

INVESTIGAÇÃO DO POTENCIAL DE CRIOGÉIS DE AMIDO COM CLORETO DE COBALTO PARA USO COMO SENSORES COLORIMÉTRICOS DE UMIDADE EM EMBALAGENS ALIMENTÍCIAS

Lívia Yumi Nakashima

Prof. Dra. Laís Canniatti Brazaca

Prof. Dra. Bianca Chieregato Maniglia

Universidade de São Paulo

livia.yumi@usp.br

Objetivos

desenvolvimento de embalagens alimentícias com propriedades sensoriais tem consolidado como uma estratégia promissora para a mitigação do desperdício e o aprimoramento do controle de qualidade dos alimentos. Nesse contexto, a aplicação de biopolímeros em materiais funcionais tem despertado crescente interesse, em virtude de suas propriedades químicas e físicas, tais como transparência, flexibilidade biocompatibilidade [1]. A incorporação de cloreto de cobalto (CoCl2) em criogéis apresenta-se como uma alternativa relevante. uma vez que esse sal pode existir em seis estados de hidratação distintos, cada um associado a mudanças graduais de coloração [2]. Assim, este estudo teve como objetivo avaliar o potencial de criogéis à base de amido, incorporados com CoCl2, para aplicação como sensores colorimétricos de umidade em sistemas de embalagem.

Métodos e Procedimentos

Preparo dos criogéis: o amido (10% m/m, base seca) foi gelatinizado em suspensão aquosa ou em solução de CoCl₂, sob aquecimento a 85 °C

por 30 min, com agitação constante. Posteriormente, as amostras foram congeladas por 24 h e, em seguida, liofilizadas. O CoCl₂ foi incorporado em concentrações de 5, 10, 15 e 20 g/100 g de amido (base seca).

Condições de análise: os criogéis foram avaliados em ambientes com umidade relativa (UR) controlada de 18%, 45%, 60%, 75% e 99%, visando avaliar o desempenho analítico. Variações cromáticas: as alterações de cor foram quantificadas pelos parâmetros CIELAB (L*, a*, b*) e ΔΕ*, utilizando-se medições por colorimetria instrumental e análise de imagens processadas no software ImageJ.

Propriedades mecânicas e físico-químicas: a resistência à compressão dos criogéis foi determinada em texturômetro. Também foram avaliadas a solubilidade e a variação de massa das amostras frente a diferentes UR.

Avaliação da performance analítica: o desempenho in situ dos sensores foi testado em embalagens convencionais de snacks. As diferentes embalagens foram caracterizadas quanto à permeabilidade ao vapor de água, e amostras de biscoitos foram submetidas a análise de perfil de textura, a fim de verificar as alterações texturais frente às diferentes condições de umidade relativa.

Resultados

Os criogéis contendo 20% de CoCl₂ apresentaram as alterações mais intensas e perceptíveis, com transição de coloração de azul (18% UR) para rosa (99% UR), evidenciando elevada sensibilidade e potencial de aplicação prática (Figura 1).

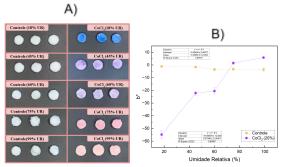


Figura 1: A) mudança de colocação do sensor e B) parâmetro b* frente a diferentes umidades relativas.

Pelos resultados, os sensores apresentaram absorção de água proporcional à concentração de sal, associada à maior solubilidade e hidrofilicidade, características que favorecem o descarte ambientalmente sustentável. Os criogéis de amido incorporados com CoCl2 configuram-se como alternativas biodegradáveis, de baixo custo e com elevado potencial para o monitoramento visual da umidade em embalagens alimentícias [2]. Sob alta umidade, o CoCl2 retém água, reduz a resistência à compressão e aumenta a flexibilidade do material. Os apresentam solubilidade de 25-30% em 24 h. Na avaliação da performance analítica dos sensores, observou-se que quando diferentes embalagens foram expostas a condições de baixa e alta umidade por um período de uma semana, os sensores apresentaram respostas consistentes e coerentes com os níveis de umidade impostos, em concordância com as análises de permeabilidade ao vapor de água de materiais com diferentes composições. Adicionalmente, análise а sensorial da crocância biscoitos dos

acondicionados nas embalagens revelou que a exposição à elevada umidade compromete sua textura, tornando-os menos crocantes em comparação às amostras armazenadas em condições de baixa umidade.

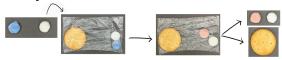


Figura 2: Avaliação da performance analítica in situ do sensor.

Conclusões

A incorporação de 20% de CoCl2 destacou-se por promover alterações cromáticas mais evidentes. **Aplicados** em embalagens alimentícias, os mostraram-se sensores eficientes ao indicar claramente as mudanças de coloração com a variação de umidade e ainda associar com a crocância do produto. Além disso, sua solubilidade em água favorece o descarte sustentável, reforcando o potencial como alternativa ambientalmente amigável. Os autores declaram que não há conflito de interesses.

Agradecimentos

Agradeço a Universidade de São Paulo e ao Instituto de Química de São Carlos pela oportunidade de realizar a pesquisa. Agradeço ao CNPq (processo: 127377/2024-7) e a FAPESP (2020/08727-0 2023/10141-2) pelo suporte financeiro. Agradeço também ao Laboratório de Biopolímeros e Fotoquímica e ao Laboratório de Bioanalítica, Microfabricação e Separações (BioMicS).

Referências

[1] RAVINDRAN, R., JAISWALI, A. K., & S. (2021). Food Packaging and Shelf Life, 30, 100743.

[2] SHUKLA, V., JUNEJA, M., & SONIi, R. (2020). Food Reviews International, 38(1), 1–22.