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Anthropogenic biodiversity decline threatens the functioning of ecosystems and
the many benefits they provide to humanity'. As well as causing species losses in
directly affected locations, human influence might also reduce biodiversity in
relatively unmodified vegetationif far-reaching anthropogenic effects trigger local
extinctions and hinder recolonization. Here we show that local plant diversity is
globally negatively related to the level of anthropogenic activity in the surrounding
region. Impoverishment of natural vegetation was evident only when we considered

community completeness: the proportion of all suitable speciesin the region that are
present at asite. To estimate community completeness, we compared the number of
recorded species with the dark diversity—ecologically suitable species that are absent
from asite but present in the surrounding region In the sampled regions with a
minimal human footprint index, an average of 35% of suitable plant species were
present locally, compared with less than 20% in highly affected regions. Besides
having the potential to uncover overlooked threats to biodiversity, dark diversity

also provides guidance for nature conservation. Species in the dark diversity remain
regionally present, and their local populations might be restored through measures that
improve connectivity between natural vegetation fragments and reduce threats to
population persistence.

Direct detrimental effects of anthropogenic activity on the biodiver-
sity of natural ecosystems have been extensively documented**. For
example, conversion of natural forest into urban landcover® or trans-
formation of grassland into cropland® causes conspicuous declines
in biodiversity. Biodiversity may also decline in ecosystems that are
not directly modified but occur in regions in which human activities
have caused habitat fragmentation’ or exert diffuse effects on natural
areas—through pollution, for example®. Although compelling case
studies show the influence of human activities on surrounding natural
vegetation, beyond a direct area of impact®°, there is no empirical
evidence demonstrating the generality of regional-scale anthropogenic
effects on local biodiversity in natural vegetation. Comparisons of
relatively undisturbed vegetation inside and outside protected areas
have revealed no discernible differencesinlocal biodiversity", but this
overlooks the possibility that biodiversity has declined systematically
in both settings'*". The lack of empirical evidence might stem from
the masking effect of high variation in biodiversity across regions and
along ecological gradients™ ¢, We hypothesize that anthropogenic
impoverishment of natural ecosystems can be revealed by the dark
diversity—species that are ecologically suitable and presentinaregion
but currently absent fromagivensite?. Dark diversity allows estimation
of community completeness, abiodiversity metric that represents the
proportionofallsuitable speciesinaregionthatareactually presentata
site”. This metricis globally comparable because it accounts for natural
variation in potential biodiversity. Estimating the ecological suitability
of species that are absent fromasiteis challenging, but methodological
advances offer a solution based on species co-occurrences’.

The notion of dark diversity aligns with Whittaker’s classic alpha-
beta-gamma diversity framework—a cornerstone of modern

biodiversity research (Fig. 1). In Whittaker’s work, alpha diversity
represented the number of species at a particular site, gamma diver-
sity comprised all species found in the surrounding region and beta
diversity described changes in community composition along envi-
ronmental gradients. The dark diversity concept is taxon-oriented,
because it considers the suitability of each absent species for a study
site. When aggregated, alpha and dark diversity together constitute the
site-specific species pool, whichincludes only those species from the
region that are suitable for agivensite on the basis of its ecological con-
ditions. Inthis context, beta diversity, as first defined by Whittaker, can
bearticulated as the change in site-specific species pools withingamma
diversity. This is sometimes referred to as ‘structured’ beta diversity,
whereas ‘unstructured’ beta diversity represents the variation in spe-
cies composition among sampled sites within an ecologically similar
area’®?. The dark diversity concept enhances the alpha-beta-gamma
framework by providing asite-specific toolbox that complements alpha
diversity at asite withthe set of suitable yet absent species (dark diver-
sity), the biodiversity potential of the site (species pool size) and the
degree towhich this potentialis realized (community completeness).

Alphadiversity is the most commonly used biodiversity metric, but it
dependsonvariationin natural biodiversity potential between regions
(forexample, boreal versus temperate regions; North America versus
East Asia) and ecological conditions within regions (for example, wet-
lands versus forests; south-facing versus north-facing slopes). Specia-
tion, large-scale dispersal, species sorting and stochastic variation have
produced site-specific species pools of considerably different sizes?.
Community completeness accounts for such variation by quantifying
the extent to which the biodiversity potential (that is, the site-specific
species pool) is realized locally”. Even in natural ecosystems, some
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Fig.1|Estimating dark diversity and related biodiversity metricsin
ecological communities. a, Dataincluded alocal study site where certain
specieswere present, but many species sampled elsewherein the region were
absent. To estimate the probability that aspecies thatis absent fromthesite
butpresentintheregionbelongstothe dark diversity of the site, we used
information about species co-occurrences atother sitesintheregion.b, We
calculated anindicator matrix in which each present speciesindicated the
ecological suitability of each absent species for the study site. We compared
the observed number of co-occurrences with the number of co-occurrences
expected at random (according to the hypergeometric distribution)

and standardized the difference using the standard deviation from the
hypergeometric distribution. c, By averaging across all observed species, each
absent species was assigned a probability of belonging to the dark diversity for

suitable taxa might be absent owing to natural processes that cause
local extinction or limit recolonization. Such limiting processes vary
along environmental gradients, reflected in the global patterns of plant
persistence strategies® and interactions with other organisms; for
example, seed predators*. Consequently, there is likely to be natural
variation in community completeness across broad environmental
gradients®. In addition, regions with high geodiversity or amosaic of
vegetation types (that is, high structured beta diversity) might have
lower community completeness because theisolation of natural habitat
fragments and the likelihood of local extinction increase®. Further-
more, climatic conditions leave some regions prone to extreme events,
such as natural fire, that cause local species loss**?%. Nevertheless, in
addition to natural variation, human activities might strongly influence
community completeness by reducing the persistence of local popu-
lations; for example, by promoting highly competitive taxa (through
eutrophication, for instance®) or by restricting mutualistic interactions
(reducing pollinators, for instance®). Similarly, human activities might
hinder the recolonization of suitable sites through habitat fragmenta-
tion” and loss of seed-dispersing animals°.
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the study site. Consequently, the dark diversity was afuzzy set to which species
belongedtovarying degrees.d, Several biodiversity metrics were characterized
foreachsiteintheregion. Alphadiversity was the number of species recorded at
thessite, and gamma diversity was the total number of speciesrecordedina
region. Thesize of dark diversity was estimated as the sum of the probabilities
of absent species belongingto the dark diversity of the study site. Alphaand
dark diversity together formed the site-specific species pool,and gamma
diversity not falling into this category was considered the unsuitable part

of gamma diversity; thatis, belonging to the species pools of other sites. We
investigated the percentage of the species pool that was present among the
alphadiversity (community completeness) and the turnover of species poolsin
theregion, expressed asthe percentage of gamma diversity that was unsuitable
for the study site (beta diversity).

To determine whether anthropogenic impoverishment of natural
vegetation is a worldwide phenomenon, we established DarkDiv-
Net, a global collaborative research network®. Using a standardized
methodology, we assessed both the alpha and the dark diversity of
vascular plants across 5,415 sites with relatively intact natural or semi-
natural vegetation, in 119 regions, spanning a wide range of vegeta-
tion types and representative of most global climatic conditions on
all vegetated continents (Extended Data Figs.1and 2).

In our study, ‘site’ refers to a100-m? area in which vegetation was
sampled, and ‘region’ represents the surrounding area of approximately
300 km? Each region encompasses at least 30 sites, representing the
natural and semi-natural vegetation typical of the region. We first
confirmed that the sampling area of 100 m? provided highly similar
estimates of dark diversity to those obtained from a considerably larger
area of 2,500 m? (Extended Data Fig. 3). We assessed alpha diversity
as the number of all vascular plant species found at each site. To esti-
mate dark diversity, we used a fuzzy set approach in which all species
occurringintheregion but absent from the site were assigned a prob-
ability of inclusion in the dark diversity on the basis of an established
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co-occurrence methodology'™. The use of probabilities maximizes the
amount of information used for estimating dark diversity. Specifically,
co-occurrences were based on the species composition of 30 randomly
selectedsitesintheregion (Fig.1a). Using asubset of regions in which
60 sites were availableyielded highly similar outcomes, indicating that
30sites were sufficient for estimating co-occurrence patterns among
species (Extended DataFig. 3). We estimated the degree towhich each
species present in aregion but absent from a site co-occurred with
species found at the site, and compared it with random expectation,
mathematically described by the hypergeometric distribution (Fig. 1b).
Ifan absent species co-occurred with a present species more than would
berandomly expected, they probably shared ecological requirements,
andthe present species provided a positive indication of the site’s suit-
ability for the absent species. The overall suitability of the site for the
absent species was estimated by averaging the suitability indications
from all species present at the site (Fig. 1c). The magnitude of dark
diversity at a site was then estimated as the sum of these suitability
estimates (probabilities of absent species belonging to the dark diver-
sity of the site, ranging between 0 and 1) across all absent species. The
unsuitable fraction of gamma diversity reflects the species belonging
todifferent site-specific species poolsin the same region. Using alpha
diversity, dark diversity and the unsuitable diversity foundin the region,
we calculated other biodiversity metrics for each site to have a full
description of biodiversity (Fig. 1d): site-specific species pool size as
the sum of alphaand dark diversity; gamma diversity as the total set of
species foundinaregion (this value was the same for each site withina
region); community completeness as the proportion of the site-specific
species pool size represented by alpha diversity; and beta diversity as
a quantification of the extent to which gamma diversity exceeds the
site-specific species pool size (that is, the proportion of gamma diver-
sity thatis unsuitable for the study site and is more likely to be associ-
ated with different site-specific species poolsinthe region). Inthis way,
we specifically quantified the ‘structured’ beta diversity, or turnoverin
site-specific species pool composition due to environmental gradients.
Inthe statistical analyses, community completeness and betadiversity
were included as log-ratios (logit transformation of percentages) to
improve the distribution of the data. We used two independent datasets
(expert assessments and examination of species found in the close
vicinity of the site) to ensure that the co-occurrence method provided
consistent estimates of species suitability for dark diversity (Extended
Data Fig. 2). We also determined that, for this particular dataset, the
hypergeometric method outperformed an alternative approach—joint
species distribution modelling® (see Supplementary Methods).

The median community completeness of sites across all regions
was 25% (95% confidence interval 15-46%), highlighting a frequent
absence of suitable species despite their presence in surrounding
regions (Fig.2a). The existence of relatively high dark diversity is clearly
ageneral phenomenon, but the large variation meant that sometimes
much fewer species were presentlocally than might be expected from
the specific site conditions. To understand how much variationin alpha
diversity was explained by community completeness besides betaand
gamma diversity, we used variation partitioning. We found that 33%
(26-43%) of the variation in alpha diversity was explained by com-
munity completeness. Consequently, if human activities reduce the
colonization and persistence of suitable species, resulting in lower com-
munity completeness, this could substantially affect alpha diversity.
The largest proportion of variation in alpha diversity, 52% (40-61%),
was explained by gamma diversity, reflecting the well-known match of
local and regional diversity®, whereas 14% (9-21%) was explained by
beta diversity, reflecting how gamma diversity is distributed across
different site-specific species pools. The strong dependence of alpha
diversity onregional richnessis clearly sufficient to mask the negative
effect of human activities on alpha diversity.

We tested the hypothesis that impoverishment of natural vegetation
isrelated to anthropogenic influence in the surrounding region by

building a series of models with various biodiversity metrics (com-
munity completeness, alpha diversity, beta diversity, gamma diversity,
dark diversity and species pool size) as response variables. To estimate
the intensity of human activities in the surrounding regions, we used
the human footprintindex from2018 (the year our sampling began)—a
well-established cumulative metric of human influence**—along with
all of its eight components, including human population density and
various human infrastructure layers. We averaged human influence
at various spatial scales around the study region (radii from 10 km to
400 km), because humaninfluence canreach far from mapped features.
For example, poaching and logging can occur tens of kilometres from
human settlements® and are facilitated by many unmapped ‘ghost
roads’ that start from documented roads and lead into natural areas™.
Similarly, anthropogenic ignition of fires can occur hundreds of kilo-
metres from main roads¥. Aerial pollution is often deposited several
hundreds of kilometres from its source®, and land use can change local
climate over similar scales®. To account for the effects of natural pro-
cesses on biodiversity (for example, geodiversity, habitat patchiness
and likelihood of natural fires), we included in our statistical models
variables describing climatic, soil and topographic conditions, which
we derived from global GIS layers and summarized using four princi-
pal component axes. Using fivefold spatial block cross-validation, we
determined thatlinear models produced lower prediction errors with
test data, compared with nonlinear alternatives (around 20% versus
40%). We therefore used linear models in further analyses.

The human footprint index and community completeness exhib-
ited arobust negative linear relationship (Fig. 2a), which was already
significant when the average human footprint index within a 50-km
radius around the site was used, but became even more pronounced
when radii of 300 km or larger were considered (Fig. 2b and Extended
Data Table 1). In the sampled regions with minimal human footprint
index values (close to zero), an average of 35% of suitable species were
foundin the100-m?sites, but this proportion declined to less than 20%
inregions with high human impact. However, there was still variation
in community completeness at both the low and the high ends of the
human footprintindex, showingthat sites do not respond uniformly. In
contrast to community completeness, alpha diversity was not strongly
related to the human footprint index, and nor were the other tested
metrics, except betadiversity (Extended DataFig.4 and Extended Data
Table 1). These results are consistent with our hypothesis that local
biodiversityis lower in natural vegetation surrounded by regions with
more humanactivity, but this effect was evident only when we consid-
ered community completeness. Raw estimates of alpha diversity were
strongly influenced by the wide natural variation in diversity potential
determined by the specific biogeographical history of each region. Our
results were consistent for six of the eightindividual components of the
human footprintindex: human population density, the extent of elec-
tricinfrastructure, railways, roads, built environments and croplands all
exhibited negative relationships with community completeness (Fig.2b
and Extended Data Table 2). The extent of pasture was an exception to
this pattern, because it was not negatively related to community com-
pleteness. This could be due to the influence of semi-natural grasslands,
in which long-term moderate human influence, including grazing of
domestic animals, cultural burning and haymaking, has resulted in
highly diverse and well-functioning ecosystems, exemplifying how
certain human activities can actually promote native biodiversity®.
We found that the effect of the human footprint index was strongest
when averaged over a range of several hundred kilometres. Besides
incorporating far-reaching humaninfluence, larger scales might also
more accurately capture cumulative human influence in a particular
region over long time periods*. However, including in the model a
variable representing change in the index between 2000 and 2013
did not reduce the Akaike information criterion (AIC) by more than
two units, which suggests that anthropogenic effects have operated
over longer timescales. To account for the effects of natural processes
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Fig.2|Plantdiversity in natural vegetationinrelation to human effectsin
thesurrounding regions. a, Relationship between community completeness
innatural vegetation and the human footprintindexin the surroundingarea,
defined by aradius of 300 km. The prediction line from a multiple linear
regression model is shown with the 95% confidence intervals. Note that
community completeness values on the y axis are back-transformed from the
logitscale. The symbol tones indicate forest cover (0-100%). R2 value of the
modeland two-tailed Pvalue of the relationship are shown; n =116 regions. The
distribution of community completenessis shownin the histogramon theright
(median, 25%). b, Left, model summaries linking community completeness to
the human footprintindex and its components across spatial scales. Human
influence was averaged over various spatial scales around the study regions
(radii1l0 km, 50 km,100 km, 200 km, 300 km and 400 km), and the respective

on community completeness, our models included environmental
variables. We found that community completeness decreased along
the first principal component (Extended Data Table 1). Thus, suitable
speciesare morelikely tofallinto the dark diversity inregions character-
ized by acidic organic soils and higher precipitation (see correlations
of principal component axes in Extended Data Fig. 5). Dark diversity,
gamma diversity and species pool size increased along the first axis
(representing higher soil carbon content, acidity and precipitation;
Extended Data Table1). Alphaandbeta diversities showed no significant
relationships with the environmental axes.

The negative effect of human activities on community complete-
ness might be associated with several phenomena. Human activities
might have led to the fragmentation or reduction of suitable habitats,
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models were compared using the Akaike information criterion (AIC). Filled
symbolsindicate significant relationships (P < 0.05), and the large symbol
indicates the set of best significant models (AAIC < 2). Right, from the best
model (the smallest scale at which AAIC < 2), the effect of the human footprint
index or one of its componentsis shown as astandardized coefficient (dot)
witha95% confidenceinterval (Cl; line); n =116 regions. Filled symbols and
bold confidenceinterval linesindicate significant effects. ¢, Map of sampling
regions, withcommunity completenessindicated by symbolsize and the
underlying map showing the global variation in the human footprintindex®*
(the highest value within each grid cell of around 0.25° x 0.25°). The inset shows
partof Europe containing alarge number of study regions. Triangles indicate
regionsinwhichonly woody species were sampled. Symbol tones indicate the
percentage of forestsinregions.

resulting insmaller populations that are more susceptible torandom
extinction®. In addition, habitat loss is likely to have decreased con-
nectivity between remaining patches of natural vegetation, mak-
ing it difficult for species to move between areas*, and defaunation
might have disrupted plant seed dispersal networks*’. Beyond habitat
loss, some anthropogenic disturbances, such as tree cutting, illegal
harvesting of plants and human-induced wildfires, can cause local
extinctions in natural vegetation'®*2. Moreover, regional human
impact can affect natural ecosystems through pollution from roads
and other human infrastructure; eutrophication is the most serious
threat to plant diversity, because it disproportionally favours a few
competitively superior species at the expense of a greater number
of other species®.
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Using average humaninfluence as an explanatory variable can mask
differences between regions. For example, regions that comprise both
highly modified areas (for example, cities) and nature reserves, as well
as those experiencing moderate human influence throughout (for
example, agricultural landscapes with smaller settlements), might
both exhibit an intermediate level of average human influence. We
therefore tested how the distribution of the human footprint index
withinregions affected community completeness. Notably, we found
thatcommunity completeness had an even stronger negative relation-
ship with anthropogenic influence when we used the 30% quantile of
the human footprint index values found within regions (Extended
Data Fig. 6). This result suggests that completeness is determined
mainly by the extent towhich the most natural areasinaregionalready
experience human influence. The idea that 30% coverage of natural
vegetationinalandscape supports the persistence of many specialist
taxa was proposed previously*, and aligns with the global target of
the Convention on Biological Diversity to protect 30% of land by the
year 2030. Our results therefore underscore the importance of devis-
ing regional-scale conservation strategies that include maintaining
well-preserved natural areas**.

The turnover of site-specific species pools within regions (structured
betadiversity) was significantly positively associated with the human
footprint index (Extended Data Fig. 4 and Supplementary Table 1).
This might reflect a human preference for naturally diverse regions
with a range of different resources®. Alternatively, human activi-
ties could have promoted plant diversity over millennia by expand-
ing semi-natural habitats and modifying natural ecosystems>. Most
components of the human footprintindex generally exhibited similar
relationships, except for the extent of navigable waterways and pas-
tures, which were negatively related to beta diversity (Supplementary
Table1). It is likely that coastal and riverine regions, and those suit-
able for livestock grazing, naturally exhibit relatively low variationin
vegetation types.

The finding that high human footprintindex values in aregion are
associated with low community completeness persisted in several
otherrobustnesstests (Supplementary Methods). Statistical interac-
tions between the human footprintindex and environmental gradients
did notimprove the model. Because naturally high beta diversity might
decrease community completeness owing to the spatial separation of
ecologically similar sites, and because beta diversity was correlated
with humaninfluence, we used structural equation modelling to exam-
ine the direct and indirect effects of human influence on community
completeness. The negative direct effect of the human footprintindex
oncommunity completeness persisted evenif there was an additional
negative direct effect of beta diversity. In addition, the effect of the
human footprint index on community completeness was consistent
across sampling scales (2,500 m? or twice as many sites for species
co-occurrences), when we excluded alien or very rare species, when
regions with only woody species records were included and when we
considered the proportion of forest cover in regions. Community
completeness was slightly lower in more forested regions. The most
parsimonious explanation for this might be a scaling effect—fewer
large plant individuals can fit into a fixed area*®. We also examined
the possible effect of geographically uneven sampling by selecting
asingle study region from each ecoregion (the anthropogenic effect
was always negative), adding the European continent asafactortothe
model (the negative relationship remained significant) and investigat-
ing model residuals (no significant spatial autocorrelation was appar-
ent). Community completeness was slightly lower in Europe thanin
other regions, which could reflect a cumulative effect of long-term
human influence*.

This global-scale study reveals general patterns, and linkage to spe-
cific drivers is based on ecological interpretation rather than experi-
mentation. It is also clear that the human footprintindex does not
provide a proxy for all potentially important processes, such as the

disruption of bioticinteraction networks, increasingly frequent climate
extremes or the habitat destruction and fragmentation caused by war.
The plethora of processes affecting biodiversity certainly contributes
to variation around the general trends revealed by our models. The
significantrelationships we identified apply to the sampled range of the
human footprintindex, whereas index values outside this range might
produce different relationships. Inaddition, evenif the uneven distri-
bution of study regions did not produce an effect in statistical mod-
els, the under-representation of several parts of Africa, the Americas
and Asia might mean that some human impacts on biodiversity were
not well represented. Future work should examine the exact patterns
and processes of natural vegetation impoverishment in these under-
sampled regions.

Our finding of aglobally consistent negative relationship between
humaninfluence andlocal plant diversity inrelatively natural vegeta-
tionis alarming, because plants form the foundation of all terrestrial
ecosystems. Reduced community completeness indicates that many
species presentintheregion do notinhabit suitable sites, and this can
affect local ecosystem functioning®’. Although vegetation function-
ing depends mainly on the traits of co-existing taxa, the presence of a
larger proportion of suitable taxa increases the chance that essential
functions are represented*®. We also found that negative humaninflu-
ence was most evident when considered at a scale spanning several
hundredkilometres; in other words, biodiversity in natural ecosystems
isreduced far beyond humaninfrastructure. Therefore, conservation
actions and land-use planning should consider not only the observed
alphadiversity of asite, but also a broader regional context. Ecology
has arich history of conceptual frameworks for biodiversity across
scales, such as species—area relationships*’, alpha-beta-gamma diver-
sity””, community saturation and assembly®* and the meta-community
concept™. Building on this collective knowledge, the dark diversity
concept offers a species-oriented toolkit for evaluating community
patterns and explaining the underlying processes. By allowing the
estimation of asite’s biodiversity potential (site-specific species pool)
and its realization (community completeness), it fosters the com-
parative study of biodiversity across regions, ecosystem types and
taxonomic groups®. Thisimproved understanding could help conser-
vationbiologists, land managers and policymakers to prevent further
losses of biodiversity®'. Moreover, while site-specific species pools are
not depleted, dark diversity offers a narrow window of opportunity
for restoration because it indicates which missing species are still
regionally present®*,
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Methods

DarkDivNet sampling scheme

In 2018, we launched a global collaborative research consortium to
sample both locally observed alpha diversity and dark diversity of
terrestrial plant communities using a standardized methodology.
Adetailed sampling protocol was produced before fieldwork began®.
Each study region covered anarea of approximately 300 km?, defined
by acircle of 20-km diameter with the available area influenced by
geographical and practical limitations (coastline, private ownership
and other access restrictions). This spatial scale was selected on the
basis of the authors’ expertise, in the expectation that it would incorpo-
rate areas with arelatively uniform biogeographical history while still
exhibiting variationin natural vegetation. Inaddition, mechanisms of
long-distance seed dispersal can operate at this scale™. In each region,
we defined at least 30 sites, in which we sampled a100-m? (10 m x10 m)
areabyrecordingall vascular plantspecies. Where feasible, we sampled
moresitesinthe region to examine how samplingintensity might affect
the results. The sites were selected to proportionally represent the
typical natural vegetation types of the region without major human
influence. Theseincluded semi-natural grasslands, representing habi-
tats that have developed over thousands of years through grazing by
domestic animals and mowing, and forests that had been managed with
low intensity and had species composition and tree-layer structure
similar to old-growth forests. Here we report the results from 5,415 sites
in 119 regions for which sampling was completed by 1 February 2024
(Supplementary Table 2).

Toassess whether dark diversity methods could predict species that
were absent from the 100-m*areabut presentin itsimmediate vicinity,
andto estimate the effect of spatial scale on dark diversity, we selected
one to three sites per region in which we sampled vascular plantsina
2,500-m? (50 m x 50 m) area within which the 100-m? area was nested.
Infourregions, sampling of the larger areawas not possible or the large
area had no new taxa, so these regions were omitted from the respec-
tive test. Inaddition, in 76 regions, we had sufficient expertise to assess
which ofthe species found in the region were ecologically well-suited
for aselectedsite (thatis, belonging to the site-specific species pool).
This information allowed us to test the applicability of dark diversity
methods within our sampling framework (see below).

Biodiversity metrics

Biodiversity metrics were determined for each site in each region
(Fig.1). Alpha diversity A was defined as the number of vascular plant
speciesfoundinthe100-m?area describing asite (Fig.1a). Dark diversity
Dwas quantified for each site k by examining species co-occurrences
within the surrounding region using the hypergeometric method,
implemented in the R package DarkDiv (ref. 18). This technique uses
information about how each species i that is absent from the study
site but present in the surrounding region co-occurs with species
that is present at the study site. If an absent species co-occurs more
frequently with observed species thanit would do under random expec-
tation, itislikely to belongto the dark diversity. The expected number
of co-occurrences is mathematically defined by the hypergeometric
distribution. For each pair of absent and present species, we compared
the observed number of co-occurrences M; with the expected value,
whichis defined as the mean of the hypergeometric distribution:

_ nn
My=—-"
N

where n;and n; are the total number of occurrences of species i and ,
respectively, and Nis the total number of sites sampled in that region.
The standardized effect size (SES) was used as anindicator of the suit-
ability of absent species i for site k on the basis of co-occurrences with
present species j (Fig.1b), and was calculated as the difference between

the observed and the expected numbers of co-occurrences divided by
the standard deviation of the expected number of co-occurrences, as
derived from the hypergeometric distribution:

M- My
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We estimated the suitability of site k for all speciesiabsent from the
sitebut presentintheregion, by averaging suitability indicator values
fromall present species jusing the number of species foundinsite k(n,):

Yk SES;

k

SESki =

The SES,; values were subsequently transformed to a 0-1scale by
applying inverse probit transformation, which places the SES,; value
within the cumulative normal distribution function withmean=0and
standard deviation =1 (Fig. 1c):

This estimate expressed the probability that speciesibelonged to the
dark diversity of site k. Our estimated dark diversity probabilities were
supported by two independent tests, one investigating which absent
species were found intheimmediate vicinity of asite and another using
expertassessment (Extended Data Fig. 2). We also considered how the
suitability of absent species might be estimated using an alternative
technique—joint species distribution modelling (JSDM)>¢ (Supple-
mentary Methods).

Dark diversity size for a study site was the sum of the probabilities
P, of all locally absent species found elsewhere in the region (Fig. 1d).
For co-occurrences, we always considered 30 sites (each described by
a100-m?*area) within the same region (Fig. 1a), which is the minimum
number sampled and generally sufficient for the method™. For regions
with more than 30 sampled sites, we used aniterative procedure, each
time randomly selecting 30 sites for species co-occurrences. Dark
diversity size in those regions was estimated as the median from 100
iterations. Similarly, estimates of gamma diversity G were obtained
using iteration, taking the median cumulative species number from
30sitesinaregion. To test whether 30 sites was sufficient to estimate
the variationin regional richness, we estimated species richness with
complete sample coverage using incidence-based extrapolation based
on the Bernoulli product model”, implemented within the RiNEXT
package®®. Gamma diversity from 30 sites correlated strongly with the
extrapolated value (Spearman r = 0.95; Extended Data Fig. 3a)

Usingalpha, dark and gamma diversities for each site, we calculated:
species poolsize asthe sum of alphaand dark diversity: P=A + D; com-
munity completeness as the percentage of alpha diversity among all
suitable species for that site: C=A/(A + D) x100%; and beta diversity as
the percentage of gamma diversity belonging to other species poolsin
theregionand unsuitable for the specificsite:B=(G-A-D)/Gx100%
(Fig. 1d). This metric is identical to Whittaker’s effective turnover at
the species pool level, expressed as a percentage rather than aratio
(G/P) - 1.In analyses, all biodiversity metrics were transformed to
improve distributions: those based on counts or sums (alpha, dark
and gamma diversity, species pool size) were log-transformed, and
those based on percentages (community completeness and betadiver-
sity) were logit transformed. To aid intuitive understanding, we show
untransformed values on graph axes. Because several of the diversity
metrics are either subsets or calculated from each other, itis expected
thatthese are closely related. However, bivariate relationships between
our study variables (Extended Data Fig. 7) showed that all metrics bear
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someindependentinformation, and the variability among and within
regionsis large.

All of our biodiversity metrics depend on the sampling scheme,
including characteristics such as sample area or number of sites. To
investigate how much our biodiversity metrics changeif using alarger
sample area, we used 1-3 sites in each region where both 100-m?and
2,500-m?areas were sampled. Similarly, we examined the effect of
using a larger number of sites to characterize co-occurrences; using
60 sites from 27 regions where they were available. Overall, global
variation in our metrics was highly correlated regardless of sample
areaand the number of sites considered (Spearman correlation > 0.8;
Extended Data Fig. 3b-k).

According to the DarkDivNet protocol, in very diverse tropical
regions we only sampled woody vascular plant species. Although alpha
diversity, dark diversity, species pool size and gamma diversity are
evidently smaller when herbaceous species are omitted, community
completeness and beta diversity should still be relatively compara-
ble with other regions because these metrics are unitless. To ensure
full comparability between biodiversity metrics, we used only the 116
regionsinwhich all vascular plants were sampled in the main analyses,
but repeated the main tests for community completeness with all 119
regions within robustness analyses (Supplementary Methods).

Statistical details on the contribution to variationin alpha
diversity

Alpha diversity can be seen as a subset of gamma diversity in which
the species pool has beenfiltered according to beta diversity, and the
realization of the species pool is defined by community completeness
(Fig.1). We examined how much of the variation in alpha diversity is
determined by variationin gamma diversity, beta diversity (these two
define the site-specific species pool size) and community complete-
ness. Werandomly selected one site from each regionin order to have
independentlocal and regional variables (gamma diversity isthe same
forallsitesinaregion). The contribution of each source of variation was
calculated using hierarchical variation partitioning (function varpart
in the vegan package® in R). This procedure was repeated 100 times
to obtain a median and confidence interval.

Assessing the relationship between biodiversity metrics and
humanimpact

In further statistical analyses, we used the medians of biodiversity
variables across sites per region. We related community complete-
ness and other calculated biodiversity variables (alpha diversity, beta
diversity, gamma diversity, dark diversity and species pool size) to the
human footprintindex from the year 2018**. The index ranges from
0to50andiscalculated from eight components (human population
density, electricinfrastructure, railways, roads, navigable waterways,
the extent of built-up land, pastures and croplands). The resolution
of the human influence data layers was 100 m, and we calculated
average values over various spatial extents around the centre of each
region (radii10 km, 50 km, 100 km, 200 km, 300 kmand 400 km). The
averaging did notinclude areas representing water bodies. Because
allregionsincluded at least some areas less affected by humans, the
total range of the averaged human footprintindex values used in our
analyses was somewhat lower than the maximum value. To test how
well our sampled regions captured global variationin the human foot-
print index, we generated 500 random points worldwide using the
discrete global grid system (which maintains uniform point density
across the globe). From random points, we omitted glaciated regions
of Antarctica and Greenland. We averaged the human footprintindex
in the surroundings of these random points in the same manner as
we did with our empirical data. This revealed a high degree of cor-
respondence between the average human footprint index ranges
around sampled and randomly generated points at different scales:
atradiiof 50 km (sampled range 1.1-25.4, random 0.0-24.5),200 km

(sampled range 0.3-20.7, random 0.0-20.7) and 400 km (sampled
0.2-17.7,random 0.1-16.6).

Toaccount for natural processes affecting community completeness,
we included environmental variables in the multiple linear regres-
sionmodels. We used mean annual temperature and annual precipita-
tion from the CHELSA database (resolution 1km)®*®, soil pH, organic
carbon content, sand fraction proportion from SoilGrids (resolution
250 m)*?and the topographic ruggedness of the terrain (resolution
250 m)®*. Environmental factors were averaged within a100-km radius
to describe the broader region and consolidated through principal
componentanalysis (PCA). For PCA, variables with only positive values
were log-transformed ifthis resulted ina distribution closer to normal,
and all variables were standardized. We kept the four first principal
components, which described more than 90% of the variation. The
first component was positively correlated with soil organic carbon
content, acidity and precipitation; the second with temperature; the
third with soil sand content; and the fourth with topographic rugged-
ness (Extended Data Fig. 5).

We fitted both linear and nonlinear (generalized additive models,
function gamin the R package; ref. 64) models, incorporating the 116
regionsinwhich all vascular plants were sampled. The estimates of the
human footprint index at the different spatial scales were inherently
strongly related to each other. Therefore, we constructed models for
each scale at which the human footprint index (or its components)
was averaged. We examined which scales produced the best mod-
els (AAIC < 2) and selected the smallest scale, which is most directly
related to the study region. We compared linear and nonlinear models
using spatial block validation, implemented in the R package blockCV
(ref. 65). We used fivefold cross-validation across hexagons (Extended
Data Fig. 2). To estimate the variation in model predictive power we
further implemented a bootstrap approach® by selecting bootstrap
samples within each fold and then performing cross-validation. We
used the normalized root meansquare error (normalized by minimum
and maximum values) to compare the predictive error of linear and
nonlinear models, and found thatlinear models had much lower error
intestsets (around 20% of the range compared witharound 40% of the
range; see Extended Data Fig. 8). Linear models were therefore used
asamore general option.

We report the results of the best linear model (the smallest spatial
scale at which AAIC < 2) for each biodiversity metric and note significant
relationships (P < 0.05). We used the variance inflation factor (VIF) to
confirmthat correlations between environmental gradients and human
impact (Extended Data Fig. 5) were not confounding in the models
(VIF < 2). We applied type Il model testing. Consequently, the effect
of humanimpact was tested only after the environmental effects were
accounted for. We visualized the results of the fitted models in terms of
how the predictor variable human footprintindex affects the outcome
of community completeness using the visreg function and package® in
R.Modelsummary tables canbe found in Extended Data Tables 1and 2.

Besides the human footprint index from 2018, we also examined
whetherincluding change inthe human footprintindex during recent
years improved the model®, Specifically, we tested whether a model
including human footprint index change yielded a lower AIC value
(by more than two units) compared with the model without change.
We derived the measure of human footprint index change from a
source that used a consistent methodology®® during a temporal
range 2000-2013. Change in human footprint index was quantified
aslog(human footprintindex value from2013/human footprintindex
value from 2000).

We tested whether community completeness is better described
by certain quantiles of the human footprint index at different scales
around study regions. Compared with the mean, considering quantiles
allowed usto determine the extent towhichitisimportant to maintain
acertain proportion of areawith lower humaninfluence. We compared
models incorporating as predictor variables the 10-90% quantiles of
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the human footprint index using AIC and recorded cases in which the
quantilesyielded abetter model than the mean (models with AIC lower
by more than two units were considered superior).

Wealsotested the robustness of the relationship between community
completeness and the human footprintindex by looking at statistical
interactions between humaninfluence and the environment, indirect
effects, the role of sampling scale, alien or rare species; by including
areas in which only woody species were recorded and considering
forest coverinregions; and by examining the effect of geographically
uneven sampling (see Supplementary Methods).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data supporting the findings of this study, along with the R scripts
to handle them, can be found in Figshare: https://doi.org/10.6084/
mo.figshare.25158059 (ref. 70). We also used published data for the
human footprint index®**’; from the CHELSA database®®® for annual
mean temperature and annual precipitation; from SoilGrids®* for soil
pH, organic carbon content and sand fraction proportion; and from
the Geomorpho90m database® for the topographic ruggedness of
the terrain.
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Extended DataFig.1|Distribution of the119 DarkDivNetstudy regions
inrelation to mean annual temperature and annual precipitation. Lines
indicate ranges withinaradius of 100 km. Approximate broad biomes are
shown. Trianglesindicate regionsin which only woody species were sampled.
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Extended DataFig.2|Usingindependentdatato test the dark diversity
method thatrelies onspecies co-occurrences to estimate the ecological
suitability of absent species. We used two tests. In the Vicinity test, we
examined whether species absent from the site (100 m?) but presentinthe
immediate vicinity (2500 m?) have higher estimated suitabilities than absent
species found further away. The sample area and vicinity area are assumed to
sharerelatively similar ecological conditions. Inthe Expert test, we compared
whether species absent from the site but assessed by expert opinion to be
ecologically suitable (i.e., belong to the site-specific species pool) have higher
calculated suitabilities than those absent species that were evaluated as
unsuitable.Inboth cases, we calculated the log response ratio of the mean
suitability of speciesin the respective groups. Positive log response ratios
indicate agreement between assessments of suitability calculated from

l Vicinity
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co-occurrences and from theindependentinformation consideredin the
tests. Thelength of the lines (vertical for the Vicinity testand horizontal for the
Experttest) shown atstudy regionlocations indicates the magnitude of the log
responseratio; negative values areinred and positive values are inblue. Both
testscomprised datafromasubset of study regions. The box plot on the left
(centreline, median; box limits, upper and lower quartiles; whiskers, the range,
excluding outlying points that exceed the quartiles by more than1.5x the
interquartile range) shows the results of single-sample two-sided t-tests
(difference fromzero), with log response ratios significantly larger than zeroin
bothcases, n=115regions for the Vicinity test and n = 76 regions for the Expert
test. Hexagons onthe map (made with Natural Earth; free vector and raster map
data; https://www.naturalearthdata.com/) delimit the spatial blocks used in
cross-validation.
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linear regressionmodelis shown (n =116 regions, see Extended Data Table 1
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a, Community completeness. b, Alpha diversity. ¢, Dark diversity. d, Species
poolsize.e, Gammadiversity. f, Betadiversity. We used fivefold spatial
cross-validation (see Extended Data Fig. 2) with bootstrapping to estimate

thevariation. The box plots (centre line =median; box limits = upper and lower
quartiles; whiskers =the range, excluding outlying points that exceed the
quartilesby more than1.5x the interquartile range) show that while the nonlinear
models had lower errors for the training set, the test datawere predicted with
lower error by the linear models.
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Extended Data Table 1| Statistical summary tables from multiple linear regression models in which biodiversity metrics were
modelled in relation to the human footprint index while also considering environmental variables (principal components)

Study variable Descriptor Sum Sq. df F P-value St. coef.
Community completeness @ PC1 1.98 1 13.82 <0.001 -0.30
PC2 0.06 1 0.44 0.507 -0.06
The best model: 300 km PC3 0.30 1 2.06 0.154 -0.12
Max VIF value for the best model: 1.66 PC4 0.35 1 2.41 0.123 -0.14
R2 of the best model: 0.28 Human Footprint Index 2.37 1 16.55 <0.001 -0.42
Residuals 15.78 110
Alpha diversity PC1 0.14 1 0.57 0.453 0.07
PC2 0.64 1 252 0.115 0.16
The best model: 10 km PC3 0.05 1 0.20 0.656 -0.04
Max VIF value for the best model: 1.33 PC4 0.18 1 0.71 0.402 -0.09
R2 of the best model: 0.04 Human Footprint Index 0.52 1 2.08 0.152 -0.16
Residuals 27.78 110
Dark diversity © PC1 3.47 1 10.26 0.002 0.28
PC2 117 1 3.46 0.065 0.20
The best model: 200 km PC3 0.04 1 0.12 0.733 0.03
Max VIF value for the best model: 1.75 PC4 0.01 1 0.04 0.845 0.02
R2 of the best model: 0.16 Human Footprint Index 0.63 1 1.85 0.177 0.16
Residuals 37.24 110
Species pool size ¢ PC1 1.84 1 6.88 0.010 0.24
PC2 1.91 1 715 0.009 0.26
The best model: 10 km PC3 0.01 1 0.04 0.835 0.02
Max VIF value for the best model: 1.33 PC4 0.09 1 0.34 0.562 -0.06
R2 of the best model: 0.11 Human Footprint Index 0.04 1 0.16 0.693 -0.04
Residuals 29.38 110
Gamma diversity © PC1 2.39 1 8.05 0.005 0.25
PC2 0.90 1 3,05 0.084 0.18
The best model: 200 km PC3 0.00 1 0.00 0.974 0.00
Max VIF value for the best model: 1.75 PC4 0.00 1 0.01 0.907 0.01
R2 of the best model: 0.15 Human Footprint Index 0.65 1 2.20 0.141 0.17
Residuals 32.59 110
Beta diversity PC1 0.20 1 3.78 0.054 0.17
PC2 0.00 1 0.00 0.963 0.00
The best model: 100 km PC3 0.04 1 0.71 0.400 -0.07
Max VIF value for the best model: 1.78 PC4 0.06 1 1.05 0.308 0.10
R2 of the best model: 0.21 Human Footprint Index 0.93 1 17.34 <0.001 0.47

Residuals

110

2Human impact had significant effects (p < 0.05) at scales 50, 100, 200, 300, 400 km; AAIC values across scales: 10 km: 13.9, 50 km: 10.8, 100 km: 6.9, 200 km: 2.8,
300 km: 1.2, 400 km: 0. ® Human impact not significantly related at any studied scale (p > 0.05); AAIC values across scales: 10 km: 1.9, 50 km: 0, 100 km: 0.7, 200 km:
2.1,300 km: 2.7, 400 km: 2. ¢ Human impact not significantly related at any studied scale (p > 0.05); AAIC values across scales: 10 km: 2.9, 50 km: 2.9, 100 km: 2.4, 200
km: 0.9, 300 km: 0, 400 km: 0.4. ¢ Human impact not significantly related at any studied scale (p > 0.05); AAIC values across scales: 10 km: 0.8, 50 km: 0.7, 100 km: 1,
200 km: 0.6, 300 km: 0, 400 km: 0.3. ¢ Human impact not significantly related at any studied scale (p > 0.05); AAIC values across scales: 10 km: 3.2, 50 km: 3.2, 100 km:
2.6, 200 km: 0.9, 300 km: 0, 400 km: 0.6. f Human impact had significant effects (p < 0.05) at scales 50, 100, 200, 300, 400 km; AAIC values across scales: 10 km: 14.5,
50 km: 7.4, 100 km: 1.2, 200 km: 0, 300 km: 1.7, 400 km: 2.6.

Type lll tests were used to estimate the two-tailed significance of each independent variable, n=116 regions. For each model output, information is provided about the spatial range of human
influence that produced the best model according to the Akaike information criterion (the smallest scale for which AAIC <2), variance inflation factors and model R? values (grey boxes).
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Extended Data Table 2 | Statistical summary tables from multiple linear regression models in which community
completeness was modelled in relation to the human footprint index and its components while also considering

environmental variables (principal components)

Study variable Descriptor Sum Sq. df F P-value St. coef.
Community completeness @ PC1 1.98 1 13.82 <0.001 -0.30
PC2 0.06 1 0.44 0.507 -0.06
The best model: 300 km PC3 0.30 1 2.06 0.154 -0.12
Max VIF value for the best model: 1.66 PC4 0.35 1 2.41 0.123 -0.14
R? of the best model: 0.28 Human Footprint Index 2.37 1 16.55 <0.001 -0.42
Residuals 15.78 110
Community completeness ® PC1 1.90 1 12.12 0.001 -0.30
PC2 0.63 1 4.05 0.047 -0.18
The best model: 300 km PC3 0.62 1 3.93 0.050 -0.18
Max VIF value for the best model: 1.42 PC4 0.04 1 0.25 0.618 -0.04
R? of the best model: 0.21 Human population 0.92 1 5.88 0.017 -0.25
Residuals 17.24 110
Community completeness © PC1 1.30 1 8.65 0.004 -0.25
PC2 0.21 1 1.40 0.239 -0.11
The best model: 300 km PC3 0.57 1 3.81 0.053 -0.17
Max VIF value for the best model: 1.41 PC4 0.02 1 0.14 0.714 -0.03
R? of the best model: 0.25 Electric infrastructure 1.80 1 12.03 0.001 -0.34
Residuals 16.34 109
Community completeness ¢ PC1 1.36 1 9.52 0.003 -0.26
PC2 0.52 1 3.66 0.058 -0.16
The best model: 200 km PC3 0.12 1 0.86 0.356 -0.08
Max VIF value for the best model: 1.4 PC4 0.35 1 2.41 0.123 -0.14
R of the best model: 0.28 Railways 2.39 1 16.68 <0.001 -0.39
Residuals 15.77 110
Community completeness © PC1 0.80 1 5.73 0.018 -0.20
PC2 0.07 1 0.48 0.490 -0.06
The best model: 400 km PC3 0.08 1 0.54 0.462 -0.06
Max VIF value for the best model: 1.65 PC4 0.38 1 2.7 0.103 -0.15
R? of the best model: 0.30 Roads 2.81 1 20.15 <0.001 -0.46
Residuals 15.35 110
Community completeness f PC1 245 1 15.15 <0.001 -0.34
PC2 1.65 1 10.16 0.002 -0.28
The best model: 10 km PC3 0.32 1 2.00 0.160 -0.12
Max VIF value for the best model: 1.07 PC4 0.01 1 0.07 0.788 0.02
R? of the best model: 0.18 Navigable waterways 0.34 1 2.09 0.151 0.13
Residuals 17.82 110
Community completeness ¢ PC1 1.62 1 10.79 0.001 -0.28
PC2 0.46 1 3.08 0.082 -0.16
The best model: 300 km PC3 0.42 1 2417 0.099 -0.14
Max VIF value for the best model: 1.38 PC4 0.15 1 1.03 0.313 -0.09
R? of the best model: 0.24 Built environment 1.69 1 11.30 0.001 -0.33
Residuals 16.47 110
Community completeness " PC1 1.1 1 6.87 0.010 -0.25
PC2 1.48 1 9.20 0.003 -0.26
The best model: 10 km PC3 0.17 1 1.07 0.303 -0.09
Max VIF value for the best model: 1.34 PC4 0.00 1 0.02 0.880 -0.01
R? of the best model: 0.19 Pasture 0.41 1 2.56 0.113 0.16
Residuals 17.74 110
Community completeness ' PC1 3.32 1 21.95 <0.001 -0.42
PC2 0.75 1 4.96 0.028 -0.19
The best model: 100 km PC3 0A2 1 0.82 0.368 -0.08
Max VIF value for the best model: 2.02 PC4 0.51 1 3.34 0.070 -0.20
R? of the best model: 0.24 Cropland 1.52 1 10.08 0.002 -0.38
Residuals 16.63 110

2Human impact had significant effects (p < 0.05) at scales 50, 100, 200, 300, 400 km; AAIC values across scales: 10 km: 13.9, 50 km: 10.8, 100 km: 6.9, 200 km: 2.8,
300 km: 1.2, 400 km: 0. ® Human impact had significant effects (p < 0.05) at scales 200, 300, 400 km; AAIC values across scales: 10 km: 6.6, 50 km: 5.1, 100 km: 4.5,
200 km: 2.6, 300 km: 1.5, 400 km: 0. ¢ Human impact had significant effects (p < 0.05) at scales 200, 300, 400 km; AAIC values across scales: 10 km: 11, 50 km: 10.2,
100 km: 9.3, 200 km: 5.6, 300 km: 0.4, 400 km: 0. 4 Human impact had significant (p < 0.05) effects at all studied scales; AAIC values across scales: 10 km: 10.9, 50 km:
5.4, 100 km: 2.4, 200 km: 0.4, 300 km:0.2, 400 km: 0. ¢ Human impact had significant (p < 0.05) effects at all studied scales; AAIC values across scales: 10 km: 14.5, 50
km: 11, 100 km: 7.5, 200 km: 5, 300 km: 3, 400 km: 0. f Human impact not significantly related at any studied scale (p > 0.05); AAIC values across scales: 10 km: 0.2,
50 km: 0, 100 km: 1.9, 200 km: 1.3, 300 km: 0.8, 400 km: 1.6. & Human impact had significant effects (p < 0.05) at scales 100, 200, 300, 400 km. AAIC values across
scales: 10 km: 10.1, 50 km: 9.1, 100 km: 8.1, 200 km: 5, 300 km: 1, 400 km: 0. ® Human impact not significantly related at any studied scale (p > 0.05); AAIC values
across scales: 10 km: 1.1, 50 km: 0, 100 km: 0.7, 200 km: 0.8, 300 km: 2.2, 400 km: 2. | Human impact had significant effects (p < 0.05) at scales 50, 100, 200, 300, 400
km; AAIC values across scales: 10 km: 10.2, 50 km: 6.3, 100 km: 1.6, 200 km: 0, 300 km: 4.2, 400 km: 5.1.

Type lll tests were used to estimate the two-tailed significance of each independent variable, n=116 regions. For each model output, information is provided about the spatial range of human
influence that produced the best model according to the Akaike information criterion (the smallest scale for which AAIC <2), variance inflation factors and model R? values (grey boxes).
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All data supporting the findings of this study along with the R scripts to handle them can be found in Figshare: https://doi.org/10.6084/m9.figshare.25158059. We
additionally used published data for the Human Footprint Index (refs 34,69), from the Chelsa database (refs 60,61) for annual mean temperature and annual
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precipitation, from SoilGrids (ref. 62) for soil pH, organic carbon content, sand fraction proportion, and from the Geomorpho90m database (ref. 63) for the
topographic ruggedness of the terrain.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description The study is based on observational data from 5415 sample sites in 119 regions worldwide where natural and semi-natural
vegetation has been described. Each region had at last 30 sample sites. Species co-occurrences within a region was used to estimate
dark diversity -- species ecologically suitable for a study site which are absent. In the analyses, median biodiversity values of each
region were used as replicates. Different biodiversity metrics were related to Human Footprint Index after accounting for covariates
(climate, soil, topography). Several additional tests were done to evaluate the robustness of the findings.

Research sample A study site was described by 100 m? (10 m x 10 m) vegetation plot where all vascular plant species were recorded. A subset of sites
were also sampled by a 2500 m? (50 m x 50 m) sample plot to test methods and the sample scale effect. Explanatory variables were
obtained from global databases: Human Footprint Index and its eight components (human population density, electric infrastructure,
railways, roads, navigable waterways, the extent of built-up land, pastures, and croplands), climate data, soil parameters, and
topography.

Sampling strategy Sampling protocol was elaborated by the advisory board of the collaborative research network. Sample size was determined as the
optimal balance between the amount of biodiversity information captured and feasibility in the field works. The decision to have a
minimum of 30 samples per study region is based on simulation data (Carmona & Péartel 2021 Global Ecology Biogeography).

Data collection The data collection is based on a collaborative research network DarkDivNet where teams were invited to sample their own study
regions. All data have been collected by authors of this work.

Timing and spatial scale  Sampling occurred during 2018-2023. Each sample site was defined as a 100 m? area in a natural or semi-natural vegetation within a
region. A region represents the surrounding area of ca 300 km?, defined by a circle of 20 km diameter with the available area
influenced by geographical and practical limitations (coastline, private ownership and other restricted access).

Data exclusions From primary analyzes we excluded three tropical regions where only woody species were sampled. The DarkDivNet protocol
allowed only woody species sampling in hyperdiverse regions and theoretically some parameters (community completeness, beta
diversity) is not much affected by inclusion of woody species only) but for robustness we only included regions where all vascular
plant species were recorded. The excluded regions were still used in a separate analyses showing that results were same if we
included them.

Reproducibility Before the field work we agreed in a common sampling protocol which was available to all co-authors. If there were questions about
some methodological details, then DarkDivNet steering committee advised how to keep consistent sampling across each study
region.

Randomization Randomization of sample regions were not feasible but potential covariates (climate, soil, topography) were included to statistical

tests. The effect of human influence on biodiversity metrics was tested after accounting for the variation described by abiotic
conditions (type Il ANOVA). We further examined if the potential effect of global distribution of study regions using three methods:
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(1) we looked the relationship between study variables in subsets where a single study region was iteratively selected from each
represented ecoregion; (2) including factor "Europe" in the model since it was the most represented continent; (3) examining the
spatial autocorrelation of model residuals (Moran 1). In statistical tests randomization was used to have comparable data coverage
across regions -- the same number of study sites were selected from each region iteratively and median of the outcome was used in
the further analyses.

Blinding Blinding was not applied since we had no treatments but observational data.

Did the study involve field work? X ves [Ino

Field work, collection and transport

Field conditions Field work was performed during the typical vegetation description time when most plant species were identifiable.
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Location Globally 119 regions.

Access & import/export  No collected samples were used in this study, only description done during the field work. Co-authors worked in their established
study areas.

Disturbance The field work included vegetation descriptions causing no long-lasting disturbance to the nature.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq

Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology |Z| |:| MRI-based neuroimaging
Animals and other organisms

Clinical data

Dual use research of concern

MNXXNXNXKXX s
Oooogood

Plants

Plants

Seed stocks No seed stocks were used.

Novel plant genotypes Novel plant genotypes were not produced.

Authentication No seed stocks nor plant genotypes were used.
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