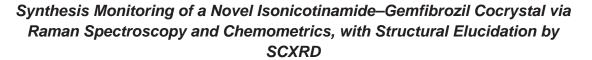


Joint meeting VII Latin American Crystallographic Association and

XXVII Brazilian Crystallographic Association


BOOK OF ABSTRACTS

October 14 to 17, 2025 Fortaleza, Brazil

VII Latin American Crystallographic Association Meeting

XXVII Brazilian Crystallography Association Meeting

Bruno A. Borges¹, Caio Henrique I. L. Silva¹, João Pedro A. Zamboti¹, Javier Ellena², Renato L. Carneiro¹.

¹Universidade Federal de São Carlos, Grupo de Quimiometria Aplicada, ²Instituto de Física de São Carlos, Universidade de São Paulo, Labratório Multiusuário de Cristalografia Estrutural.

Email of communicating: bruno.borges@estudante.ufscar.br

Co-crystallization is a promising strategy in pharmaceutical development to improve the physicochemical properties of poorly soluble active pharmaceutical ingredients (APIs) without altering their chemical structure. Gemfibrozil, a lipid-lowering drug classified as BCS Class II, exhibits low aqueous solubility and variable oral bioavailability, limiting its therapeutic efficiency. In this study, a novel gemfibrozil–isonicotinamide co-crystal was successfully obtained via mechanochemical synthesis using an equimolar mixture and a catalytic amount of water. This solvent-free method enhances sustainability and scalability compared to conventional crystallization techniques.[1], [2]

A key innovation of the study was the use of in-situ Raman spectroscopy combined with Principal Component Analysis (PCA) to monitor the co-crystallization process in real time. The PCA revealed significant spectral changes that did not correspond to either of the pure components or their physical mixture, strongly suggesting the formation of a new solid phase. This new phase was subsequently confirmed through powder X-ray diffraction (PXRD) analysis, demonstrating the effectiveness of chemometrics in supporting process analytical technology (PAT) for solid-state transformations. [3], [4]

The novel co-crystal was characterized by X-ray diffraction (XRD) and thermal analysis. Single-crystal XRD confirmed a well-ordered crystalline lattice and revealed the specific intermolecular interactions responsible for the co-crystal's stability. Thermal analyses, including Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TG), demonstrated a significant enhancement in thermal stability compared to pure gemfibrozil. This improved thermal resistance is critical for pharmaceutical formulations, potentially increasing shelf-life and processing robustness.

Solubility studies revealed a clear advantage of the co-crystal over the free form of gemfibrozil, particularly in acidic media. These findings support the use of co-crystallization to enhance solubility and dissolution performance. Overall, this study highlights the potential of mechanochemistry and advanced analytical techniques in the discovery and development of innovative pharmaceutical co-crystals.

- [1] D. J. Berry e J. W. Steed, (2017). Adv Drug Deliv Rev, 117,3–24.
- [2] N. Schultheiss e A. Newman, (2009). Crystal Growth &Design, 9, 2950–2967.
- [3] A. De Juan e R. Tauler, (2003). Analytica Chimica Acta, 195-210.
- [4] L. X. Yu, R. A. Lionberger, A. S. Raw, R. D'Costa, H. Wu, e A. S. Hussain, (2004). Adv Drug Deliv Rev, 56, 349–369.

Keywords: Pharmaceutical co-crystal; Mechanochemistry; Gemfibrozil; Chemometrics.