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We compute the four-photon (F4) operators generated by loops of charged particles of spin 0, 1
2
, 1 in the

presence of gravity and in any spacetime dimension d. To this end, we expand the one-loop effective action
via the heat kernel coefficients, which capture both the gravity-induced renormalization of the F4 operators
and the low-energy Einstein-Maxwell effective field theory (EFT) produced by massive charged particles.
We set positivity bounds on the F4 operators using standard arguments from extremal black holes
(for d ≥ 4) and from infrared (IR) consistency of four-photon scattering (for d ≥ 3). We find that both
approaches yield nearly equivalent results, even though in the amplitudes we discard the graviton t-channel
pole and use the vanishing of the Gauss-Bonnet term at quadratic order for any d. The positivity bounds
constrain the charge-to-mass ratio of the heavy particles. If the Planckian F4 operators are sufficiently small
or negative, such bounds produce a version of the d-dimensional weak gravity conjecture (WGC) in most,
but not all, dimensions. In the special case of d ¼ 6, the gravity-induced beta functions of F4 operators
from charged particles of any spin are positive, leading to WGC-like bounds with a logarithmic
enhancement. In d ¼ 9, 10, the WGC fails to guarantee extremal black hole decay in the infrared
EFT, thereby requiring the existence of sufficiently large Planckian F4 operators.
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I. INTRODUCTION

In the quest to unravel the mysteries of quantum gravity,
one route involves a thorough examination of gravitational
effective field theories (EFTs) that appear below the Planck
scale. Such gravitational EFTs are constrained by black
hole physics and, like non-gravitational ones, by infrared
consistency conditions based on unitarity and causality. In
the presence of gravity, ultraviolet (UV) and infrared (IR)
scales seem to feature intricate connections, already at the
classical level as hinted by black hole properties. This
implies that, even though the completion of quantum
gravity lies far in the UV, we can hope to gain insights
by scrutinizing gravitational EFTs in the IR.
The notion of IR consistency of EFTs, that implies

bounds on certain Wilson coefficients, has been introduced
in [1–3]. It has led to many subsequent developments;

see, e.g., [4–26]. Black hole physics is also used to put
bounds on gravitational EFTs [27–35]. The consistency of
EFTs with the UV completion of quantum gravity has been
explored via “swampland” conjectures; see, e.g., the first
weak gravity conjecture [36] and recent reviews [37–39].
Conversely, the IR consistency of gravitational EFTs con-
strains UV completions of quantum gravity and thus has an
interplay with swampland conjectures [26,33,40–46]. The
present work is in the spirit of the latter approach: carving
out the space of gravitational EFTs from the IR, using
consistency conditions from both scattering amplitudes and
black holes.
Our focus in this work is on gravitational EFTs that

feature an Abelian gauge symmetry. We refer to the
Abelian gauge field as the photon. We consider an EFT
arising below the Planck scale MP ≡M, the ultraviolet
EFT, that features a charged particle. We consider charged
particles with spin 0; 1

2
; 1 and arbitrary spacetime

dimensions d.
The sub-Planckian EFT features, in general, local four-

photon operators that we denote here collectively as F4.
The F4 coefficient αUV encapsulates the sub-Planckian
effects from the super-Planckian UV completion.
Depending on the spacetime dimension, loops of charged
particles may renormalize the F4 operators, in which case
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the value αUV is understood as the value of the coefficient at
the Planck scale. As a first step, we will compute at one-
loop this F4 renormalization flow, that occurs regardless of
whether the particle is massless or massive.
Additionally, when the charged particle is massive, it

can be integrated out when the renormalization scale is
much lower than the particle mass. This produces another
infrared EFTwhose only degrees of freedom are the photon
and the graviton. EFTs of this kind are usually referred to as
Einstein-Maxwell theory; here we mostly use the term IR
EFT. The IR EFT contains a F4 operator with coefficient

αIR ¼ αUV þ Δα; ð1:1Þ

where the Δα corrections take schematically the form

Δα ¼ a
g4q4

m8−d þ b
g2q2

m6−dMd−2 þ
c

m4−dM2d−4 ; ð1:2Þ

where m is the charged particle mass. In certain dimen-
sions, some of the coefficients are enhanced by logðMmÞ
terms produced by the renormalization flow.
The various scales and EFTs are summarized as follows:

Our approach in this work is to remain fully agnostic
about the UV completion of quantum gravity. We work
with quantum field theory—and do not perform actual
quantum gravity calculations. The only explicit matching
to a specific string theory is given in Appendix A as an
example. The strength of the EFT approach is that our
ignorance of the UV completion of quantum gravity is
encoded into the values of the αUV coefficients, which are
treated here as free parameters.
We perform the computation of both the F4 one-loop

beta functions and of the IR EFT directly from the one-loop
effective action. We use the background field method
and the heat kernel formalism [see [47–49]; other useful
references are [50–54] ] combined with standard EFT
techniques.

The sequence of EFTs can be used to compute the
contribution of the charged particle to the physical process
of four-photon scattering γγ → γγ at low energy. Such a
process is subject to IR consistency bounds from unitarity
and causality. In an appropriate basis, IR consistency
implies positivity of the F4 coefficients, schematically1

αIR ≥ 0: ð1:3Þ

The IR EFT can also be used to compute the metric of
nonrotating charged black holes with large enough radius
[55,56]. Requiring that such extremal black holes be able to
decay produces a positivity bound similar to (1.3).2

Combining the positivity bound (1.3) with Eqs. (1.1) and
(1.2), one can notice that, for appropriate values and signs
of αUV, a, b, c, a lower bound appears on the charge-to-
mass ratio,

gjqj
m

M
d−2
2 ≡ z ≥ z�; ð1:4Þ

with z� being a dimensionless number dependent on αUV,
a, b, c. Equation (1.4) is precisely the parametric form
of the weak gravity conjecture (WGC) in d-dimensions

[see [57] ], in which case the bound is z� ¼
ffiffiffiffiffiffi
d−3
d−2

q
. For z�

being a generic Oð1Þ coefficient, we refer to bounds of
the form (1.4) as WGC-like. This nontrivial connection
between IR and UV consistency was first pointed out in
[40] for d ¼ 3, 4. Because the pattern of signs and diver-
gences of the a, b, c coefficients is dimension-dependent,
the generalization of this phenomenon to arbitrary d is
nontrivial and requires a thorough investigation. Here we
explore the IR consistency/WGC connection in arbitrary
dimension and revisit the d ¼ 3, 4 cases.
Why might one study arbitrary spacetime dimensions

in the first place? While the known real world displays
d ¼ 3þ 1 dimensions, it is plausible that extra dimensions
exist—in particular, string theory requires d ¼ 11 for
consistency. These dimensions may be hidden from us,
either because they are compact or because our matter is
confined to a three-brane within a higher-dimensional bulk
spacetime. More specifically, in this work, we extend to
higher dimensions as a tool to probe the relations among
several concepts: the WGC, the decay of extremal black
holes (see Sec. III A), and the IR consistency of scattering
amplitudes. We investigate, for any d ≥ 4, the extent to

1For simplicity, we use the most basic positivity bound
from [3], that we extend to higher dimensions. More refined
approaches have been developed; see, e.g., [4–24], that are not
the focus of this work.

2The extremal black hole decay condition is sometimes
referred to as the black hole WGC. Here we do not use this
naming; the term WGC only refers to the condition on the
charged particle, (1.4).
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which the WGC implies the decay of extremal black holes
of any size, and whether IR consistency implies extremal
black hole decay and the WGC. In our approach, testing
whether a relation between two concepts holds for any d
serves as a check of its robustness. We take the viewpoint
that, if a given relation qualitatively changes with spacetime
dimension, it is unlikely to reflect a deep physical principle,
and should instead regarded as coincidental. In sum, the
extension to arbitrary d provides a diagnostic for sharp-
ening and validating our understanding of gravity in d ¼ 4.

A. Outline

In Sec. II, we review EFT beyond tree-level from the
viewpoint of the quantum effective action. We define the
Einstein-Maxwell EFT and show how to reduce it using a
property of the Gauss Bonnet term valid in any dimensions.
In Sec. III, we review the bound from extremal black hole
decay and generalize simple positivity bounds from four-
photon scattering to any dimension. In Sec. IV, after
reviewing the heat kernel coefficients, we derive and reduce
the general one-loop effective action obtained from inte-
grating out charged particles of spin 0, 1

2
and 1. In Sec. V,

we present the F4 beta functions and discuss their interplay
with IR consistency. In Sec. VI, we analyze in detail the IR
consistency of the infrared EFT, with a systematic dis-
cussion from d ¼ 3 to 11. Section VII contains a detailed
summary, and the appendixes contains some examples of
UV realizations of the F4 operators (Appendix A), the
detailed analysis of the bound from infrared consistency
(Appendix B) and extremal black hole decay (Appendix C),
and the complete heat kernel coefficients (Appendix D).

II. EINSTEIN-MAXWELL EFT IN ANY
DIMENSIONS

We briefly review the notion of loop-level low-energy
EFT from the viewpoint of the quantum effective action
in Sec. II A. We then define Einstein-Maxwell EFT in
Sec. II B and show how to reduce it to describe photon
scattering in Secs. II C and II D.

A. Effective action and effective field theory

Consider a theory with light fields Φl and heavy fields
Φh. Assume that our interest lies in the scattering ampli-
tudes of the light fields. Such scattering amplitudes are
obtained by taking functional derivatives of the generating
functional of connected correlators with respect to sources
probing the light fields Jl. This generating functional is
W½Jl� ¼ i logZ½Jl� with the partition function

Z½Jl� ¼
Z

DΦlDΦhe
iS½Φl;Φh�þi

R
ddxΦlJl : ð2:1Þ

We perform the Φh field integral in the partition function.
This defines a “partial” quantum effective action Γh½Φl�,

with

Z½Jl� ¼
Z

DΦle
iΓh½Φl�þi

R
dxdΦlJl : ð2:2Þ

Let us consider the low-energy regime for which the
external momenta of the Φl amplitudes are much smaller
than the mass of the heavy fields, noted m. In this limit,
the quantum effective action Γh can be organized as an
expansion in powers of derivatives over m. This is
conveniently expressed as an effective Lagrangian Leff

Γh½Φl�≡
Z

ddx
ffiffiffiffiffiffi
−g

p
Leff ½Φl�; ð2:3Þ

where Leff is made of monomials of Φl and its derivatives,
suppressed by powers of m. Schematically,

Leff ½Φl� ∼
X
a;b

Φa
lð∂ΦlÞ2b
maþ4b−4 : ð2:4Þ

In practice, Leff is typically truncated at some order of the
derivative expansion ∂=m. This defines an infrared EFT
that encodes all the effects of theΦh field at energies below
m, within the accuracy of the truncation of Leff .
The derivative expansion applies at each order of the

loop expansion of Γh, Γh ¼ Γð0Þ
h þ Γð1Þ

h þ � � � Hence, the
effective Lagrangian can be organized with respect to this

loop expansion: Leff ¼ Lð0Þ
eff þ Lð1Þ

eff þ � � � The Lð0Þ
eff term

arises from the tree diagrams involving Φh encoded in Γ
ð0Þ
h .

The Lð1Þ
eff term arises from the one-loop diagrams involving

Φh encoded in Γð1Þ
h , etc.

In this paper, we work at the one-loop level. The finer
details of EFT at loop level can be found in [58,59].

B. Einstein-Maxwell EFT

Consider a gravitational theory with a Uð1Þ gauge
symmetry and massive matter fields.3 Our interest is in
the scattering amplitudes of the photons of this theory; i.e.,
the photon is coupled to a source Jγ that generates the
amplitudes. As explained in Sec. II A, we can always
integrate out the matter fields exactly, defining a partial
quantum effective action Γmat½Fμν; Rμνρσ�.
In the regime for which the external momenta of

amplitudes are smaller than the matter field masses m,
the quantum effective action can be written as

3Throughout this work we use the conventions of Misner-
Thorne-Wheeler [60], which include the mostly plus metric
signature sgnðgμνÞ ¼ ð−;þ; � � � ;þÞ and positive scalar curvature
for spheres.
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Γmat½Fμν; Rμνρσ�≡
Z

ddx
ffiffiffiffiffiffi
−g

p
Leff ½Fμν; Rμνρσ�; ð2:5Þ

where Leff is made of monomials of Fμν and Rμνρσ. This defines a low-energy EFT that encodes all the effects of the matter
fields at energies below m. In this section, we refer to this EFT as the Einstein-Maxwell EFT, with Leff ≡ LEM. At ∂4 order,
the most general Einstein-Maxwell Lagrangian takes the form4

LEM ¼ Lkin þ α1ðFμνFμνÞ2 þ α2FμνFνρFρσFσμ þ α3R̂
2 þ α4R̂μνR̂

μν þ α5R̂μνρσR̂
μνρσ þ α6R̂FμνFμν þ α7R̂

ν
μFμρFνρ

þ α8R̂
ρσ
μνFμνFρσ þ α9ðDρFμνÞðDρFμνÞ þ α10ðDρFμνÞðDμFρνÞ þ α11ðDμFμνÞ2 þOðR̂3; R̂2F2; R̂F4; F6Þ ð2:6Þ

with the kinetic term

Lkin ¼ −
1

4
FμνFμν þ 1

2
R̂: ð2:7Þ

We introduced the normalized Riemann tensor R̂μνρσ ≡Md−2Rμνρσ.
At tree-level, the effective operators in LEM contribute to the four-photon amplitude as follows:

ð2:8Þ

The dots represent the effective vertices from LEM, and the
double wiggles represent gravitons. Notice that the curva-
ture operators contribute indirectly via modifications of the
graviton-photon vertices and to the graviton propagator.
These diagrams can be simplified using that the physical

scattering amplitudes are invariant under field redefinitions.
Following the general lessons of EFT, a subset of such
field redefinitions amounts to using the leading order
equations of motion in the effective Lagrangian [59]. In
the present case, the equations of motion that we can use
are the Maxwell and Einstein equations: DμFμν ¼ 0 and
Rμν − 1

2
Rgμν ¼ 1

Md−2 Tμν. The latter implies

R̂μν ¼ Tμν −
1

d − 2
Tgμν; R̂ ¼ 2

2 − d
T ð2:9Þ

with

Tμν ¼ −FμρF
ρ
ν −

1

4
gμνðFρσÞ2; T ¼ 4 − d

4
ðFμνÞ2:

ð2:10Þ
Using the Maxwell equation, the last operator in LEM

vanishes. Furthermore, the two other operators involving
DμFρσ can be transformed into combinations of the
remaining terms in LEM using the Bianchi identities

F½μν;ρ� ¼ 0, Rμ½νρσ� ¼ 0, and the Ricci identity
½Dμ; Dν�Fρσ ¼ Rλ

μνρFλσ þ Rλ
μνσFρλ.

5 Finally, the identities
from (2.9) can be used to eliminate R and Rμν in the
remaining operators of LEM. The traceless part of the
Riemann tensor, i.e., the Weyl tensor,

Cμνρσ ¼ Rμνρσ −
2

d − 2
ðgμ½ρRσ�ν − gν½ρRσ�μÞ

þ 2

ðd − 1Þðd − 2ÞRgμ½ρgσ�ν; ð2:12Þ

still remains in LEM in the form of operators C2 and CF2.

C. Reducing the curvature squared terms

We can further reduce the basis of operators by noticing
that, for the four-photon diagrams of our interest, the gravi-
ton self-interactions are irrelevant since only the graviton
propagator appears in (2.8). Let us inspect the quadratic
curvature corrections to the graviton propagator.
We know that the Riemann tensor goes as Rμνρσ ∝

∂μ∂σhνρ þ � � � upon the expansion of the metric gμν ¼
ημν þ hμν. It is thus sufficient to keep the linear term in

4We assume a spacetime background with no boundary, so
that total derivative terms in LEM can be ignored, and operators
related by integration by parts are considered redundant.

5For example, one finds

DρFμνDρFμν ¼ RμνρσFμνFρσ − 2Rν
μFμρFνρ þ 2ðDμFμνÞ2

þ total derivative: ð2:11Þ
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each curvature term to obtain the quadratic vertices that
correct the graviton propagator. We have

Rμνρσ ¼
1

2

�
∂μ∂σhνρ − ∂ν∂σhμρ − ∂μ∂ρhνσ þ ∂ν∂ρhμσ

�
þOðh2Þ; ð2:13Þ

Rνσ ¼
1

2

�
∂μ∂σh

μ
ν þ ∂ν∂

μhμσ − ∂ν∂σh −□hνσ
�

þOðh2Þ; ð2:14Þ

R ¼ ∂μ∂νhμν −□h; ð2:15Þ

with hμμ ¼ h, ∂μ∂
μ ¼ □. Going to Fourier space for

simplicity, we find the curvature-squared terms

R2 ¼ hμνhαβOð1Þ
μν;αβ; ð2:16Þ

ðRμνÞ2 ¼ hμνhαβOð2Þ
μν;αβ; ð2:17Þ

ðRμνρσÞ2 ¼ hμνhαβOð3Þ
μν;αβ; ð2:18Þ

where

Oð1Þ
μν;αβ ¼ ðpμpν − p2ημνÞðpαpβ − p2ηαβÞ; ð2:19Þ

Oð2Þ
μν;αβ ¼

1

4

�
2pμpνpαpβ þp4ðημνηαβ þ ημαηνβÞ

−p2ðpμpνηαβ þpαpβημν þpμpβηνα þpνpαημβÞ
�
;

ð2:20Þ

Oð3Þ
μν;αβ ¼

1

4

�
4p4ημαηνβ þ 4pμpνpαpβ

− 2p2ðημαpνpβ þ ημβpνpα

þ ηναpμpβ þ ηνβpμpαÞ
�
: ð2:21Þ

Inspecting Eqs. (2.19)–(2.21), we find that the following
combination vanishes at quadratic order in any dimension:

ðRμνρσÞ2 − 4ðRμνÞ2 þ R2 ¼ 0þOðh3Þ: ð2:22Þ

This is the familiar Gauss-Bonnet (GB) combination. The
fact that it vanishes atOðh2Þ for arbitrary dwas first noticed
in [61] in the context of the low-energy limit of string
theories.6

D. The reduced Einstein-Maxwell EFT

We conclude that, at least when the relevant physical
observable is the four-photon amplitude, we can reduce
the Einstein-Maxwell EFT using the Oðh3Þ-vanishing of
the Gauss-Bonnet term and Einstein’s equation. The final
result is

LEM;red ¼ Lkin þ α̂1ðFμνFμνÞ2 þ α̂2FμνFνρFρσFσμ

þ γĈρσ
μνFμνFρσ þOðF6;…Þ

with

α̂1 ¼ α1 þ
ðd − 4Þ2
4ðd − 2Þ2 α3 þ

8 − 3d
4ðd − 2Þ2 α4

−
d2 þ 4d − 16

4ðd − 2Þ2 α5 þ
4 − d
4 − 2d

α6;

−
1

2d − 4
α7 −

3

ðd − 1Þðd − 2Þ α8

þ ðd − 4Þ
ðd − 1Þðd − 2Þ

�
α9 þ

α10
2

�
; ð2:23Þ

α̂2 ¼ α2 þ α4 þ 4α5 − α7 þ
4

d − 2
α8

þ 2d
d − 2

�
α9 þ

α10
2

�
; ð2:24Þ

γ ¼ α8: ð2:25Þ

III. BOUNDS FROM EXTREMAL BLACK HOLES
AND PHOTON SCATTERING

We review the positivity bound produced by the con-
dition that extremal black holes must decay, for any
dimension d ≥ 4. We then review the four-photon (4γ)
amplitude generated by F4 operators for any d ≥ 3. It will
be shown in Sec. VI and Appendix C that the bounds
obtained from 4γ amplitudes upon discarding the t-channel
graviton pole match approximately the black hole bound.

A. Positivity bound from extremal black holes

The nonrotating charged black hole (Reissner-
Nordström) solution is parametrized by a mass M∘ and
total charge Q∘ in Planck mass units. In Einstein gravity,
the charge-to-mass ratio is bounded from above as

Z∘ ≡ jQ∘j
M∘

≤ Z�; Z� ¼
ffiffiffiffiffiffiffiffiffiffiffi
d − 3

d − 2

r
; ð3:1Þ

beyond which the Reissner-Nordström solution would
feature a naked singularity. A black hole saturating this
bound, i.e., Z∘ ¼ Z�, is said to be extremal.

6The GB combination vanishes exactly in d ¼ 3 due to the
exact vanishing of the Weyl tensor. The combination is a total
derivative in d ¼ 4, the Euler number density, and is thus again
irrelevant for EFT.
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There are compelling arguments that all black holes,
including extremal ones, must be able to decay [3,27]. This
conjecture is sometimes referred to as the black hole WGC,
however we avoid using this term here to prevent naming
confusion.
Extremal black holes can decay if the particle spectrum

satisfies the WGC, i.e., if there is at least one particle
satisfying (1.4) in the spectrum, in which case the black
hole discharges via the Schwinger effect [62]. However,
when no such particle is present in the theory, which is
the case in our IR EFT where all massive particles are
integrated out, the extremal black hole should still be able
to decay. In such a situation, the extremal black hole can
only decay into smaller black holes. This is kinematically
allowed if the extremality bound deviates from the GR one.
The most general condition is that the charge-to-mass ratio
decreases with the mass [56].
For extremal black holes with sufficiently large radius rh,

satisfying the condition

rh ≫
gjqjM
m2

; ð3:2Þ

the electromagnetic field is weak at the horizon, such that
the Einstein-Maxwell EFT is valid. In this regime, the
Einstein-Maxwell operators given in (2.6) induce a devia-
tion to extremality; see, e.g., [27,31] and also [35,63] for
higher order. It follows that the charge-to-mass ratio bound
in our IR Einstein-Maxwell EFT takes the form Z∘ ≤ Z,
where

Z
Z�

¼ 1þCIR
4ðd− 2Þðd− 3Þ2

ð3d− 7Þ
�ðd− 2Þðd− 3Þ

Q2∘
4πd−1

Γðd−1
2
Þ
� 1

d−3
:

ð3:3Þ

Since the extremal black holes can decay if Z is a
decreasing function ofQ2∘ ∼M2∘ , (3.3) implies the positivity
bound

CIR > 0: ð3:4Þ

We can write

CIR ¼ CUV þ ΔC; ð3:5Þ

where CUV is the contribution from the UV operators and
ΔC is the contribution produced upon integrating the
massive charged particles. The expression of ΔC as a
function of the EFT operator coefficients is given in
Appendix C. In that calculation, we use the basis (2.6),
and not the reduced basis (2.23). This is because for
arbitrary d > 4 the Gauss-Bonnet combination does not
vanish beyond quadratic order in general, and hence, the
reduction step in Sec. II C is not allowed in the black
hole case.

B. Four-photon EFT

In d ¼ 2, the photon does not propagate, and hence, our
analysis does not apply. We focus on d ≥ 3 for which the
photon has d − 2 physical polarizations.
For d ¼ 3, the photon has a single polarization. There

is a single independent F4 operator which can be chosen
to be ðFμνFμνÞ2. The other possible F4 structure satisfies
FμνFνρFρσFσμ ¼ 1

2
ðFμνFμνÞ2.

For d > 3, the EFT contains two independent Lorentz
structures:

LF4 ¼ α̂1ðFμνFμνÞ2 þ α̂2FμνFνρFρσFσμ

¼ αOþ βÕ ð3:6Þ

with

O¼ ðFμνFμνÞ2; Õ¼ 4FμνFνρFρσFσμ − 2ðFμνFμνÞ2; ð3:7Þ

where theO, Õ basis is introduced for further convenience.
The translation between the two bases is given by

α̂1 ¼ α − 2β; α̂2 ¼ 4β: ð3:8Þ

Notice that for d ¼ 3, we have Õ ¼ 0 algebraically. In
d ¼ 4, we have Õ ¼ ðFμνF̃μνÞ2 where the dual tensor
is F̃μμ ¼ 1

2
ϵμνρσFρσ.

C. Positivity bounds from photon scattering

1. General considerations

In the absence of gravity, positivity bounds on the F4

operators can be derived using unitarity of forward ampli-
tudes or causality. In the presence of gravity, exploiting
the forward amplitudes is complicated due to singular
t-channel graviton exchange,

ð3:9Þ

See [3,40,41,43,44]. A work-around to eliminate the
unwanted graviton pole may be to perform an appropriate
spatial compactification that removes the t-channel infrared
singularity; see [44]. This approach suggests that the
t-channel graviton pole may simply be discarded in the
proof of the positivity bounds. It was, however, argued that
the obtained results appear to be overly strong [5,6], at least
in the 4d case. Another approach to the graviton pole is to
work at finite impact parameter and focus on appropriate
sum rules [10]. In contrast, causality bounds from low-
energy photon propagation apply without extra complica-
tion in the presence of gravity. The standard F4 positivity
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bounds in d ¼ 4 are independently obtained from causality
arguments; see [64] and also [25].
Our approach in the present work is to use the most

standard F4 positivity bounds, already presented in [3],7 to
avoid any technical digression. In doing so, we assume
a priori that the t-channel pole can be neglected in the case
of photon scattering, as hinted by d ¼ 4 causality bounds.
This IR consistency bound will be compared to the one
from extremal black hole decay, and we will find they are
consistent with each other.

2. Bounds

Infrared consistency bounds on the F4 operators are
easily extended to any dimension as follows. We follow the
approach of [65]. We consider the four photon amplitude
Aγγ→γγ with ingoing (outgoing) momentum p1;2 (p3;4) and
ingoing (outgoing) polarization vectors ϵ1;2 (ϵ3;4). We then
take the forward limit

Afw
γγ→γγ ¼ Aγγ→γγðp1 ¼ p3; p2 ¼ p4; ϵ1 ¼ ϵ3; ϵ2 ¼ ϵ4Þ

ð3:10Þ

and require positivity of Afw
γγ→γγ for all ϵ1;2.

d > 3 case. The d > 3 case is analogous to d ¼ 4. We
obtain

Afw
γγ→γγ ¼ 16α̂1s2ðϵ1 · ϵ2Þ2 þ 4α̂2s2

�ðϵ1 · ϵ2Þ2 þ ðϵ1Þ2ðϵ2Þ2
�

ð3:11Þ

¼ 16αs2ðϵ1 · ϵ2Þ2 þ 16βs2
�ðϵ1Þ2ðϵ2Þ2 − ðϵ1 · ϵ2Þ2

�
:

ð3:12Þ

From the second line, the requirement Afw
γγ→γγ > 0 for all

ϵ1;2 implies positivity of the Wilson coefficients in theO; Õ
basis defined in (3.6)8:

αjd>3 ≥ 0 βjd>3 ≥ 0: ð3:13Þ

d ¼ 3 case. For d ¼ 3, the photon has a single polari-
zation, i.e., it is equivalent to a scalar.9 We can use (3.12)
with ðϵ1 · ϵ2Þ2 ¼ 1. Afw

γγ→γγ > 0 implies that

αjd¼3 ≥ 0 ð3:14Þ

while the term multiplying β vanishes identically, in
accordance with the property of the O; Õ basis (3.6).

IV. THE ONE-LOOP EFT OF CHARGED
PARTICLES

We consider the gravitational EFT of fields with
spin 0; 1

2
; 1 and with Uð1Þ charge q. It is described by

the effective Lagrangian Leff;UV that contains local higher
dimensional operators involving Fμν, Rμνρσ as well as the
charged fields.
Our focus here being on the four-photon interactions

induced by Leff;UV, it is enough to write explicitly the
local F4 operators, while neglecting the other higher-
dimensional operators. The UV operator involving the
charged fields would contribute only at higher order, while
Rμνρσ can be reduced along the lines of Sec. II. We have
therefore the ultraviolet EFT Lagrangian

Leff;UV ¼ Lkin þ LF4;UV þ Lmatter ð4:1Þ

with

LF4;UV ¼ αUV;1ðFμνFμνÞ2 þ αUV;2FμνFνρFρσFσμ

þ γUVĈ
ρσ

μνFμνFρσ: ð4:2Þ

The αUV;i, γUV coefficients are free parameters in the
UV EFT. They encapsulate the effects of the dynamics
of the UV completion in the sub-Planckian four-photon
scattering. See Appendix A for a few known examples of
contributions. In the following, we remain agnostic about
αUV;i, γUV.
The charged particles with spin s ¼ 0; 1

2
; 1 are described

by the following matter Lagrangians.
Spin 0. The Lagrangian is

L0 ¼ −jDμΦj2 −m2jΦj2 − ξjΦj2R; ð4:3Þ

where Φ is a complex scalar. We have DμΦ ¼ ∂μΦþ
igqAμΦ. A conformally coupled scalar has ξ ¼ d−2

4ðd−1Þ in
addition to m ¼ 0.
Spin 1

2
. The Lagrangian is

L1=2 ¼ −
1

2
Ψ̄ð=D −mÞΨ; ð4:4Þ

where Ψ is a Dirac spinor. We have =D ¼ γμDμ with γμ the
n × n Dirac matrices in d dimensions, with n ¼ 2½d=2� the
dimension of spinor space [54,66].
Spin 1. In order to consistently couple a massive vector to

the photon, we consider a nonlinearly realized theory with
gauge group SUð2Þ broken to Uð1Þ. The charged gauge
boson lives in the SUð2Þ=Uð1Þ coset. See, e.g., [67] for

7For more refined positivity bounds, see, e.g., [4–9,11–24].
8The F4 positivity bounds presented in, e.g., [25,64] take the

form 4α̂1 − 3α̂2 > j4α̂1 − α̂2j. This is equivalent to (3.13) upon
translation to the O; Ô basis given in (3.8).

9In d ¼ 3, Fμν transforms as a vector of SOð3Þ. This can be
seen by computing the dual tensor Fμνϵμνρ ≡ ∂ρϕ, where the
scalar ϕ is the only degree of freedom of Fμν.
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details.10 This approach fixes unambiguously the Uð1Þ
magnetic moment of the charged vector. The Lagrangian,
including a Rξ-type gauge fixing, is

L1 þ Lgf
1 ¼ −

1

2
jŴμνj2 þ igqFμνWμW�

ν

−
1

ξ1
jDμWμj2 −m2jWμj2; ð4:5Þ

where Wμ is the complex vector field. The field strength
Ŵμν is defined as Ŵμν ¼ DμWν −DνWμ, where Dμ is the
Uð1Þ covariant derivative. In the following, we choose the
Feynman gauge ξ1 ¼ 1.

The coefficient of the Uð1Þ magnetic moment operator
iFμνWμW�

ν can be generalized to other values since it is
invariant under Uð1Þ gauge transformations. In this work,
we only use the value shown in (4.5), which is the one
enforced by the underlying non-Abelian gauge symmetry.

A. Integrating out charged particles at one-loop

The leading contribution of the charged particle to the
four-photon interaction is through one-loop diagrams.
Three kinds of contributions appear, that are respectively

proportional to ðgqÞ4, ðgqÞ2
Md−2 and 1

M2d−4:

ð4:6Þ

Here, the dots represent the Uð1Þ charges, the double
wiggles represent gravitons, and the internal bubbles can be
of any of the charged particles.
At energy scales below the charged particle mass, the

Aγγ→γγ amplitude can be described by an infrared EFT in
which the massive charged particle is integrated out, as
explained in Sec. II A. The generic form of the effective
Lagrangian is given in Eq. (2.6).
For even spacetime dimensions, some of the diagrams

in (4.6) contain UV divergences. These divergences
renormalize the local F4 operators already present in the
UV effective Lagrangian. The initial value of the αUV, βUV
coefficients is assumed to be defined from the Aγγ→γγ

process at Planckian energy E ∼M, such that the running
produces logarithmic corrections of the form logM

m in the
F4 operators of the IR EFT.11

Both the renormalization flow and the finite effects from
the loops of the charged particle are encoded into the one-
loop effective action. An efficient way to extract both of
these bits of information is to use the well-known expan-
sion of the effective action into heat kernel coefficients.
See [47,49] for seminal papers and [48] for a review. Other
useful references are [50,51,54]. Our main technical
references are [48,54].

1. Expanding the one-loop effective action

The one-loop effective action induced by the matter
fields takes the form

Γð1Þ
mat ¼ ð−ÞF i

2
Tr log

�ð−□þm2 þ XÞij
� ð4:7Þ

with □ ¼ gμνDμDν being the Laplacian built from back-
ground-covariant derivatives. The covariant derivatives
give rise to a background-dependent field strength Ωμν ¼
½Dμ; Dν�, encoding both gauge and curvature connections.
It takes the general form

Ωμν ¼ −iFa
μνta −

i
2
Rμν

ρσJρσ; ð4:8Þ

where ta and Jρσ are the generators of the gauge and spin
representation of the quantum fluctuation, respectrively.
X is the “field-dependent mass matrix” of the quantum
fluctuations; it is a local background-dependent quantity.
The effective field strength Ωμν and the effective mass X
are, together with the curvature tensor, the building blocks
of the heat kernel coefficients. Using the heat kernel

method reviewed in Appendix D, Γð1Þ
mat takes the form

Γð1Þ
mat ¼ ð−ÞF 1

2

1

ð4πÞd2
Z
M

ddx
ffiffiffi
g

p X∞
r¼0

Γðr− d
2
Þ

m2r−d trb2rðxÞ ð4:9Þ

with tr the trace over internal (nonspacetime) indexes.
Analytical continuation in d has been used, and the

10This is analogous to the W boson of the Standard Model
upon decoupling the Uð1ÞB gauge field.

11The Uð1Þ gauge coupling is not renormalized in the IR EFT,
as can be verified by dimensional analysis.
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expression is valid for any dimension. The local quantities
b2r are referred to as the heat kernel coefficients.
For odd dimensions, all the terms in Eq. (4.9) are finite.

For even dimensions, there are log-divergences. These log

divergences renormalize Lð0Þ
eff . The terms with negative

powers of masses in Eq. (4.9) are finite. They amount to
an expansion for large m and give rise to the one-loop

contribution to the effective Lagrangian Lð1Þ
eff ,

Lð1Þ
eff ¼ ð−ÞF 1

2

1

ð4πÞd2
X∞

r¼½d=2�þ1

Γðr − d
2
Þ

m2r−d tr b2rðxÞ: ð4:10Þ

Only the first heat kernel coefficients are explicitly known,
and the coefficients up to b8 contribute to the observables
considered in this work.

2. Spin 0

The one-loop effective action following from the
Lagrangian (4.3) is

Γð1Þ
0 ¼ i

2
Tr log½ð−□þm2 þ ξRÞ�: ð4:11Þ

The geometric invariants are

X ¼ ξRI; Ωμν ¼ −igqFμν: ð4:12Þ

3. Spin 1=2

The one-loop effective action following from the
Lagrangian (4.4) is

Γð1Þ
1=2 ¼ −

i
4
Tr log

	�
−□þm2 þ 1

4
Rþ SμνgqFμν

�

ð4:13Þ

with Sμν ¼ i
4
½γμ; γν�. The geometric invariants are

X ¼ 1

4
Rþ i

2
γμγνgqFμν; Ωμν ¼ −igqFμν þ

1

4
γργσRρσμν:

ð4:14Þ

4. Spin 1

For the massive spin 1 particle, the contributions from
the ghosts and the Goldstone boson must be included. In
the Feynman gauge, these degrees of freedom are degen-
erate and do not mix. The ghosts contribute as −2 times a
scalar adjoint with ξ ¼ 0. Similarly, the Goldstone con-
tributes as þ1 the scalar term [see, e.g., [54,67] ]. As a
result, the one-loop effective action following from the
Lagrangian (4.5) is

Γð1Þ
1 ¼ i

2
Tr log

��ð−□þm2Þδμν þ Rμ
ν þ 2igqFμ

ν

��
−
i
2
Tr log½ð−□þm2Þ�; ð4:15Þ

where the last term is the ghostþ Goldstone contribution.
The geometric invariants of the vector fluctuation are

Xμ
ν ¼ Rμ

ν þ 2igqFμ
ν; ðΩμνÞρσ ¼ −Rρ

σμν − iδρσgqFμν:

ð4:16Þ
B. The coefficients

The complete expressions of the heat kernel coefficients
are given in Appendix D. Only a subset of terms is relevant
to our study. Terms which are total derivatives can be
ignored since they are irrelevant for scattering amplitudes.
As explained in Sec. II, in the EFT framework, we can
use the leading order equations of motion to reduce the
effective Lagrangian.
The relevant pieces to compute the Einstein-Maxwell

EFT are the following.

1. R2 terms

The curvature squared contributions from the b4 coef-
ficient,

b4 ¼
1

360

�
5R2 − 2RμνRμν þ 2RμνρσRμνρσ

�
I þ… ð4:17Þ

with I the identity matrix for internal indexes. For our
purposes, these can be further reduced using the Oðh3Þ
vanishing of the Gauss-Bonnet term; see Sec. II C.

2. RF2 terms

The RF2 contributions come from the b6 coefficient.
These are those with three powers of X, two powers of X
and two derivatives, and one curvature and two powers of
X. We have thus

b6 ¼
1

360

�
8DρΩμνDρΩμν þ 2DμΩμνDρΩρν þ 12Ωμν□Ωμν

− 12ΩμνΩνρΩ μ
ρ þ 6RμνρσΩμνΩρσ − 4R ν

μ ΩμρΩνρ

þ 5RΩμνΩμν þ 60X□X þ 30DμXDμX − 60X3

− 30XΩμνΩμν þ 30XXR
�þ… ð4:18Þ

To reduce b6, we use the photon equation of motion
(EOM), the Bianchi identities, and the Ricci identity, as
detailed in Sec. II B.

3. F4 terms

The F4 coefficients come from the b8 heat kernel
coefficient, which can be found in Ref. [51]. Converting
to Minkowski space, we have
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b8 ¼
1

24

�
γðsÞ1 ðFμνFμνÞ2 þ γðsÞ2 FμνFνρFρλFλν

�
þ…;

ð4:19Þ
�
γð0Þ1 ; γð0Þ2

�
¼

�
1

12
;
7

105

�
; ð4:20Þ

�
γð1=2Þ1 ; γð1=2Þ2

�
¼

�
1

3
n;−

14

15
n
�
; ð4:21Þ

�
γðVÞ1 ; γðVÞ2

�
¼

�
d − 48

12
;
dþ 240

15

�
; ð4:22Þ

and ðγð1Þ1 ; γð1Þ2 Þ ¼ ðγðVÞ1 ; γðVÞ2 Þ − ðγð0Þ1 ; γð0Þ2 Þ for the massive
spin 1 particle.

C. The reduced Einstein-Maxwell effective action

Putting together the results from previous sections, we
obtain the low-energy Einstein-Maxwell effective action
generated by integrating out the charged particles of spin
s ¼ 0; 1

2
; 1. The leading contributions are encoded in the

one-loop effective action, Γð1Þ
s .

We apply the reduction computed in (2.23). The reduced
Einstein-Maxwell effective action is

ΓIR ¼ Γð0Þ þ Γð1Þ
s þ… ð4:23Þ

with

Γð0Þ ¼
Z

ddx
�
Lkin þ LF4;UV

�
; ð4:24Þ

Γð1Þ
s ¼

Z
ddx

�
Δα̂ðsÞ1 ðFμνFμνÞ2 þ Δα̂ðsÞ2 FμνFνρFρσFσμ

þ ΔγðsÞĈρσ
μνFμνFρσ

�
; ð4:25Þ

Δα̂ðsÞ1;2 ¼
1

ð4πÞd=2
"
g4q4

m8−d Γ
�
4 −

d
2

�
aðsÞ1;2

þ g2q2

m6−dMd−2 Γ
�
3 −

d
2

�
bðsÞ1;2

þ 1

m4−dM2d−4 Γ
�
2 −

d
2

�
cðsÞ1;2

#
; ð4:26Þ

ΔγðsÞ ¼ 1

ð4πÞd=2
g2q2

m6−dMd−2 Γ
�
3 −

d
2

�
dðsÞ: ð4:27Þ

The coefficients for each spin are

að0Þ1 ¼ 1

288
; að0Þ2 ¼ 1

360
; ð4:28aÞ

að1=2Þ1 ¼ −
n
144

; að1=2Þ2 ¼ 7n
360

; ð4:28bÞ

að1Þ1 ¼ d − 49

288
; að1Þ2 ¼ dþ 239

360
: ð4:28cÞ

bð0Þ1 ¼ 1

720

	�
30ξ − 5þ 4

ðd − 1Þðd − 2Þ
�
ðd − 4Þ

þ
�
4þ 8

d − 2

�

1

ðd − 2Þ ; ð4:29aÞ

bð1=2Þ1 ¼ −
n
720

	�
−5þ 4

ðd − 1Þðd − 2Þ
�

d − 4

2ðd − 2Þ

−
13ðd − 2Þ − 4

ðd − 2Þ2


; ð4:29bÞ

bð1Þ1 ¼ 1

720

	�
4ðdþ 59Þ

ðd − 1Þðd − 2Þ − 5ðd − 31Þ
�
d − 4

d − 2

þ 4ðd − 1Þðdþ 120Þ
ðd − 2Þ2



; ð4:29cÞ

bð0Þ2 ¼ −
1

360

�
4þ 8

d − 2

�
; ð4:29dÞ

bð1=2Þ2 ¼ −
n
360

�
−

4

d − 2
þ 13

�
; ð4:29eÞ

bð1Þ2 ¼ −
1

360

�
4ðdþ 119Þ þ 8ðdþ 59Þ

d − 2

�
: ð4:29fÞ

cð0Þ1 ¼ 1

720

	
6þ ξðξ − 1

3
Þ

4

ðd − 4Þ2
ðd − 2Þ2 −

3ð3d − 8Þ
ðd − 2Þ2



;

cð0Þ2 ¼ 1

60
; ð4:30aÞ

cð1=2Þ1 ¼ −
n
960

�
3ð3d − 8Þ
ðd − 2Þ2 þ ðd − 4Þ2

ðd − 2Þ2
�
;

cð1=2Þ2 ¼ n
80

; ð4:30bÞ

cð1Þ1 ¼ 1

240

	ðd − 11Þðd − 4Þ2
2ðd − 2Þ2 −

ðdþ 9Þð3d − 8Þ
ðd − 2Þ2



;

cð1Þ2 ¼ dþ 9

60
: ð4:30cÞ
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dð0Þ ¼ −
1

180
; ð4:31aÞ

dð1=2Þ ¼ n
360

; ð4:31bÞ

dð1Þ ¼ −
dþ 59

180
: ð4:31cÞ

Before reduction of the Einstein-Maxwell Lagrangian,
our results for the RF2 operators from spin 1

2
in d ¼ 3 and

from spin 0; 1
2
in d ¼ 4 match, respectively, those found

in [53,68] and [52,68]. For d ¼ 3, the að0Þ1;2 coefficients with

ξ ¼ 0 match with [45], and for d ¼ 4, the aðsÞ1;2 coefficients
match those from [69–71], upon appropriate conversion to
the ðO; ÕÞ basis using (3.6).

1. Beta functions and logarithmic corrections

The Gamma functions in Δα̂1;2, Δγ diverge for certain
even dimensions. These are physical divergences, appear-
ing here via the framework of dimensional regularization.
These divergences imply that there is a renormalization
group equation associated to the corresponding local
operators contained in Γð0Þ. In that situation, the values
αUV;i or γUV are understood as the values at the initial
condition of the renormalization flow that we choose to be
the Planck scale. That is, μ ¼ M with μ the renormalization
scale, and αUV;i ≡ αiðMÞ, γUV ≡ γðMÞ. These are the
values appropriate to study the physical process Aγγ→γγ

with energy scale near M. To study Aγγ→γγ at lower
energies, the renormalization scale must be changed
accordingly to minimize higher-order contributions to
the one-loop prediction.
Let us compute the beta functions explicitly. Divergences

occur when r − d
2
∼ −n, i.e., d ∼ 2nþ 2r with n∈N. We

define ϵ ¼ 2nþ 2r − d. Introducing the renormalization
scale μ in the Lagrangian, we have

μϵ

mϵ Γ
�
r −

d
2

�
⟶
ϵ→0 ð−1Þn

n!
2

�
1

ϵ
þ log

�
μ

m

��
: ð4:32Þ

Such terms from the one-loop effective action Γð1Þ combine
with the coefficients of the local operators in Γð0Þ. One
absorbs the 1=ϵ constant into the definitions of the co-
efficients, leaving only the logðμÞ dependence. The physi-
cal parameter is identified (at one-loop order) as

αphysi ¼ αiðμÞ þ Bi log
μ

m
; ð4:33Þ

where the generic Bi coefficient is computed from
(4.28)–(4.31), and analogously for γ. Requiring
d
dμ α

phys
i ¼ 0 determines the one-loop beta function for

the Lagrangian parameter

βαi ≡
d

d log μ
αi ¼ −Bi þOðhigher order loopsÞ: ð4:34Þ

The beta functions for the couplings of the F4 and CF2

operators are presented in Sec. V.
Finally, when the renormalization flow is caused by a

massive particle, it stops at the scale μ ¼ m. Below this
scale, we work with the IR EFT (i.e., the Einstein-Maxwell
EFT) in which the only remainder of the charged particles
is the set of finite contributions to the local operators
[see [58] ]. The coefficients in the IR EFT take the form

αIR;i ¼ αUV;i þ Δαfinitei þ Bi log
M
m

ð4:35Þ

and analogously for γ.

V. THE F4 BETA FUNCTIONS AND INFRARED
CONSISTENCY

In this section, we assume that the charged particle is
exactly massless. We compute the 1-loop beta functions
and discuss the F4 renormalization flow.

A. The beta functions

We compute the 1-loop beta functions of the F4 and CF2

operators along the lines presented in Sec. IV C 1. For a
massless spin-1 particle, the corresponding heat kernel

coefficients are given by að1Þi ¼ aðVÞi − 2að0Þi . At zero mass,
the only beta functions of the F4 operators appear for
d ¼ 4, 6, and 8. They are given in Tables I–III.
In d ¼ 4, graviton and photon loops produce an addi-

tional contribution to the R2 operators. Note these are the
loops that cause the d ¼ 4 conformal anomaly in the IR

TABLE II. Beta function of the β coefficient.

Spin

d 0 1
2

1

4 − 19
480π2

1
M4 − 13

320π2
1
M4 − 29

640π2
1
M4

6 1
7680π3

g2q2

M4
1

480π3
g2q2

M4
13

960π3
g2q2

M4

8 − 1
184320π4

g4q4 − 7
11520π4

g4q4 − 41
30720π4

g4q4

TABLE I. Beta function of the α coefficient.

Spin

d 0 1
2

1

4 − 19
480π2

1
M4 − 13

320π2
1
M4 − 29

640π2
1
M4

6 23−50ξ
76800π3

g2q2

M4
13

4800π3
g2q2

M4
661

38400π3
g2q2

M4

8 − 7
184320π4

g4q4 − 1
2880π4

g4q4 − 47
30720π4

g4q4
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EFT [see, e.g., [48,72] ]. Following Sec. II B, in the
Einstein-Maxwell EFT, these loops of gravitons and
photons contribute to the renormalization flow of the F4

operators via diagrams such as

The corresponding graviton contribution to the b4 coef-
ficient is

bgrav4 ¼ 1

180

�
414R2

μν þ
553

4
R2

�

¼ 23

10

�
FμνFνρFρσFσμ −

1

4
ðFμνFμνÞ2

�
; ð5:1Þ

where we have used the Gauss-Bonnet identity (2.22) and
the leading-order Einstein equation (2.9). This corresponds
to 4βgravα̂1

¼ −βgravα̂2
¼ 23

160π2
. Translating to the O; Õ basis,

we obtain the contributions

βgravα ¼ βgravβ ¼ −
23

640π2
: ð5:2Þ

The photon loop contributes by an additional 1
2
að1Þi , where

the 1
2
accounts for the photon being a real vector. Due to the

fact that the graviton and photon are massless, such loops
do not contribute to the running of F4 in other dimensions.

B. Discussion

Whenever the charged particle is massless or if m ≪ M,
the coefficients of the F4 operators at low-energy scales are
controlled by their beta functions. The renormalization flow
washes away any finite correction, that becomes negligible
compared to large logarithms. When m ¼ 0, the running
coefficients at μ ≪ M is

αiðμÞ ≈ Bi log
M
μ
: ð5:3Þ

From Tables I and II, we can see that βjd¼4 and βjd¼8 are
negative for loops of all spins. Therefore, in d ¼ 4, 8, the
coefficients of the O, Õ operators tend to grow positively
when the theory flows towards the infrared. It would be
tempting to conclude that the renormalization flow tends to

make the theory infrared-consistent. However, the positiv-
ity bounds we are using strictly require m ≠ 0 and thus do
not apply in the present case.
In fact, the opposite behavior appears in d ¼ 6. The

spin 1
2
and 1 beta functions are positive for both α and β

coefficients. The scalar beta function for the β coefficient is
positive, as is the beta function for α if ξ < 23

50
. This includes

the conformal coupling value in d ¼ 6, ξ ¼ 1
5
. These

positive beta functions imply that the coefficients of the
O, Õ operators are driven towards negative values at
sufficiently low energy scales. If positivity bounds applied
atm ¼ 0, they would be necessarily violated in the deep IR,
implying that the gravitational EFTs of massless particles in
d ¼ 6 are infrared-inconsistent. Such a strong conclusion is
avoided if none of the positivity bounds apply for m ¼ 0.
Nevertheless, we will see in next section that, in the

presence of a small nonzero mass, the positivity of βjd¼6

tends to create a tension with the positivity bounds. It
would be interesting to find if other ingredients like a
gravitino or nonminimal couplings can make the beta
function negative, along the lines of [33].12

Finally, we find that the sign of the beta function of the
CF2 operator, given in Table III, depends on the spin. This
has no consequence for the positivity bounds we are using.
The sign of the γ coefficient is irrelevant in the positivity
bounds given in, e.g., [44], which involve jγj, and in the
present work we use a simpler positivity bound that is
independent on γ.
The beta function for the C coefficient of the extremality

relation, defined in (3.3), follows the same sign pattern as
βα and ββ.

VI. FINITE CORRECTIONS AND INFRARED
CONSISTENCY

In this section, we assume that the charged particle is
massive, m > 0. Photon scattering at energy scales below
m is described by the infrared EFT, that encodes the finite
corrections induced when integrating out the charged
particle.
For any even dimension, at least some of the coefficients

of the IR EFT receive logarithmic corrections that are large
when m ≪ M. Some of these logarithmic corrections
correspond to the beta functions presented in Sec. V.
The renormalization flow of the massless case is recovered
when takingm → 0 at finite energy or finite μ, and the only
difference occurs in the spin-1 case since there is no
Goldstone boson in the massless case.13

The contributions to the F4 Wilson coefficients in the IR
EFT take the form

TABLE III. Beta function of the γ coefficient in d ¼ 6.

Spin 0 1
2

1

1
5760π3

g2q2

M4 − 1
1440π3

g2q2

M4
13

1152π3
g2q2

M4

12We mention that the a-theorem in d ¼ 6 also presents an
unexpected behavior compared to d ¼ 2, 4; see [73,74].

13The other corrections simply do not exist in the m → 0 limit,
since the charged particle is not integrated out.
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Δα ¼ a
g4q4

m8−d þ b
g2q2

m6−dMd−2 þ
c

m4−dM2d−4 : ð6:1Þ

We define a reduced notation that is used throughout this
section.

A. Reduced notation

The corrections induced by the charged particles are
second order polynomials in q2; see (6.1). In terms of the
charge-to-mass ratio z introduced in (1.4), we have

Δα ¼ 1

m4−dM2d−4

�
az4 þ bz2 þ c

�
; z ¼ gjqj

m
M

d−2
2 :

ð6:2Þ
Note that ½g� ¼ 2 − d

2
and hence z is dimensionless for

any d.
We further define the loop factor

Kd ¼


2dπ

d
2 if d even

2dπ
d−1
2 if d odd

ð6:3Þ

and work with a scaled dimensionless version of (6.2),
given by

Δᾱ ¼ āz4 þ b̄z2 þ c̄≡ Kdm4−dM2d−4Δα: ð6:4Þ

Similar definitions hold for ᾱIR, ᾱUV, βᾱ and for the β
coefficients (i.e., Δβ̄, β̄IR, β̄UV, and ββ̄). The infrared
consistency condition (3.13) is equivalent to

ᾱIR ≥ 0; β̄IR ≥ 0: ð6:5Þ

B. General analysis of positivity

The ᾱIRðzÞ polynomial is defined on Rþ. Due to this
restricted domain, studying the positivity of ᾱIRðzÞ requires
distinguishing various cases that we classify here.
Let ᾱ� be the rightmost extremum of the quartic poly-

nomial ΔᾱðzÞ, namely,

ᾱ� ¼


c̄; if ā b̄ ≥ 0

4ā c̄−b̄2
4ā ; if ā b̄ < 0;

ð6:6Þ

and let 0 ≤ z1 ≤ z2 be the two roots of ᾱIRðzÞ in Rþ.
Depending on the coefficients, the positivity constraint

(6.5) imposes restrictions on the charge-to-mass ratio z,
which are classified into the following cases.
(1) Case ā > 0

(a) If ᾱUV ≥ −ᾱ�, then we have that ᾱIR ≥ 0 holds
for all z ≥ 0.

(i) Case b̄ ≥ 0
If ᾱUV < −ᾱ� ¼ −c̄, then there is a lower bound on z in
the form z ≥ z2 > 0.
(ii) Case b̄ < 0

If ᾱUV < −c̄, then there is a lower bound on z in the
form z ≥ z2 > 0.

If − c̄ ≤ ᾱUV < −ᾱ�, then there is another allowed
region for z, so that z∈ ½0; z1� ∪ ½z2;∞Þ.

(2) Case ā < 0
(a) If ᾱUV < −ᾱ�, then the infrared consistency

condition is violated (i.e., ᾱIR < 0 for all z ≥ 0).
In this case, we say that this value for ᾱUV is
excluded.

(i) Case b̄ ≥ 0
If ᾱUV ≥ −c̄, then there is an upper bound on z in the
form 0 ≤ z ≤ z2.

If −ᾱ� ≤ ᾱUV < −c̄, then there is a lower and an upper
bound on z in the form z1 ≤ z ≤ z2.
(ii) Case b̄ < 0

If ᾱUV ≥ −ᾱ� ¼ −c̄, then there is an upper bound on z in
the form 0 ≤ z ≤ z2.

Case (1) with sufficiently small ᾱUV implies the exist-
ence of a WGC-like bound on z. Conversely, in case
(2) with sufficiently large ᾱUV, z gets always bounded in a
finite region.
For d > 3, we need to consider these conditions for both

O, Õ operators, i.e., for both ᾱIR, β̄IR coefficients, so that
the most restrictive condition dominates. The above analy-
sis applies whether or not logarithmic contributions are
present. This is because the logarithms depend only on the
scale ratio m

M, which can be treated as an independent
quantity with respect to the charge-to-mass ratio z. Also, for
d ≥ 8, the logarithms factor out of the entire polynomial
and are thus irrelevant for the positivity analysis.

C. Positivity bounds and the WGC

This section presents the synthesis of our results for the
relations between positivity bounds and the WGC. We
consider the positivity bounds from infrared consistency of
γγ → γγ (αIR ≥ 0, βIR ≥ 0), discussed in Sec. III C, and
those from extremal black hole decay (CIR > 0), discussed
in Sec. III A. We remind readers that, here, WGC means
specifically that there exists a nonzero Oð1Þ lower bound
for the charge-to-mass ratio, i.e., z ≥ z� > 0 [see (1.4)].
Part of our focus is the dependence of the various relations

with respect to spacetime dimension. As argued in Sec. I, we
take the viewpoint that dimensional dependence is a test of
robustness. A relation that holds in any dmight be profound,
while one that only holds for certain d may be viewed as
more coincidental. The systematic analyses for each dimen-
sion are collected in Appendixes B and C.
The positivity bounds from IR consistency and black

hole decay are fundamentally different. The latter does not
apply for d ¼ 3 and is still a conjecture, while the former is
rigorous.14 Yet, both CIR and αIR, βIR are quadratic in z2,

14Another difference is that the IR consistency bounds are
nonstrict while the black hole bound is strict. This has no practical
consequences.
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and hence, we can apply the analysis of Sec. VI B to all of them. Their relations to the WGC-like bounds turn out to be very
similar, hence we summarize them together.

1. Results for d ≤ 11

The results for Δα, Δβ and ΔC, and the condition on ᾱUV, β̄UV for the WGC-like bounds on z to exist, are collected and
discussed systematically in Appendixes B and C for spacetime dimensions from d ¼ 3 to d ¼ 11. In the scalar case, the
positivity bounds are presented as exclusion regions in the zξ-plane; see Figs. 1–4.
We summarize the results using the following diagram:

Each of the implication arrows in this diagram come with
conditions that are detailed below. The annotations sum-
marize the essential message.

① Infrared consistency and extremal black hole decay
both imply aWGC-like bound for d ¼ 3, 4, 5, 7, 8, 11,
for any spin, if ᾱUV, β̄UV, C̄UV are sufficiently small or
negative. In these dimensions, Δα, Δβ, ΔC are
positive for large enough z; i.e., case (1a) or (1b)
of the general analysis (see VI B) applies. In sharp
contrast, for d ¼ 9, 10, IR consistency does not
imply a WGC-like bound. In these dimensions, Δα,
Δβ, ΔC are negative at large enough z; i.e., case (2a)
or (2b) applies, such that z is bounded in a finite
region.

② The WGC implies IR consistency and extremal black
hole decay for d ¼ 3, 4, 5, 7, 8, 11, unless ᾱUV,
β̄UV, C̄UV are too negative. For d ¼ 9, 10, the
positivity bounds are respected only if the UV
coefficients are positive and large enough for a given
z. A remarkable consequence is that, in d ¼ 9, 10, the
WGC does not imply that extremal black holes can
decay in the IR EFT—this instead must be ensured by
the presence of sufficiently positive Planckian F4

operators.

③ Infrared consistency implies approximately the ex-
tremal black hole decay condition for any d ≥ 4,
independently of the UV operators.

④ Extremal black hole decay implies approximately the
αIR > 0 condition from IR consistency for any d ≥ 4,
independently of the UV operators.

The implications ③, ④ are approximate in the sense that
the expressions forΔα andΔC haveOð1Þ differences in the
z2 and z0 coefficients, however, without qualitative impli-
cations. This can be seen directly at the level of the
expressions for Δα, ΔC in Appendixes B and C. As an
example, for spin 1

2
in d ¼ 5, the bound on z for negligible

UVoperators is z ≥ 2.77 from the IR consistency condition
(see Table IX), while it is z ≥ 2.78 from the black hole
condition (see Table XXIV).15

In the special case of d ¼ 6, we find that implication
① produces WGC-like bounds that are enhanced by affiffiffiffiffiffiffiffiffiffi
logM

m

q
factor. This happens for spin 1

2
, 1, and 0 with ξ > 50

23

15The implications ③ and ④ can also be studied at the level of
the EFT coefficients. In particular, it would be interesting to
investigate the connection to the compactified bounds of [44],
that are slightly stronger than Eq. (3.13). The generalization to
d > 4 requires a thorough analysis that we leave for future work.
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in the Δᾱ case and is a manifestation of the positive beta
functions found in Sec. V (see Appendix B and Table XII).
Conversely, from implication ②, we conclude that there
exists a WGC-like bound that ensures that the d ¼ 6 IR
EFT is infrared-consistent and that extremal black holes
can decay.

2. Results for d > 11

For d > 11, a pattern appears. The higher dimensional
cases are qualitatively analogous to the cases d ¼ 8, 9, 10,
11, mod 4. Furthermore, the cases d ¼ 8 and 11 (respec-
tively, d ¼ 9 and 10) are also similar to each other, up to the
overall factor logM

m which does not imply significant
changes. Each of the analogous cases has the same sign
pattern for ā, b̄, and c̄.

(i) d ¼ 8þ 4n (respectively, d ¼ 11þ 4n), n ¼
1; 2; 3…, is analogous to d ¼ 8 (respectively,
d ¼ 11). Assuming ᾱUV; β̄UV; C̄UV are zero, z is
unbounded for any spin.16

(ii) d ¼ 9þ 4n (respectively, d ¼ 10þ 4n), n ¼
1; 2; 3;…, is analogous to d ¼ 9 (respectively,
d ¼ 10). Similar to d ¼ 9 and 10, taking vanishing
ᾱUV; β̄UV; C̄UV implies a violation of the positivity
constraint for any spin. Nonzero positive ᾱUV, β̄UV
(respectively C̄UV) are then mandatory to ensure IR
consistency (respectively extremal black hole decay).

VII. SUMMARY

We computed the four-photon operators generated by
charged particles in any dimension in the presence of
gravity. We then used consistency conditions from four-
photon scattering and extremal black holes to derive a set of
bounds on the gravitational EFTs of charged particles.
The general setup is a sub-Planckian (i.e., UV) gravita-

tional EFT of a Uð1Þ charged particle of spin 0, 1
2
, or 1. The

EFT Lagrangian features local F4 operators that encode the
effects of the UV completion of quantum gravity on four-
photon scattering. We briefly review some realizations of
these UV F4 operators from strings and branes.
We computed the effect of loops of charged particles

within the UV EFT, with focus on their contributions to four-
photon scattering. From a diagrammatic viewpoint, besides
nongravitational box diagrams that generate F4 operators,
triangles and bubbles of charged particles attached to gravi-
tons generate RF2 and R2 operators. We compute the effect
of all these loops directly via expansion of the one-loop
effective action encoded in the heat kernel coefficients.
The one-loop divergences of the effective action renorm-

alize the F4, RF2 and R2 operators in certain dimensions.

Furthermore, in the case of massive charged particles, the
one-loop effective action provides the IR EFT in which
charged particles are integrated out. Following the standard
rules of EFT, the basis of the F4, RF2, and R2 operators can
be reduced, to some extent, using the equations of motion,
i.e., field redefinitions.
Our focus is ultimately on the physical process of four-

photon scattering. Gravitons contribute at one-loop, but
without self interactions—to the exception of diagrams that
renormalize R2 operators in d ¼ 4. We further use that the
Gauss-Bonnet combination of R2 operators vanishes at quad-
ratic order of graviton fluctuation in any dimension. The
combination of these two facts implies that the basis of EFT
effective operators can be reduced to F4 and CF2 operators
in any dimension in the calculation of 4γ amplitudes.
We provide the general result for the reduced one-loop

effective action for charged particles of spin 0, 1
2
, or 1 in any

dimension. Gravity induces a renormalization flow of the
F4 operator in d ¼ 4, 6, 8 and of CF2 in d ¼ 6 dimensions.
We verified the consistency of our results with some
independent results on d ¼ 3, 4 Einstein-Maxwell theory
from [52,53,68,70,71].
Turning to positivity bounds, we compute four-photon

scattering in any d ≥ 3, and apply a standard infrared con-
sistency argument that provides positivity bounds on the F4

operators.We also compute the bound produced by the condi-
tion that extremal black holes can decay in any dimension
d ≥ 4 [27]. We find that both approaches yield nearly
equivalent results, even though in the amplitudes we discard
the graviton t-channel pole and use the vanishing of the
Gauss-Bonnet term at quadratic order for any d. The bound
obtained without the graviton t-channel is also supported by
independent results from causality in d ¼ 4 [64].
The infrared consistency of four-photon scattering and

the decay of extremal black holes put bounds on the UV
EFT of charged particles, our results are as follows.
In d ¼ 4 and d ¼ 8, the F4 beta functions are negative,

driving F4 to positive values in the infrared. In contrast,
the d ¼ 6 beta function from spin 0, 1

2
, and 1 drives the F4

toward negativity. While for a massless particle, the F4

operator flows to arbitrarily large and negative in the
infrared; there is no immediate inconsistency because our
positivity bounds do not apply for strictly zero m. Still, it
would be interesting to find if some additional ingredient can
reverse the beta function sign, for example, due to the
gravitino or nonminimal couplings along the lines of [33].
For massive charged particles, we investigate the pos-

itivity bounds on the IR EFT in any dimension, with
specific focus on d from 3 to 11. Our results always depend
on the value of the UV F4operators encapsulating unknown
super-Planckian effects. We remain agnostic to its value
a priori, but for concreteness we discuss cases where it is
either negligible or large and positive.

16For spin 0, the bounds on z become independent of ξ; i.e.,
when n ≥ 1, the exclusion region analogous to Fig. 4 becomes
empty.
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The F4 positivity bounds can constrain the charge-to-
mass ratio z provided the UV F4 coefficients are not too
large and positive. The quantities constrained are quadratic
polynomials in z2 defined on Rþ. A variety of bounds
appear depending on the shape of these polynomials. The
bounds on z can be from above or below and can be one or
two-sided, and disjoint domains are also possible.
For d ¼ 3, 4, 5, 7, 8, 11, we find that the positivity

bounds imply Oð1Þ lower bounds on z similar to the
d-dimensional weak gravity conjecture for any spin, and for
sufficiently small or negative ᾱUV, β̄UV. We systematically
present the condition on ᾱUV, β̄UV for the WGC-like
bounds on z to exist. The bounds on the scalar depend
on ξ except in d ¼ 4; they are presented as exclusion
regions in the zξ-plane.
In the specific case of vanishing ᾱUV, β̄UV, or CUV, neat

WGC-like bounds appear, for example, in d ¼ 5 for all
spins. This feature is not general, however. For instance, in
d ¼ 3, the spin 0 and spin 1

2
cases remain unbounded. This

conclusion differs from the one from [40], but simply
because the finite contribution from R2 was ignored or
equivalently absorbed into the UV coefficient in this
reference.
For d ¼ 6, the positivity bounds produce WGC-like

bounds that are enhanced by a
ffiffiffiffiffiffiffiffiffiffi
logM

m

q
factor. This happens

for spin 1
2
, 1, and 0 with ξ > 50

23
in the Δᾱ case, and it is a

manifestation of the positive beta functions found in d ¼ 6.
Finally, for d ¼ 9, 10, it turns out that the logic is

different. The UV coefficient must be large enough for
positivity bounds to be satisfied for a given value of z. In
these cases, z is bounded in a finite range. As a result, even
if the UV coefficients are very large, there is necessarily an
upper bound on the charge multiplied by a power of mass.
For higher dimensions, similar cases arise following a mod
4 pattern. A remarkable implication of these d ¼ 9, 10
results is that the WGC does not imply extremal black hole
decay in the IR EFT.
A general takeaway from our study is that the connection

between positivity bounds (from IR consistency, extremal
black hole decay) and the WGCmay not be so profound, as
it appears to be strongly dimension-dependent.
On the other hand, the approximate correspondence that

we observe in any dimension between the IR consistency
bounds and extremal black hole decay deserves further
investigation. In d ¼ 4, it can be noticed that an IR
consistency bound obtained via the compactification
method of [44], which is slightly more stringent than the
one used here, turns out to match precisely the extremal
black hole bound once both electric and magnetic cases are
taken into account. It would be very interesting to verify
whether this correspondence persists in d > 4, that would
likely hold only up to Oð 1

M4Þ corrections due to the
nonvanishing Gauss-Bonnet contribution to the extremality
relation. This investigation requires, however, a thorough

analysis of the compactification method for higher d, that
we leave for future work.
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APPENDIX A: EXAMPLES OF F4 OPERATORS
FROM STRINGS AND BRANES

The ultraviolet F4 operators are generated in string
theory. For example, the four-photon interaction arising
at low-energy from perturbative open string amplitude in
d ¼ 10, at lowest order in the string coupling gs, can
be found in [75,76]. For large string tension 1

2πα0s
, we

deduce from the string amplitude the following effective
Lagrangian [see also [77] ]:

LF4;string ¼
1

8
gsð2πα0sÞ2

�
FμνFνρFρσFσμ −

1

4
ðFμνFμνÞ2

�
þOðα04s Þ: ðA1Þ

The prediction holds under the compactification of spatial
dimensions; however, in that case, contributions from the
Kaluza-Klein modes should also be taken into account,
which likely dominate the low-energy F4 operators.
The ultraviolet F4 operators also appear in models where

the photon arises from a D-brane, and charged particles
correspond to open strings attached to the brane. This
configuration was shown in [78] to be described by a
Born-Infeld action. We deduce the effective Lagrangian
[see also [79] ]17:

LBI ¼−b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det

�
ημνþ

1

b
Fμν

�s
þb2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðημνÞ

q
ðA2Þ

¼ −
1

4
FμνFμν þ

1

8b2

�
FμνFνρFρσFσμ −

1

4
ðFμνFμνÞ2

�
þOðb−3Þ: ðA3Þ

17In d ¼ 4, we recover the original BI Lagrangian LBI ¼
b2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2b F
μνFμν − 1

4b2 ðF̃μνFμνÞ2
q �

[80].
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In the result of [78], upon suitable field normalization, one
obtains b−2 ¼ gsð2πα0sÞ that exactly reproduces the overall
coefficient in LF4;string.

Once expressed in the O, Õ basis, the specific combina-
tion of F4 operators generated by the string models implies

αUV ¼ βUV > 0 ðA4Þ

in any dimension. Such a positivity bound is not surprising.
Since string theory must be a consistent completion of
quantum gravity, the Planckian F4 operators have to satisfy
the positivity bound regardless of the presence of light
fields in the theory, which implies Eq. (A4).
The F4 operator can also appear in compact extra

dimension models with the photon localized on a brane.
In that case, a universal tree-level contribution comes from
the Kaluza-Klein graviton exchange, i.e., the massive
version of the tree diagram (3.9). Each massive graviton

hðnÞμν couples to the brane-localized photon stress tensor,R
brane

ffiffiffi
g

p
indh

ðnÞ
μν Tμν. The F4 operators are generated by

integrating out the massive gravitons, whose propagator

is GðnÞ
μν;ρσ ¼ −i

p2þm2
n
ð1
2
ðPðnÞ

μρ P
ðnÞ
νσ þ PðnÞ

μσ P
ðnÞ
νρ Þ − 1

d−1P
ðnÞ
μν P

ðnÞ
ρσ Þ

with PðnÞ
μν ¼ ημν −

pμpν

m2
n
. In the EFT, these massive gravitons

generate the operator

Lgrav ∝ TμνTμν −
1

d − 1
T2

∝ FμνFνρFρσFσμ −
dþ 8

16ðd − 1Þ
�
FμνFμν

�
2: ðA5Þ

The subsequent αUV, βUV coefficients turn out to be
positive for any d ≥ 3. In the d ¼ 4 case, the combination
becomes FμνFνρFρσFσμ − 1

4
FμνFμν as in the string case.

This matches the results from [67,81].
Even though the above results suggest positivity of the

αUV, βUV coefficients in the ultraviolet EFT, we should
keep in mind that negative contributions do exist, for
instance, from charged KK modes, as can be seen from
our massive results from Sec. VI. In this work, we do not
systematically evaluate the contributions that appear upon
compactification. Our approach is to remain fully agnostic
about the values of αUV, βUV.

APPENDIX B: DETAILED BOUNDS FROM
INFRARED CONSISTENCY

We discuss the consequences of IR consistency for each
spacetime dimension. The results follow a pattern at large
dimension. Lower dimensions require separate discussion,
and we cover the cases from d ¼ 3 to d ¼ 11. In the
following, we report systematically the implications of the
positivity bounds (6.5) while remaining agnostic about
the values of αUV, βUV.

1. Case d = 3

The values of Δᾱ are presented in Table IV. We remind
readers that there is only one independent operator in
d ¼ 3, chosen to be FμνFμν with reduced coefficient
ᾱIR ¼ ᾱUV þ Δᾱ.
From Table IV, we have ā > 0, c̄ > 0 for all spins, b̄ < 0

for spin 1
2
and 1, and signðb̄Þ ¼ signð1 − 10ξÞ for spin 0.

Therefore, cases (1a) and (1b) from the classification in
Sec. VI B apply. It follows that the positivity bound ᾱIR ≥ 0
can constrain the charge-to-mass ratio z depending on the
value of the UV coefficient ᾱUV. The exact condition for the
existence of a bound on z is shown in Table V.
We see that for spin 1

2
, and for spin 0 with any ξ, ᾱUV has

to be sufficiently negative in order for z to be bounded. For
spin 1, z can be bounded for small positive ᾱUV.
As an example, we may consider the specific case where

ᾱUV is negligible, setting ᾱUV ¼ 0. For spin 1
2
, we have

ᾱUV ¼ 0 ≥ − 1
256

¼ ᾱ�, thus ᾱIR ≥ 0; ∀ z∈Rþ, and hence
z is unbounded. On the other hand, for spin 1, we have
ᾱUV ¼ 0 < 23

762
¼ ᾱ�, so that z is bounded on a region

½0; z1� ∪ ½z2;∞Þ, corresponding to the second case of (1b).
In the spin-0 case, for any ξ, the ᾱUV coefficient has to be
negative to produce a bound, therefore z is unbounded.
Our expressions from Table V reproduce the ones from

[42] upon neglecting the c̄ coefficient and changing the
convention for z.18 Our conclusions for αUV ¼ 0 differ from
those in [42] due to the c̄ contribution—originating from
the R2 operator, which is not taken into account in [42]. As
seen above, the c̄ contribution crucially favors positivity.
The case studied in [42] is instead exactly recovered from
our results by tuning ᾱUV þ c̄ to zero.

TABLE IV. Reduced coefficient Δᾱ in d ¼ 3.

Spin Δᾱ

0 7z4
1920

þ ð1−10ξÞz2
480

þ 60ξ2−20ξþ3
480

1
2

z4
240

− z2
480

þ 1
240

1 127z4
960

− 11z2
60

þ 1
30

TABLE V. Condition for the existence of IR consistency
bounds on the charge-to-mass ratio z and IR consistency bounds
on z if ᾱUV ¼ 0 in d ¼ 3.

Spin Condition for z bounded Bound if ᾱUV ¼ 0

0 ᾱUV <



− 60ξ2−20ξþ3

480
if ξ ≤ 1

10

− 16ξ2−6ξþ1
168

if ξ > 1
10

Unbounded

1
2

ᾱUV < − 1
256

Unbounded

1 ᾱUV < 23
762

z ≤ 0.464 or z ≥ 1.08

18In [42], for d ¼ 3, the convention M ¼ 1
2
is used and z is

defined as jqj
m . This differs from our definition of z by a factor of

ffiffiffi
2

p
.
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2. Case d = 4

The values of Δᾱ, Δβ̄ are presented in Table VI. The
scalar case is independent of ξ in d ¼ 4 due to the vanishing
of the trace of the stress tensor; see (2.10). The c̄ coefficient
originating from R2 features a logarithm that corresponds to
the effect of the 4d beta function shown in Tables I and II.
From Table VI we have that both ā and c̄ are positive and

b̄ negative for any spin, for both Δᾱ and Δβ̄. We are thus in
case (1b). A bound on z appears if ᾱUV or β̄UV is sufficiently
negative, and the exact condition is given in Table VII. As
an example, we may consider the specific case where ᾱUV,
β̄UV are negligible, setting ᾱUV ¼ 0, β̄UV ¼ 0. Assuming
that M

m ≳ 50, z is unbounded for any spin.
Our results reproduces those from [42] for d ¼ 4 when

ignoring the logarithmic term (i.e., c̄) or absorbing it into
ᾱUV, β̄UV and changing the convention for z.19 Accordingly,
the special case considered in [42] is exactly reproduced
here by tuning ᾱUV þ c̄ ¼ 0.

3. Case d = 5

The values of Δᾱ, Δβ̄ are presented in Table VIII. We
have ā > 0, c̄ < 0 for all spins, for both Δᾱ, Δβ̄ and any ξ.
We have b̄ < 0 for spin 1

2
and 1, and for spin 0 we have

b̄ < 0 for Δβ̄ and signðb̄Þ ¼ signð3 − 5ξÞ for Δᾱ. We are
thus in cases (1a) and (1b). A bound on z appears if ᾱUV or
β̄UV is sufficiently small, and the exact condition is given in
Table IX.
As an example, we may consider the specific case where

ᾱUV, β̄UV are negligible, setting ᾱUV ¼ 0, β̄UV ¼ 0. We
obtain WGC-like bounds for all spins, as shown in

Table XXIX. In the spin-0 case, the bound is ξ-dependent.
Positivity excludes a region in the zξ-plane, as shown in
Fig. 1. For reference, we include in Fig. 1 and in analogous
figures in higher dimensions the value of ξ for which the
scalar is conformally coupled ifm → 0. The allowed region
in Fig. 1 has a critical point to the left, which imposes a
lower bound on the charge-to-mass ratio for all ξ. The

subsequent WGC bound for all ξ is z ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13þ ffiffiffiffiffiffi

937
p
18

q
≈ 1.56.

TABLE VI. Reduced coefficient Δᾱ, Δβ̄ in d ¼ 4.

Spin Δᾱ Δβ̄

0 7z4
1440

− z2
180

þ 1
120

logM
m

z4
1440

− z2
180

þ 1
120

logM
m

1
2

z4
90
− 11z2

360
þ 1

40
logM

m
7z4
360

− 11z2
360

þ 1
40
logM

m

1 29z4
160

− 31z2
60

þ 13
120

logM
m

27z4
160

− 31z2
60

þ 13
120

logM
m

TABLE VII. Condition for the existence of IR consistency
bounds on the charge-to-mass ratio z in d ¼ 4.

Spin Condition for z bounded

0 ᾱUV < 1
630

− 1
120

logM
m or β̄UV < 1

90
− 1

120
logM

m
1
2

ᾱUV < 121
5760

− 1
40
logM

m or β̄UV < 121
10080

− 1
40
logM

m

1 ᾱUV < 961
2610

− 13
120

logM
m or β̄UV < 961

2610
− 13

120
logM

m

TABLE VIII. Reduced coefficients Δᾱ and Δβ̄ in d ¼ 5.

Spin Δᾱ Δβ̄

0 7z4
2880

− ð3−5ξÞz2
360

− 60ξ2−20ξþ23
2160

z4
2880

− z2
216

− 1
120

1
2

z4
180

− 7z2
180

− 4
135

7z4
720

− 7z2
216

− 1
40

1 67z4
720

− 197z2
360

− 151
1080

61z4
720

− 25z2
54

− 7
60

TABLE IX. Condition for the existence of IR consistency
bounds on the charge-to-mass ratio z and IR consistency bounds
on z if ᾱUV ¼ β̄UV ¼ 0 in d ¼ 5.

Spin Condition for z bounded
Bound if
ᾱUV ¼ 0

Bound if
β̄UV ¼ 0

0 ᾱUV <



60ξ2−20ξþ23

2160
if ξ ≥ 3

5
720ξ2−500ξþ269

15120
if ξ < 3

5

Fig. 1 z ≥ 3.87

or β̄UV < 77
3240

1
2

ᾱUV < 211
2160

or β̄UV < 337
6480

z ≥ 2.77 z ≥ 1.99

1 ᾱUV < 136661
144720

or β̄UV < 74029
98820

z ≥ 2.48 z ≥ 2.39

FIG. 1. Infrared consistency bounds on the charged spin 0
particle in d ¼ 5.

19In [42], for d ¼ 4, the conventionM2 ¼ 1
2
is used. Hence, the

definition of z differs from ours by a factor of 2.
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4. Case d = 6

The values of Δᾱ, Δβ̄ are presented in Table X. The b̄
and c̄ coefficients originating, respectively, from F2R and
R2 feature a logarithm that corresponds to the effect of the
6d beta function from Tables I and II. This logarithm will in
turn influence the WGC-like bounds, as discussed below.
From Table X, we have ā > 0, c̄ < 0 for all spins, for

both Δᾱ, Δβ̄ and any ξ. We have b̄ < 0 for spin 1
2
and 1,

and for spin 0 we have b̄ < 0 for Δβ̄ and signðb̄Þ ¼
signð50ξ − 23Þ for Δᾱ. We are thus in cases (1a) and (1b).

A bound on z appears if ᾱUV or β̄UV is sufficiently small,
and the exact condition is given in Table XI.
As an example, we may consider the specific case where

ᾱUV, β̄UV is negligible, setting ᾱUV ¼ 0, β̄UV ¼ 0. We
obtain WGC-like bounds for all spins, that depend on
logM

m. We focus on the regime where logM
m ≫ 1, and the

results are shown in Table XII. The bounds presented are
weaker than those obtained for small logM

m and thus hold
for any value of M

m.
We emphasize that the logarithmic enhancement occur-

ring in the bounds is tied to the positive sign of the 6d beta
functions. While the positive beta functions lead to stronger
bounds on z at large logM

m, negative beta functions would
lead to weaker bounds on z, that are independent of the
logarithm.
In the spin-0 case, the ξ-dependent bound is shown in

Fig. 2, where logM
m was set to 100 to plot the exclusion

region. The allowed region in Fig. 2 has a critical point to
the left which imposes a lower bound for the charge-to-
mass ratio for all ξ. This critical lower bound increases with

logM
m, converging to the limit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
880þ5

ffiffiffiffiffiffiffiffiffi
93410

p
1007

q
≈ 1.55. For

TABLE X. Reduced coefficients Δᾱ and Δβ̄ in d ¼ 6.

Spin Δᾱ Δβ̄

0 7z4
1440

−
�
ð23−50ξÞz2

1200
þ 15ξ2−5ξþ3

240

�
logM

m
z4

1440
−
�
z2
120

þ 1
120

�
logM

m

1
2

z4
45
−
�
13z2
75

þ 31
480

�
logM

m
7z4
180

−
�
2z2
15

þ 1
20

�
logM

m

1 55z4
288

−
�
269z2
240

þ 1
6

�
logM

m
49z4
288

−
�
7z2
8
þ 1

8

�
logM

m

TABLE XI. Conditions for the existence of bounds on z in d ¼ 6.

Spin Condition for z bounded

0

(
ᾱUV < 15ξ2−5ξþ3

240
logM

m if ξ > 23
50

ᾱUV <
�
15ξ2−5ξþ3

240
þ ð23−50ξÞ2

28000
logM

m

�
logM

m if ξ ≤ 23
50

or β̄UV <
�

1
120

þ 1
40
logM

m

�
logM

m

1
2 ᾱUV <

�
31
480

þ 169
500

logM
m

�
logM

m or β̄UV <
�
1
20
þ 4

35
logM

m

�
logM

m

1 ᾱUV <
�
1
6
þ 72361

44000
logM

m

�
logM

m or β̄UV <
�
1
8
þ 9

8
logM

m

�
logM

m

FIG. 2. Infrared consistency bounds on the charged spin 0
particle in the regime logM

m ≫ 1 (here with logM
m ¼ 100) in d ¼ 6.

TABLE XII. IR consistency bounds on z if ᾱUV ¼ β̄UV ¼ 0 and
logM

m ≫ 1 in d ¼ 6.

Spin Bound if ᾱUV ¼ 0 Bound if β̄UV ¼ 0

0 Fig. 2 z ≥ 3.46
ffiffiffiffiffiffiffiffiffiffi
logM

m

q
1
2 z ≥ 2.79

ffiffiffiffiffiffiffiffiffiffi
logM

m

q
z ≥ 1.85

ffiffiffiffiffiffiffiffiffiffi
logM

m

q
1 z ≥ 2.42

ffiffiffiffiffiffiffiffiffiffi
logM

m

q
z ≥ 2.27

ffiffiffiffiffiffiffiffiffiffi
logM

m

q
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smaller logM
m, the bound is only slightly weaker, with, e.g.,

z ≥ 1.27 if logM
m ¼ 1, which holds for any logM

m ≥ 1 and
any ξ. Finally, if ξ ≤ 23

50
, the WGC-like bound strengthens to

z ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð23−50ξÞ

35
logM

m

q
, which holds for any value of M

m,

analogous to other bounds in Table XII.

5. Case d = 7

The values of Δᾱ, Δβ̄ are presented in Table XIII. We
have ā > 0, c̄ > 0 for all spins, for both Δᾱ, Δβ̄ and any ξ.
We have b̄ > 0 for spin 1

2
and 1, and for spin 0 we have

b̄ > 0 for Δβ̄ and signðb̄Þ ¼ signð37 − 90ξÞ for Δᾱ. We are
thus in cases (1a) and (1b). A bound on z appears if ᾱUV or
β̄UV is sufficiently small, and the exact condition is given in
Table XIV.
As an example, we consider the specific case ᾱUV ¼ 0,

β̄UV ¼ 0. For spin 1
2
, we are in case (1a) with ᾱ� > 0, hence

z is unbounded. For spin 1, we are in case (1b) with
−ᾱ� > 0. As a result, z is bounded to two disjoint regions,
with the one at larger z being WGC-like. For spin 0, the Δβ̄
does not constrain z, while a ξ-dependent bound exists from
Δᾱ. This is shown in Fig. 3.
This region in Fig. 3 has critical points on the left and

bottom. If z ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11þ ffiffiffiffiffiffi

257
p
10

q
≈ 1.64, then ᾱIR ≥ 0; ∀ ξ; and if

ξ ≤ 225þ ffiffiffiffiffiffiffiffiffi
26985

p
360

≈ 1.08, then ᾱIR ≥ 0; ∀ z. Conversely,
when ξ > 1.08, the domain of z is restricted to two disjoint
regions, corresponding to the −c̄ ≤ ᾱUV < −ᾱ� case in
(1b). The domain at larger z is WGC-like.

6. Case d = 8

The values of Δᾱ, Δβ̄ are presented in Table XV. All
coefficients feature a logarithm corresponding to the effect
of the 8d beta function shown in Tables I and II.
From Table XV, we have ā > 0 and c̄ > 0 in all cases.

We have b̄ < 0 for spin 1 for both Δᾱ and Δβ̄, and b̄ > 0

for both spin 1
2
and 0 forΔβ̄, while forΔᾱwe have b̄ > 0 for

TABLE XIII. Reduced coefficients Δᾱ and Δβ̄ in d ¼ 7.

Spin Δᾱ Δβ̄

0 7z4
1440

þ ð37−90ξÞz2
1800

þ 540ξ2−180ξþ83
9000

z4
1440

þ 7z2
900

þ 1
180

1
2

z4
45
þ 83z2

450
þ 17

375
7z4
180

þ 61z2
450

þ 1
30

1 47z4
240

þ 57z2
50

þ 287
2250

41z4
240

þ 127z2
150

þ 4
45

TABLE XIV. Condition for the existence of IR consistency
bounds on the charge-to-mass ratio z and IR consistency bounds
on z if ᾱUV ¼ β̄UV ¼ 0 in d ¼ 7.

Spin Condition for z bounded
Bound if
ᾱUV ¼ 0

Bound if
β̄UV ¼ 0

0
ᾱUV <



− 540ξ2−180ξþ83

9000
if ξ ≤ 37

90
1080ξ2−1350ξþ197

15750
if ξ > 37

90

Fig. 3 Unbounded

or β̄UV < − 1
180

1
2

ᾱUV < − 17
375

or β̄UV < − 1
30

Unbounded Unbounded

1 ᾱUV < − 287
2250

or β̄UV < − 4
45

Unbounded Unbounded

FIG. 3. Infrared consistency bounds on the charged spin 0
particle in d ¼ 7.

TABLE XV. Reduced coefficients Δᾱ and Δβ̄ in d ¼ 8.

Spin Δᾱ Δβ̄

0
�
7z4
720

þ ð27−70ξÞz2
1260

þ 15ξ2−5ξþ2
270

�
logM

m

�
z4
720

þ z2
135

þ 1
240

�
logM

m

1
2

�
4z4
45

þ 121z2
315

þ 19
270

�
logM

m

�
7z4
45

þ 37z2
135

þ 1
20

�
logM

m

1
�
289z4
720

þ 1459z2
1260

þ 29
270

�
logM

m

�
247z4
720

þ 112z2
135

þ 17
240

�
logM

m

TABLE XVI. Condition for the existence of IR consistency
bounds on the charge-to-mass ratio z and IR consistency bounds
on z if ᾱUV ¼ β̄UV ¼ 0 in d ¼ 8.

Spin Condition for z bounded
Bound if
ᾱUV ¼ 0

Bound if
β̄UV ¼ 0

0
ᾱUV < logM

m

(
− 15ξ2−5ξþ2

270
if ξ ≤ 27

70
882ξ2−1582ξþ163

37044
if ξ > 27

70

Fig. 4 Unbounded

or β̄UV < − 1
240

logM
m

1
2

ᾱUV < − 19
270

logM
m or β̄UV < − 1

20
logM

m
Unbounded Unbounded

1 ᾱUV < − 29
270

logM
m or β̄UV < − 17

240
logM

m
Unbounded Unbounded
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spin 1
2
and signðb̄Þ ¼ signð70ξ − 27Þ for spin 0. We are thus

in cases (1a) and (1b). A bound on z appears if ᾱUV or β̄UV
are sufficiently small, the exact condition is given in
Table XVI.
As an example, we consider the specific case ᾱUV ¼ 0,

β̄UV ¼ 0. For spin 1
2
and 1, we are in case (1a) for both Δᾱ

and Δβ̄; hence, z is unbounded. For spin 0, Δβ̄ does
not constrain z, while a ξ-dependent bound exists from Δᾱ.
It is shown in Fig. 4. The region in Fig. 4 has critical

points to the left and bottom. If z ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
92þ5

ffiffiffiffiffiffi
562

p
63

q
≈ 1.83, we

have ᾱIR > 0, ∀ ξ; and if ξ ≤ 113þ ffiffiffiffiffiffiffi
9835

p
126

≈ 1.68, we have
ᾱIR > 0, ∀ z. Conversely, when ξ > 1.68, the domain of z
is restricted to two disjoint regions, corresponding to the
−c̄ ≤ ᾱUV < −ᾱ� case in (1b). The domain at larger z is
WGC-like.

7. Case d = 9

The values of Δᾱ, Δβ̄ are presented in Table XVII. We
have ā < 0, c̄ < 0 for all spins, for both Δᾱ, Δβ̄ and any ξ.
We have b̄ < 0 for spin 1

2
and 1, and for spin 0 we have

b̄ > 0 for Δβ̄ and signðb̄Þ ¼ signð100ξ − 37Þ for Δᾱ. We
are thus in cases (2a) and (2b). The positivity bounds are
satisfied if ᾱUV and β̄UV are sufficiently large and for a finite
range of z. That is, z always features an upper bound in
d ¼ 9. The exact condition for having IR consistency for
some z is given in Table XVIII.
As a first example, we consider the specific case

ᾱUV ¼ 0, β̄UV ¼ 0. For spin 1
2
, 1 and for the Δβ̄ coefficient

of spin 0, we are in case (2b) with −ᾱ� ¼ −c̄ > 0; hence,
these cases are fully excluded.
A second example is to consider ᾱUV; β̄UV ≫ 1. In that

case, for any spin, there is an upper bound on z. The bounds
take the form z < C̄ðᾱ1=4UV ; β̄

1=4
UVÞwith C̄ ¼ ð−āÞ−1=4, and the

exact values are given in Table XVIII. Translating to the
nonreduced notation, we have the bound

gjqjm1
4 < Cα1=4UV ðB1Þ

with C ¼ C̄K1=4
9 , and similarly for βUV. This upper bound

on gjqj is independent of the strength of gravity, depending
only on the UV coefficient.
The bound (B1) may be compared to strong coupling

estimates of EFT coefficients. Ignoring all loop factors for
simplicity, we have αUV ∼ Λ−9, m < Λ, with Λ being the

TABLE XVII. Reduced coefficients Δᾱ and Δβ̄ in d ¼ 9.

Spin Δᾱ Δβ̄

0 − 7z4
720

− ð37−100ξÞz2
2520

− 1500ξ2−500ξþ183
44100

− z4
720

− z2
210

− 1
450

1
2 − 4z4

45
− 83z2

315
− 424

11025
− 7z4

45
− 58z2

315
− 2

75

1 − 37z4
90

− 247z2
315

− 1397
22050

− 31z4
90

− 172z2
315

− 1
25

TABLE XVIII. Condition to have IR consistency for some z and IR consistency bounds on z if ᾱUV ¼ β̄UV ¼ 0 or
ᾱUV; β̄UV ≫ 1 in d ¼ 9.

Spin Necessary condition for IR consistency
Bound if

ᾱUV ¼ β̄UV ¼ 0

Bound if
ᾱUV; β̄UV ≫ 1

0
ᾱUV ≥



− 8000ξ2−23000ξþ1721

1234800
if ξ ≥ 37

100
1500ξ2−500ξþ183

44100
if ξ < 37

100

Excluded z ≤ 3.18ᾱ1=4UV

z ≤ 5.18β̄1=4UV

or β̄UV ≥ 1
450

1
2

ᾱUV ≥ 424
11025

or β̄UV ≥ 2
75

Excluded z ≤ 1.83ᾱ1=4UV

z ≤ 1.59β̄1=4UV

1 ᾱUV ≥ 1397
22050

or β̄UV ≥ 1
25

Excluded z ≤ 1.25ᾱ1=4UV

z ≤ 1.31β̄1=4UV

FIG. 4. Infrared consistency bounds on the charged spin 0
particle in d ¼ 8.
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EFT cutoff. The bound (B1) is less constraining than the
strong coupling estimate gjqj ∼ Λ−5=2 except if m ∼ Λ.
Conversely, in a weakly coupled UV completion, with,
e.g., αUV ∼ λ

Λ9, λ ≪ 1, the bound (B1) can easily be
constraining—while maintaining the assumption ᾱUV ≫ 1,
i.e., αUV ≫ m5

M14.

8. Case d = 10

The values of Δᾱ, Δβ̄ are presented in Table XIX. All
coefficients feature a logarithm. The sign pattern is exactly
the same as that for d ¼ 9. As a result, similar conclusions
follow: IR consistency is satisfied if ᾱUV and β̄UV are large
enough; see Table XX. Moreover, z is always bounded
from above, as exemplified in Table XX. Translating to the
nonreduced notation, we obtain the upper bound

gjqjm1
2 < Cα1=4UV ðB2Þ

with C ¼ C̄K1=4
10 and similarly for βUV.

9. Case d = 11

The values of Δᾱ, Δβ̄ are presented in Table XXI. We
have ā > 0, c̄ > 0 for all spins, for both Δᾱ, Δβ̄ and any ξ.
We have b̄ > 0 for spin 1

2
and 1, and for spin 0 we have

b̄ > 0 for Δβ̄ and signðb̄Þ ¼ signð123 − 350ξÞ for Δᾱ. We
are thus in cases (1a) and (1b). A bound on z appears if ᾱUV
or β̄UV is sufficiently small, and the exact condition is given
in Table XXII. The sign pattern is similar to d ¼ 7.

TABLE XX. Condition to have IR consistency for some z and IR consistency bounds on z if ᾱUV ¼ β̄UV ¼ 0 or
ᾱUV; β̄UV ≫ 1 in d ¼ 10.

Spin Necessary condition for IR consistency
Bound if

ᾱUV ¼ β̄UV ¼ 0

Bound if
ᾱUV; β̄UV ≫ 1

0
ᾱUV ≥ logM

m

(
− 4860ξ2−29700ξþ1597

2903040
if ξ > 97

270
270ξ2−90ξþ31

11520
if ξ ≤ 97

270

Excluded z ≤
�

720
7 logMm

ᾱUV
�1

4

z ≤
�

720
logMm

β̄UV
�1

4

or β̄UV ≥ 1
720

logM
m

1
2

ᾱUV ≥ 47
960

logM
m or β̄UV ≥ 1

30
logM

m
Excluded z ≤

�
45

8 logMm
ᾱUV

�1
4

z ≤
�

45
14 logMm

β̄UV
�1

4

1 ᾱUV ≥ 499
11520

logM
m or β̄UV ≥ 19

720
logM

m
Excluded z ≤

�
720

293 logMm
ᾱUV

�1
4

z ≤
�

240
83 logMm

β̄UV
�1

4

TABLE XIX. Reduced coefficients Δᾱ and Δβ̄ in d ¼ 10.

Spin Δᾱ Δβ̄

0 −
�
7z4
720

þ ð97−270ξÞz2
8640

þ 270ξ2−90ξþ31
11520

�
logM

m −
�

z4
720

þ z2
288

þ 1
720

�
logM

m

1
2 −

�
8z4
45

þ 109z2
270

þ 47
960

�
logM

m −
�
14z4
45

þ 5z2
18

þ 1
30

�
logM

m

1 −
�
101
240

þ 1721z2
2880

þ 499
11520

�
logM

m −
�
83z4
240

þ 13z2
32

þ 19
720

�
logM

m

TABLE XXII. Condition for the existence of IR consistency
bounds on the charge-to-mass ratio z and IR consistency bounds
on z if ᾱUV ¼ β̄UV ¼ 0 in d ¼ 11.

Spin Condition for z bounded
Bound if
ᾱUV ¼ 0

Bound if
β̄UV ¼ 0

0
ᾱUV <

(
− 2940ξ2−980ξþ323

255150
if ξ ≤ 123

350

− 9700ξ−358
2278125

if ξ > 123
350

Unbounded Unbounded

or β̄UV < − 1
1575

1
2

ᾱUV < − 2896
127575

or β̄UV < − 8
525

Unbounded Unbounded

1 ᾱUV < − 548
25515

or β̄UV < − 4
315

Unbounded Unbounded

TABLE XXI. Reduced coefficients Δᾱ and Δβ̄ in d ¼ 11.

Spin Δᾱ Δβ̄

0 7z4
1080

þ ð123−350ξÞz2
20250

þ 2940ξ2−980ξþ323
255150

z4
1080

þ 11z2
6075

þ 1
1575

1
2

16z4
135

þ 2216z2
10125

þ 2896
127575

28z4
135

þ 904z2
6075

þ 8
525

1 31z4
108

þ 656z2
2025

þ 548
25515

25z4
108

þ 262z2
1215

þ 4
315
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Consider the specific case ᾱUV ¼ β̄UV ¼ 0. For spin 1
2
and

1, we are in case (1a) with ᾱ� > 0; hence, z is unbounded.
For spin 0, Δβ̄ does not constrain z, while a ξ-dependent
bound would be expected from Δᾱ. However, as in d ¼ 3,
for every ξ, the coefficient ᾱUV must be negative20 to
generate a bound on z; hence, z is unbounded in this case.

APPENDIX C: DETAILED BOUNDS FROM
EXTREMAL BLACK HOLES

We present the results from extremal black hole decay
for each spacetime dimension. The discussion follows the
same structure as that in Appendix B and does not need to
be repeated.

1. Coefficients

Translating Eq. (B.15) of [27] to our operator basis and
conventions, we obtain the CIR coefficient:

CIR ¼ α1 þ
α2
2
þ ðd − 4Þ2α3 þ ð2d2 − 11dþ 16Þα4

4ðd − 2Þ2

þ ð2d3 − 16d2 þ 45d − 44Þα5
2ðd − 3Þðd − 2Þ2

þ ðd − 4Þα6 þ ðd − 3Þðα7 þ α8Þ
2ðd − 2Þ : ðC1Þ

Using the formalism of Sec. III A, we have CIR ¼
CUV þ ΔC, where the correction ΔC produced by charged
particles takes the form

ΔCðsÞ ¼ 1

ð4πÞd=2
	
g4q4

m8−d Γ
�
4 −

d
2

�
aðsÞC

þ g2q2

m6−dMd−2 Γ
�
3 −

d
2

�
bðsÞC

þ 1

m4−dM2d−4 Γ
�
2 −

d
2

�
cðsÞC



: ðC2Þ

The coefficients for each spin are

að0ÞC ¼ 7

1440
; bð0ÞC ¼ ð30ξ − 11Þd − 120ξþ 38

720ðd − 2Þ ;

ðC3aÞ

að1=2ÞC ¼ n
360

; bð1=2ÞC ¼ −
n

1440

19d − 52

ðd − 2Þ ; ðC3bÞ

að1ÞC ¼ 7dþ 233

1440
; bð1ÞC ¼ −

11d2 þ 401d − 1162

720ðd − 2Þ :

ðC3cÞ

cð0ÞC ¼ 1

1440

	
2ð3−dÞð2d2− 11dþ 16Þ

ðd− 3Þðd− 2Þ2

þ 4ð2d3− 16d2þ 45d− 44Þ
ðd− 3Þðd− 2Þ2 þ 5ð1− 6ξÞ2ðd− 4Þ2

ðd− 2Þ2


;

ðC4aÞ

cð1=2ÞC ¼ n
11520

39d3 − 305d2 þ 822d − 760

ðd − 3Þðd − 2Þ2 ; ðC4bÞ

cð1ÞC ¼ 1

1440

9d4 þ 86d3 − 1073d2 þ 3118d − 2800

ðd − 3Þðd − 2Þ2 :

ðC4cÞ

2. Bounds

We apply the positivity analysis performed on the α
and β coefficients in Sec. VI, but now on the C coefficient
of the black hole charge-to-mass ratio. We present
in Tables XXIII–XXX the results from d ¼ 4 to d ¼ 11,

TABLE XXV. Reduced coefficients ΔC̄ and extremal black
hole decay bounds on z if C̄UV ¼ 0 in d ¼ 6.

Spin ΔC̄ Bound if C̄UV ¼ 0

0 7z4
1440

−
�
ð7−15ξÞz2

360
þ 135ξ2−45ξþ16

2160

�
logM

m
Similar to Fig. 2

1
2

z4
45
−
�
31z2
180

þ 101
2160

�
logM

m
z ≥ 2.78 logM

m

1 55z4
288

−
�
41z2
36

þ 47
216

�
logM

m
z ≥ 2.44 logM

m

TABLE XXIV. Reduced coefficient ΔC̄ and extremal black
hole decay bounds on z if C̄UV ¼ 0 in d ¼ 5.

Spin ΔC̄ Bound if C̄UV ¼ 0

0 7z4
2880

− ð17−30ξÞz2
2160

− 12ξ2−4ξþ3
432

Fig. 5

1
2

z4
180

− 43z2
1080

− 5
216

z ≥ 2.78

1 67z4
720

− 559z2
1080

− 13
72

z ≥ 2.43

TABLE XXIII. Reduced coefficient ΔC̄ in d ¼ 4.

Spin ΔC̄

0 7z4
1440

− z2
240

þ 1
120

logM
m

1
2

z4
90
− z2

30
þ 1

40
logM

m

1 29z4
160

− 103z2
240

þ 13
120

logM
m

20Different from d ¼ 3, a curious cancellation of the ξ2 term
occurs in the condition for z bounded with ξ > 123

350
. Despite this

cancellation, for any ξ in this domain, the Δᾱ coefficient has to be
negative to produce a bound.
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FIG. 5. Extremal black hole decay bounds on the charged spin 0 particle if C̄UV ¼ 0 in d ¼ 5, 9, 10.

TABLE XXVI. Reduced coefficients ΔC̄ and extremal black
hole decay bounds on z if C̄UV ¼ 0 in d ¼ 7.

Spin ΔC̄ Bound if C̄UV ¼ 0

0 7z4
1440

þ ð13−30ξÞz2
600

þ 45ξ2−15ξþ4
750

Similar to Fig. 3

1
2

z4
45
þ 9z2

50
þ 571

18000
Unbounded

1 47z4
240

þ 91z2
75

þ 1463
9000

Unbounded

TABLE XXVII. Reduced coefficients ΔC̄ and extremal black
hole decay bounds on z if C̄UV ¼ 0 in d ¼ 8.

Spin ΔC̄ Bound if C̄UV ¼ 0

0
�
7z4
720

þ ð5−12ξÞz2
216

þ 300ξ2−100ξþ23
5400

�
logM

m
Similar to Fig. 4

1
2

�
4z4
45

þ 10z2
27

þ 29
600

�
logM

m
Unbounded

1
�
289z4
720

þ 275z2
216

þ 179
1350

�
logM

m
Unbounded
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in the same format as those presented in Sec. VI for the
analysis of amplitudes.
Finally, we present the exclusion region in the zξ-plane

for d ¼ 5 to exemplify the similarity with the results from
amplitude consistency; see Fig. 1. We also show the figures
for d ¼ 9 and d ¼ 10, which were not presented before

because the ᾱUV ¼ 0 condition was considered together
with the β̄UV ¼ 0, which is stronger.

APPENDIX D: THE HEAT KERNEL
COEFFICIENTS

The general expressions for the coefficients appearing
in (4.9) and (4.10) are [47,48]

b0 ¼ I

b2 ¼
1

6
RI − X

b4 ¼
1

360

�
12□Rþ 5R2 − 2RμνRμν þ 2RμνρσRμνρσ

�
I

−
1

6
□X −

1

6
RX þ 1

2
X2 þ 1

12
ΩμνΩμν; ðD1Þ

b6 ¼
1

360

�
8DρΩμνDρΩμν þ 2DμΩμνDρΩρν þ 12Ωμν□Ωμν − 12ΩμνΩνρΩρ

μ þ 6RμνρσΩμνΩρσ − 4Rν
μΩμρΩνρ þ 5RΩμνΩμν

− 6□2X þ 60X□X þ 30DμXDμX − 60X3 − 30XΩμνΩμν − 10R□X − 4RμνDνDμX − 12DμRDμX þ 30XXR

− 12X□R − 5XR2 þ 2XRμνRμν − 2XRμνρσRμνρσ
�
þ 1

7!

�
18□2Rþ 17DμRDμR − 2DρRμνDρRμν − 4DρRμνDμRρν

þ 9DρRμνσλDρRμνσλ þ 28R□R − 8Rμν□Rμν þ 24RμνDρDνRμρ þ 12Rμνσλ□Rμνσλ þ 35=9R3 − 14=3RRμνRμν

þ 14=3RRμνρσRμνρσ − 208=9RμνRμρRν
ρ þ 64=3RμνRρσRμρνσ − 16=3Rμ

νRμρσλRνρσλ þ 44=9Rμν
αβRμνρσRρσαβ

þ 80=9Rμ
ν
ρ
σRμαρβRνασβ

�
I ðD2Þ

with I being the identity matrix for internal indexes.
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