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Abstract

In this paper we present an algebraic theory of diagonal quadratic forms with non 
zero-divisor coefficients over preordered (commutative, unitary) rings (A,T), where 2 is 
invertible and the preorder T satisfies a mild additional requirement (2.8). In §5 we prove 
that several major results known to hold in the classical theory of quadratic forms over 
fields —e.g., the Arason-Pfister Hauptsatz, and Pfister’s local-global principle— carry over 
to any class of preordered rings satisfying the property of 0IT-quadratic faithfulness (4.8), 
a notion central to our results. In § 7 we prove that this property holds —and hence 
the abovementioned results are valid— for many classes of rings frequently met in practice, 
such as: (i) the reduced /-rings and some of their extensions, for which Marshall’s signature 
conjecture (7.8) and a vast generalization of Sylvester’s inertia law (7.10) are also true; and 
(ii) the reduced partially ordered Noetherian rings and many of their quotients (a result 
of interest in real algebraic geometry). This paper provides a broad generalization of the 
theory developed in the monograph [DM5] and of the methods employed therein.

1 Introduction

The aim of this paper is to present and develop a theory of (diagonal) quadratic forms with non 
zero-divisor coefficients over several broad classes of preordered unitary commutative rings, in 
which 2 is invertible.

We shall consider preordered rings (A,T) with the additional property that the support 
Tn—T of T contains only zero-divisors of A\ we call this the zero-divisor property, abridged zdp 
(see Definition 2.8). As we shall see along the paper, especially in §7, many classes of preordered 
rings frequently met in mathematical practice satisfy this property.

The theory presented here constitutes a vast generalization of that presented in the mono­
graph [DM5] of the first two authors. The latter deals with quadratic forms with invertible 
coefficients over preordered rings where 2 is invertible. A few simple examples should convince

TMJ-PRG, France; email: dickmann@math.univ-paris-diderot.fr.
fDept. of Mathematics, University of São Paulo, Brazil; email: miraglia@ime.usp.br.
*Dept. of Mathematics, University of São Paulo, Brazil; email: hugorafaelor2@gmail.com.
2010 Mathematics Subject Classification. Primary: 11E81, 03C65, 18B35. Secondary: 06E99, 16G30, 12D15,
46E25.
Key words and phrases. Algebraic theory of quadratic forms, preordered rings, special groups, zero-divisors, 

/-rings, real spectra of rings.

1

mailto:dickmann@math.univ-paris-diderot.fr
mailto:miraglia@ime.usp.br
mailto:hugorafaelor2@gmail.com


the reader of the extent of the generalization presented here. Consider, for example, the rin 
C(X) of continuous real-valued functions on a (completely regular) topological space X) pr^ 
ordered by the squares (i.e., the everywhere non-negative functions). The invertible elenw 
of C(X) are the functions without zeros, while the non zero-divisors of C(A) are the function 
f whose zero-set Z(f) = /_1[0] has empty interior. Thus, diagonal quadratic forms havi 
coefficients polynomials or trigonometric functions on X = M were, in general, excluded fr 
the theory developed in [DM5], but find their place in the theory presented here.

Many of the results presented in this paper are inspired from or have ancestors in-— [DM5] 
and their proofs generalize, often considerably, those of their ancestors. The converse, however 
is far from true: the proofs of most of the results presented below are not reducible to, ’ 
consequences of those of their ancestors (if any) in [DM5]. In spite of their affinity with results 
in [DM5], the proof of most of the results in this paper has to be done from scratch.

Section 2 contains a number of preliminaries needed in the rest of the paper. In sections 3 
and 4 we set up the machinery required to establish a theory of quadratic forms in the present 
context; namely:
(i) In § 3 we introduce the representation relations for quadratic forms with coefficients in the 
multiplicative set 0? = 91,* of non zero-divisors of a ring A, and prove their basic properties. 
In Proposition 3.5 we show that the group G<n,r(>4) associated to a preordered ring (A}T) 
and the set O'! is a proto-special group (and a pre-special group if binary representation is 2- 
transversal). Note that the appropriate notion of morphism in the present context is that of 
yip-ring morphism (Definition 3.10), on account of the fact that ordinary ring morphisms may 
not preserve non zero-divisors.
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(ii) In §4 we define the intrinsic notion of 0TT-isometry in the p-ring (A,T) for forms with 
coefficients in 91 (Definition 4.4) and lay down the axioms for the notion of quadratic faithfulness 
in the present context (Definition 4.8), called 91T-quadratic faithfulness. Based on the notions 
of representation and isometry defined in § 3, these axioms give the appropriate adaptation of 
the concept of T- quadratic faithfulness, see [DM5], Definition 3.1, p. 27, to the present context. 
The main results in § 4 are:
(a) (Theorem 4.10) Under some of the axioms for 91T-quadratic faithfulness, the proto special 
group G^t{A) associated to the p-ring (A,T) is, indeed, a special group.
(b) (Theorem 4.11) If (A, T) is 91T-faithfully quadratic, then 91T-isometry of forms of arbitrary 
dimension in the p.-ring (A:T) is faithfully represented by isometry of their images in the special 
group GwtT{A). A similar statement holds for representation by forms of arbitrary dimension in
(AT).

The theory presented above can be carried out, with obvious modifications, for saturated 
multiplicative subsets of non zero-divisors of A containing Ax, instead of the set 91 a of fl^non 
zero-divisors of A. To simplify the exposition we have decided to carry it out in the latter case, 
omitting here this extra degree of generality.

The first structural consequences of the preceding theory for 91T-faithfully quadratic pnoff 
come in § 5. They establish the validity in that context of the Arason-Pfister Hauptsatz (Theorem 
5.2) and of Pfister’s local-global principle for T-isometry (Proposition 5.8) for preorders T having 
the zdp.

In § 6 we discuss the relation between the notion of T-quadratic faithfulness —in the sense 
of [DM5], Definition 3.1, p. 27- and that of 01T-quadratic faithfulness presented in §4- T! 
main result in this section is Theorem 6.5, which shows the equivalence of the WT-qa*#■» 
faithfulness of a p-ring (A,T), where the preorder T has the zdp, with that of T>-qua*»* 
faithfulness, in the sense of [DM5], of the total ring of fractions A, of A, endowed with tn
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natural preorder Tm induced by T on A*, defined in 6.1 (b).
In §7 we have gathered a selection of the most significant applications of the previously 

developed theory. Here are some noteworthy examples of p-rings that we prove to be 91T- 
faithfully quadratic:
• All partially ordered integral domains (Proposition 7.2). This includes the rings of polynomials 
in several variables and power series in an arbitrary number of variables over real integral do­
mains, as well as valuation rings and the real holomorphy ring of formally real fields, all partially 
ordered by sums of squares (Corollary 7.3).
• All Boolean powers of zdp-rings with the induced order (Theorem 7.5).
• The preordered rings (A, P), where A is a reduced /-.ring and the (proper) preorder P contains 
the natural partial order 7} of A and has the zdp. In particular, (A,Tjj) is OITjj-faithfully 
quadratic (Theorem 7.7).
The results in §5 above and (the proofs of) those in §10 of [DM5] entail that the following 
classical results, (well) known to hold over formally real fields, extend to the class of preordered 
extensions of /-rings mentioned above:
• The Arason-Pfister Hauptsatz (cf. 5.2).
• Pfister’s local-global principle (cf. 5.8).
• Marshall’s signature conjecture (Proposition 7.8).
•.A far reaching extension of Sylvester’s “inertia law” (1853) (Theorem 7.10).
• Real closed rings endowed with a zdp-preorder (Corollary 7.11(a)). In particular, the ring 
C(X) of continuous real valued functions defined on a (completely regular) topological space 
endowed with any zdp preorder T is 91T-faith fully quadratic, as well as its real holomorphy 
ring; cf. 7.11(b,c). These results hold-, mutatis mutandis, for the ring C3a(Rn) of continuous 
semi-algebraic functions on Mn, see Proposition 7.12.
• The ring C(X)P of germs at a point p £ X of continuous real valued functions defined on a 
perfectly normal topological space A, ordered by squares (Proposition 7.18).
• Any reduced partially ordered Noetherian ring (A,T) (Theorem 7.24(c)).
In particular,
• If (A,T) is a partially ordered Noetherian ring and J is a T-convex ideal of A, then the 
quotient ring (A/J,T/J) is 01(T/J)-faithfully quadratic (Corollary 7.25(a)).
• All real Noetherian rings, A, and all quotients of them modulo real ideals, under the partial 
order E of sums of squares, are OlE-faithfully quadratic (Corollary 7.25 (b)).

2 Preliminaries

2.1 Horn-geometric and Geometric Formulas and Theories. For the definitions of these 
concepts we refer the reader to Definition 1.4, p. 2, in [DM5], registering here the properties to 
be frequently employed below, namely:
a) A geometric theory is preserved by arbitrary directed colimits (or inductive limits; cf. [Mi2], 
section 4, chapter 17)
b) A Horn-geometric theory is preserved by arbitrary reduced products and inductive limits. In
fact, by Theorem 6.2.5 (p. 412) of [CK], preservation by arbitrary reduced products characterizes 
Horn sentences. ®
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2.2 General notational conventions, a) We shall employ standard set-theoretic notation. 
For real-valued functions on a set X, /, we write [/ > 0] — {x G X : f(x) > 0} and similarly 
for >, < and < in place of >.
b) Let A be a commutative, unitary ring, in which 2 is a unit. For D Ç A and x G A, we

Ax = groups of units of A\ D* = D n A*;
D2 = {d2 G A : d G £>}; xD = {red : d G D} and -D = {-d : d G jD};

SD2 = {Er=i4: Ç D and n G N, n > 1}.
c) Write Z2 = {±1} for the multiplicative group of units of the integers (Z) and F2 for the
two-element field. ■

Henceforth, the word ring stands for a commutative unitary semi-real ring (—1 is not a sum 
of squares), in which. 2 is a unit.

2.3 Reduced and Real Rings. Let A be a ring. We recall the following concepts:
a) A is reduced if its only nilpotent element is 0. It is straightforward to check that A is reduced 
iff it satisfies the Horn-geometric sentence

V u (u2 = 0 =» u = 0).
b) An ideal I in A is real if for all integers n > 1 and 01,.. .*, an G A, ]T^=1 af ^ f implies a,- G I, 
1 < i < n. A ring is real if the zero ideal is real, i.e., for all integers n > 1 and C\,..., Cn G A, 
Y^i-i c2 — 0 entails c,- = 0, 1< i < n. Note that the property of being real can be described 
by a countable set of Horn-geometric sentences. Clearly, every real ring is semireal and reduced 
(by (*) in item (a)). Moreover, the properties of being reduced or real are hereditary, i.e, are 
inherited by any subring of a ring possessing them. ■

(*)

If A is a ring and Z = {Zk : k G K} is a non-empty set of variables, write A[X 1,..., Xn] 
and A[[Z]\ for the rings of polynomials in n variables and of formal power series in the variables 
Z, respectively, with coefficients in A.

Lemma 2.4 Let A be a ring. With notation as above, if A is an integral domain, reduced or 
real, the same is true of both A[X 1,..., Xn] and A[[Z]].

Proof. It suffices to show that the stated properties are preserved by adding one variable, i.e., 
if A has any one of the properties in the statement, then so do A[A'] and A[[X}\. Once this is 
established, for polynomials one employs induction, recalling that

A[X 1,..., Xn, Xn+i] = A[X 1,..., Xn][Xn+i],
while for formal power series over the set of variables Z, we use the fact that a formula analogous 
to (I) is true for finite subsets of Z and that A[[Z]] is the inductive limit over the partially ordered 
set of the finite subsets of K of the formal power series in each finite subset of K (note: the 
sentence characterizing integral domains in the language of rings is geometric). We shall explicitly 
prove only that if A is real, then A[[X]] is real; a straightforward modification of the argument 
yields the remaining statements.

Let /i,...,/n £ A[[X]] , n > 1, and assume £j=i f2 = 0. We may suppose, to obtain a 
contradiction, that all of the fj ^ 0. For each j (1 < j < n), write

fj(X) = ajkjXki 4- terms of higher order, with ajkj ^ 0.
Let p = min {kj : 1 < j < n) and set a = {j G {1, ..., n} : kj = p}; clearly, a is not empty. 
Moreover, the coefficient of X2p in fj ls Ejea a% ~ 0* Since R is real, we get ajp = 0, for 
all j G a, contradicting the fact that they were assumed non-zero. ■

(I)
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2.5 Preorders and Partial orders on a ring. Let A be a ring.
a) A subset TÇA is a preorder on A if it is closed under sums, products and contains A2; 
say T is proper if T f- A. Since 2 6 Ax, we have:
(1) T is a proper preorder on A iff — 1 £ T;

; we

(2) The set supp(T’) . T n T, called the support of T, is a proper ideal of A.
(3) The smallest preordei (undei inclusion) on a ring is £A2 (sometimes called the weak preorder); 
it is clearly proper because of our blanket assumption that all rings are semi-real.
b) A proper p-ring, (A,T) is a ring with a proper preorder on A; clearly, a proper p-ring is 
semi-real.
c) A p-ring morphism, / : (Ai,Ti)
/Pi] Ç T2.
d) A preorder, T, on A is a partial order if supp(T) = {0}; in this case (A,T) is said to be a 
partially ordered ring (po-ring). Every preorder on a formally real field is a partial order. ■

In what follows, all p-rings are assumed to be proper.
If (A,T) is a p-ring, we refer the reader to 4.14.(a) in p. 48 of [DM5] for the notions of 

T-convex and T-radical ideal in A; for the convenience of the reader we state Fact 4.17 of the 
same reference as

(A2,T2), is a morphism of unitary rings, such that

Lemma 2.6 Let A be a reduced ring and let T be a preorder on A.
a) The following are equivalent:
(1) T is a partial order on A;
(2) The zero ideal is T-convex, i.e. for all s, t 6 T, s + t =0 implies, s = t = 0;
(3) A is T-reduced, that is VÕ := {a £ A : 3 m 6 N and t G T so that a2m + t = 0} = {0} 
(of. 4.14.4.(a), [DM5]).
In particular, £A2 is a partial order on A O A is real.
b) The following are equivalent:

(1) A2 is a partial order on A;

For the definition and basic properties of the real holomorphy ring of a formally real field 
[L], Chapter 9, pp. 73-79, or [Be], pp. 2Iff, or [M], § 3.5, p. 50 and § 5.2(7), pp. 87-88.

Since subrings of a real ring are real, we obtain

Corollary 2.7 Let F be a formally real field.
a) If V is a valuation ring of F, then TV2 is a partial order on V.
b) If H(F) is the real holomorphy ring of F, then £H(F)2 is a partial order on H{F).

In fact, it is shown in Proposition 9.8 of [DM5], that EH(F)2 = EF2 D H(F). The same is 
true for any valuation ring of F whose residue field is formally real.

The preceding results furnish a varied and interesting number of integral domains, A, in 
which £A2 is a partial order; the significance of this will became apparent shortly.

Let A be a ring and let T — A2 or a (proper) preorder of A.
TU = {x e A : V a 6 A (as = 0 =*► a = 0)}

be the multiplicative set of non zero-divisors in A. Whenever A is clear from context, we omit 
the subscript A. Note that the formula defining 9^ is Horn-geometric.

(2) A is Pythagorean, (i.e., A2 = EA2).

see

Let
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h (<s(a - b) = 0 and s 6 91).
= Sfc implies a = b

= ^2 n oi = (91 n Af = « •

The preorder P has the zero-divisor property 
’fD\ Jnins only zero-divisors. Another, equivalent,

(zdp) i/ supp(P) ç R \ mKl ie„ supp(P) contain o V = p p ^ ifterl p n _p = 0
formulation of this property (to be henceforth emp y ^
In case T = A2, so?/ that A'2 /ifls the zdp if r &

Note that for a, b & A and s 6 91,
Let t = T n 91; note that if T = A2, then t

Definition 2.8 Let (R,P) be a p-ring.

A with the zdp is closed under arbitraryRemarks 2.9 a) If A is a ring, the class of preorders on 
intersections and upward directed unions, 
b) If A is a ring such that * - A*, then any proper preorder on A has the zdp. An rnteresting 
class of examples with proper preorders is that of von Neumann regular rmgs d, ifA is
von Neumann regular and a e A, then there is an idempotent e £ A so t a P P ideals 
(a) and (e) are the same, and so a = ae. If a is not a unit, then e / 1, entailing a(l e) - 
ae(l - e) = 0 and a is a zero divisor. If T is a proper preorder on A, then supp(T) is a proper 
ideal in A and so cannot intersect fTt = Ax and (A,T) is a zdp-ring. ■

Clearly, if (R, P) is a po-ring, then P has the zdp. For integral domains, we note.

Fact 2.10 If (R,P) is a p-ring and R is an integral domain, then
P has the zdp <=> P is a partial order.

Proof. It suffices to establish the implication (=>); since R is an integral domain, 01 = R \ {0} 
and so the zdp entails supp(P) = {0}, as claimed. ■
Henceforth, to simplify statements, a p-ring, (A,T), such that T has the zdp will be referred to 
as a zdp-ring.

Example 2.11 (a) Let À be a completely regular space and let C(X) be the ring of continuous 
real-valued functions on X. Recall that a subset of X is rare if it has empty interior A closed 
set in X is regular if it is the closure of its interior. Moreover,
(*) / 6 C(X) is a non zero-divisor iff Z(f) = {i£X : f(x) = 0} is a rare closed set.

If K is a non-rare closed set in X, then the preorder

Pk = {/ 6 C(X) : K Ç If > 0]}
has the zdp. First note that supp(P7C) = { f c <r(x) • k c •interior the same is true nf 7( L c U V A - Z^\ since K has non-empty
interior, the same is true ot Z(f), for / € supp(P*)5 whence the latte
divisors, as needed. r ideal contains only zero

is ib,cr|- ut *c-v,second and third paragraphs, p. 535, [DST] and the refe lne on ® , a real closed ring (cf. 
in K", with non-empty interior, and iet, L above 65 therein)' Let K be a cloSed S6t

Pk = {/ e A : K Ç [/ > q|| 
be the preoder determined by K on A. We show that Pi
that / 6 supp(P,f); then K Ç Z(f) and Z(f) k a c 5 cf3 the zdP in A Assume, for / 6 A, 
their U + 0 is a sa-set (cf. Prop. 2.2.2, p 27 |BcrB aif V is tbe interior of Z(f), 
F. Let g{x) dist(a;, F) be the distance function fm Q ^16 same's true of its complement, 
[BCR], ge A- note that U = \g > 0| (and fp J n * e ® to F- By prop. 2.2.8, p. 29, 
so / is a zero-divisor in A, as required. Uearly> 9f identically zero in Rn, and

«
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2.12 First-order theories of certain classes of p-rings. a) Let L(P,S,N) = {+,-, P, JV, 
S, 0, 1} be the first-order language with equality, consisting of the language of rings augmented by 
three unary predicates, P, S', N and let Tps be the first-order theory with equality in L(P, S', N) 
consisting of the following finite set of sentences:

(i) The axioms for unitary commutative rings, in which 2 is a unit;
(ii) The axioms stating that P is a proper preorder (including nP(-l)); 

(in) The sentence Vx\fu(N(x) A 

(iv.a) The axioms that 5 is a multiplicative set;
u = 0);xu = 0

(iv.b) Vx(S(x) Nix));
(v) 3z(P(z) A P(-z) A 5(2)) P(-l).

Note that Tps is a Horn-geometric theory; moreover, any model of this theory consists of a 
proper p-ring, (A,T), together with a multiplicative set S having empty intersection with the 
supp(T) (by (1;)), while (m), (zu.a)) and (iv.b) guarantee that any element of N is 
divisor and S Ç N. If we wish P to be a partial order, it suffices to add the Horn-geometric 
sentence

a non zero-

[vi) Vi(P(i) A P(—t) t = 0) (in which case (u) may be omitted).
Write Tpos for the ensuing theory. The theories Tps and Tpos are the theories of p-rings and 
po-rings with a multiplicative set of non-zero divisors, S, having empty intersection 
with the support of the preorder, respectively, both Horn-geometric in L(P, S, N).
b) The theory of zdp-rings. Let L(P, N) the language of rings together with two unary 
predicates, P and N. Let TZdP be the theory in L(P, N) consisting of the following finite set of 
sentences:

(vii) The sentences in (z), (ii) in item (a);
[zdp] : 3z(N(z) A P{z) A P(—z))
[N] : \/xVu{N (x) <—> (ux = 0

Note that T~dp is a consistent theory: if R is the real line, with P is interpreted as R2 and N as 
(R \ {0}), we obtain a model for TZdP• Moreover, [vii) and [zdpj are Horn-geometric, as is the 
implication (—») in [N] (equivalent to (in) in item (a)), but not its converse (whose matrix is 
of the form (pi

It is straightforward that the models of TzdP are exactly the zdp-rings. ■

For reduced products, we adopt the notation and terminology of [CK] (see p. 214 ff). With 
notation as in 2.12, we have:

Proposition 2.13 a) The class of models of the theories Tps and Tpos are closed under arbi­
trary reduced products and directed colimits (or inductive limits).
b) The class of zdp-rings is closed under arbitrary non-empty reduced products. In particular, it 
is closed under products and TzdP is Norn axiomatizable.

P(~ 1).
u = 0))

p3, with pi atomic, i — 1, 2, 3).P2)

Proof. Item (a) follows from 2.1. For (b), let I be a non-empty set and let D be a (proper) 
filter on /. Let (AuTi), i 6 /, be a /-family of zdp-rings. For each i e /, write Mi for the

zero-divisors in A{ andmultiplicative set of non
(Uiei HieiTi) (Ad,Td) = (IlDA,UDTi),

for the product and the reduced product mod D of the (A,Tf), respectively. Let MD be the 
set of non zero-divisors in AD. As in [CK], if s 6 A, write sD for its equivalence class in AD.

(A,T)
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We start with the following
Fact, a) For all z G [Jig/ Ai> we have zn e ** Í2’ 6 1 •' *(*) G Af*} € D.
bj For all x e A, xD € supp(TD) {z G 7 : x(z) G supp(Ti)} G jD.
Froo/. a) Suppose 2d G Afp and set K ==■ {i G I : 2;(z) G Af*}. For each z e 7G = 
z(i) £ Mi and so there is a* G A* \ {0} such that 2(z)a; = 0. Define, for i £ 7,

a* if z G 7fc 
0 if z G K.

Then, az = 0 and so, aD • zD — (az)p = 0D. Since 2d £ A/d, we get aD — 0d whence, {z ç / . 
a(z) = 0} = K G 70, as needed.
<= : Assume a £ A satisfies aD ■ zD = (az)p = 0d; the definition of reduced product entails that 
J = {i £ I : a(i)z(i) = 0} G D\ set K = {i G I : z(z) G Mi} 6 D. Hence, G = K n J £ D 
for all z G G, a(i) = 0, whence ap = 0d and zp £ Mp.
b) =j> : If Xj9, —Xp £ Td, then Ji = {j £ I : x(j) £ Tj} £ D and J2 = {k £ 1 : ~x(k) £ T*} ç 
D. Hence, J — Ji C\ J2 £ D and for all i £ J, :r(z), — rr(z) G T*, as needed. The converse can be 
treated similarly.

For cp £ AD, if cd £ supp(Td) fl A/*d the Fact entails {k £ I : c(z) G supp(Tj) O Mi} € 
Z). In particular, this set is non-empty, contradicting the hypothesis that all coordinates are 
zdp-rings.

Clearly, the case of products is a special case of reduced products, while Horn axiomatizability 
follows from Theorem 6.5.2, p. 412 in [CK] (no need of the continuum hypothesis, cf. p. 414 ff, 
of the same reference.). ■

a(i) =

and

□

Remark 2.14 a) We are not aware of an explicit Horn axiomatization for zdp-rings, although 
the multiplicative set of non zero-divisors in a ring is defined by a Horn-geometric formula. The 
question, of course, involves how to find a collection of Horn sentences equivalent to axiom [N] 
in 2.12.(b).
b) However, there is a significant subclass of zdp-rings for which one can give a Horn-geometric 
axiomatization: the po-rings; it is clear from 2.12. (a) that this theory has a Horn-geometric 
axiomatization in the language L(P). Write Tpor for the first-order theory with equality of

is closed under arbitrary reducedpartially ordered rings. Hence, the class of models of T 
products and directed colimits (or inductive limits).

The final theme in this section is the description of the group of exponent 2 that will underlie 

all constructions to follow.

por

Lemma 2.15 Let A be a ring and let T = A2 or a proper preorder on A. We have:
a) (1) 1 G t, -I ^ t, and i • t = t. Moreover, for all x £ 01, x2 £ t.

(2) If A is reduced and T is a partial order, then t + t Ç t.
b) For a, b £ 01, define a ò iff 3 s £ t so that sab £ t. Then:
(1) w a congruence with respect to product in 01.
(2) a ~i 6 iff 3 s, t £ i so that sa = tb.‘ Hence, a ~t 1 iff 3 s £ t, so that sa € 
particular, a £ t implies a ~{ 1 and for all a e 01, a2 1.
(3) Gopr(A) = 01/~t ■= {uT = a/~t : a £ 01} is a group of exponent two, with 1
-i - _____________________

1 Recall: for a preorder T, t = T n 01; if T = A2, then t = 912.

t. #

* 1T ^
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(4) 1T / {—l)T iff t fl — t = 0 (i.e., T has the zdp). In particular, this holds if T is a partial 
order.

Proof, a) Item (1) is clear. For (2), assume A is reduced and T is a partial order and, for s, t E 
t, that s + t £ OT (it is clearly in T). Then, there is a ± 0 in A so that a(s H- t) = 0, entailing 
a2s -F a2t = 0. Hence, since a2t E T, we conclude that a2s E T D — T = {0}; since s E t Ç 01, 
we have a2 = 0 and so, A being reduced, we get a = 0, a contradiction.
b) (1) Clearly, a a, and a b implies b a. For transitivity, if a ^ 6 and ò c, then there 
are s, t E i such that saò, the E t and so (stò2)ac 6 t, with s£ò2 E f, whence a c. If a c 
and ò d, then for some s, i 6 t, we have sac, tbd E t, implying (s£)(aòcd) E t, and is a 
congruence with respect to product in 01.
(2) If, for s E t, sab = t E t, then (sò2)a = tb\ for the converse, if s'a — t'b, with s', t' E t, then 
s'ab — t'b2 € t, as needed. The remaining statements in (2) are clear.
(3) With product induced by that in 01 (aTbT := (afr)T), the quotient G%t(A) 1 = 01/~t is a 
semigroup with 1 = 1T, which is of exponent 2 (by the last statement in (2)) and hence a group 
of exponent two.
(4) Note that lT = (— 1)T iff there is s E t so that s • 1 • (—1) = —s E t iff t n — t ^ 0. ■

The results in Lemma 2.15 will be used below, oftentimes without explicit reference.

2.16 Notation. Let A be a ring and let = (ai,..., an) be a form over 01.
• If T is a preorder on A, write = ( of,..
• If T — SA2, write Gm,s for G^a2(A), for an^ = ( a?> • • 
form in
• If T = A2, write G^(A) for G%a2(A), x for xT, x E 01, and ^ = (di,...,an ) for the
corresponding form in Gw(A). ■

a^) for the corresponding form in G^t(A)\
a% ) for the corresponding

• >
•}

3 The Proto-Special Group Associated to 9T

Definition 3.1 Let A be a ring, with 2 E A*, and let T = A2 or a proper preorder on A. With 
notation as above, let V = (a\,..., an) be a n-form (n > 2) over 01.

a) Define
D*{V) = {c e 01 : 3 s G t, 3 tu. ■ ■ ,tn 6 T so that sc = ^"=, ijQi}
D£(<P) = {x 6 01 : 3s, n,.. 

respectively the set of elements value represented and transversally value represented by 
<P in 01. Clearly, {au..., an} Ç D*{<P) and D*{V) C D”{V). We also set D*({a)) = D*((a))
= {«}•
b) Define £>T(^) (the inductive definition of value representation) as follows:
* If n = 2, %(¥>) = D”(ai,a2);

and
rn E t so that sx = riai}>• >

* If n > 3,
£>r(V>) = {z £ 01 ; V 1 < k < n, 3 u £ 01 s. i.«E D£(bu.. 6fc,..., bn) and x E D*(bkl u)},

^ is the (n — 1 )-form obtained by removing the kth-entry from V.

At this stage it is important to describe the basic properties of for 2-forms (compare with 
Lemma 2.6, p.ll ff in [DM5]).

• j

(«1where ,..., a^.,..., an
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Lemma 3.2 Let A be a ring and let T = A2 or a proper preorder on A. Let x, y, u, v £ 0] 
and iu\, u)2 G t = T D 01. With notation as above:

(2) IfT is a preorder on A, then u £ D”( 1,1) =>■ uT = lTi
e Drf(x, y).

(2) D”(x,y) = D^(w\X,w2y). In particular, this holds if u)\, w2 G Tx = T n A*.

c) u £ D*(x,y) and uT = vT => v £ D*(x,y).
d) xT = uT and yT = vT => D£{x, y) = D£{u,v).
e) (1) D”(l>x) is a sub-semigroup o/01.

(2) IfT is apreorder on A, y £ D^(l,x) =>• D”(l,y) Ç D”(l,x).
f) For all z G % D*(x,y) = D*(u,v) =* D"{zx,zy) = D*(zu,zv).

a) (l)ueD*(l,~ 1);
b) (1) uDy(x, y) Ç D*(ux}uy), and z £ D*(ux,uy) =4> UZ

Proof, a) (1) Since 2 £ Ax, we have u = |(1 + u)2 - ^((1 - u)2, as needed.

(2) If u £ 1), then su = tj + *2 (s G t, U £ T); note that the left-hand side of this equality
is in 01, while its right-hand side is in T. Thus, t\ + t2 € t and so su = (£1 + £2) • 1, whence 
u 1, i.e., uT = 1T.
b) (1) If w £ D*{x, y), there are s £ t, £1, £2 G T so that su; = £jx + t2y and so s(uw) = ti(ux) 
+ £2(uy), whence uw £ D*(ux, uy).

If z £ D£(ux, uy), then sz = £1 ux + t2uy (s € t, U £ T), hence suz = (tiu2)x + {t2u2)yy 
entailing uz £ D*(re, y). Note: the latter relation yields u2z £ uD”(x, y), with (u2z)T = zr 
(because u2z2 G t).
(2) If 2 G'jD^(x, y), i.e. sz = £1® T £2y (s G t, U £ T), then (su;iu;2t)z = (tau;2)(u;ix) + 
{t2uj])(w2y). Since sw\w2 £ t (recall: un, u;2 G t) we get z G D”(whr, u>2y). If u G B^WiX, u;2y), 
then s'u = t^x + t2w2y (s'-G t, £• G T), hence u G D*(x, y), establishing the desired equality.
c) By Lemma 2.15.(b.(2)), there are Si, s2 G t so that Siu = s2v. We also have set, ti, t2 £ T 
so that su = t\X + £2y; hence (ss2) v — s(siu) = (si£i)x + (si£2)y and v £ D”(x, y), as desired.
d) By 2.15.(b.(2)), there are su s2, s3, s4 G t with Six = s2u and s3y = s4v. If w £ D^(xf y), 
then sw = tix + t2y (s G t, U G T). Hence,

(ssis3)u> = (£is3)six + (£2si)s3y = (£]S3)s2u + (£2S])s4u, 
yielding w £ D”(u, v). By symmetry, we obtain the claimed equality.
e) If u, v £ D”( 1, x), then Siu = tx + t2x and s2v = £'1 -f t'2x ( Si £ t, £*, t'i £ T). Thus,

sxs2uv = (txt\ + t2t'2x2) + (£i£'2 -f £i£2)x,
with SiS2 G t, and so uv £ D”( 1, x). If T — A2 and a, b £ D”( 1, x), there are w, z £ 01 and p> 
q, u, v £ A so that uj2a = p2 4- y2x and z26 = ti2 + u2x. Hence,

(p2u2 + y2u2.x2) + (p2v2 + q2u2)x 

= (p2u2 + q2v2x2) + 2puqvx — 2puqvx + (p2u2 -f ç2u2)x 

= (pit -f yux)2 -f (pu — gu)2x

w2z2ab —

and so aò G D”(1, x).
Fix y G D^(l, x), written

(*) (s G t, £* G T)sy = £1 4- £2x.
If z G -0^(1, y), we may write s'z = £^ + £2y; hence, using (*), we obtain

ss'* = st; + £2sy = s£; + t^(ti + t2x) = (s£i + £&) + ^t^x,
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yielding z E D*( 1, x), as claimed, 
f) Suppose w E D”(zx> zy), i.e.,

(+) = t\zx + tizy.sw (s € t, U E T) 

s'x = t\u + tf2v and s"y = t'[u + t2v; theseSince x, y E D^x, y) = D”{u, v), we have 
equalities and (+) yield

{s's"s)w = tlZs"(s'x)+t2zs'{s"y) = tlZs"(t\u + f2v) + t2zs'{t'{u + f±v)
= [iitis" + t2f(s'}(zu) + \txt'2s" + t2t'is']{zv),

whence w 6 D”(zu, zv). Similarly, one shows D^(zu, zv) Ç D*{zx, zy), ending the proof. ■
The next Lemma is the analog in the present setting of items (f) and (g) in Lemma 2.6 (p. 

12) of [DM5].

Lemma 3.3 Let x} y, u, v E 91. With notation as above:
a) u € D*{x,y) 44- D”(u,uxy) = D*{x,y).
b) The following are equivalent:

(1) {xy)T = (uv)T and D”(x,y) = D”(u,v);
(2) (xy)T = (uv)T and n ^(«,11) / Í.

Proof, a) Since a E D”(a, 6), only (=>) needs proof. For the argument that follows, one should 
keep in mind 3.2.(c). Assume that u E D^(x, y); then,

G Qj!( 1, xy).
Now, if z E D^(u,uxy), then zu E D*( 1, xy), hence (*) and 3.3.(e.l) yield zxu2 E D”( 1, xy) and
so zu2 E D*(x, y), entailing 2: E D”(x, y). Conversely, if 2 E LWx, y), then zx E D*( 1, xy),
and another application of 3.2.(e.l) and (*) yields zux2 E D,f{ 1, xy); hence, just as above, 
2 E D”(u,uxy), as claimed.
b) It suffices to show (2) => (1). Let £ E £^(x, y) D Df!(u, v)\ by item (a) we have

= D”(x, y) and D*(z, zuv) = D^(u, v).
Since {zxy)T = (zuv)T (because (xy)T = (uv)T), 3.2.(d) and (it) entail D*(xt y) = D”(u, u), 
ending the proof. ■

Definition 3.4 Define a binany relation, =t, on G%T{A) x G*n;r(A), called binary isometry 
mod t, as follows: for a, b, c, d E 91

(aT,bT)=l(cT,dT) aTbT=cT(f and D”(a,b) = D”(c,d).

For the definitions of proto-special (tt-SG), pre-special (p-SG) and special (SG) groups, re- 
ducibility and of morphisms of these structures, we refer the reader to Definitions 1.9 (pp. 5, 6) 
and 1.12 (p. 7) of [DM5].

Proposition 3.5 Let A be a ring and let T = A2 or a proper preorder on A. Let 01 be the 
multiplicative set of non zero-divisors in A,
a) (1) The structure (G*,r(A), -1) is a proto-special group, As usual, write DGmMA)(*,*)
for binary representation in G<s\,r{.A).
(2) If T is a preorder on A, G%T(A) is reduced iff t n -t = 0, i.e., iff (A, T) is a zdp-ring. In 
particular, G<n,r(A) is reduced if T is a partial order.
b) (1) Forx, y, z 6 Tt, * € D”{x,y) & ZT e Dg^t(a)(xt,yr).

(*) ux

D*{z, zxy)(#)

(=.)
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(2) For u, v, x, y E 91, Df!(u,v) Ç D^(x,y) <=$ DG<ntT{A){uT,vT) Ç Dg^t^A)(xt,2/t).
(3) For all x E 91, zT) « a saturated subgroup of Gm%T(A). 2

c) For all z, x, y € 91, zT DGlll%T(A){?? >VT) = A?*lT(A)(*T*r, *TyT).

d) If binary value representation is 2-transversal, i.e., for allx, y 6 01, D*(x,y) = D*(x,y), 
then GçntT(A) « a pre-special group, which is reduced ifT satisfies the zdp; in particular, this 
holds if T is a partial order.
e) If T = A2, the following are equivalent:
(1) G«n(.A) is a reduced proto-special group; (2) —912 n 912 = 0 and (A2 + A2) n 91 Ç 912.
In particular, if A is Pythagorean (A2 = £ A2) and the weak preorder is a partial order, then 
Got (A) is a reduced special group.

Proof, a) (1) By 2.15.(b.3), G»n,r(^) is a group of exponent two. Clearly, =t is an equivalence 
relation on G<h,t(^) x G<y\fr{A) and (aT,bT) =t (6T, aT), and so G^,t{-A) satisfies [SG 0] and 
[SG 1] in Def. 1.9, p. 5, [DM5]. Axiom [SG 2] is a consequence of 3.2.(a) and 3.3.(a): since 
a E Dy (1, -1), we get D”(a, -a) = D*( 1, -1), with (a - (-a))T = -{a2)T = (~1)T, because
—1 • — a2 = a2 E t. Axiom [SG 3] is immediate from the definition of =t. Fix x E 01; if ( aT, bT ) 
=t (cT,cP ), then (ab)T = (cd)r and D”(a, b) = D”(c, d). Hence, (xab)T = (xcd)T, while 3.2.(f)
yields D£(xa, xb) = D*(xc, xd), entailing, by 3.4, (x1 aT,xTbT ) =t (
G^5t(A) to be a proto-special group.
(2) If T is a preorder on A, item (b.4) in 2.15 and t D — t = 0 guarantee 1T ^ —1T. Now, the 
reducibility of Gwj^A) follows straightforwardly from 3.2.(a.2).
Proof of (b.l) : If z E D”(x, y), then 3.3.(a) entails D*(z} zxy) = D*(x, y), while it is clear that 
zT - (zTxTyT) = xTyT. Thus, ( zT, zTxTyT ) =t ( xT, yT ) and zT E Dg<jx t{a)(xt, yr). Conversely, 
if zT E DGox HA)(xt, yT), then, ( zT, zTxTyT ) =t ( xT, yT ), entailing 2 E ^(z, zxy) = D*(x, y), 
as needed.
Item (b.2) follows from (b.l), while (b.3) is an immediate consequence of 3.2.(e), (b.l) and (b.2).
c) If vT 6 zTDGv T(A)(xT, yT), then zTvT £ DG„ t^a)[xt, yT) and (b.l) yields zv £ D*{x, y). 
Hence, for some s E t, fy, t2 E T, we have szv = t\X + t2y, entailing (sz2)u = t\(zx) + 
t2(zy), i.e., v E D*(zx, zy). Another application of (b.l) yields vT E DcmT(A)[zTxT, zTyT), 
and zTDg^t{a)(xt, yT) Ç Dg^t{<a){ztxt, zryT). For the reverse inclusion, suppose wT is in 
DG^T{A){zfxT, zTyT); then 3.2.(b.l) yields zw E D^(x, y). By (b.l) 
and so (zT)2wT = wT E ztDg917.(/i)(xt, yT), completing the proof of (c).
d) To verify [SG 4] in Def. 1.9, p. 5, [DM5], suppose (ur,vT} =t (xT,yT). Then,
= xTyT and so, since Gçnj^A) is a group of exponent two, we obtain 
equivalently, —xr = —uTvTyT. By items (a) and (b) in Lemma 3.3 and the definition of 
=t, the desired conclusion is equivalent to u E D*(—v, y) : indeed, once this established, 
we obtain Df!(u, — uvy) = D*(—v, y), with uT • —(uTvTyr) = —vTyT, whence (—vT,yT) =t 
(uT,-urvTyT) = (uT,-xT). Now, since yT E DG<n,T{A)(uT> vT)i by item (b.l), y E DJf(u, v) 
= £^(u, v). Hence, there are s, S\, s2 E t, so that sy = S\u + s2v, whence s^u = s2(—v) + sy. 
Thus, u E D£(-v> y) = D”(-v, y), as needed.
e) (1) => (2) : By 2.15.(b.4), the first condition in (2) is satisfied. If a E (A2 + A2) n 91, then, 
a E D^(l, 1) and so a E D«n(l, 1); the reducibihty of Goi(A) entails a — 1, that is, a E 912.
(2) => (1) : Again, the first condition in (2) and 2.15.(b.4) imply lr ^ — 1T. Now, assume

2Recall: a subgroup A of a 7T-SG, G, is saturated if for all x 6 G, x € A Dq{ 1, z) Ç A.

T T XJ c xTdT), establishing

T T z w £ DcM(xt, yT)

T T U V
-xTuT = -vTyT or,
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a £ DGoi(a){ 1, 1); but then, a £ D”( 1, 1), and there are u 6 01 and x, y £ A so that u2a = 
x2 + y2\ the left-hand side of this last equality is in 01, while it right-hand side is in A2 -f A2; 
thus, for some 2 £ 01, u2a = 22, and so a = 1, as needed. The last assertion in (e) follows 
straightforwardly from item (a. 2). ■

Remark 3.6 a) Employing Definition 1.7.(d) (p. 4) in [DM5], binary isometry in G<nj(A), =t, 
can be extended to forms of all dimensions n > 1, still indicated by the same symbol, as follows:
(1) n = 1 : (a) =t (b) iff a = b\
(3) For n > 3, proceed by induction: (au...,an) =t (&i, • • -, bn ) iff there are x, y, z3, .. 
in G%t{A) so that

00 (aux) =i (buy)\
(in) (62,.. .,6n) =t (y, 23,..., 2n). 

b) As in Definition 1.3, p. 3, [DM1], if n > 1 and P is n-form over G<y\tr(A), let
= {u e £ot,t(A) : 3 22, ... 2n E Gatj^A) so that (u, 22,..., 2n) =t V5}, 

be the set of elements represented by P in ■

Definition 3.7 For a form P = (ai,..., an) over 01, define:
D%t(P) = {2 £ 01 ; 3 z2, ..., 2n E 01 so that ( zT, z\,..., z£ ) =t {PT),

the set of elements in 01 isometry-represented mod T by PT in G<j\,t(A). In case T = A2 
or T = EA2, write D<y\(P) and D^(P) for the set of elements of 01 isometry represented byp 
in Gy\(A)and Grn^A), respectively.

(2) n = 2 : =t is the binary isometry defined in G%t(A)\

• j Zn

(«) (a2,...,an) =t (x,z3,...,zn)-,

Remark 3.8 Clearly, D<x,t(P) is a subset of 01. However, it is straightforward from 3.6.(b) 
and 3.7 that if P is a form over 01 and x £ 01, then x £ D^t(P) iff xT £ DG<nT(A)(pT). ■

Lemma 3.9 With notation as above, let P = (ai,..., an ) be a form over 01.
a) Dt(P) U D^P) Ç D*(P).
b) For all x £ 01, x £ D<ntr(P) => x £ D£(p), i.e., D^T(P) Ç D”(P).
c) If d\m(P) < 3, then'D^P) Ç Dw}t(P)-

Proof, a) It is clear that Dr*(P) Ç D”(P); for dim(V?) = 2, £)T(P) = D£(P) by definition. Assume 
the result holds for forms of dimension n > 2 and let P — (a) © ^, with (b\,...,bn). If x 
£ there is u £ 01 with x £ D^(a, u) and u £ D”(ip). Hence, there are Si, s2 E t and
t1? í2 E T so that S\X = iia -f £2u; this equation together with s2u = I'M (t\ £ T), imply 
S1S2X = S2Í\a + Í2S2U = S2t\a + Í2(SíLi fyi) ftnd so u £ D£(P).
b) By 3.5.(b.l), the result holds for 2-forms. We proceed by induction on the dimension of P\ if 
P = (a) © ^ and xT £ DGm{a)(Pt), the definition of representation in Gat.riA) (cf. 3.6.(b)) 
yields u, Z\,..., zn £ 01 so that ( xT, zf,..
in G%r(A) furnishes a ?z-form 9 over 01 and u, v, w2, ..., wn £ 01 so that ( xT} uT ) =t( aT, vT ), 
6t =t (ur,u>J,...,u£) and 'PT =t (vT\w^i... ,«/£). The isometry (xT,uT) =i(aT,vT) en­
tails x £ D* (a, u), while 'p1 =t ( vT, W2 ,... yields, by the induction hypothesis, -y E D^(^P). 
Proceeding as in item (a), it is straightforward to show that x £ D^(P), as desired. The second 
statement in (b) follows from the first, since x £ D%t(V) iff xT € DG<n ^A)(pT) (cf. 3.8).
c) If dim(^) = 2, by items (a) and (b) of Lemma 3.3, we have then D<yii'r(P) = D£(P) = DT(P). 
Let dim(</?) = 3. In any n-SG, G (presently, G<n,r(A)), the condition

z'n ) =t ( aT ) © 'pT. Now the definition of isometry•»
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Dc{bu 62, ò3) = U {DG(bu u) : u e DG(b2, 63)} 

tells, for a E DG(b\, 62, 63), how to complete (a, *, ■) so that it becomes G-isometric to (b\, b2,ò3): 
picking u € DG(b2, ò3) so that a € DG{b\, u), then (a,z) =G (b\,u), where z = ab\U, and
(62.63) =g (ii,c), where c = Ò263U ([SG 3]); the third condition required to get (a,z,c) =G
(61.62.63) , namely (2,0) =g (z,c), holds automatically. ■

Not every morphism of p-rings induces a morphism of the 7r-special groups associated to non
zero-divisors because a ring morphism might not take a non zero-divisor to a non zero-divisor. 
To establish the analog in the present setting of Lemma 2.8 (p. 14) in [DM5] (or Lemma 8.14 
in [DM2]), and the Remarks in 2.27.(c) in [DM5], we introduce the following

Definition 3.10 Let (A,T) and (R,P) be p-rings. Let t = T fl 01A and p = P D 01^. A 
Olp-ring morphism from (A,T) to (R,P) is a a ring morphism, h : A 
h[T} Ç P and h[%lA\ Q Wr, that is, h is a p-ring morphism taking 01^ into 01/*. Clearly, we 
have /i[t] Ç p.

Lemma 3.11 With notation as in 3.10, let h : (A,T)
The morphism h induces a morphism of proto-special groups

G%p(R),
given by hn(aT) = h(a)p. Moreover, Id\ = IdG^ T(A) and if g : (R,P) 
yip-ring morphism, then (go h)v = g* o hn.

(t)

R, such that

(R,P) be a <Tlp-ring morphism.

h* •' Gwpr(A)(*)
(R\F) is a

01/* preserves multiplication, withProof. Since h is a Olp-ring morphism, h* = h [Ol/i : OI,* 
h*( 1) = 1 and h*(—1) = — 1. To see that h* is well-defined, assume, for a, b E 01/i, that aT = bT\ 
then, there are s, t E t so that sa = tb and so h(s)h(a) = h(t)h(b). Since h takes t to p, we obtain 
h(a)p = h(b)p, as needed. It is straightforward that hn is a morphism of groups of exponent 
two, taking —1 to —1. To show that it is a morphism of 7r-SGs, it must be shown that for a, 6,
c 6 01A,

aT e DG»,T(A)(bT’ °T) =* h*laT) = K°)P £ DGn,PW<'h^P’ /l(C)P)' 
By Proposition 3.5.(b.l), (I) is equivalent to
(i)

a e D"{b, c) =* h(a) e D;{h(b), h{c)).
The antecedent in (II) means there are s E t, £1, t2 E T so that sa = t\b + t2c, whence, h(s)h(a) 
= h(ti)h(b) -I- h(t2)h(c) and (II) follows immediately, recalling that h is a p-ring morphism, 
taking t Ç A to p Ç R. The remaining statements are clear. ■

(ii)

Remark 3.12 By Lemma 1.13.(d.2) (p. 7) of [DM5], any 7T-SG morphism preserves isometry 
of forms of arbitrary dimension. ■

4 91T - Quadratic Faithfulness

Besides the already adopted conceptual framework and notational conventions, we set down: 

4.1 Notation.
Let T = A2 or a proper preorder on A. Recall that t = T n 01.
a) If a:,.. 
entries are a\,... ,an.
b) Let Mn(A) be the ring of n x n matrices with coefficients in A. As usual, In is the identity 
matrix in Mn(A).

Let A be a ring and let 01 be the multiplicative set of non zero-divisors in A.

an are elements of 01, let ^(ai,..., an) be the diagonal matrix whose non-zero• 5

■
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Definition 4.2 Let Abe a ring and let T = A2 or a proper preorder on A. Let V = (a\,... ,an) 
tf = (61,..., bn) be forms over 01. We say V is simply isometric to tf, written V « bT 
if there are Ui,... ,un, vu...,vn G t and a matrix M E Mn(A), so that det(M) E O'! and 
MJZ{uia\,... ,unan)Me = .. }vnbn).
IfT is clear from context, wnte & s for &sT. Moreover, ifT = A2, « will stand for m Si42.

Lemma 4.3 Let A be a ring and let T = A2 or a proper preorder on A.
a) The relation of simple isometry between Vl-forms of the same dimension is reflexive and 
symmetric.
b) IfT = A2, then, for each integer n > 1; ^ is an equivalence relation on the set of n-forms 
over 01.

an) ~ s tf — (fri > • • • j bn),Proof, a) Clearly, is reflexive; for symmetry, assume T — (a3,.. •}

i.e.

MJ6{u\ã\,... ,-unan)Mi = J£{v\b\,... ,un6n), 
with det(M) E Ol^jx*, Vi E t, 1 < i < ri. Let cj= det(M). By Proposition 8, p. 334, in [La], 
there is a matrix M in Mn(A) so that MM = MM = c(/n). Hence, det(M)c = det(c/n) = cn; 
since c E 01, the latter equality entails det(M) = cn_1 G 01. From (I) we then obtain,

= MM^(u\ai, ..., unan)MiM 

= y/{c2U\a\, ..., c2unan),

(I)

-—t
M^{y\bx, ..., vnbn)M clnistâ(UiOi, . . . , UfiOji^cIfi

whence tf «s V5, as needed.
b) If T — A2, equation (I) takes the form
(II) MJ£{x\a. 1,..., x\an)Ml = Jt(y2bu ... ,2/“òn) = • • • ,J/n)^(^)^(yi, • • •, 2/n),
where JtlfP) = ^(6i,... , hn), with xt-, y* G 01, 1 < i < n.
Claim : With notation as above, if D is a diagonal matrix in Mn(A), then D = Dl = D .
Proof of Claim. Follows straightforwardly from the definition of D and the proof of Proposition 
8 (pp. 334-335) in [La]. □

To simplify exposition, write J%{y) for ^C{yi,... ,yn)> Multiplying (II) on both sides by 

^f(y) = ^(y) obtains

(III) j/{lfy)M^[x\a\,... ,x\an)Ml~tâ{y) = (y)^C(y) = dln^f(tf)dln
= d2InJ/f(tf),

where d = det= y\ • ... • yn € 01. Let N = J£{y)M\ recalling (from the proof of (a)), 
that det(^(y)) = dn~l, it is clear that det(iV) = det(^(y))det(M) G 01. Moreover, (III) may 
be written

NJZ{x\ai, ..., x2nan)NL = d?In^f(tf).(IV)
in addition, that tf « 9, with 0 = (ci,..., Cn). As in theTo prove transitivity of « 

proof of (IV) we get wit Zi G 01 and K G Mn(A) so that
assume.

K^(w)y/f(tf)y/{w)Kt = J{(z\cx, ..., z2cn).(V)
Since constant multiples of the identity matrix are in the center of the ring Mn(A), (V) yields 

(VI) I<^(w)[d2InJf(tfj\^{w)KL = <fiInJi{z\cu ..., z2Cn) = ^/(d2zfcu ..., d2z2cn). 
Now (IV) and (VI) imply V « 0, establishing the transitivity of «. I
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proper preorder of A. Let 'P, if- be n-formsDefinition 4.4 Let A be a ring and letT = A2 
over 91. We say that 'P is 91T-isometric to if, written 'P ~wr ^, if there is a sequence 
..., pm of n-forms over VI, such that P0 = P,Pm = if, and for each 1 < i < m-1, Pi «s Pi+1.

called the length of the sequence of simple isometries connecting P to if.

or a

The integer m is

an), ^ = (&i, • • • ,bn ) be W-forms, withLemma 4.5 With notation as above, letP = (ai, • • 
n > 1. Write ~ s for « st-
a) For each n > 1, ^ an equivalence relation on n-forms over 91. If T = A2, then «
coincides with «.
b) Fore € 91, V5 ~orr i => cP ~orr ci.
c) If 0 is a 91-/orm and P ~<j\t iJ, then

i)

01T

(2) e 0 V5 ^çnr 6 0 V7.(1) 0 0 «orr 0 0 if;
(3) The operations © and 0 are associative with respect to ~mr- 

d) If'Pi, tPi (i = 1, 2) are 9l-forms of the same dimension, then
Pi © ^2 ~otr 0 ^2; 
¥>1 0 ^2 «<nr ^1 <8> ^2.V5! and P2 ~orr ^2, =>

e) P ~oir ^ => d(P)T = d(i>)T, where d(P) is the discriminant of V.
f) If a is a permutation of {1, ?i}, then P ~y\T ^ implies Pa i* } where P° =
( aa(i),..., aff(n) }. Hence, the operations © and 0 are commutative with respect to ~y\T-

9) {!) * =► D”(<P) =
(2) V? = (ai,.. .,o„) «dr ^ => {ai,...,an} € ^(V).

a; (1) Ift = (tu...,tn) € tn, íften = ££(t1a1,...,t„aB) = !£'(¥>).
an), ^ = (6 .., 6n) ouer 91, af — ò£, /or 1 < /c < n, implies(2) For /orms 9? = (ai,..

~orr if.
(3) If x, y e 91 and ^ is a n-form over 91, then x E D”(P) and xT — 2/r implies y E D”(P)
i) Let 1 < k < m be integers, 'Pi,...,'Pm be 91 -forms and let Xj E 1 < j < fc. Then,

i> •• 3

r$(,xu...,xh)cD*{®Yml<Pi).
In particular, if if is a m-form over 91, then D*(P) Ç D£(P © V7). 
j) For a, b E 91, (a) «<nr (&) iff aT = bT.

(R,P) is a 91 p-ring morphism and P, i are n-forms over A, then P ^k) If f •' <A,T)
implies f * P ~oip / ★.V’. 3

Proof. Throughout the proof, P ze s if shall be explicitly written as
M^(uia!, . .., UnOnjM4 = ^(UjÒi, . . . , ünÒn), 

with det(M) E 91 and U{, V{ E t, an equation to be used repeatedly below.
a) Clearly, « nr is the transitive closure of the reflexive and symmetric relation of simple isometry 
and it is well-known that this closure yields an equivalence relation on the n-forms over 91. The 
second assertion in (a) is immediate from 4.3.(b).
b) It suffices to show that multiplication by c E 91 preserves simple isometry. From equation (I) 
above, we obtain

(i)

3 Recall: if f : A 
image form over R.

R is a map and V = (ai,.. an) is a form over A, /*¥> = <f(a}),..., f(an)) is the

16



M^(c2wi(cai), .. c2tin(can))Mt = ..., c?unan)Mt

= yt{c3Vibu C3^^)
= ^(c2V!(cÒi), ■ • • , C2Vn(cÒn)),

* ?

as needed.
c) (1) Again it suffices to check that the statement holds for simple isometry and 6 = (a), a £ 9T. 
If M is the matrix in equation (I), consider K £ Mn+1(A) given by

1 0
K =

0 M

i.e., K has as its first row and column (1,0,0,..., 0) and M E Mn(A) as its (1,1) minor (usually 
denoted by K\\), It is straightforward that

K^(a, uiai, ..., unan)Kl = vibu ..., vnbn),
as desired. Item (2) follows easily from (1) and item (b), while (3) is clear.
d) Adding to both sides <£2 ~orr ^2» yields 0 0 ^2, while adding to both
sides of ^ orr ^1 obtains V^i 0 ^2 \t ^1 © ^2, and the transitivity of yields the 
desired conclusion. Similarly, one proves that ^ <nr preserves tensor products.
e) If M is the matrix in (I), then, since det(M) := c £ 01, we obtain, computing determinants on 
both sides of (I), c2iq •• 
will be true of ^
f) It is well-known that V3 ~s (/?cr, where the matrices involved are invertible. Hence, the conclu­
sion follows from the transitivity of It is then clear that © is commutative with respect
to ~orr} whence the same is true for 0.

= Vi • • ■ vnb\ • • •bn and so d(p)T = d('0)r; thus, the sameUnCLi • • * Cln

0TT>

g) (1) It suffices to verify the statement for simple isometry and use induction. Suppose 
aeD*{1>), i.e.,

sa ~ Y2j=1 tjbj.
It follows straightforwardly from (I) above that for each 1 < j < n,

(s £ t, tj E T, 1 < j < n)(*)

vjbj — £*=1 x>jiuiaii

where (xji, ..., Xjn) is the ji/l-row of M, Thus, (*) and (**) yield
= £"=i^r-' Vnivjbj)
= £j-i tjVy • • * * ^n(£tn=1 tfiUidi),

wherefrom, upon collecting terms in each ai} 1 < i < n, yields a £ D”(V?). Since simple isometry 
is symmetric, we also have entailing the equality of these sets. Item (2) follows
directly from (1), because {ai,..., an} Ç D*(<P).
h) (1) Clearly, D*(tiait ..., tndn) Ç D^V). For the reverse inclusion, assume a € D*(<P)} that 
is, sd = £f=1 Xidi, with set and Xi e T, 1 < i < n. Then,

s(t\ ‘ ’ • in)d = • Xi ’ 1 • • • Ín)(^í^’i))

and so a £ ..., tndn), as desired.
(2) The hypothesis means that there are Si,..., s„, ii,..., tn e t so that skak = tkbk) 1 < k < n, 
and the conclusion follows immediately from item (h.l).

(**)

svi - • • Vnd

dn); there are s, t E t so that = ty, together with wet and uii...1un
(suk)dk, with wt e t and su* E T,

(3) Let V9 = (ai,.. 
e T so that Hence, urty = wsx
1 < k < n\ thus, y E -D^(^), as needed.

• >
= E*-i

Item (i) is straightforward, while (j) is an immediate consequence of the definitions.
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k) It suffices to establish the result for simple isometry steps. Let T — (ai,...,an), =
(òi,,.., 6n). With the relation T « st ^ written as in the matrix equality (I), by taking images 
under h on both sides and recalling items (b.l) and (b.2) in Remarks 2.27 (p. 24) in [DM5] we
get

(+) h{M) jK{h(Sl)h{ai), ..., h(sn)h(an)) h{MY = , h(tn)h(bn)).
Since for all 1 < k < n, h{sk)y h(tk) 6 p = P D Of* and det h{M) = /i(det M) 6 0lRy equality 
(+) implies that h* T ^ sP h * ^ in Ry as needed. ■

Remark 4.6 The proof of item (c.l) in 4.5 shows that if 9 is a. fc-form over Of and T0y T\y., 
is a sequence of ?r-forms over Of, witnessing To Tmy then the sequence 0 © To, ■.., 0 © Tm 
of (k 4- ?i)-forms over Of, witnesses 6 @ T0 0 © Tm. ■

T-m■ >

Lemma 4.7 Let (A}T) be a p-ring.
a) If binary value representation is 2-transversal, i.e., for all xy y € Of, D£(xy y) = D^x, y)} 
then for all a, b, c, d € Of, the following are equivalent:

(1) < ar, bT ) =t ( cT, dT };
(3) (a,6) wçnr (c,d).

b) In case T = A2, we can dispense with the transversality assumption and have, for all a, b, c, 
de% (a,&) = (c,d) & (a,b) ~ (c,d).

c) Let T, Tp be Of-/arms of the same dimension > 2 over Of. Then

Tt =t if <?9vr(^)) T ~otr

Proof, a) (1) => (2): The definition of isometry in G%t{A) (see 3.4) yields aTbT = cTdT and 
D*(a, b) = D*{e, d). These equalities and the transversality assumption furnish su s2 , ty tu k 
e t so that s\d = abet and S2C — tia + t2 b. Hence,

sis2d = (tab)s2c = tab(tia + t2 b) = (tt2b2)a + (ííia2) 6.

(2) (a,ò) ^sT (c,d);

(I)
( aí ) ; then = ttia + iilb = ^tia + Í2^ = S2tce Moreover>Set M =

taking into account the equations in (I), obtains

"i'o“ i i -bt 
t2 at

—tt\t2ab -f tt\t2ab 
-abtt\t2 + abttit2 b2t2t2a + aHHib

t\t2a t2t\b 
—abtt2 abttiMl

t\t2a + t2t\b

S2t\t2C 0 A 
0 ts\S2d ) ’

t\t2{t\CL 4~ t2b) 0
t[(b2tt2)a-\- (a2tti)b]0

By 4.2, this establishes (a, 6) {c, d).
(2) => (1): By 4.2, the relation (a, b) &sT (cyd) is equivalent to the existence of a matrix M 6 
M2(A) and elements ii, u, £, y € t = T fl Of such that det(M) 6 Of and

xc 0 \
0 yd)'

Taking determinants on both sides of this equality yields xycd = det(M)2uvab and so aTbr * 
cTdT. Also, xc = s2ua +t2vby where (s, t) is the first row of M. Since x, u, v 6 t, we obtain c ^ 
D*(ay b) n D”(cy d) and 3.3.(b) entails (aTybT) =t {cTydT).

ua 0 
0M
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b) (^) : The hypothesis entails ab = cd and D”(a, b) = D*(c, d). Thus, c E D*(a, b) and 
d = aòc. Thus, there are a fi} e e 91, s,teA so that

o?2d = caòe2 and pc = s2a + t2b.(I)
Then,

a2pd = (P2c)(abe2) = abe2{s2a -f t26) = (t2b2e2)a + (s2a2e2)b.(II)
Consider the matrix

isM —bte ase
Then, det(M) = s2ae + t2be = e(s2a -b í2ò) = /32ce E 01. Now, taking into account (I) and 
(II) above, obtains

Pc 0 \ 
0 pa2d )5

a 0 Ml =M 0 b
whence (a, b) » (c,d).
The implication (4=) can be established employing the same reasoning and results as in the proof 
of (2) =>■ (1) in item (a). Since clearly (2) implies (3), to finish the proof of (a) it suffices to 
show:
(3) =$■ (1) : Let {x\,yi), ..., (£*>2/*) be a witnessing sequence for the relation in (3). Hence, 
(xuVi) ~ sT (£i+i, 2/i+i) for 1 <i < k (and (a, ò) = (®i,yi), (xkiyk) = (c,d)). The equivalence 
of (1) and (2) yields (xj,y[) =t (xJ+iwT+i ), for 1 < i < k. The transitivity of the relation =t 

binary forms, cf. 3.5.(a.l), entails { aT, bT ) =t ( cT, dF ).
c) By items (a) and (b), the asserted implication holds for dim(^) = 2. We proceed by induction, 
assuming it holds for forms of dimension n. Let T = (a) ® and ^ = (b) © where

Tand are n-forms over 91. By the definition of isometry in G^t(A), the hypothesis Tt =t 
yields elements u, v, 22, ..., z3 E 91 so that

(aT,uT) =t (bT,vT), =1 (uT,zl,...,zl) and =t ( vT, z%,..., z£ ).
The induction hypothesis and item (a) entail

(a,u) «m- (M), <PX «wr {u, z2,..., zn) and V'j (v, z2,..., zn).
Now items (a), (c) and (d) in Lemma 4.5 imply

V «OTT (a) © (u,Z2,--*,2n) = (a,u) © (z2,--.,Zn) (M) © U2, =
= (&) © «OT (6) ®^1

on

(IV)

completing the induction step and the proof.

Following the lead of [DM5], we set down

Definition 4.8 Let A be a ring and let T = A2 or a proper preorder of A. The ring A is said 
to be 91T- faithfully quadratic if it satisfies the following requirements:

[91T-FQ 1] : For all a, b E 91, D*{a: b) = D*{a, b).
[91T-FQ 2] : For all n >2 and all n-forms over 91, S)T(^) = D^(fP).
[91T-FQ 3] : For all a E 91 and all forms T, $ over 91 of the same dimension,

(a) © ¥> wçnr (a) © tf => V ~<nT

As in [DM5], we write [91T-FQ 2]m or [91T-FQ 3]m, if the statements [91T-FQ 2] or [91T-FQ 3] 
are only required to hold for forms of dimension 2 < n < m.
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If T = A2, we say A is 91-faithfully quadratic and indicate the corresponding axioms 
by omitting the mention of T: [91-FQ 2], i = 1, 2, 3. Similarly, if T — DA2, we say A is 
91£-faithfully quadratic and write the axioms as [91E-FQ z], i = 1, 2, 3,

Theorem 4.9 Lei A be a ring and let T = A2 or a proper preorder of A. Let k, n > 2 be 
integers. Assume A verifies [91T-FQ 1] and [91T-FQ 2]n>
a) For all m-forms P over 91, with 2 < m < n, D”(P) = D^{P).

b) If P\,..., <Pk are forms over 91 and P = ©jLa Pi is such that dim, P < n, then

D»{P) = U .. - ,ufc) : «í e !£(¥>,), 1 < i < k}
= U {Dy(vi,...,v*) • € £^(^), 1 < z < /c}.

Proof, a) By [91T-FQ 1], the result is true for m = 2. We proceed by induction on m, recalling 
that, by 3.9.(a), it suffices to verify that D*(P) C D^{P). Let P = (ai) © ‘0, with m = dim $ 
< n and let x G L^(^). By [91T-FQ 1], [9TT-FQ 2]n and the induction hypothesis, there is 
u G such that x G £^(ai, u) = D^ai, zz). It is now straightforward that
£ G D^{P)\ if ^ = (c.i,..., cm), there are a, fi, s, t, zjr...fzm G t, such that ax 
with fiu = 1 zi°ii an<^ so x £ L^(( Gi) © ^), as needed.
b) It suffices to verify the first equality for k — 2; a straightforward induction will complete its 
proof, while the second follows from (a) and the fact that k < n and maxi<$<fc (dim Pi) < n. 
Moreover, we may assume that n > 3, otherwise there is nothing to prove. Suppose, then, that 
P = P\ © P2] by [91T-FQ 2]n the result is true if dim Pi — 1. We proceed by induction on m 
= dim Pi <n, letting Px = (ai) 0 ip, with dim = m — 1. Fix a G L^(^); by [91T-FQ 2]n, 
there is a; G © ^2) such that

sai + iti,

a G Z^ai, x).
Since dim ^ = m — 1, the induction hypothesis yields u G D£{fP) and v G £^(^2) such that

x G £^(zz, ü).
It follows from (I) and (II) that a G D^{a\, u, u). Because n > 3, we have

Q^(ai, u, v) = 2)T(al5 iz, t/) Ç \J{D*(z> v) : z G D”{au u)},
thus there is z G D*{a 1, u) so that a G £^(z, v). Since u G £^(*0), 4.5.(i) entails z G £^(^1) 
= £^((ai) 0 and so a G £^(z, v), with and v G D”(P2), completing the induction step. ■

(I)

(II)

Theorem 4.10 Let A be a ring and let T = A2 or a proper preorder of A.
a) Assume that value representation of 91-forms verifies [91T-FQ 2)3. Ifp is a form of dimension 
< 3 over 91, then Dfi(P) = DyitT(P), that is, an element of 91 is value represented modulo T iff 
it is isometry represented by PT in G<ntT(A).
b) Suppose value representation of Vl-forms verifies [91T-FQ 1], [91T-FQ 2]3 and [91T-FQ 3]3- 
Then,
(1) For all 3-forms P, over 91, P ~wr ^ <=> PT =1 ^;

(2) G%t(A) is a special group, which is reduced iff (A,T) is a zdp-ring. In particular, G%t(A) 
is a RSG ifT is a partial order.

Proof, a) Lemma 3.9.(b), (c) gives £>r(V?) Ç Dm,T{V) Ç .and so, [9TT-FQ 2]3 implies the
equality of these sets.
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b) (1) By Lemma 4.7.(c), it suffices to prove (=*►). Let <P = (a,x,y) and ^ = (61,62,63). By 
Lemma 4.5.(g.l), ¥ ««mr ^ entails a E = T)T(fP). Following the recipe in the proof 3.9.(e)
(see (f), therein), we set 2 = abiu and c = 6263, where u E £7f(62, 63), to obtain

(I) ( aT, cT, ) =1 { bj, 6if, 6j[ ) and
(II) <aVT>M&?>r> and (òj.òf) =t

By Lemma 4.7.(c), (I) entails (a,c, z) (01,62,63). Since is transitive, this relation 
implies (a,c,2) (a,x,y), and [ÜTT-FQ 3]3 entails (c,z) ~<j\t (a;,2/); now, item (a) in 4.7
yields (xT,yT) =t (cT,2r ). This isometry, together with those in (II) above yield

(aT,zT) =K (bl,uT), ( bl, bj ) =( ( uT, cT ) and ( xT, yT ) =t ( cr, zT ), 
that is equivalent to { aT, xT, yT ) = { 6f, 6^, 631), as needed.
(2) From the equivalence in (1), we conclude that =t is 3-transitive, and so Gorj^A) is a special 
group. If T is a preorder, then 3.5.(a) implies G^tÍÁ) is reduced; in particular, this holds if T 
is a partial order. ■

Theorem 4.11 Let A be a ring and let T be a preoder of Á or T = A2. Suppose A satisfies 
[DTT-FQ 1], [D1T-FQ 2] and [91T-FQ 3]3. Then,
a) For all Vl-forms V, DffffP) = Le.; an element of 01 is value represented by V iff
it is isometry represented by Tt in G^riA).

If in addition A is DLF-faithfully quadratic, then
b) For all ^1-forms, T, rf, of the same dimension, <P ^ & TT =1 .
c) G%t{A) is a special group, which is reduced if T is a preorder with the zdp; in particular, 
G<j\,t(A) is reduced ifT is a partial order.

Proof. By Theorem 4.10.(b.2), we know that G%t{A) is a special group.
a) By Lemma 3.9. (a) it suffices verify that Ç which will be achieved by induction
on dim T > 2. It follows from 4.10.(a) that the result holds true for dim T < 3. Assume it valid 
for forms of dimension n and let V = (6) © where dim ^ = n. If a E 91 is value-represented 
by (6) ® tp, then [OTT-FQ 2]n implies that there is u E 91 such that

a E D,f(b, u) and u E D” (</>).
The induction hypothesis yields 22, ..., zn .E 91 such that
(I)

(llT,zJ,...,ZT) =t
while the first representation relation in (1) implies ( aT, (abu)T ) =i ( bT, uT ). Adding ( bT ) to 
both sides of (II), Lemma 1.13.(c), p. 7, in [DM5] yields

<&W,
Since (aT, (abu)T ) =t (òT, uT), another application of Lemma 1.13.(c) in [DM5] yields

( aT, (abu)T, ..., ) =t ( bT, uT, z%,..., ).
Now, (III), (IV) and the transitivity of st entail

{ aT, (abu)T, zj

(II)

(HI)

(IV)

(bT) © V,
wherefrom we conclude a E Dy\tT(b © l^), as needed.
b) By Lemma 4.7.(c), it is enough to prove the implication (=i>), that we know, by 4.10.(b.l), 
to hold for forms of dimension < 3. We proceed by induction on dimension; assume the result 
holds for forms of dimension n and suppose V = (a) © 6\, ^ = (6) © d2, where dim 0* = n
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~0,r ipt then 4.5.(g.2) entails a 6 D”{Í>) and so, as above, [OTT-FQ 2]n and item 

•2n E 91 such that
(i = 1, 2). lf<P 
(a) yield u, z2, • j

( aTy (abu)T ) =t ( b1, uT ) and ( iít, ^2(V) ) •

Adding ( bT ) to both sides of the second isometry in (V) gives
(bT,uT,zl...,zZ) =i V.

zl) to both sides, the first isometry in (V) entails, 
< bT, uT, z\zl),

(VI)
On the other hand, by adding (z%,..

( aT, (abu)T, z\,.. 
that together with (VI) and the transitivity of =t implies

• )
£> =1• 5

{ ar, (abu)TJ =t(VII)
Lemma 4.7.(b) and the assumption fP ^ give:

Zn) ^ y = (a) ® 01-(ã, aòu, 22,.. ■ ?

we can cancel out (a) to get (abu, z2,- •., zn) ~ orr $ 1 ■ Since dim #1 =
, wherefrom, adding

Now, using [91T-FQ 3] 
n, the induction hypothesis applies, to yield ( (abu)T, 2^,..., z„ ) =t 
( aT ) to both sides and using (VII) we get

V =t ( aT, (abu)T, zj > • • • > ) =t (aT)©^ = ^T,
as required. The reducibility of G%t{A) follows from 3.5.(a.2), and, in particular, it holds if T 
is a partial order, completing the proof. ■

There is a analog of Theorem 3.9, p. 33, [DM5] in our present context. We state the pertinent 
result, omitting the (rather lengthy) proof.

Theorem 4.12 Let(A,P) be ap-ring. LetT be a proper preorder of A, containing P, verifying 
[91T-FQ 1] and with the zdp. As above, let p — P O 91 Ç t = T n 91. Let l : (A} P) 
be the natural inclusion, a Vlp-morphism. Let f := : G<n,p(A)
a E A, by f(ap) = aT (cf. 3.10 and 3.11).
a) Assume G<n,p(A) is a RSG. Then, Ap = her / = {ap : aT = lr} is a proper saturated 
subgroup of G^p(A). Moreover, the map 7 given by 'y(ap/Ap) = aT is the unique isomorphism 
of reduced proto-special groups, making the following diagram commute:

(A,T)
G%t(A), be given, for

can.Gdi.pC-A) H = Gw,p{A) / A?

Qp 7

91 Gy\t t (A)

where qp, qp and can. are the natural quotient maps. Hence, Gy\tp(A) is a reduced special group-
b) Assume {A, P) is a WP-faithfully quadratic zdp-ring (hence, G^p(A) is aKSG, cf. 4.10.(b.2)). 
The following are equivalent:

(1) A is 91T-faithfully quadratic;
(2) For all x, a\,..., On E 91, if x E D£(a\,..., an), then there are x2, .. 

and 11,..., ín E t such that (x,x2,... )Xn) «*tp (Uau ... ,tnan);
(3) For all «XI-forms V, D.»((P) = £»(¥>), i.e., representation of Vl-fonus of arbitrary

dimension is T-transversal. Z

qT

., xn E 91
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Proposition 4.13 Let(A,T) be 91T-faithfully quadratic p-ring. IfW, 0 are forms of dimension 
n > 2 over 91 and %oir 0} then there is a witnessing sequence for this T-isometry of length 
at most P(n) = 2n-l - 1.

Proof. The result is clear for n = 2 in view of 4.7.(a), showing that I(n) < 1. We proceed by 
induction, assuming the result true for n > 2. Let <P = (x) © 0 = (y) © 0i satisfy T, ^rnT
0. If Gw,t{A) is the special group associated to (A,T) as in Theorem 4.11, its item (b) yields 
Tr =t 0 • The definition of isometry in G^riA) furnishes u} v € A and a (n — l)-form 0 over 
91 so that

(xT,uT) =i (yT,vT), ¥>1=1 (uT)®eT and V'f =t (vT) © 6T. 
But then, (I) and 4.11.(b) entail
(I)

{x,u) «(y,v)i «9\t (u) © 9 and 02 «çtr (v) 0
By Remark 4.6, since the first isometry in (II) has a witnessing sequence of length < 1, it 
follows that (x:u) ® 6 ~9it (y,v) ® 0 also has a witnessing sequence of length < 1. By the 
induction hypothesis, the last two isometries in (II) have witnessing sequences of length at most 
^(71); concatenating these sequences yields a witnessing sequence for ^ «0it 0 of length at most 

. 2£(tx) + 1 = 2n — 1 = t(n -f 1), as needed. ■

(ii)

Remark 4.14 a) Let (R,P) be a p-ring. If 91/? = i?x (and so p = Px), our definition of 
91P-isometry and that in [DM5], though equivalent, are distinct. The advantage of the notion of 
91P-isometry we are here employing is that it allows for a direct Horn-geometric axiomatization 
of the notion of P-quadratic faithfulness, (cf. [HR]).
b) For 91P-quadratic faithfulness, the situation is subtler and distinct: since we are interested in 
reduced special groups, we require the rings involved to be zdp-rings, i.e., models of the theory 
Tzdp (cf. 2.12), which know to be Horn (by 2.13.(b)), but whose explicit axiomatization by 
Horn-geometric (or even geometric) sentences is an open question.

Let L(P}N) be the first-order language of equality set down in 2.12.(b). Then, the axioms 
[91P-FQ i]y i = 1, 2, 3, can be given Horn-geometric descriptions in L(P, N). The recipe for this 
follows that in the proof of Theorem 5.2, p. 54 of [DM5], replacing the role of units by N and 
that of units in the preorder by P fl N (i.e., t); the most important change is: the underlined 
disjunction appearing in the expression of 0nfc(x, y) in page 56, [DM5], may be replaced by a 

conjunction of atomic formulas, expressing a simple isometry step. Hence, 0 (x, y) becomes a 
Horn-geometric formula in the language L(P, iV). We omit further details.

Let Tfq be the set of Horn-geometric sentences of L(P, N) that axiomatize [91P-FQ z], i = 
1, 2, 3. The theory of faithfully quadratic zdp-rings, TFQzdp, is given by TZdp U Tfq- ■

The preceding observations yield:

Proposition 4.15 The class of faithfully quadratic zdp-rings is closed under arbitrary reduced 
products. In particular, it has a Horn axiomatization.

Proof. The theory TFQzdp is a Horn-geometric extension of TzdP and the latter is closed under 
arbitrary reduced products (by 2.13.(b)), and hence so must be the former. ■

5 The Hauptsatz and the Local-Global Principle

5.1 The Witt ring of 91T-faithfully quadratic p-rings. • Let (A,T) be a 91T-faithfully 
quadratic p-ring. If V5, 0 are forms over A, we say that they are Witt equivalent mod T,
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such that <P ® m.(l,-l) »<nt ^ @ n( H 1 )• Since
7Zt) l ÍaSe?-í^try is faithfully reflected by isometry in the special

group Go,t(A), and so, by Proposition 1.6.(b), p. 4, of [DM1] W.tt-cancellaüon holds for 
Hence, the set of equivalence classes ?, of forms <P over 91 with respect to ~r,

W%t{A) = { <P = V/~t : V3 is a form over 91},

with the operations of sum and product of classes induced by © and ®, is a commutative ring 
with identity (1), whose zero is the class of any hyperbolic form. In fact, it is straightforward 
that Wt{A) is naturally isomorphic to W(G<n,T{A)), the Witt ring of the special group G^iT(A), 
via the map induced on Witt rings by V >—> <PT. Hence, WT(A) has all the properties described 
in paragraph 1.25 and Fact 1.26 of [DM1], pp. 19, 20. In particular,
. It{A) = I(G%t{A)) is the fundamental ideal of WT(A), consisting of the classes of even 
dimensional forms;
• For n > 1, I%(A) = In(G%T{A))} the nth -power of /r(A), consists of all linear combinations, 
with coefficients in A, of Pfister forms of degree n over A. ■

As a consequence of these observations and the fact that RSGs satisfy the Arason-Pfister 
Hauptsatz (Theorem 7.31, p. 171, [DM1]), we obtain:

Theorem 5.2 (The Arason-Pfister Hauptsatz) If (A,T) is 01T-faithfully quadratic zdp- 
nng, then f|n>j If(A) = {0}. ■

Our next goal is to prove a version of the Pfister’s local-global principle in the present setting 
(Proposition 5.8, below), establishing that if (A,T) is a OlT-faith fully quadratic zdp-ring, then 
an analog of that classical principle holds for (A,T).

We shall follow the path set in section 2 of chapter 3 in [DM5]. However, some care must be 
exercised; in particular, that we shall not be dealing with groups (as in the case of [DM5]), but 
with semigroups.
Blanket assumption : (A,T) is a zdp-ring.
Recall that Z2 = {1, -1} is the two-element reduced special group. Following the ideas in [DM5] 
and [KRW], we set down the following

Definition 5.3 Let (A, T) be a proper zdp-ring.
(1) A T-signature on 01 is a a map r : 01 —> Z2, preserving product, 1, --1 and for all 
ai> G 01,

ai, a2 £ ker r := {:r £ 91 : t(x) = 1} =*
Write Z%T for the set of T-signatures on 91. Clearly, for each r £ Z%T, the set ker r is closed 
under product, 1 £ ker t and -1 £ ker r.
(2) // V = (cii,..., an) is a form over 91 and r £ Z%T, the integer sqnJ<P) 
is the signature of ^ at r. v 1

£^(<3.1, a2) Ç ker t.

= £"=i r{ad

Fact 5.4 If t 6 Z^x, then:
a) t Ç ker r. •
b) a^h implies r{a) = r(6). In particular, o ~t b and a E ker r implies b e ker r.

Proof. For (a), note that since t C Dv( 1 l) we cret tcWr r n \ i
sa = tb; then a) entails r(a) = -WM ~~ Á J Jb ’ 6t s' i 6 { be such that

U lSaj ~ T{tb> ~ T(6)- 213 needed. The last assertion is clear. ■
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5.5 Example and Remarks. Let (A,T) be a proper p-ring and let YT = Sper(.A,T) be the 
real spectrum of (A, T).

a) Each a. £ 1 r satisfying supp a n 01 — 0, gives rise to a signature, rQ

( 1 if x £ a \ (—or);
— 1 if x £ —a \ a.

Clearly, rQ preserves product, 1 and —1. Note that for all s £ t, ra(s) = 1. For a, ò, c £ 01, if 
a, b £ ker rQ and c £ D*(a, 6), then there is s £ t so that

: 01 Z2, given by

tq{x)

(I) sc = t^a + t2b,
with t\, t2 € T. Clearly, the right-hand side of (I) is in a and since sc £ 01, it cannot be in the 
support of a. Hence, 1 = rQ(sc) = rQ (s)ra(c) = ra(c) and ra is indeed a signature on 01. Note 
that iía Ç p in Yt and supp n 01 = 0, then rQ
b) Let A* := A01

= TP-
be the ring of fractions of A by 01, called the total ring of fractions of A.-i

Let t— : t € T and b £
Clearly, is a preorder on A*; in fact, it is proper: if -
ò2, —Ò2 £ t, contradicting the assumption that T has zdp. It is well-known (cf. Theorem 13.3.7, 
p. 508, [DST]) that Sper(A*, T*) is naturally homeomorphic to the proconstructible (in fact, 
inversely closed) subspace of Sper(A,T):

"}■,
1 = then —ò2 = t £ T and so

T*

T = {P £ Sper(A,T) : supp p C1 01 = 0}.
We shall identify Sper(A„, T*) with the subspace T of Sper(A, T), often writing X = Sper(A*, T*) 
Ç Sper(A,T).
c) In general, sub-semigroups do not classify quotients in semigroups. In the case at hand, we 
show this to be the case for signatures.
c.l) Let t : 01
{(a,b) £ 012 : r(a) = t(ò)} is an equivalence relation on 01. Since the only possible values for r 
are ±1, we obtain (a, b) £ Cker r r(ab) = r(a)T(ò) = r(a)2 = 1 <$■ ab £ ker r. Thus, for 
a, b £ 01, the relation a ~T b iff ab £ ker r is an equivalence relation, equal to that determined 
by Cker r.
c.2) Fact 5.4.(b) yields

For each r £ £<n,r, the equivalence relation defining Gçn,r(A) from 01 is ^ 
contained in that determined by ker r.

Z2 be a signature. The category-theoretic kernel of r, namely, Cker r =

(*)

If G is a proto-SG, then the set of SG-characters of G is closed in Z2G (product topology; 
discrete topology on Z2), and so is a Boolean space in the induced topology, called the space 
of orders of G and denoted Xq- Similarly, Z%T is a closed subset of Z2°\ and a Boolean space 
if endowed with the induced topology.

Let Q1 G%t(A) be the canonical quotient map (cf. 2.15.(b.3)). Then:

Lemma 5.6 With notation as above, the map
a £ Xg^t(a)

is a natural homeomorphism between the space of proto-SG-characters of G%T{A) and the space 
of T-signatures on 01 . Moreover, for all forms V over % sgnTa(<P) = sgna{VT).

Proof. Since 01, T, will remain fixed throughout the proof, write G for G%T{A), XG for JKc*lT(A)> 

Z for Z<ntT and q for qr

Tc = cr O q{ £ Z%T
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Fix cr G X^; we first show that r == a o q is a T-signature on 01. Since ç preserves product 
1 and —1, while a is a group morphism taking —1 to — 1, r will preserve product, 1 and —1. 
For a, 6, c G OT, assume c G D^(a} b) and r(a) — r(b) = 1. Proposition 3.5.(b.l) yields g(c) = 
°T £ A?(ç(o), q(b)) = Dc{aT3 òr). Since <r(aT) = cr(ç(a)) = cr(òT) = <t(ç(ò)) = 1, and cr is a 
character (and thus a proto-SG morphism), we obtain

a{cT) G Dz2(cr(aT), a{bT)) = DZ2{ 1,1),
entailing, because Z2 is a RSG, that cr(cT) = r(c) = 1, and that r is a signature on 01. Since q is 
onto, we immediately obtain the injectivity of cr 1—> ra. For its surjectivity, fix r G Z. By (*) in 
5.5.(c.2), r factors uniquely through q) to yield a semigroup morphism, cr : G 
1,-1, and such that r — a o q = ra. Since G is of exponent two and a preserves product it is 
clearly a group morphism. It remains to check that a is a morphism of proto-SGs. Let a, b G 91 
be such that aT G Dq{ 1, bT)\ then, 3.5.(b.l) entails a G D*( 1, 6); in order to show that a is a 
SG morphism it suffices to prove that cr(òT) = 1 implies a(aT) = 1. If cr(bT) = cr(ç(ò)) = r(ò) = 
1, then b G ker r and so a G ker r, which in turn yields 1 = a(q(a)) = cr(aT), as needed.

Note that for every cr G X^ and a; G 01, we have

2, preserving

a{xT) = a(q(x)) = ra{x),(I)
which immediately implies that for all forms V over 9t, sgna(lPT) = sgnTa{W).

That the map cr 1—> ra is a homeomorphism is proved exactly as in the end of the proof of 
Lemma 3.16, p. 38, of [DM5]. ■

If (A,T) is a p-ring it is a natural question whether all T-signatures on 01 come from orderings 
in Sper(A,T) in the way indicated in Example 5.5.(a). If the p-ring (A,T) satisfies [01T-FQ 2] 
(in particular, if it is 01T-faithfully quadratic), we have the following:

Lemma 5.7- Assume (A,T) satisfies [01T-FQ 2], let r be a T-signature on 01 and let n >2 
be an integer.

an G ker r, then D”(au ..., an) Ç ker r. 
b) With notation as in 5.5.(a), there is a G Sper(A,T) so that supp a O 01 = 0 and r =
a) //ai,.. • 5

tq.

Proof, a) If n = 2, this follows from the definition of signature on 01. We proceed by induction 
on 71 > 2; if ai,..
u G jD^(.02, ..., On+i) such that a G Drf{au u). The induction hypothesis and the case n = 2 
entail a G ker r, completing the induction.
b) Let Q = {XXi <Hti : n G N, a* G ker r and U G T} be the preorder on A generated by 
ker r and T. We claim that Q is proper; otherwise, —1 G Q, and there would be ai} ...,an G 
ker r and tu ... ,tn G T such that -1 = 1 «A. i-e-> _1 e Dr^a 1» ■ • • > a”)> which is impossible
by item (a). Let A* be the total ring of fractions of A (cf. 5.5.(b)) and set

Q* = : 9 € Q and b G 01 j.

Then, Q* is a proper preorder of A*: if — 1 = with q € Q and b G 01, then — b2 = q in A. Hence
there are ci,..., cm G ker cr and tj,..., tm € T so that q = ^íCí» whence q G Z2^(ci,..., Cm) 
Ç ker t (by item (a)).Thus, t((?) = 1, while, recalling that b2 G t Ç ker r, obtains r(—ò2) = 
a contradiction.

Keeping in mind the identification made in 5.5.(b), there is, by Propositions 4.3.8, p. 90 and, 
4.2.7, p. 87, of [BCR], a G Sper(A*, T*) C Sper(A,T) so that QÇQ*Ça and supp a n 01 = 0. 
With notation as in 5.5.(b), by construction we have ker r C ker rQ. Now, note that for a G 01,

On, an+1) (a G 01), [01T-FQ 2] yieldsan, an+i are in ker r and a G D” (a1}.. ■ j• j

-L
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r(a) — 1 iff a £ ker r iff r0(a) = 1 and so, since both r and ra take values in Z2 = {1, —1} 
obtain r = rQ, as needed.

We now state, with notation as above:

we

Proposition 5.8 (Pfister’s local-global principle for OlT-isometry) Let (A, T) be a VIT-faithfully 
quadratic zdp-ring. For all forms {P) of the same dimension overall, the following are equiva­
lent:

(1) V? ~ 97T Í*; (2) For all t £ Z^t, sgnT(7>) = sgnT{fl>).

(3) For all a £ Sper(A,T) such that supp a Pi 01 = 0, sgnTaifP) — sgnTa(ty).

Proof. The equivalence (2) 4$ (3) follows immediately from Example 5.5 and Lemma 5.7.(b). 
It remains to prove (1) <=$> (2).
(1) (2) : We recall Proposition 3.7, p. 51, in [DM1]:

If G is a reduced special group, then for all forms {P, of the same dimension 
over G, =g ^ <=> For all a £ Xq, sg?ia((P) = sgu^fâ).

Let <P, ^ be forms of the same dimension over 01. Since (A,T) is OlT-faithfully quadratic, 
Theorem 4.11.(b) yields

(I)

VT =t V.V «<nT 'P <=>
Recalling that =t is isometry in the reduced special group G^riA), (I) and Lemma 5.6 entail
(II)

VT Si V « For all a e Xg^t{A), sgna{<PT) = sgna(V)

4$ For all r 6 Zfjvr, s9nÀiP) = sgu^).
From (II) and (III) we immediately conclude the equivalence of (1) and (2), ending the proof. ■

(III)

6 A relation between 9TT- and T-quadratic faithfulness

6.1 Notation and Remarks. Let {A,T) be a zdp-ring. Our notational conventions remain 
in force; in particular, those in 2.2 and 5.5.(b).
a) Write G : = Gw,t(A) = {aT : a £ 91} for the proto-SG associated to 01 (cf. 3.5).
b) Let (A*,!1*) be the total ring of fractions of (A,T) (cf. 5.5.(b)).
b.l) Note that for a £ A \ {0} and s £ 01,

- is a non zero-divisor in A* <=> a £ 01 
s

It is enough to check the implication (=>) in the first equivalence (the second is clear). If a 0 01, 
then there is 6 £ A \ {0} so that ab = 0, yielding -y = 0 in A

= A? and T* fl 01,4. =

2 £ A*.(I)

an impossibility. Hence

T*.01a.
In fact, (I) above entails

*}= 1: t £ t and s £T*x(II)

Note that if a; £ t, then - = 4 e T* ^ a fact constantly used below.
x x

A* for the natural injective ring morphism a £ A i—> y £ A*. By theb.2) Write la ■ A 
remarks in (b.l), tA is a 01 p-ring morphism (cf. 3.10). We register:
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Fact 6.2 Let {A,T) be a zdp-ring.
(z) IfT is a partial order on A, then T* is partial order on A+.

(zz) Let {R,P) be a zdp-ring and let (A,T) 
a unique p-ring morphism, /* : (A*, T*)

f (RyP) be a dip-ring morphism. Then, there js 
(R*,P*), making the following diagram commute-

f (R,P)(A,T)

f'Rla

(-R..P*)
/*

Proof, (z) If u, — u G T*, there are p, q G T and s, i 6 Dl^, so that u = ^ and — u
s P s

thus, qs2 = — pt2, whence pi2, —pt2 G T, implying pi2 = 0. Now, from í2 G Dl,* comes p = 
and so u = 0, as needed.
Item (zz) follows from the universal property of rings of fractions (cf. Prop, 3.1, p. 37, [AM]): 
since / and lr are Dip-ring morphisms, for all s G Dl^, lr o /(s) G 91/? and is thus a unit in Hf) 
yielding the existence and uniqueness of /* (in fact, given by f*{a/s) := f(a)/f(s)).
c) To simplify exposition, write G* = A*/T* for the proto-SG associated to (A*,T*), write 
the elements of G* as u* (instead of uT*), write t for the injective ring morphism la- By 6.1.(b.2) 
and Lemma 3.11, the Dip-ring embedding t induces a morphism of proto-special groups,

? : G

zL
0,

□

G*, given by aT e G i—> € £*■w
Proposition 6.3 The proto-SG morphism l* of 6.1.(c) is an isomorphism of reduced proto­
special groups.
Proof. We first show that P is bijective.

• Suppose a, ò G D1 and (!)'- (!) ; then (cf. equivalence (*) in 2.5 (p. 11) in [DM5]), there

is -4 G Tlx so that 7 = 4^ and so s2b = ta. Since s2 G t and t G t (cf. 6.1(b.l)), Lemma 
s2 1 s2 1

2.15.(b.2) yields aT — bT, establishing the injectivity of
t2 a• For a, t G Dl, note that — -
I» c

surjective.
Since cn is a zr-SG morphism, to show it to be an isomorphism it remains to check that for 

a, 6, c G Dl,

= with 4“ £ T*; hence, , showing 671- to be
1 1

((!)'• (f)' - •(!)' 7 G DG(bT, cT),

where Dq. is (as usual) representation in G*. By Proposition 3.5.(b.l), the preceding implication 
is equivalent to

e Dc.

b c- G DZ(+) => a G D£(b, c).Ml’ 11

4r G T* so that y = ~õ~ H—hence, in A, we 
zr 1 s21 v21

The antecedent in (-f) means there are -4,
s _ _ _ _

obtain (s2v2)a = (tv2)b + (zxs2)c; since s2v2 G t and tv2, us2 G T, the desired conclusion follows
immediately, completing the proof. ®
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Lemma 6.4 For x, y, cu ... iCj1 g tft and a unit - 6 4?, 

<=> x 6 flT'(j,us).
5

(«f£Dí(f'!)
<2) ; S CT,(y. ■■■• -f) « US€D’(c

■ • > Cn)•

Proof. Note that by (I) in 6.1.(b.l), u G 01, because - G A*.
s

(1) (=>) : There are ^ e Tt so that - 
-------  vz 1

_ t_y w u
v2 1 z2 s

- Lv
~ v2l

w US whence s2v2z2xz2s2 1
= (ts2z2)y H- (wv2)us, with (svz)2 G t and (ts2z2), (wv2) G T, as needed.

(4=) : There are v G t, £1, t2 G T so that ux = tjy + £2 (us), whence, —• 
xwhich entails —

hy , £2 us
IT + IT’

h y t2s2 u 
v 1 ^

t t s2—, with -y, -y— G T (recall: u G t), establishing (4=) and1 v s
item (1).

(2) (=>) : There are G T*, 1 < k < n so that£fc
vl

tk £k_
vl 1 ‘

I?)!, and for 1 < j < n, dj = tjS2 Yi&j vf• Elementary computations yield 

^o(us) = X/j=i djCj, 
with do G t and dj G T, whence us G Z3^(ci,..., c,,), as desired.
(<£=) : There is v G t and £* G T, 1 < /c < n, such that uus = Ya=i íjA- Hence, in A* we get

vs2 u

u us _ ^-\n
72 — 2^k=1(I)
s2s

Set d0 = nLi

y- _ tk.CkUUS

1 1 S 1

" with -—*■ G T„, because is a unit in A*, ending the proof. ■1-1 US 1 vs~ 1
The next result is crucial in what follows

entailing - 
s = EC

Theorem 6.5 M£/i notation as above, let (A,T) be a zdp-ring, The following are equivalent:
(1) (A„,T*) is T*-faithfully quadratic (in the sense of [DM5], Chapter 3, §1; see also 4.14.(a));
(2) (A,T) is WIT-faithfully quadratic.

Proof. (1) =>• (2):

• (A,T) satisfies [91T-FQ1] : By Lemma 3.9.(a), it suffices to show, for 6, c G 91, that D”(b, c) 
Ç D£(b, c). Assume, for a G 91, that a G D^(b, c); then y G ^y, y

'LL Xrepresentation in A* is 2-transversal, there are G T* (thus, u} x G t) so that

_ JLÈ 4- £.£
1 v21 y21 ’

in Á*. Since value

a

Hence, in A we obtain u2?/2a = [uy2)b + (xv2)c, with v2y2, uy2, xu2 G t, and a G D*(b, c), 
showing that binary value representation in (A,T) is also 2-transversal, as needed.
• (AyT) satisfies [91T-FQ2] : Again, by 3.9.(a), it is enough to prove that if au...,an G 01. 

• thêrr^IãTT^^J^^r^’ • • • >a")- SuPPose b e ^(aa,..., an), ò e 91. Then, in A*

1 6 1 * *' * ’ 1 ) ‘
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u
Fix k,l < k < n\ since (A.,T,) is T»- faithfully quadratic, there is a unit - in A, so that:s

(1) and (2) »seD^f,f

Now, items (1) and (2) of Lemma 6.4 immediately entail

b e D”(ak, us) and us £ D*(au ..., aki ..., an)

0*71Clk
1 ’ 1 y, ... j

as needed.
• (A,T) satisfies [91T-FQ3] : Let a 6 91 and let be n-forms over 91, n > 2, such that
a © V? ~oit a ® Since 6 : A 
6(a) © (6 * ^). The quadratic faithfulness of (A*,T*) entails 6 * which in turn
yields (t -a- <£)t“ =r. (i * ^)r" hi <3, (cf. 3.12). Now note that for x £ 91,

= ln (xT).

Hence, (t * (P)Tm = l*{{Pt) and (l ★ V>)T* = 67r('0 ), and so the isomorphism of Proposition 6.3 
yields <PT =t ^ in G. But then Lemma 4.7.(c) entails completing the proof of the
91T-quad ratio faithfulness of {A,T).

A, is a 91p-ring morphism, 4.5.(k) yields 6(a) © (6 * V) zzT

l(x)t'*

Before presenting the proof of (2) => (1), we need some preliminaries. Recall that if R is a 
ring, Mn(R) is the ring of n x n matrices with entries in R.

Remarks 6.6 As noted in the proof of Proposition 6.3, if a, t £ 91 (i.e., ^ € A*), then
nf /2

= y> with y 6 T*. But then, items (h.2) and (h.3) of 4.5, together 

a^j, j t\,..., tn £ 91.

t2 a(?) because — —
1 V

with Lemma 4.5.(g.l) entail, for ai,..

a>(h Untfi >■
• * >

)) = ci« an^))(2)^. r an
1

(3) By (1), if lP, *P are forms over A* and V3 =r. we may assume that every step of a witnessing 
sequence for this isometry is of the form (j,--

• > • >

Y with U] • •, un £ 91.• j i •

an),w = (bLemma 6.7 For forms — (ai,.. .., bn) over 91,

> ^ V? «çnr 'lP-

i> •• >
bn/ Oi On \

\ 1 1 /

Proof. It suffices to prove the implication (=£■), since the converse is an immediate consequence 
of Lemma 4.5.(k) (recall: for x £ A, y = t(x)). By Remark 6.6.(3), we may assume that all

of the formsteps in a witnessing sequence of the isometry in A* 
suffices to establish (=>) for simple isometry.

and so itare

Suppose ^....... ,y) ~st. ( y. • • y ); then there are x\,... 

zli...,zn 6 91 and M G Mn(A,), with det M G A* (cf. (I) in 6.1.(b)), so that
)Xnt Vl > • ■ • j 3/n-i U)l, • . . , VJm• >

^1 Xn Un A
vl i..... 2/5 W ^i2 i’“

1 < «, j < n and set i = Tii<iyj<n Uj\ clearly, t £ t.

Wn Vn(I) MJC Ml = • > 4 i
Ot.7Let M =
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Fact 6.8 With notation as above,

a) det M = with d E 91.
1/

b) Set.N =

di"-1

Cí ■; then N is a matrix with entries of the form whose
Uj 1

determinant is g Ai.i

Proof, a) By Proposition 4 (p. 331) in [La], if Sn is the group of permutations on {1, , n},
then

qq-(i).i

with £(a) being the sign of the permutation a; it is then clear that t is a common denominator
for this sum and so det M is of the form since it is a unit in A*, by (I) in 6.1.(b), we obtain

t
d G 91, as claimed.

b) Since t is the product of all tij, it is clear that the coefficients of N are of the form 

(a) yields

det N = det (j,..., m) = det^# (f’ ’ ’' * f)) * ^

dtn~l

Q-g-(n),n
det M = J2acsn e(ff)

ter'(n),n

now

di71"1£ d 
1 ’ t 1

Gwith □
1

Let y2 : = FKli 2if and a2 := n?=i

... ‘j \AÇ....f
z2, that clearly are in t. Multiplying both sides of (I)

z2 z2t and M ’ T/ ail<^ reca^n& that scalar multiples of

the identity matrix are in the center of the ring Mn(R), we obtain, with notation as in 6.8. (b)
z2xnun

1

)'HfZ2X\Ui 1t.,)«(t... !)(II) M • JCJC ,...,
1 ’' '11

z2xnunZ2X\U\ y2wivi y2WnVn
NL = Jt= N Jt ,..., ,...,

11 1 1
-ldfnand det N = —-— G A*. Let Q — M[c\,... ,cn); (II) entails that

in A we have Q J/\z2x\Ui, ..., z2xnun) Ql = Jf(y2w]i>i, ..., y2wnvn), with det Q = dtn~l G 
91 and z2x\t) y2Wk G t, 1 < k < n, establishing the simple T-isometry between (u\,..., un) and 
(V\,..., vn) in (A,T), as desired. ■

Proof of (2) => (1) in Theorem 6.5.

-At.. t)with N

CL\ Qo

h’h
'llbe a form over A* and let - G A* be such
s

J and so 6.4. (2) yields

• (Am,T+) satisfies [71-FQ 1]: Let V5 =

that — G D" (<£). By 6.6.(2), this is equivalent to ~ G D£ p, 

us G Dyfaitu a2t2). One should keep in mind :

(*) Since — and the coefficients of H> are in A*,

(**) If t G t, then t G T* (1/i = t/t2).

1

u, 5, ai, ti, i = 1, 2 are in 91 (cf. (I), 6.1.(b.l));

The 91T-quadratic faithfulness of {A,T) yields r, a, in t so that rus = aaxti + Pa2t2, 
that in turns yields in A*

Oía\t\rus +(I) 111
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Oiti Ml) O* aí?Dividing (I) by ts2 E T* obtains - = 

needed to show D(</?) Ç (<P).

• ) satisfies [T„-FQ2]: Let x E A* and let V? be a n-form over A?, so that x E L^(P).
As registered in Remark 6.6, we may assume that x = ~ and P ^ ..., Then, 6.4.(2)

yields u E ^(at,... , a^). Fix k, 1 < k < n. The OlT-quadratic faithfulness of (A,T) furnishes 
v E 01 so that

, with asrs2 TS2 ; í2h * 1S

u G D*(ak, v) and v G D*(ai, ..., ofcl ..., an) 
and another application of 6.4.(2) guarantees that

ak Onandx =
1 ’’ • * 5 1 1

as required.
• (A*, T*) satisfies [T-FQ 3]: We may assume that for a E 01, ^ ^ ~

( y, • • ■. Y ) (forms.

0 (X\,..., xn) « oit {o) 0 (2/i,. • •, yn )> and the OlT-quadratic faithfulness of (A, T) entails 
(xiy... ,xn) (2/i,,..,2/n)• Hence, the equivalence in 6.7 implies V completing the
proof of Theorem 6.5. ■

^ ) and if =

have ~r* { J } © ^. Lemma 6.7 then yields (a)
■ >

over A*), we

7 Applications

A. von Neumann Regular Rings, Integral Domains and Boolean Powers
Since a preordered von Neumann regular ring is its own total ring of fractions, Theorem 6.5 

above together with Theorem 6.5, p. 63 (in view of Remark 6.2(a), p. 61) of [DM5]), yields:

Proposition 7.1 If (A,T) is a preordered von Neumann regular ring such that all residue 
fields of A have cardinality at least 7, then (A,T) is 01T-faithfully quadratic. I

Proposition 7.2 If (A, T) is a partially ordered integral domain, then (A, T) is WT-faithfully 
quadratic.

Proof. The total ring of fractions of (A, T) is a partially ordered formally real field, (A*,T*), 
and so T*-faithfully quadratic (A* is a ring with many units, that are all completely faithfully 
quadratic by Thm 6.5, p. 63, [DM5]); then, Theorem 6.5 above entails the desired conclusion.

I
Proposition 7.2 yields a number of interesting examples of OlE-faithfully quadratic rings- 

With notation as in 2.4 and 2.7, we have:

Corollary 7.3 a) If A is a real integral domain, then the ring of polynomials, A[Xi,..., Xn]; 
and the ring of power series, A[[Z]], in any number of variables, are WE-faithfully quadratic.
b) If V is a valuation ring of a formally real field, then (VyEV2) is WE-faithfully quadratic.
c) If F is a formally real field, its real holomorphy ring, H(F), is WE-faithfully quadratic. Í
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Remark 7.4 Boolean Powers, a) Let L be a first-order language with equality, let M be a 
L-structure and let X be a Boolean space. Endow M with the discrete topology (all points are 
open) and let M(X) := C(X, M) be the set of all continuous maps M-valued maps defined on 
X. Note that every / is locally constant and its image, Im /, is a finite subset of M (recall: X is 
Hausdorff and compact). M(X) is made into an L-structure by endowing it with the structure 
induced by the power hence, relations and functions are pointwise defined, while constants 
correspond to constant functions with the appropriate value, and the map 7* : M(X) 
is an L-embedding.

If R is a 7i-ary relation in L, write R(X) for its interpretation in M(X), i.e. the set of 
n-tuples of locally constant functions on X, whose n-tuple of values at each x G X are in R. 
The structure M(X) is the Boolean power of M by X.
b) If / € M(X), as noted in (a), Im / is a finite subset of M and V(f) = {/^[ra] : m € Im /} is 
a finite set of pairwise disjoint non-empty clopens in X, whose union is X, that is, a partition 
of X.

Mx

Recall that if V, Q are partitions of X, Q is a refinement of P, written V Q, if every V e 
Q is contained in a (necessarily unique) element of V. Clearly, if W e?, then W is the disjoint 
union of the clopens in Q contained in W. The relation ^ is a partial order, endowing the set 
of partitions of X with a join-semilattice structure: if Pi, V2 are partitions of X, then V\ V P2 
= {U C\V : U eV\,V G?2 and U fl V ^ 0} is the smallest (in the po ^) common refinement 

of P*, i = 1, 2. Hence, if /1,..., fn € M(X) (with notation as above), Q := V”= 1 'P(fi) a 
partition of X, such that, on each V €. Q} all fo are constant, 1 < i < n. We shall employ these 
observations below, without further comment. ■

• Theorem 7.5 With notation as in 7.4, let (A,T) be a zdp-ring and write 01 for %lA. Let X 
be a Boolean space and let A{X) be the Boolean power of A by X.
a) A(X) is a unitary commutative ring, in which 2 (the constant function with value 2) is a 
unit.
b) 01,4(X) = 01 (X) and T{X) is a zdp preorder on A(X).
c) There is a natural p-ring isomorphism, p : M(X)*,T(X)*)
Boolean power of the total rings of fractions of (A,T) by X).
d) If (A, T) is 01 T-faithfully quadratic, then (A(X),T(X)) is 0 IT (X)-faithfully quadratic.

(A*(X),T*(X)) (the

Proof. Item (a) is straightforward.
b) Clearly, 01(X) Ç Ol^v)- For the reverse inclusion, let / € Ol^*), and suppose that for some 
x e X, f(x) & 01. Then, there would be a non-empty clopen, V, in X, such that the constant 
value of / on V is a zero-divisor, f(x). Select u ^ 0 in A so that uf{x) = 0 and define g € A{X)

u if z e V; Then, g ^ 0, but fg = 0, contradicting the fact that / 6 01^(x).by g(z) = 0 otherwise.
Thus, 01MX) = 01(X), as desired. It is straightforward that T(X) is a proper preorder on A(X)\ 
moreover for / e A(X), we have

/esupp(TpO) iff f,-feT(X) iff VieX,/(i),-/(j)eT iff
V X e X, f(x) e supp(T) iff / 6 supp(T)pf).

Hence (*) and the first statement in (b) entail supp(T(X)) fl fft(X) = 0, and (A(X),T(X)) is 

a zdp-ring.

n

A,(X) as follows: for / G A(X) and g G fftpO, setc) Define fx : A(X),
/(*)

(m) »(®) ’
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/To see that py- J e C(X, A*), select a partition V of X so that both / and g are constant jn

each W 6?, with values a and s, respectively. Then, a( —
\g j

showing that it is continuous (A* has the discrete topology). Note that
f eT{X) and h e 'Ji(X) =» /^)

and so n takes T(X)* into C(X, T*) = %(X).
Since all operations in Boolean powers are po.intwise defined, it is now straightforward that// 

is p-ring morphism; by its very construction, tj = 0 entails / = 0 and hence p is injective.

will have constant value - on ^

(I) € C{X, T*)

Now, suppose C £ C(X, A*); then there is a partition Q of X, such that on each V € Q, ( 
has constant value on V, say — € A*, with ay and Sv/ 6 91. Define f,g:X A so that

sv
on e.ach V € Q, f has constant value ay and g has constant value sy. By item (b), g G Ol(^) 
and the definition of /x yields ^ = C> establishing surjectivity. A similar argument proves p 

to be a p-ring isomorphism, i.e., the converse of (I) is also verified, completing the proof of (c).
d) Since (A,T) is (HT-faithfully quadratic, by Theorem 6.5, its total ring of fractions, (A*,T,) 
is T*-faithfully quadratic (in the sense of [DM5]). In view of item (c), to establish (d) it suffices 
to prove the Boolean power of (A*,T*) by X, C(X, (A„,T„)), is T*(AT)-faithfully quadratic.

By Theorem 4.6, p. 44, [DM5], (A*,T*)x is T*-faithfully quadratic. Moreover, Theorem 
5.2, p. 54, [DM5], shows that the theory of T-faithfully quadratic rings is geometric (it is 
even Horn-geometric). We now invoke Proposition 2.1, p. 950, [DM2a], guaranteeing that the 
natural embedding 7X : C(X, (A*, T*)) —> (A*, T* )A is existentially closed (and hence reflects 
geometric sentences), to conclude that C(X, (A*,T*)) = (A*(A"), T»(X)) is T*(A)-faithfully 
quadratic. Once again, Theorem 6.5 yields that (A(X),T(X)) is 91T(JA)-faithfully quadratic, 
ending the proof of Theorem 7.5. I

B. The OTT-quadratic faithfulness of /-rings
A reduced /-ring, A, is a subdirect product of linearly ordered domains. The ring A is 

endowed with a natural partial order, pointwise defined and written Tj», with which it is a 
lattice-ordered, ring. As references on /-rings we mention [BKW] and [Da]. A good amount of 
information concerning /-rings appears in chapter 8 of [DM5].

Definition 7.6 (Definition 3, p.80, [KZ]) Let (A, TJ») be a f-ring. A f-ring extension oj 
A is a f-ring, R, containing A, such that A is a subring and a sublattice of R, and T# is the 
restriction to A of the natural partial order of R.

Theorem 7.7 Let (A, TJ) be a reduced f-ring and let P be a proper preorder of A, containing 
Tj and having the zdp. Then, (A,P) is VIP-faithfully quadratic. In particular, (A,Tfl) * 
yiT^-faithfully quadratic. Moreover, the reduced special group associated to (A,P) is a Boolean 
algebra. Further, (A,P) satisfies the Arason-Pfister Hauptsatz (cf. 5.2) and Pfister’s local-global 
principle (cf. 5.8).

Proof. With notation as above, let ( A*, ) be the total ring of fractions of (A, Tj*); as before)
write 91 for the multiplicative set of non zero-divisors in A. Moreover, just as in 6.1.(b),

: p eP and s £ 91 jP*
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is a proper preorder on A„ clearly containing Tu. By Corollary 10.13 in [KZ], (A„,T. ) is a 
reduced /-ring extension of (A,Tt). Since Tu C P„ Theorem 8.21 (p. 90) in [DM5] guarantees 
the *-qua íatic faithfulness of (A*, P*) and that the special group associated to it is a Boolean 
algebia . But then Theorem 6.5 entails the TtP-quadratic faithfulness of (A,P), while Propo­
sition 6.3 yields an isomorphism between the reduced special groups associated to (A*,P*) and 
(A, P), as required. g

With notation as in 5.3 and 5.5, we also have, with a proof following the same pattern as 
that of Theorem 10.7.(b), p. 114, of [DM5]:

Proposition 7.8 (Marshall’s signature conjecture) Let A be an f-ring and letT$ be its natural 
partial order. Let T be a preorder on A, such that Tjj Ç T and having the zdp. Let *P be a form 
over VIa- If for all a E Sper(A,T) satisfying supp(a) Pi 01^ = 0, we have s<?nTQ(<£) = 0 mod 
2n, then P 6 /ji(A).

Proof. Write 01 for 01,4. By 5.5.(a) and Lemma 5.7.(b), the hypothesis on is equivalent to
For all r 6 Zy\tT, sgnT(<P) = 0 mod 2n,

whence Lemma 5.6 entails
(*) For all SG-characters a on Govr(A), sgnc(VT) = 0 mod 2n.
But then:
• By Theorem 7.7, G^t[A) is a Boolean algebra, and
• Boolean algebras are [SMC]-special groups (Theorem 2.9, p. 203, of [DM3]), and hence by 
Proposition 4.4, p. 168 of [DM2], verify Marshall’s signature conjecture.
From (*) and these observations we obtain <PT E Iu(G%t(A)) and the quadratic faithfulness of 
(A,T) entails V E /£(A), 33 claimed. ■

Before our next result, we register:

Remarks 7.9 a) Let A be a ring and let B := P(A) be the Boolean algebra (BA) of idempotents 
of A (cf. 4.1. p. 41 ff in [DM5]). Let ei,...,em be an orthogonal decomposition of B into 
non-zero
BA-morphism (cf. Corollary 4.4, p. 62, and Proposition 4.5, p. 63, [DM1], respectively). We 
hence have, recalling that 0 and 1 are the bottom and top elements in B)

and CjCk = ej A e^. = 0, if 1 < k ^ j < m,

idempotents. We can consider B as a RSG and every RSG-character of B is also a

i = v;n=1 e,
where V and A denote join and meet in B. Fix r £ XB = S(B) (the Stone space of B); then 
(1) and the fact that r is a BA-morphism entail

and

(i)

r(ej) A r(ek) = 0, for 1 < j ^ k < m.1 = r(l) = V7=i _ 1 
It is then clear that there is a unique k between 1 and m so that r(ek) = 1, while r(e,) = 0 for 
all ?' ^ k (1 < 7 £ k < m). Therefore, XB is the disjoint union of the clopens [e, = 1),

Xb = II7=1b = iJ.(#)
The same reasoning will show that if e 6 B, then the space of orders of the Boolean algebra Be 
(whose bottom is 0 and top is e) is naturally homeomorphic to the clopen [e = 1] in XBl via the 
Stone dual of the natural BA-morphism / £ B <—> fee Be.
b) Let (R, P) be a proper partially ordered ring and let e be a non-zero idempotent in R. Clearly, 
Pe = {pe p £ P} is a preorder of the ring Re. In fact, it is a proper partial order of Re: indeed, 
since Pe Ç P (e is a square in R), if x, -x e Pe, then x € supp P = {0}, whence x = 0. In 
particular, -e cannot be in Pe (recall: e = 1 in Re), whence (Re,Pe) is a proper partially 
ordered ring. Note that this result might be false if P is not a partial order of R. ■
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The next Theorem is an analog in our present setting of Theorem 10.10, p. 116, [DM5]

Theorem 7.10 (Local-global Sylvester’s inertia law) Let A be an f-ring and letTt be its natural 
partial order. Write X for the space of orders of the reduced special group G = G^t (/l) and 
write ae for the elements of G (cf. proof of Theorem 8.13.(d), p. 81, [DM5]). Write t, for 
Tf n 9t- Let V = (ax,..., an) and = (&i,..., bn )4 be n-forms over 01 := 01^, n > 1 The 
following are equivalent:

(1) T «

(2) There is a disjoint finite covering of X by non-empty clopens, U 
every 1 < j < m, the following conditions are satisfied:

(2 i) No entry in and W changes sign in Uj} i.e., if o, o' 6 Uj} then for each 1 < £ 
< n} a(ajj) = a'(al) and o(b\) = oJ(b\);

||
. (2.n) The number of entries of and w that are strictly negative in Uj is the same.

</>;orTj.

• • > Um, such that foru •

Proof. Implication (2) (1) is clear: (2) guarantees that for each o £ the signature of
T* and ^ are the same at a and so Pfister’s local-global principle for reduced special groups 
(Proposition 3.7, p. 51, [DM1]) entails V* =l# ^. Hence, the OITjj-quadratic faithfulness of 
(A,Tjj) yields T ~fnrs as needed.

(1) =$> (2): We shall adopt here the conventions and notation set down in 6.1. Let ( A*,Tjj#) be 
the total ring of fractions of (A,Tj|) (cf. beginning of the proof of Theorem 7.7), which we know 
to be an /-ring extension of (A,T$). To simplify exposition, write =* for isometry in the RSG

dG* associated to ( A*, 7]^) and for d E 01, write d for - € A*.

Assume (1) holds; then, the 9tXjj-quadratic faithfulness of (A,Tjj) entails =ts ^ in G and
a* ) =* (bj,..., b* ) in G*. Thus, the T^-tlie isomorphism t? of Proposition 6.3 yields (aj,..

quadratic faithfulness of ( A*, Tu ) (Theorem 6.5) yields f := (ai,..., an) 0 := (b
in By item (3) of the equivalence in Theorem 10.10, p. 166, [DM5], there is an
orthogonal decomposition of A* into idempotents, (that we may assume to be all
non-zero), such that for every 1 < j < m (numbering is as in the just mentioned Theorem 
10.10):

• >
1j ■

(3.z) Each entry in f and g is either in T£e5 (strictly positive in Aef) or in -T^ej (strictly 
negative in Aef)\

(3.u) The number of entries of f and g that are strictly negative in Aej is the same.
Fix j between 1 and m\ by 7.9.(b), (A+e^T^ej > is a proper partially ordered ring and in fact 
an /-ring (cf. Lemma 8.10, p. 78, [DM5]). Let G+j be RSG associated to ( A+e5iTues ) (which 
is (Tj^ej)-faithfully quadratic by Corollary 4.7, p. 46, [DM5] .and so G*;- is a BA).

If ae is an entry in f, 1< l < n, such that acej is strictly positive in A+ej, then the same will 
be true for all orders on A* containing Tjj+. Now, Example 3.15, together with Lemmas 3.16 and 
3.17, pp. 36-38 of [DM5], entail that r € XGmJ implies r(aj) = 1, or equivalently, employing the 
identification registered in 7.9.(a), r G [ej = 1] Ç Xq. implies r{a*e) = 1. Similarly, we treat 
the case in which ag is strictly negative in A*ej (to obtain r(a£) = —1, for each r E |cj — ^l)* 
This same reasoning applies, of course, to every entry in g = (bi,..., bn). Thus, (3.i) and (3.ii) 
above yield :

4 Whence, <P* = ( a\,..., Q>n similarly for
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(I) No entry in (aj,..., a;) and (b*
(II) The number of negative values of each entry of (oj,..., o;) and (bj,..., b*n) on [e} = lj 

are the same.
By (#) in 7.9.(a), we have Xq. = [ej = lj, a disjoint union of non-empty clopens. The 

RSG-isomorphism iT' : G —> G*, induces, by composition, a homeomorphism, h : Xq,
Xg, given by h(r) — r o in. Set Uj = / [e7- = 1) , 1 < j <m\ then, Xq is a disjoint union of
the non-empty clopens Um. We claim that this covering satisfies conditions (2.(i)) and
(2.(u)) of the statement; in fact, it suffices to check the former, since the latter is an immediate 
consequence of (2.(z)) and (II) above.

The reader should keep in mind that in our current notation lx : G —» G* is given by
é e G i—» d* e G*.

Fix j between 1 and m; if ac is an entry in V, 1 < I < n, and a G Uj, there is r G [ej = lj 
so that /(t) = t o i* = <7. Hence, a(aj) = r(67r(a^)) = r(aj), and since the value of aj does 
not change on [ej = lj, the value of a\ cannot change on Uj. This same reasoning applies to the 
entries in completing the proof. ■

Theorems 7.7, 7.10 and Proposition 7.8 apply, in particular, to rings of continuous real 
valued functions on any completely regular space as well as to rings of continuous real valued 
semi-algebraic functions defined on Rn. In what follows, X stands for a completely regular 
topological space:
• Write Cb(X) for the ring of real-valued bounded continuous functions on X, preordered by 
squares.
• Write C(X) for the ring of real valued continuous maps on X, preordered by squares.
• Write CSQ(Rn) for the ring real valued continuous semi-algebraic maps defined on Rn.

• • * K) changes sign in [ej = lj Ç XGm.n ■

Corollary 7.11 a) If A is a real closed ring and T is a preorder on A with the zdp, then {A,T) 
is VIT-faithfully quadratic and G^T{A) is a Boolean algebra {BA).
b) If T is a preorder on C(X) with the zdp, then (C{X),T) is VIT-faithfully quadratic and 
G«n T(C(X)) is a BA. In particular, this holds for the zdp preorder

Pk = {/ € C{X) : K C If > 01},
where K is a closet set in X with non-empty interior. An analogous result holds for Cb(X).
c) IfT is a preorder on C5a(Rn) with the zdp, then (Csa(Rn),T) is 91T-faithfully quadratic. In 
particular, this holds for the zdp preorder

Pk = {/ e Csa(Rn) ; K C [f > 0]},
where K is a closet set in Rn with non-empty interior.

Proof. For the statements concerning PK in (b) and (c), just recall items (a) and (b) in 2.11. ■ 

For the notion of real holomorphy ring of a ring, we refer the reader to section 2 in [KZ].

Proposition 7.12 The real holomorphy ring ofC{X), is DIP- faithfully quadratic, where P is 
any zdp preorder on Cb{X).

Proof. By Example 4.13, pp. 37-38 in [KZ], the real holomorphy ring of C(X) is isomorphic to 
A ■= Cb{X), and so (by 7.11), 91P-faithfully quadratic for any zdp preorder P on A. ■
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C. Germs of real-valued functions at a point of a perfectly normal space
We assume the reader is acquainted with the properties of inductive systems and limits of 

structures in a first-order language with equality over a right-directed poset. References can be 
found [Mil] or [Mi2], chapter 17, §4 or [DM4], §2.3, p. 1701 and §6.5, p. 1728. To establish |' 
notation, we register:

Remark 7.13 a) Let (/, <) be an right directed partially ordered set (rd-poset), i.e. for all i 
j, there is k G I so that i, j < k. Let L is a first-order language with equality. Let

M = i < j}),
inductive system of L-structures over /, where pij : Mi 
= IcLmí and for all i < j < k, pjk o = pik. Let lim M = (M\ {p, :ie I}) be the inductive 
limit of At, where, for i G /, : Mi —» M is a L-morphism, such that pj o p{j = p{. Recall
that M = \Jiel fii[Mi].

(#)

Mj are L-morphism such that pu

b) If Af = (N{; {i/yi i < j}) is an inductive system over /, a morphism from At to AT is a
77.

family of L-morphisms, rj = {Mi —2» Ah} such that for all i < j have rjj o p.. = o 77,-. ■we

The fundamental properties of inductive limits we need, all consequence of Fact 2.4 in [DM4] 
(or Corollary 17.8, [Mil] or [Mi2]), are summarized in the following

Fact 7.14 Let (I, < ) be rd-poset and let M be an inductive system of L-structures over I (as 
in (#) in item 7.13.(a)). Let i, j G I.
a) For x G Mi} y G Mj, there is k > i, j and w, z G Mk, so that w = pik{x), z = pjk(y) and 
nk(w) = Hiix) and nk(z) = ^{y).
b) If tpÇv) is a conjunction of atomic formulas in L and xe G Mit, 1 < f < n, then

There is k > ii, ..., in, so that
Mk |= *f[liink{x 1), . . . J Pink{xn)}-M (= V\i±h{xxHin{xn)} &

In particular
(1) For x G Mi and y G Mj} if p{(x) = Pj(y), there is k > i, j, so that pik{x) = pjk(y).
(2) If c is a constant in L and Pi(x) = c (x G Mi), there is j > i so that pjj(x) = c in Mj.
c) Let Af = (Ah; {vij' : i < j}) be an inductive system of L-structures and let 77 = {77* : i G 1} 
be a morphism from Af to At. With notation as in Fact 2.4.(c), [DM4], let Inn rj : lim Af 1 
lim AÁ be the morphism of inductive limits induced by rj. If for each i G I, Tji is injective, the 
same is true of lim rj. ®

Recall (2.12.(b)) that L(P, N) is the first-order language with equality of zdp-rings.

Lemma 7.15 Let I be a rd-poset and let A = ((A{, Pi); {fij : i — i) ) ^e an ‘Inductive system 
over I, consisting of zdp-rings and Tip-ring morphisms. For i G I, write 01* for Let
{{A,P)\{fi :i6/})= lim A. Then,
a) A = Uie/ fi\M w a unitary commutative ring, in which 2 is a unit:
b) P = (JieJ fi[P{] is a proper preorder on A and for all i G i, fi : (A{, Pi) 
p-ring morphism.
c) Let N =Uie/ /W Then 

(1) N is multiplicative set in A, contained in T\a;

(A,P) is a

(2) supp(P) D N = 0.
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Proof. Item (a) is clear, while (b) follows from Fact 6.5.(a), p. 1718, [DM4].
c) (1) : Note that TV is the union of a /-directed set of proper multiplicative subsets of A and 
hence a multiplicative subset of A. That it is proper (0 N)} will follow immediately once it is
verified that N Ç 91^.

For u G TV, suppose there is v G A so that uv = 0; hence, there are z, j G I , together with 
x G 91* and y G Aj so that fi(x) = iz, fj(y) = v and fi(x)fj(y) = 0. By 7.14.(b), there is k > 
z, j, so that in Ak we have fik(x)fjk(y) = 0 whence, fjk(y) = 0, because fik(x) G 91fc. But then, 
fk[fjk(y)) = /j(y) = v = 0, and so TV C 91^ 5.
(2) : Assume there is u G A so that zz, — u G P and u G TV. Hence, there are Zj, z2, z'3 G 7 and 
xe G Ait, Z = 1, 2, 3, so that Xi G P*n x2 G Pii} x3 G 91*3 and /^(xi) = u, /i2(x2) = —u = 
fiii—Xi) and /i3(x3) = /^(x 1). By 7.14.(b) (the formulas involved are atomic), there is /c > zi, 
z2, z3, so that in Ak we have filk(x 1) = fi2k(-x2) and /^(xi) = /i3fc(x3) € 91fc. Thus, /ilfc(xi), 
—fiik(x 1) 6 Pfc with filk(xi) G 91fc, contradicting the assumption that (A*, Pfc) is a zdp-ring. ■

Remark 7.16 Write Ajv : = ATV”1 for the ring of fractions of A with respect to TV and P/v = 
{p/s2 : p G P and s G TV} for the preorder on An induced by P; by 7.15.(c.2), PN is a proper 
preorder. Write ln for the natural injective p-ring morphism from (A,P) to ( An, Pn ). ■

With notation as in 6.1, for k G I write ck for the natural injective p-ring morphism from 
(Afc,Pfc) to its total ring of fractions, (A*,*, Pfc* ). The inductive system A in the statement of 
Lemma 7.15 gives rise to:
(*) An inductive system over /, A* = ( (A,*, Pt*); fy* : i < j} ); if i < j in /, we have fij^x/z) 
= fij(x)/fij(z) in Au (cf* b.2.(b)). Let (( Q, P); {/** :»€/})= Urn A*;

(**) A morphism of inductive systems, z = {zfc : /cG/}: A 
p-ring morphisms, the same is true of j := lim z : (A, P) 
each fc 6/, we have a commutative diagram (z) (below left):

(Afc, Pfc )•

A*; since all z* are injective 
(Q,P) (cf. Fáct 7.14.(c)). For

A (AP> Zn AArA

(0 J

<2,7>)(A/j*, Pfc* )■ QA*
Hence, for a G A, select k G / and x G Afc so that fk(x) = a and then j(a) = A,(x/1); clearly, 
j(a) is independent of the chosen k G I and the witness x G Ak.

Theorem 7.17 With notation as above:
a) If u G TV, then j[u) is a unit in Q. Let j* : ( An, Pn )

, be the unique p-ring morphism so that j, o ln = j, i.e., the diagram (Q) above right
(2>P), given by j*{a/u) =

-1j{o)j{u)
is commutative
b) The m.ap j* is a p-ring isomorphism.
c) Assume (A,-,P*) is 01 Pi-faithfully quadratic, for alii G I. Moreover, suppose the colimit of 
the inductive system A satisfies the follounng condition:.

TV =VtA.«
Then, (A,P) is VIP-faithfully quadratic.

5 Since axiom [N] in 2.12.(b) is not geometric, we cannot guarantee N = 01^; however, since A[01,] Ç N Ç 
01A (by 7.15.(c.l)), the /,• are Olp-ring morphisms.
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Proof, a) If u G N, there are k G I and x G 01* so that fk(x) = u. Then, ik{u) is a unit in Afc„ 
and so fkm{u) is a unit in Q. The commutative diagram (l) above then yields j(u) — j(fk{u)) 
— fk*{Lk{u)) G Qx. The universal property of ring of fractions (Prop. 3.1, p.37, [AM] and its 
proof) yields the desired conclusion. The same argument employed above shows that if v G P, 
then j„(u) G V. Therefore if w = v/u2 G PN, then j*(w) = j{v)j(u)~2 G V and j* is a p-ring 
morphism.
b) For a/b G AN, if j*(a/ò) = j(a)j(ò) 
j(a) = 0, whence j* is an injection.

To lighten notation, we identify Ak with its image by ik in Ak*. Let Ç G Q; then there are 
k € I, X e Ak, y e mk so that fu(x/y) = fu{x)fkif{y)~x = Ç Let e = fk(x) and d = /*(&) 
G iV. The commutativity of diagram (t) above yields j(c) = fh*(x) and j(d) = fk*{y)- Hence,

= Cj establishing the surjectivity of j*. An analogous 
argument will show that j*[Pw] — V and j* is a p-ring isomorphism, as desired.
c) In the presence of (*), item (b) yields a p-ring isomorphism between (Q,V) and (A*,P*),
the total ring of fractions of (A, P). If (A*, P*) are TtPpfaithfully quadratic for each i G /, 
A* is an inductive system of P^-faithfully quadratic rings (by 6.5); by Corollary 5.4, p. 57, 
[DM5], (Q,P) is P-faithfully quadratic and so, by item (b), (A*, P¥) is P*-faithfully quadratic. 
Another application of Theorem 6.5 guarantees the 91P-quadratic faithfulness of (A, P), ending 
the proof. ■

We now apply Theorem 7.17 to establish the following

-l = 0, then j(a) = 0 and the injectivity of j entails

-1jt(c/d) = j{c)j(d) -1= fu{x)fk,{y)

Proposition 7.18 Let X be a perfectly normal space and let A = C(X) be the ring of real­
valued functions defined on X, partially ordered by squares (= DA2). Let p be a point in X and 
let Ap be the ring of germs of functions of A atp. Then, Ap is 01-faithfully quadratic.

Remark 7.19 A topological space, X, is perfectly normal if it is a (Hausdorff) normal space 
in which all closed sets are G& (countable intersection of opens); cf. paragraphs before Theorem 
1.5.19 in [En]. The following are some of the basic properties of a perfectly normal space X :
(1) If P, K are disjoint closed sets in X, then there is / G C(X, [0,1]) so that K = Z(f) and F 
= {x G X : f(x) = 1} (cf. Theorem 1.5.19, p. 45, [En]). In particular, X is completely regular;
(2) By Theorem 1.5.19, [En], every open set U in X is a cozero set, that is, there is a continuous 

[0, 1], so that U = {x G X : g(x) > 0} (in [En], U is called functionally open);
(3) By Theorem 2.1.6, p, 68, [En], perfect normality is a hereditary property, i.e., it is inherited
by every subspace of A. ®

Proof of Proposition 7.18. Notation will be as in 8.5 and 8.6, p. 1728-1729 in [DM4].
For an open U in X, write A(U) for C(U), the real-valued functions defined on U. If q is a 

point in X, let uq be the (filter) of open neighborhoods of q in X, We endow vq with an rd-poset 
structure where the partial order, <, is the opposite of the inclusion. Thus, for U < V (i.e. 
V Ç U), the restriction otuv : A(U) 
flip-morphism. Indeed, for U G uq and s G A{U), suppose s is not a zero-divisor in A(U). By 
2.11.(a), the zero set of s has empty interior in U\ hence, if q G U and g G A(V) (q G V Ç U) 
is such that gs is identically zero in W G uqi W Ç V} then g \ W = 0 and its germ at q is zero, 
whence the germ of s at q is a non zero-divisor, as needed.

It is well-known that Ap = Urn ((A{U), A(U)2); {auv : U < V}). For U G vv and t G A(U)> 
write tp for the germ of t at p.

map g : X

A(V), taking s G A(U) to s fV G A(V) is a natural
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Since every open V in X is perfectly normal (7.19.(3)) and A(V)2 is a partial order, each 
(A(y),A(V)2) is a 91-faithfully quadratic zdp-ring (cf. Theorem 7.7). By 7.15 and Theorem 
7.17. (c), the desired conclusion will follow once it is shown that the inductive system giving rise 
to Av satisfies condition (*) in 7.17. In the present setting, this amounts to proving that if x is 
a non zero-divisor in Ap, there is W E vp and s E A(W)i so that sp = x and s E VIa(W)-

Let x be a non zero-divisor in Ap, let U E vp and let s E A(U) be such that sp = x. Then:
• If s(p) 0, then sp = x is a unit in Ap and we are done;
• Let Zjj{s) — {x E U : s(a;) = 0} (a closed set in U). If the interior of Zu(s) in U is empty, 
then s is a non zero-divisor in A(U) (by (*) in 2.11), as needed.
We are left to treat the case in which s(p) = 0 (i.e., x is in the maximal ideal, of the local ring 
Ap) and K interior Zy(s), is a non-empty open set in U.
Claim: p 0 K.
Proof. Since U is perfectly normal, there is g E £(17, [0,1]) so that {x E U : g(x) > 0} = K. 
Note that gs = 0 on U, Moreover, if p E K, every V E vv has non-empty intersection with K 
and so gp ^ 0 in Ap (g is not identically zero in any neighborhood of p) . But then, x • gp = 
Sp • g-p = 0, with gv 0, and x would be a zero-divisor in Ap, a contradiction that establishes 
the Claim.

By the Claim there is a W E vp so that W Ç U and W D K = 0. Hence, the set of zeros of 
s [ W in W is contained in the frontier of Zu(s) and so has empty interior in W (the frontier of 
any closed has empty interior). Therefore, s \ W is a non zero-divisor in A(W), whose germ at 
p is x, completing the verification of (*) in 7.17.(c) and the proof of Proposition 7.18. ■

D. Noetherian Rings
Herein, all rings will be commutative and unitary. If R is a ring, 91/? is the multiplicative set 

of non zero-divisors in R\ when R is clear from context, write 91 for 91/?.

Remark 7.20 If R is a ring, we recall:
a) Let T be a preorder on R. An ideal I in R is
• T-convex if for all s, t E T, s + t E I =» s, t E /;
• T-radical if for all a € A and t E T a2 + tE I => a E I.
By Prop. 4.2.5 in [BCR], an ideal of R is T-radical iff it is T-convex and radical.
b) Every prime ideal in R contains a minimal prime. Thus, the nilradical of R = the intersection
of all primes in R = intersection of all minimal primes in R. ■

Lemma 7.21 Let A be a reduced ring.
a) A \ 91 = union of the minimal prime ideals in A.
b) Let T be a partial order on A. If p E T Pi 91, then for all q E T, p -f q E 91. In particular, 
1 -f T Ç 91 and so is disjoint from all minimal prime ideals in A.

Proof, a) (1) Let p be a minimal prime in A; then pc = A \ p is a saturated multiplicative set 
in A. Let S = {xz E A : x E pc, z E 91} be the multiplicative set generated by pc and 91; note
that S is proper: if xz = 0, since 2 E 91, we must have x = 0, that is impossible since x is the
complement of a prime ideal. By a well-known result, there is a prime ideal, Q, so that Q n S 
= 0. Thus, Q H pc = 0 and so Q Ç p. By the minimality of p, we must have p = Q, whence 
p n 91 = 0 and p Ç A\ 91, i.e., p consists of zero divisors.
(2) Let u be a zero divisor in A; then, there is v =£ 0 such that uv — 0. Since A is reduced, there 
must be a minimal prime, q, so that v q. But uv = 0 E q and so u E q.
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Item (a) follows immediately from (1) and (2).
b) Suppose x{p + q) = 0; then x2(p + q) = x2p + x2 q = 0 and so x2p G supp (T) = 0. Since 
p G 9Ì, we conclude that x2 — 0 and reducibility entails x = 0, as needed.

Remark 7.22 a) If A is a Noetherian ring, by Exercise 9, p. 79 in [AM], A has only a finite 
number, pkì 1 < k < n, of minimal primes.
b) Write a for the elements of the quotient ring A/pk (any k).

Lemma 7.23 Let ( A,T) be reduced Noetherian po-ring. Let p 
primes in A and let p be any of them.
a) If y £ p; then there are uy / p and zy e 9t, so that zy — yuy G p.
b) p is T-convex.
c) With notation as in 7.22.(b); (A/p, T/p) is a proper po-ring and its field of fractions, k(p), 
partially ordered by the Tp = {t/y2 : x G T/p and y G A/p, y / 0. }, is formally real

B

B

• ■ > Pn be the set of minimallv •

Proof. Without loss of generality, we may assume p = px.
a) Let I = {m + Xy G A: m G pl and A G A} be the ideal generated by pl and y. Clearly, I
is not contained in p:; moreover, I is not contained in |J£=2 otherwise, by Prop. 1.11.(i) in
[AM], px = pfc, for some k > 2, which is impossible. Therefore I is not contained in |J£=1 pfc and 
so, by 7.21.(a), I fl 91 / 0. The desired conclusion follows immediately. Note that uy cannot be 
in p2, otherwise, p1 fi 9T / 0, an impossibility.
b) Let p, q G T and assume p + q G px. If p 0 pl3 item (a) yields up ^ p1 and zp G 9T so that
pup = zp mod p:. But then, p2u2 = z2 mod p} and so zp — p2up G p2. But then,

pv?p{v + q) = p2u2p + pqup G pj and z.2 - p2u2p £ Pi
and so x = z2 + pqu2 G px; since z2 G T fi 0T and pqu2 G T, by 7.21(b), we would have 
x G p! fl 91, a contradiction. Hence, p G pl5 whence the same is true of q and pt is T convex.
c) By (b) and 7.21(b), T/pa is a proper partial order on A/pl ; the remaining statement is clear.

1

Theorem 7.24 Let (A,T) be a reduced partially ordered Noetherian ring and let (A+,T+) be 
its total ring of quotients. Letpli...ipn be the minimal primes in A. Then:
a) ( A*,T* ) is a pai'tially ordered reduced Noetherian ring.
b) The only prime ideals in A* are P/.9T1, 1 < k < n; in particular, these ideal being pairwise 
distinct, are minimal and maximal in A*. Moreover,

(2) The pfcOT 1 are pairwise coprirne.(1) nPiPA.or1 = {0};
in 7,23.(c), ( A.,T’» ) is naturally isomorphic to a product of partially order

( k(pk),TPk ), and so {A.,T,’.) is T,-faithfully
c) With notation as m
formally real fields, in fact, {A., T. ) ~ I~Ia;=i 
quadratic. Hence, ( A,T ) is WT-faithfully quadratic.

Proof a) By Prop. 7.3, P- 80, [AM], A. is Noetherian; its reducibility is straightforward.
P on 3 11 P 41 [AM], the prime ideals in A, are in bijective correspondence with the 

b ■ y 'dpals of /disjoint from 01 and so 7.21 yields the first statement in (b) and (b.l). Since 
prune ^ ^ distinct and maximal, they must be pairwise coprirne, establishing (b.2).
the Pk Remainder Theorem (Prop. 1.10, p. 7, [AM]), there is a natural ring isomor-
c) By the Chinese 

phism
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7 : K = nLi AsrVpfcSr1
are minimal primes in A*, by 7.23.(c), T*/pkÜ\ 

and so a partially ordered field (p/.9t-1 is also maxi­
mal). It is straightforward that T* = Ylk==l T+/pfc0t_1. Thus, each component of the product, 

? T+/pkyi 1 ) is a partially ordered field, (hence, formally real). Since preordered 
fields are completely faithfully quadratic (cf. Theorem 6.5, p. 63, [DM5]) and quadratic faithful­
ness is preserved by products (cf. Theorem 4.6, p. 44, [DM5] or employ the fact that P-quadratic 
faithfulness is Horn-geometric, cf. [HR]), we conclude that ( A*,T* ) is T*-faithfully quadratic.

nti
Since T* is a partial order on A* and pfc<JT 
is a proper partial order

-l
-lK! pfcoion

It only remains to establish that A»./pfe91 
1 < k < n.

is isomorphic to the field of fractions, k(pfc)

Employing the notation set down in 7.22.(b), define / : A* 
is straightforward that / is a ring morphism, whose kernel is precisely pfe0I_1. Hence, / factors 
through the quotient morphism from A* to A*/pfc9t 
9 ' A*/pkvi '
are uy £ pk and zy £ 01 so that yuy — zy £ pk. But then, a/y = uya/zy in k(pk), showing 
that g is surjective and so a ring isomorphism. It is clear from the definitions that g(T*-/pkyi~l) 
= TPk, completing the proof of (c). The last statement in (c) is an immediate consequence of 
Theorem 6.5, ending the proof. ■

fe(pfc). by /(a/s) = 3/s; it
-1 to yield an injective ring morphism, 

k(pk). Given an element a/y £ k(pk): y ^ 0, then y £ pk. By 7.23.(a), there-l

Corollary 7.25 a) If (A,T) is a partially ordered Noetherian ring and J is a proper T-convex 
radical ideal in A, ( A/J, T/J) is 9T(T/J)-faithfully quadratic.
b) If A is a real Noetherian ring and I is a real ideal in A, then A/1 is T,Vl-faith fully quadratic. In 
particular, A is Yj^X-faithfully quadratic. Moreover, these statements apply to rings of polynomials 
and of formal power series with coefficients in A, in any finite number of variables.

Proof. We comment briefly on item (a). Since J is radical, A/J is a reduced Noetherian ring. 
Moreover, J being T-radical (cf. 7.20) and proper, we must have (1 + T) fi J = 0; since it is 
T-convex, T/J is a proper partial order on A/J and the desired conclusion is immediate from 
Theorem 7.24. ■
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