ““A century of gestalt psychol-
ogy in visual perception: II. Conceptual and theoretical foundations,”
Psychol. Bull., vol. 138, no. 6, pp. 1218-1252, 2012.

W. Aigner, A. Rind, and S. Hoffmann, “Comparative evaluation of
an interactive time-series visualization that combines quantitative data
with qualitative abstractions,” Comput. Graph. Forum, vol. 31, no. 3pt2,
pp- 995-1004, Jun. 2012.

J. Lohse, “A cognitive model for the perception and understanding of
graphs,” in Proc. SIGCHI Conf. Hum. Factors Comput. Syst. Reaching
Through Technol. (CHI). New York, NY, USA: ACM, 1991, pp. 137-144.
C. Ware, M. Stone, and D. A. Szafir, “Rainbow colormaps are not all
bad,” IEEE Comput. Graph. Appl., vol. 43, no. 3, pp. 88-93, May 2023.
Y. Liu and J. Heer, “Somewhere over the rainbow: An empirical
assessment of quantitative colormaps,” in Proc. CHI Conf. Hum. Factors
Comput. Syst., Apr. 2018, pp. 1-12.

M. Harrower and C. A. Brewer, “ColorBrewer.org: An online tool for
selecting colour schemes for maps,” Cartographic J., vol. 40, no. 1,
pp- 27-37, Jun. 2003.

M. Adnan, M. Just, and L. Baillie, “Investigating time series visualisa-
tions to improve the user experience,” in Proc. CHI Conf. Hum. Factors
Comput. Syst. New York, NY, USA: ACM, May 2016, pp. 5444-5455.
T. Munzner, Visualization Analysis and Design. Boca Raton, FL, USA:
CRC Press, 2014.

J. S.Yi, Y. A. Kang, J. Stasko, and J. A. Jacko, “Toward a deeper
understanding of the role of interaction in information visualization,”
IEEE Trans. Vis. Comput. Graph., vol. 13, no. 6, pp. 1224-1231,
Nov. 2007.

N. Elmgvist, A. V. Moere, H.-C. Jetter, D. Cernea, H. Reiterer, and
T. Jankun-Kelly, “Fluid interaction for information visualization,” Inf.
Visualizat., vol. 10, no. 4, pp. 327-340, Oct. 2011.

B. Craft and P. Cairns, “Beyond guidelines: What can we learn from
the visual information seeking mantra?” in Proc. 9th Int. Conf. Inf.
Visualisation (IV), Washington, DC, USA, Apr. 2005, pp. 110-118.

H. L. Resnikoff, The Illusion of Reality. New York, NY, USA: Springer,
1989.

G. W. Furnas, “A fisheye follow-up: Further reflections on focus +
context,” in Proc. SIGCHI Conf. Hum. Factors Comput. Syst., Apr. 2000,
pp. 999-1008.

K. A. Satriadi, B. Ens, M. Cordeil, T. Czauderna, and B. Jenny, ‘“Maps
around me: 3D multiview layouts in immersive spaces,” Proc. ACM
Hum.-Comput. Interact., vol. 4, pp. 1-20, Nov. 2020.

P. Kothur, C. Witt, M. Sips, N. Marwan, S. Schinkel, and D. Dransch,
“Visual analytics for correlation-based comparison of time series
ensembles,” Comput. Graph. Forum, vol. 34, no. 3, pp.411-420,
Jun. 2015.

J. Zhao, F. Chevalier, E. Pietriga, and R. Balakrishnan, “Exploratory
analysis of time-series with ChronoLenses,” IEEE Trans. Vis. Comput.
Graphics, vol. 17, no. 12, pp. 2422-2431, Dec. 2011.

C. Tominski, S. Gladisch, U. Kister, R. Dachselt, and H. Schumann,
“Interactive lenses for visualization: An extended survey,” Comput.
Graph. Forum, vol. 36, no. 6, pp. 173-200, Sep. 2017.

J. Heer and G. Robertson, “‘Animated transitions in statistical data graph-
ics,” IEEE Trans. Vis. Comput. Graphics, vol. 13, no. 6, pp. 1240-1247,
Nov. 2007.

W. Pike, J. Stasko, R. Chang, and T. O’Connell, “The science of
interaction,” Inf. Visualizat., vol. 8, no. 4, pp. 263-274, Dec. 2009.

161681



IEEE Access

E. S. Ortigossa et al.: Time Series Information Visualization—A Review of Approaches and Tools

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

G. A. Van, F. Staals, M. Loffler, J. Dykes, and B. Speckmann, ‘“Multi-
granular trend detection for time-series analysis,” IEEE Trans. Vis.
Comput. Graph., vol. 23, no. 1, pp. 661-670, Jan. 2017.

Y. Wu, R. Chang, J. M. Hellerstein, A. Satyanarayan, and E. Wu, “DIEL:
Interactive visualization beyond the here and now,” [EEE Trans. Vis.
Comput. Graph., vol. 28, no. 1, pp. 737-746, Jan. 2022.

G. Y.-Y. Chan, L. G. Nonato, T. Palpanas, C. T. Silva, and J. Freire,
“TiVy: Time series visual summary for scalable visualization,” 2025,
arXiv:2507.18972.

Z.Liu, B. Jiang, and J. Heer, “ImMens: Real-time visual querying of big
data,” in Computer Graphics Forum, vol. 32. Hoboken, NJ, USA: Wiley,
2013, pp. 421-430.

D. C. Nascimento, B. Pimentel, R. Souza, J. P. Leite, D. J. Edwards,
T. E. G. Santos, and F. Louzada, “Dynamic time series smoothing
for symbolic interval data applied to neuroscience,” Inf. Sci., vol. 517,
pp. 415-426, May 2020.

D. Liu, P. Xu, and L. Ren, “TPFlow: Progressive partition and
multidimensional pattern extraction for large-scale spatio-temporal data
analysis,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 1-11,
Jan. 2019.

V. Rodriguez-Fernandez, D. Montalvo-Garcia, F. Piccialli, G. J. Nalepa,
and D. Camacho, “DeepVATS: Deep visual analytics for time series,”
Knowl.-Based Syst., vol. 277, Oct. 2023, Art. no. 110793.

A. Ulmer, M. Angelini, J.-D. Fekete, J. Kohlhammer, and T. May, “A
survey on progressive visualization,” IEEE Trans. Vis. Comput. Graph.,
vol. 30, no. 9, pp. 6447-6467, Sep. 2024.

T.-C. Fu, “A review on time series data mining,” Eng. Appl. Artif. Intell.,
vol. 24, no. 1, pp. 164-181, Feb. 2010.

H. Ziegler, M. Jenny, T. Gruse, and D. A. Keim, “Visual market sector
analysis for financial time series data,” in Proc. Vis. Anal. Sci. Technol.
(VAST), 2010, pp. 83-90.

M. Hao, U. Dayal, D. A. Keim, and T. Schreck, ‘“Multi-resolution
techniques for visual exploration of large time-series data,” in Proc. 9th
Joint Eurographics/IEEE VGTC Conf. Visualizat. Cham, Switzerland,
Aug. 2007, pp. 27-34.

N. Kumar, V. N. Lolla, E. Keogh, S. Lonardi, C. A. Ratanamahatana, and
L. Wei, “Time-series bitmaps: A practical visualization tool for working
with large time series databases,” in Proc. SIAM Int. Conf. Data Mining.
Philadelphia, PA, USA: SIAM, Apr. 2005, pp. 531-535.

J. Zhao, P. Forer, and A. S. Harvey, “Activities, ringmaps and
geovisualization of large human movement fields,” Inf. Visualizat., vol. 7,
nos. 3—4, pp. 198-209, Sep. 2008.

G. Andrienko, N. Andrienko, U. Demsar, D. Dransch, J. Dykes,
S. I. Fabrikant, M. Jern, M. J. Kraak, H. Schumann, and C. Tominski,
““Space, time and visual analytics,” Int. J. Geographical Inf. Sci., vol. 24,
no. 10, pp. 1577-1600, Oct. 2010.

(Jun. 2017). Did it Rain in Seattle? (1948-2017). [Online]. Available:
https://www.kaggle.com/datasets/rtatman/did-it-rain-in-seattle-
19482017

J. Zhao, F. Chevalier, and R. Balakrishnan, “KronoMiner: Using multi-
foci navigation for the visual exploration of time-series data,” in Proc.
SIGCHI Conf. Hum. Factors Comput. Syst. New York, NY, USA: ACM,
May 2011, pp. 1737-1746.

J.Lin, E. Keogh, and S. Lonardi, ‘“Visualizing and discovering non-trivial
patterns in large time series databases,” Inf. Visualizat., vol. 4, no. 2,
pp. 61-82, Jun. 2005.

S. Iram, T. Fernando, and R. Hill, “Connecting to smart cities:
Analyzing energy times series to visualize monthly electricity peak load
in residential buildings,” in Proc. Future Technol. Conf. (FTC), 2018,
pp. 333-342.

F. Zhang, C. Bales, and H. Fleyeh, “From time series to image
analysis: A transfer learning approach for night setback identification
of district heating substations,” J. Building Eng., vol. 43, Nov. 2021,
Art. no. 102537.

V. Pham, N. Nguyen, and T. Dang, “ContiMap: Continuous heatmap for
large time series data,” in Proc. Visualizat. Data Sci. (VDS), Oct. 2020,
pp. 42-51.

J. Palmeiro, B. Malveiro, R. Costa, D. Polido, R. Moreira, and P. Bizarro,
“Data+shift: Supporting visual investigation of data distribution shifts by
data scientists,” 2022, arXiv:2204.14025.

N. Andrienko, G. Andrienko, and G. Shirato, “Episodes and topics in
multivariate temporal data,” Comput. Graph. Forum, vol. 42, no. 6,
p- 14926, Sep. 2023.

161682

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

L. Chu, B. Ai, Y. Wen, Q. Shi, H. Ma, and W. Feng, “A spatio-temporal
dynamic visualization method of time-varying wind fields based on
particle system,” ISPRS Int. J. Geo-Inf., vol. 12, no. 4, p. 146, Mar. 2023.
I. Boyandin, E. Bertini, P. M. Bak, and D. Lalanne, “Flowstrates: An
approach for visual exploration of temporal origin-destination data,”
in Proc. 13th Eurographics/IEEE VGTC Conf. Visualizat., vol. 30,
Apr. 2011, pp. 971-980.

N. Andrienko and G. Andrienko, “It’s about time: Analytical time
periodization,” Comput. Graph. Forum, vol. 42, no. 6, Sep. 2023,
Art. no. e14845.

L. Van der Maaten and G. E. Hinton, ““Visualizing data using t-SNE,” J.
Mach. Learn. Res., vol. 9, no. 86, pp. 2579-2605, 2008.

E. S. Ortigossa, F. F. Dias, and D. C. D. Nascimento, “Getting over high-
dimensionality: How multidimensional projection methods can assist data
science,” Appl. Sci., vol. 12, no. 13, p. 6799, Jul. 2022.

B. Bach, P. Dragicevic, D. Archambault, C. Hurter, and S. Carpendale,
“A review of temporal data visualizations based on space-time cube
operations,” in Proc. Eurographics Conf. Visualizat. (EuroVis), R. Borgo,
R. Maciejewski, and 1. Viola, Eds., 2014, pp. 23-41.

N. Andrienko and G. Andrienko, “Visual analytics of movement: An
overview of methods, tools and procedures,” Inf. Visualizat., vol. 12,
no. 1, pp. 3-24, Jan. 2013.

R. A. Becker and W. S. Cleveland, “Brushing scatterplots,” Technomet-
rics, vol. 29, no. 2, pp. 127-142, May 1987.

D. Feng, L. Kwock, Y. Lee, and R. Taylor, “Matching visual saliency to
confidence in plots of uncertain data,” IEEE Trans. Vis. Comput. Graph.,
vol. 16, no. 6, pp. 980-989, Nov. 2010.

Y. Wang, F. Han, L. Zhu, O. Deussen, and B. Chen, “Line graph or
scatter plot? Automatic selection of methods for visualizing trends in time
series,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 2, pp. 1141-1154,
Feb. 2018.

A. Inselberg and B. Dimsdale, “Parallel coordinates: A tool for
visualizing multi-dimensional geometry,” in Proc. Ist IEEE Conf. Vis.,
Los Alamitos, CA, USA, Feb. 1990, pp. 361-378.

R. C. Roberts, R. S. Laramee, G. A. Smith, P. Brookes, and T. D’Cruze,
“Smart brushing for parallel coordinates,” IEEE Trans. Vis. Comput.
Graph., vol. 25, no. 3, pp. 1575-1590, Mar. 2019.

C. Tominski, J. Abello, and H. Schumann, “Axes-based visualizations
with radial layouts,” in Proc. ACM Symp. Appl. Comput. New York, NY,
USA: ACM, Mar. 2004, pp. 1242-1247.

J. Heinrich and D. Weiskopf, “‘State of the art of parallel coordinates,”
Eurographics State Rep., vol. 2013, pp. 95-116, Sep. 2013.

M. Schmidt, “The sankey diagram in energy and material flow
management: Part II: Methodology and current applications,” J. Ind.
Ecol., vol. 12, no. 2, pp. 173-185, Apr. 2008.

N. Cuba, “Research note: Sankey diagrams for visualizing land cover
dynamics,” Landscape Urban Planning, vol. 139, pp. 163-167, Jul. 2015.
R. C. Lupton and J. M. Allwood, “Hybrid sankey diagrams: Visual
analysis of multidimensional data for understanding resource use,”
Resour., Conservation Recycling, vol. 124, pp. 141-151, Sep. 2017.

L. A. Gilch and S. Miiller, “On elo based prediction models for the FIFA
worldcup 2018,” 2018, arXiv:1806.01930.

(2022). FIFA World Cup 2022: Complete Dataset. [Online]. Available:
https://www.kaggle.com/datasets/die9origephit/fifa-world-cup-2022-
complete-dataset

W. Zeng, C.-W. Fu, S. M. Arisona, A. Erath, and H. Qu, “Visualizing
mobility of public transportation system,” IEEE Trans. Vis. Comput.
Graph., vol. 20, no. 12, pp. 1833-1842, Dec. 2014.

M. Wattenberg, “Baby names, visualization, and social data analysis,”
in Proc. IEEE Symp. Inf. Visualizat., Washington, DC, USA, Feb. 2005,
pp. 1-7.

(2017). U.S. Baby Names. [Online]. Available: https://www.kaggle.
com/datasets/kaggle/us-baby-names

S. Havre, B. Hetzler, and L. Nowell, “ThemeRiver: Visualizing theme
changes over time,” in Proc. IEEE Symp. Inf. Visualizat., Washington,
DC, USA, Feb. 2000, p. 115.

S. Havre, E. Hetzler, P. Whitney, and L. Nowell, “ThemeRiver:
Visualizing thematic changes in large document collections,” IEEE
Trans. Vis. Comput. Graph., vol. §, no. 1, pp. 9-20, Jan. 2002.

R. Chang, M. Ghoniem, R. Kosara, W. Ribarsky, J. Yang, E. Suma,
C. Ziemkiewicz, D. Kern, and A. Sudjianto, “WireVis: Visualization of
categorical, time-varying data from financial transactions,” in Proc. [EEE
Symp. Vis. Anal. Sci. Technol., Oct. 2007, pp. 155-162.

VOLUME 13, 2025



E. S. Ortigossa et al.: Time Series Information Visualization—A Review of Approaches and Tools

IEEE Access

[161]

[162

[163]

[164]

[165]

[166]

[167]

[168

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

M. Bloch, L. Byron, S. Carter, and A. Cox. (2008). The Ebb and
Flow of Movies: Box Olffice Receipts 1986-2007. [Online]. Avail-
able: http://www.nytimes.com/interactive/2008/02/23/movies/20080223
_REVENUE_GRAPHIC.html

(2008). The New York Times—EBB and Flow at the Box Office. [Online].
Available: https://archive.nytimes.com/www.nytimes.com/imagepages/
2008/02/24/business/24METRIC_GRAPHIC.html

M. D. Bartolomeo and Y. Hu, “There is more to streamgraphs than
movies: Better aesthetics via ordering and lassoing,” in Proc. Eurograph-
ics/IEEE VGTC Conf. Visualizat., vol. 35, Mar. 2016, pp. 341-350.

C. Shi, W. Cui, S. Liu, P. Xu, W. Chen, and H. Qu, “RankExplorer:
Visualization of ranking changes in large time series data,” IEEE Trans.
Vis. Comput. Graph., vol. 18, no. 12, pp. 2669-2678, Dec. 2012.

W. Dou, L. Yu, X. Wang, Z. Ma, and W. Ribarsky, ‘“HierarchicalTopics:
Visually exploring large text collections using topic hierarchies,” IEEE
Trans. Vis. Comput. Graph., vol. 19, no. 12, pp. 2002-2011, Dec. 2013.
W. Cui, S. Liu, Z. Wu, and H. Wei, ‘““How hierarchical topics evolve in
large text corpora,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12,
pp. 2281-2290, Dec. 2014.

M. Burch, F. Beck, and S. Diehl, “Timeline trees: Visualizing sequences
of transactions in information hierarchies,” in Proc. Work. Conf. Adv. Vis.
Interfaces. New York, NY, USA: ACM, May 2008, pp. 75-82.

P. Federico, S. Hoffmann, A. Rind, W. Aigner, and S. Miksch, “Qualizon
graphs: Space-efficient time-series visualization with qualitative abstrac-
tions,” in Proc. Int. Work. Conf. Adv. Vis. Interfaces. New York, NY, USA:
ACM, May 2014, pp. 273-280.

N. Cao, Y.-R. Lin, X. Sun, D. Lazer, S. Liu, and H. Qu, “Whisper: Tracing
the spatiotemporal process of information diffusion in real time,” IEEE
Trans. Vis. Comput. Graph., vol. 18, no. 12, pp. 2649-2658, Dec. 2012.
G. Sun, Y. Wu, S. Liu, T.-Q. Peng, J. J. H. Zhu, and R. Liang, “EvoRiver:
Visual analysis of topic coopetition on social media,” IEEE Trans. Vis.
Comput. Graph., vol. 20, no. 12, pp. 1753-1762, Dec. 2014.

T. Dang, N. Pendar, and A. G. Forbes, “TimeArcs: Visualizing
fluctuations in dynamic networks,” in Proc. Eurographics/IEEE VGTC
Conf. Visualizat., vol. 35, 2016, pp. 61-69.

F. Heimerl, S. Lohmann, S. Lange, and T. Ertl, “Word cloud explorer:
Text analytics based on word clouds,” in Proc. 47th Hawaii Int. Conf.
Syst. Sci., Jan. 2014, pp. 1833-1842.

S. Chen, L. Lin, and X. Yuan, “Social media visual analytics,” Comput.
Graph. Forum, vol. 36, no. 3, pp. 563-587, Jun. 2017.

M. Toyoda and M. Kitsuregawa, ““A system for visualizing and analyzing
the evolution of the web with a time series of graphs,” in Proc. 16th ACM
Conf. Hypertext Hypermedia. New York, NY, USA: ACM, Sep. 2005,
pp- 151-160.

I. Herman, G. Melancon, and M. S. Marshall, “Graph visualization and
navigation in information visualization: A survey,” IEEE Trans. Vis.
Comput. Graph., vol. 6, no. 1, pp. 24-43, Jan. 2000.

M. Itoh, M. Toyoda, and M. Kitsuregawa, “An interactive visualization
framework for time-series of web graphs in a 3D environment,” in Proc.
14th Int. Conf. Inf. Visualisation, Jul. 2010, pp. 54-60.

L. Stopar, P. Skraba, M. Grobelnik, and D. Mladenic, ‘“StreamStory:
Exploring multivariate time series on multiple scales,” IEEE Trans. Vis.
Comput. Graph., vol. 25, no. 4, pp. 1788-1802, Apr. 2019.

L. Costa, T. Nichols, and J. Q. Smith, “Studying the effective
brain connectivity using multiregression dynamic models,” Brazilian J.
Probab. Statist., vol. 31, no. 4, pp. 765-800, Nov. 2017.

S. T. Lei and K. Zhang, “A visual analytics system for financial time-
series data,” in Proc. 3rd Int. Symp. Vis. Inf. Commun. New York, NY,
USA: ACM, Sep. 2010, pp. 1-9.

T.-C. Fu, E-L. Chung, C.-F. Lam, R. Luk, and C.-M. Ng, “Adaptive data
delivery framework for financial time series visualization,” in Proc. Int.
Conf. Mobile Bus., Apr. 2005, pp. 267-273.

S. Ko, I. Cho, S. Afzal, C. Yau, J. Chae, A. Malik, K. L. Beck, Y. Jang,
W. Ribarsky, and D. S. Ebert, “A survey on visual analysis approaches
for financial data,” in Proc. Eurographics/IEEE VGTC Conf. Vis., State
Art Rep., vol. 35, Feb. 2016, pp. 599-617.

T. M. Green, W. Ribarsky, and B. Fisher, “Building and applying a
human cognition model for visual analytics,” Inf. Visualizat., vol. 8, no. 1,
pp. 1-13, Jan. 2009.

L. Yuan, B. Li, S. Li, K. K. Wong, R. Zhang, and H. Qu, ““Tax-scheduler:
An interactive visualization system for staff shifting and scheduling at tax
authorities,” Vis. Informat., vol. 7, no. 2, pp. 30-40, Jun. 2023.

VOLUME 13, 2025

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

E. S. Ortigossa, T. Gongalves, and L. G. Nonato, “EXplainable artificial
intelligence (XAI)—From theory to methods and applications,” [EEE
Access, vol. 12, pp. 80799-80846, 2024.

P.-D. Arsenault, S. Wang, and J.-M. Patenaude, ““A survey of explainable
artificial intelligence (XAI) in financial time series forecasting,” ACM
Comput. Surv., vol. 57, no. 10, pp. 1-37, May 2025.

N. Li, Z. Jiang, Z. Liu, and X. Meng, “A method of hierarchical time-
series data visualization,” in Proc. 6th Int. Symp. Vis. Inf. Commun.
Interact. New York, NY, USA: ACM, Aug. 2013, pp. 113-114.

M. Burch and D. Weiskopf, ““Visualizing dynamic quantitative data in
hierarchies—TimeEdgeTrees: Attaching dynamic weights to tree edges,”
in Proc. Int. Conf. Visualizat. Theory Appl. New York, NY, USA:
Springer, 2011, pp. 177-186.

N. Li, Z. Jiang, Z. Liu, and H. Sun, “Hyperbolic tree + time disc:
Visualizing hierarchical time-series data,” in Proc. 7th Int. Symp. Vis. Inf.
Commun. Interact. New York, NY, USA: ACM, Aug. 2014, pp. 188-191.
J. Lamping, R. Rao, and P. Pirolli, ‘A focus+context technique based on
hyperbolic geometry for visualizing large hierarchies,” in Proc. SIGCHI
Conf. Hum. Factors Comput. Syst. (CHI), New York, NY, USA, 1995,
pp. 401-408.

L. Rodriguez and D. Mendez, ““Pollution spots: A novel method for air
pollution monitoring,” in Air Pollution XXIII, vol. 198. Southampton,
U.K.: WIT Press, 2015, pp. 129-140.

H.-J. Yoon, S. Xu, and G. Tourassi, “Predicting lung cancer incidence
from air pollution exposures using shapelet-based time series analysis,”
in Proc. IEEE-EMBS Int. Conf. Biomed. Health Informat. (BHI),
Piscataway, NJ, USA, Feb. 2016, pp. 565-568.

A. Fonseca, P. H. Ferreira, D. C. D. Nascimento, R. Fiaccone, C. Ulloa-
Correa, A. Garcia-Pifia, and F. Louzada, ‘“Water particles monitoring in
the Atacama desert: SPC approach based on proportional data,” Axioms,
vol. 10, no. 3, p. 154, Jul. 2021.

A.Gomi and T. Itoh, “MIAOW: A 3D image browser applying a location-
and time-based hierarchical data visualization technique,” in Proc. Int.
Conf. Adv. Vis. Interfaces. New York, NY, USA: ACM, May 2010,
pp. 225-232.

B. Johnson and B. Shneiderman, “Tree-maps: A space-filling approach
to the visualization of hierarchical information structures,” in Proc.
Visualizat., Jan. 1991, pp. 284-291.

W. Javed, S. Ghani, and N. Elmqvist, “Polyzoom: Multiscale and
multifocus exploration in 2D visual spaces,” in Proc. SIGCHI Conf.
Hum. Factors Comput. Syst. New York, NY, USA: ACM, May 2012,
pp. 287-296.

K. Andrews, W. Kienreich, V. Sabol, J. Becker, G. Droschl, F. Kappe,
M. Granitzer, P. Auer, and K. Tochtermann, “The InfoSky visual
explorer: Exploiting hierarchical structure and document similarities,”
Inf. Visualizat., vol. 1, nos. 3—4, pp. 166-181, Dec. 2002.

J. Walker, R. Borgo, and M. W. Jones, “TimeNotes: A study on effective
chart visualization and interaction techniques for time-series data,” IEEE
Trans. Vis. Comput. Graphics, vol. 22, no. 1, pp. 549-558, Jan. 2016.

N. Andrienko, T. Lammarsch, G. Andrienko, G. Fuchs, D. A. Keim,
S. Miksch, and A. Rind, “Viewing visual analytics as model building,”
Comput. Graph. Forum, vol. 37, no. 6, pp. 275-299, 2018.

T. Itoh, T. Nakano, S. Fukayama, M. Hamasaki, and M. Goto,
“SingDistVis: Interactive overview+ detail visualization for FO trajecto-
ries of numerous singers singing the same song,” Multimedia Tools Appl.,
vol. 84, no. 2, pp. 1057-1077, 2024.

P. Xu, H. Mei, L. Ren, and W. Chen, “ViDX: Visual diagnostics (don’t
short) of assembly line performance in smart factories,” IEEE Trans. Vis.
Comput. Graph., vol. 23, no. 1, pp. 291-300, Jan. 2017.

C. Shi, Y. Wu, S. Liu, H. Zhou, and H. Qu, “LoyalTracker: Visualizing
loyalty dynamics in search engines,” IEEE Trans. Vis. Comput. Graph.,
vol. 20, no. 12, pp. 1733-1742, Dec. 2014.

H. Wickham, GGplot2: Elegant Graphics for Data Analysis.
New York, NY, USA: Springer, 2016. [Online]. Available:
https://ggplot2.tidyverse.org

W. Hales, HTMLS5 and JavaScript Web Apps. Sebastopol, CA, USA:
O’Reilly Media, 2012.

M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-driven documents,”
IEEE Trans. Vis. Comput. Graphics, vol. 17, no. 12, pp. 2301-2309,
Dec. 2011.

S. Murray, Interactive Data Visualization for the Web, 1st ed., Sebastopol,
CA, USA: O’Reilly Media, 2013.

J. Achiam et al., “GPT-4 technical report,” 2023, arXiv:2303.08774.

161683



IEEE Access

E. S. Ortigossa et al.: Time Series Information Visualization—A Review of Approaches and Tools

[207]

[208]

[209]

[210]

[211

[212

[213]

[214]

[215]

[216]

[217]

[218]

[219]

A. Grattafiori et al., “The llama 3 herd of models,” 2024,
arXiv:2407.21783.

Z. Yang, Z. Zhou, S. Wang, X. Cong, X. Han, Y. Yan, Z. Liu, Z. Tan,
P. Liu, D. Yu, Z. Liu, X. Shi, and M. Sun, ‘“MatPlotAgent: Method and
evaluation for LLM-based agentic scientific data visualization,” 2024,
arXiv:2402.11453.

Z. Wang, M. Xia, L. He, H. Chen, Y. Liu, R. Zhu, K. Liang, X. Wu,
H. Liu, S. Malladi, A. Chevalier, S. Arora, and D. Chen, “CharXiv:
Charting gaps in realistic chart understanding in multimodal LLMs,”
2024, arXiv:2406.18521.

J.Lin, E. Keogh, S. Lonardi, J. P. Lankford, and D. M. Nystrom, ““Visually
mining and monitoring massive time series,” in Proc. 10thACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining. New York, NY, USA: ACM,
Aug. 2004, pp. 460-469.

E. Keogh, S. Lonardi, and B.-C. Chiu, “Finding surprising patterns in a
time series database in linear time and space,” in Proc. 8th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, Jul. 2002, pp. 550-556.

L. Costa, O. Anacleto, D. C. Nascimento, J. Q. Smith, C. M. Queen,
F. Louzada, and T. Nichols, “Evaluating brain group structure methods
using hierarchical dynamic models,” Pattern Recognit., vol. 155,
Nov. 2024, Art. no. 110687.

J. Sun, X.Li, Y. Jin, L. Dai, X. Peng, and C. Chen, ‘‘Task-oriented analysis
and visualization of correlation patterns in multi-sensor time series,”
Knowl.-Based Syst., vol. 289, Apr. 2024, Art. no. 111525.

L. Longo, M. Brcic, F. Cabitza, J. Choi, R. Confaloneri, J. D. Ser,
R. Guidotti, Y. Hayashi, F. Herrera, A. Holzinger, R. Jiang, H. Khosravi,
F. Lecue, G. Malgieri, A. Pdez, W. Samek, J. Schneider, T. Speith, and
S. Stumpf, “Explainable artificial intelligence (XAI) 2.0: A manifesto of
open challenges and interdisciplinary research directions,” Inf. Fusion,
vol. 106, Jun. 2024, Art. no. 102301.

E. S. Ortigossa, F. F. Dias, B. Barr, C. T. Silva, and L. G. Nonato,
“T-explainer: A model-agnostic explainability framework based on
gradients,” [EEE Intell. Syst., early access, Apr. 29, 2025, doi:
10.1109/M1S.2025.3564330.

K. Xu, J. Yuan, Y. Wang, C. Silva, and E. Bertini, “MTSeer: Interactive
visual exploration of models on multivariate time-series forecast,” in
Proc. CHI Conf. Hum. Factors Comput. Syst., May 2021, pp. 1-15.

S. M. Lundberg, B. Nair, M. S. Vavilala, M. Horibe, M. J. Eisses,
T. Adams, D. E. Liston, D. K.-W. Low, S.-F. Newman, J. Kim, and
S.-I. Lee, “Explainable machine-learning predictions for the prevention
of hypoxaemia during surgery,” Nature Biomed. Eng., vol. 2, no. 10,
pp. 749-760, Oct. 2018.

R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad,
“Intelligible models for HealthCare: Predicting pneumonia risk and
hospital 30-day readmission,” in Proc. 21st ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining. New York, NY, USA: ACM, Aug. 2015,
pp. 1721-1730.

J. J. Thomas and K. A. Cook, Illluminating the Path: The Research and
Development Agenda for Visual Analytics. Piscataway, NJ, USA: IEEE
Press, 2005.

EVANDRO S. ORTIGOSSA received the B.Sc.
and M.Sc. degrees in computer science (multidi-
mensional time-series analysis and visualization)
and the Ph.D. degree in computer science and
computational mathematics with the developed
research in machine learning and explainable
artificial intelligence (XAI) from the Institute of
Mathematics and Computer Science, University
of Sdo Paulo (ICMC-USP), Sdo Carlos, Brazil,
in 2015, 2018, and 2024, respectively.

He is currently a Postdoctoral Researcher with the Department of
Computer Science and Applied Mathematics, Weizmann Institute of Science,
Rehovot, Israel, where he is working with machine learning approaches
for personalized medicine. His research interests include machine learning,
explainable artificial intelligence (XAI), information visualization (InfoVis),
and image processing.

FABIO F. DIAS received the Ph.D. degree in
computer science and computational mathematics
from the Institute of Mathematics and Computer
Science, University of Sdo Paulo (ICMC-USP),
Sdo Carlos, Brazil. He is currently a Post-
doctoral Researcher with the Visualization and
Data Analytics (VIDA) Research Center, New
York University, NY, USA. His research inter-
ests include information visualization, machine
learning, signal and image processing, and system
development.

DIEGO C. NASCIMENTO received the B.Sc.
degree in statistics from the Federal University of
Rio Grande do Norte (UFRN), the M.Sc. degree in
business management from the Federal University
of Pernambuco (UFPE), and the Ph.D. degree
in statistics from the University of Sao Paulo
and Federal University of Sdo Carlos (ICMC-
USP/UFSCar). From 2021 to 2024, he was a
Visiting Professor at the University of Atacama,
Chile. He is currently an Assistant Professor with
the NEOMA Business School, France. His research interests include
statistical learning, Bayesian inference, spatiotemporal modeling, clustering
time series, data visualization, and symbolic data analysis (SDA).

LUIS GUSTAVO NONATO (Senior Member,
IEEE) received the Ph.D. degree in applied mathe-
matics from the Pontificia Universidade Catélica
do Rio de Janeiro (PUC-Rio), Rio de Janeiro,
Brazil, in 1998.

From 2008 to 2010, he was a Visiting Scholar
with the SCI Institute, The University of Utah.
From 2016 to 2018, he was a Visiting Professor
with the Center for Data Science, New York
University. He is currently a Professor with the
Institute of Mathematics and Computer Science, University of Sdo Paulo
(ICMC-USP), Sdo Carlos, Brazil. His research interests include visual
analytics, geometric computing, data science, and visualization. He served
on several program committees, including IEEE SciVis, IEEE InfoVis,
and EuroVis. He was an Associate Editor of Computer Graphics Forum
journal and IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
and the Editor-in-Chief of International Journal of Applied Mathematics and
Computational Sciences (SBMAC, SpringerBriefs).

Coordenagdo de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) - ROR identifier: 00xOma614

161684

VOLUME 13, 2025


http://dx.doi.org/10.1109/MIS.2025.3564330

