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Gravity-induced photon interactions and infrared consistency
in any dimensions
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We compute the four-photon (F*) operators generated by loops of charged particles of spin 0, % 1 in the

presence of gravity and in any spacetime dimension d. To this end, we expand the one-loop effective action
via the heat kernel coefficients, which capture both the gravity-induced renormalization of the F* operators
and the low-energy Einstein-Maxwell effective field theory (EFT) produced by massive charged particles.
We set positivity bounds on the F* operators using standard arguments from extremal black holes
(for d > 4) and from infrared (IR) consistency of four-photon scattering (for d > 3). We find that both
approaches yield nearly equivalent results, even though in the amplitudes we discard the graviton z-channel
pole and use the vanishing of the Gauss-Bonnet term at quadratic order for any d. The positivity bounds
constrain the charge-to-mass ratio of the heavy particles. If the Planckian F* operators are sufficiently small
or negative, such bounds produce a version of the d-dimensional weak gravity conjecture (WGC) in most,
but not all, dimensions. In the special case of d = 6, the gravity-induced beta functions of F* operators
from charged particles of any spin are positive, leading to WGC-like bounds with a logarithmic
enhancement. In d =9, 10, the WGC fails to guarantee extremal black hole decay in the infrared

EFT, thereby requiring the existence of sufficiently large Planckian F* operators.

DOI: 10.1103/p8k8-vz2h

I. INTRODUCTION

In the quest to unravel the mysteries of quantum gravity,
one route involves a thorough examination of gravitational
effective field theories (EFTs) that appear below the Planck
scale. Such gravitational EFTs are constrained by black
hole physics and, like non-gravitational ones, by infrared
consistency conditions based on unitarity and causality. In
the presence of gravity, ultraviolet (UV) and infrared (IR)
scales seem to feature intricate connections, already at the
classical level as hinted by black hole properties. This
implies that, even though the completion of quantum
gravity lies far in the UV, we can hope to gain insights
by scrutinizing gravitational EFTs in the IR.

The notion of IR consistency of EFTs, that implies
bounds on certain Wilson coefficients, has been introduced
in [1-3]. It has led to many subsequent developments;
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see, e.g., [4-26]. Black hole physics is also used to put
bounds on gravitational EFTs [27-35]. The consistency of
EFTs with the UV completion of quantum gravity has been
explored via “swampland” conjectures; see, e.g., the first
weak gravity conjecture [36] and recent reviews [37-39].
Conversely, the IR consistency of gravitational EFTs con-
strains UV completions of quantum gravity and thus has an
interplay with swampland conjectures [26,33,40—46]. The
present work is in the spirit of the latter approach: carving
out the space of gravitational EFTs from the IR, using
consistency conditions from both scattering amplitudes and
black holes.

Our focus in this work is on gravitational EFTs that
feature an Abelian gauge symmetry. We refer to the
Abelian gauge field as the photon. We consider an EFT
arising below the Planck scale Mp = M, the ultraviolet
EFT, that features a charged particle. We consider charged
particles with spin 0, %, 1 and arbitrary spacetime
dimensions d.

The sub-Planckian EFT features, in general, local four-
photon operators that we denote here collectively as F*.
The F* coefficient ayy encapsulates the sub-Planckian
effects from the super-Planckian UV completion.
Depending on the spacetime dimension, loops of charged
particles may renormalize the F* operators, in which case

Published by the American Physical Society
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the value ayy is understood as the value of the coefficient at
the Planck scale. As a first step, we will compute at one-
loop this F* renormalization flow, that occurs regardless of
whether the particle is massless or massive.

Additionally, when the charged particle is massive, it
can be integrated out when the renormalization scale is
much lower than the particle mass. This produces another
infrared EFT whose only degrees of freedom are the photon
and the graviton. EFTs of this kind are usually referred to as
Einstein-Maxwell theory; here we mostly use the term IR
EFT. The IR EFT contains a F* operator with coefficient

(1.1)

aRr = ayy + Aa,
where the Aa corrections take schematically the form

74 ¢

4 4
gq
Aa=a mo-dpgd-2 + A 2d—4

m8—d

+b (1.2)

where m is the charged particle mass. In certain dimen-
sions, some of the coefficients are enhanced by log(%)

terms produced by the renormalization flow.
The various scales and EFTs are summarized as follows:

EA

Quantum Gravity

Mt cosssstitt s
Sub Planckian EFT
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Eeff,UV = ayvE” + ['charged fields T - - -

Infrared EFT

Leg1r = (quy +Aa)F* + ...

Our approach in this work is to remain fully agnostic
about the UV completion of quantum gravity. We work
with quantum field theory—and do not perform actual
quantum gravity calculations. The only explicit matching
to a specific string theory is given in Appendix A as an
example. The strength of the EFT approach is that our
ignorance of the UV completion of quantum gravity is
encoded into the values of the ayy coefficients, which are
treated here as free parameters.

We perform the computation of both the F* one-loop
beta functions and of the IR EFT directly from the one-loop
effective action. We use the background field method
and the heat kernel formalism [see [47—49]; other useful
references are [50-54]] combined with standard EFT
techniques.

The sequence of EFTs can be used to compute the
contribution of the charged particle to the physical process
of four-photon scattering yy — yy at low energy. Such a
process is subject to IR consistency bounds from unitarity
and causality. In an appropriate basis, IR consistency
implies positivity of the F* coefficients, schematically’

QR Z O (1 3)

The IR EFT can also be used to compute the metric of
nonrotating charged black holes with large enough radius
[55,56]. Requiring that such extremal black holes be able to
decay produces a positivity bound similar to (1.3).2

Combining the positivity bound (1.3) with Egs. (1.1) and
(1.2), one can notice that, for appropriate values and signs
of ayy, a, b, ¢, a lower bound appears on the charge-to-
mass ratio,

MMﬂ

T =7> 27, 1.4
- 72z (1.4)

with z, being a dimensionless number dependent on ayy,
a, b, c. Equation (1.4) is precisely the parametric form
of the weak gravity conjecture (WGC) in d-dimensions

[see [57]1, in which case the bound is z, = 4 /%. For z,

being a generic O(1) coefficient, we refer to bounds of
the form (1.4) as WGC-like. This nontrivial connection
between IR and UV consistency was first pointed out in
[40] for d = 3, 4. Because the pattern of signs and diver-
gences of the a, b, ¢ coefficients is dimension-dependent,
the generalization of this phenomenon to arbitrary d is
nontrivial and requires a thorough investigation. Here we
explore the IR consistency/WGC connection in arbitrary
dimension and revisit the d = 3, 4 cases.

Why might one study arbitrary spacetime dimensions
in the first place? While the known real world displays
d =3 + 1 dimensions, it is plausible that extra dimensions
exist—in particular, string theory requires d =11 for
consistency. These dimensions may be hidden from us,
either because they are compact or because our matter is
confined to a three-brane within a higher-dimensional bulk
spacetime. More specifically, in this work, we extend to
higher dimensions as a tool to probe the relations among
several concepts: the WGC, the decay of extremal black
holes (see Sec. III A), and the IR consistency of scattering
amplitudes. We investigate, for any d > 4, the extent to

'For simplicity, we use the most basic positivity bound
from [3], that we extend to higher dimensions. More refined
approaches have been developed; see, e.g., [4—24], that are not
the focus of this work.

The extremal black hole decay condition is sometimes
referred to as the black hole WGC. Here we do not use this
naming; the term WGC only refers to the condition on the
charged particle, (1.4).
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which the WGC implies the decay of extremal black holes
of any size, and whether IR consistency implies extremal
black hole decay and the WGC. In our approach, testing
whether a relation between two concepts holds for any d
serves as a check of its robustness. We take the viewpoint
that, if a given relation qualitatively changes with spacetime
dimension, it is unlikely to reflect a deep physical principle,
and should instead regarded as coincidental. In sum, the
extension to arbitrary d provides a diagnostic for sharp-
ening and validating our understanding of gravity in d = 4.

A. Outline

In Sec. II, we review EFT beyond tree-level from the
viewpoint of the quantum effective action. We define the
Einstein-Maxwell EFT and show how to reduce it using a
property of the Gauss Bonnet term valid in any dimensions.
In Sec. III, we review the bound from extremal black hole
decay and generalize simple positivity bounds from four-
photon scattering to any dimension. In Sec. IV, after
reviewing the heat kernel coefficients, we derive and reduce
the general one-loop effective action obtained from inte-
grating out charged particles of spin 0, § and 1. In Sec. V,
we present the F* beta functions and discuss their interplay
with IR consistency. In Sec. VI, we analyze in detail the IR
consistency of the infrared EFT, with a systematic dis-
cussion from d = 3 to 11. Section VII contains a detailed
summary, and the appendixes contains some examples of
UV realizations of the F* operators (Appendix A), the
detailed analysis of the bound from infrared consistency
(Appendix B) and extremal black hole decay (Appendix C),
and the complete heat kernel coefficients (Appendix D).

II. EINSTEIN-MAXWELL EFT IN ANY
DIMENSIONS

We briefly review the notion of loop-level low-energy
EFT from the viewpoint of the quantum effective action
in Sec. I A. We then define Einstein-Maxwell EFT in
Sec. II B and show how to reduce it to describe photon
scattering in Secs. II C and II D.

A. Effective action and effective field theory

Consider a theory with light fields ®, and heavy fields
®,,. Assume that our interest lies in the scattering ampli-
tudes of the light fields. Such scattering amplitudes are
obtained by taking functional derivatives of the generating
functional of connected correlators with respect to sources
probing the light fields J,. This generating functional is
W[J,| = ilog Z[J,] with the partition function

Zl,) = / DD, DD, S0P+ [ dlxed, (2.1)

We perform the @, field integral in the partition function.
This defines a “partial” quantum effective action I',[®,],

with

Zl,] = / D, T+ [ dx'ci,, (2.2)

Let us consider the low-energy regime for which the
external momenta of the ®, amplitudes are much smaller
than the mass of the heavy fields, noted m. In this limit,
the quantum effective action I', can be organized as an
expansion in powers of derivatives over m. This is
conveniently expressed as an effective Lagrangian L

I e, = / e /L[], (2.3)

where L. is made of monomials of ®, and its derivatives,
suppressed by powers of m. Schematically,

LoD )%
Legr [ D] ~ ZM-

2.4)
a+4b—4 (
a,b m N

In practice, L is typically truncated at some order of the
derivative expansion d/m. This defines an infrared EFT
that encodes all the effects of the @, field at energies below
m, within the accuracy of the truncation of L.

The derivative expansion applies at each order of the

loop expansion of I, I'), = F;IO) + Fﬁl]) + --- Hence, the
effective Lagrangian can be organized with respect to this
loop expansion: L. = ng)f) + ng) +--- The Lgf)f) term

arises from the tree diagrams involving @, encoded in FEIO).

The [:.(311"12 term arises from the one-loop diagrams involving

®,, encoded in Fgll), etc.
In this paper, we work at the one-loop level. The finer
details of EFT at loop level can be found in [58,59].

B. Einstein-Maxwell EFT

Consider a gravitational theory with a U(1) gauge
symmetry and massive matter fields.> Our interest is in
the scattering amplitudes of the photons of this theorys; i.e.,
the photon is coupled to a source J, that generates the
amplitudes. As explained in Sec. II A, we can always
integrate out the matter fields exactly, defining a partial
quantum effective action 'y [F . R,0)-

In the regime for which the external momenta of
amplitudes are smaller than the matter field masses m,
the quantum effective action can be written as

Throughout this work we use the conventions of Misner-
Thorne-Wheeler [60], which include the mostly plus metric
signature sgn(g,,) = (—.+,---,+) and positive scalar curvature
for spheres.
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Fmat[FﬂwR/,wpa] = /ddxv _gﬁeff[FﬂwR/,wpa]’

where L. is made of monomials of F,,, and R, -

(2.5)

This defines a low-energy EFT that encodes all the effects of the matter

fields at energies below m. In this section, we refer to this EFT as the Einstein-Maxwell EFT, with L. = Lgy. At 0* order,
the most general Einstein-Maxwell Lagrangian takes the form*

‘CEM = Ekin —+ (o4} (FIWF”D)Z —+ (ZzF}wFW,FﬂﬁF‘W + a3R2 + CMRMDR’MI + GSR

wpe R + agRFWF,, + a;RYFWF,,

+ agRi F*F ,, + ag(D,F,,) (D’ F*) + ayo(D,F,,) (D"F*) + ay,(D*F,,)* + O(R*, R*F?, RF* F°) (2.6)
with the kinetic term
1 S N

'Ckin — —ZFMDF” +§R (27)

We introduced the normalized Riemann tensor R/wpa = Md‘ZRW,,,.

At tree-level, the effective operators in Lgy; contribute to the four-photon amplitude as follows:
(2.8)
|

The dots represent the effective vertices from Lgy, and the  Fy,., =0, Ry, =0, and the Ricci identity
double wiggles represent gravitons. Notice that the curva- [D,.D,|F,, = R//L/p F, + Rﬁw F, A's Finally, the identities

ture operators contribute indirectly via modifications of the
graviton-photon vertices and to the graviton propagator.
These diagrams can be simplified using that the physical
scattering amplitudes are invariant under field redefinitions.
Following the general lessons of EFT, a subset of such
field redefinitions amounts to using the leading order
equations of motion in the effective Lagrangian [59]. In
the present case, the equations of motion that we can use
are the Maxwell and Einstein equations: D*F,, = 0 and
R/w - %Rg/,w =

W TW. The latter implies

N 1 N 2
R, =T, —-———-T R=—T 2.
] ) s 2 d ( 9)
with
1 4—-d
Tﬂzx = _Fﬂl)Fﬁ - Zg;w(F/xr)zv T = T(F;w)z
(2.10)

Using the Maxwell equation, the last operator in Lgy
vanishes. Furthermore, the two other operators involving

D,F,, can be transformed into combinations of the

remaining terms in Lgy using the Bianchi identities

“We assume a spacetime background with no boundary, so
that total derivative terms in Ly, can be ignored, and operators
related by integration by parts are considered redundant.

from (2.9) can be used to eliminate R and R, in the
remaining operators of Lgy. The traceless part of the
Riemann tensor, i.e., the Weyl tensor,

2
Cuvps = Rupo = i-2 (Gup Ry = GulpRolu)
2

+ mRQy[pgﬂ]w (2.12)

still remains in Lgy; in the form of operators C> and CF?.

C. Reducing the curvature squared terms

We can further reduce the basis of operators by noticing
that, for the four-photon diagrams of our interest, the gravi-
ton self-interactions are irrelevant since only the graviton
propagator appears in (2.8). Let us inspect the quadratic
curvature corrections to the graviton propagator.

We know that the Riemann tensor goes as R,,,, <
0,0,h,, + - -+ upon the expansion of the metric g,, =
N + hyy. 1t is thus sufficient to keep the linear term in

SFor example, one finds
_ o 7 2
D,F, ,D’F" = R, ,;F*"F’? = 2R, F*F,, + 2(D”F”,,)

+ total derivative. (2.11)
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each curvature term to obtain the quadratic vertices that
correct the graviton propagator. We have

1
Rope = 3 (0,0,h,, — 0,0,h,, — 0,0,h,5 + 0,0,h,,)
+ 0(h?), (2.13)
1
R, = 3 (0,0, + 0,0"h,5 — 0,0,h — Clh,,)
+ O(h?), (2.14)
R = 0,0, — Oh, (2.15)

with hj, = h, 0,0" = . Going to Fourier space for
simplicity, we find the curvature-squared terms

U ,Q 1
R> = mn?0l) .. (2.16)
U ], 2
(R/w)2 = h"h ﬁo;(w).aﬂ’ (217)
J— v ],Q (3)
(Rupo)? = W h? 0% (2.18)
where
Oy = (Pupy = P —p? 2.19
uv.aff (p/lpl/ p nyv)(papﬂ p naﬁ)v ( . )

2 1
O,(ly),a/} = Z (Zpy pypap/)’ + p4 (’7;41/77(1/3 + 77;4(1’71//3)

= P2(PuPMap + PaPplluw + PuPpllua + PuPallup))

(2.20)
1
3
o = 7 (4P Muallup +4DuPuPaPy
= 20> (MuaPuPp + NupPoPa
+ nuapypﬂ + nuﬁpupan . (221)

Inspecting Eqgs. (2.19)—-(2.21), we find that the following

combination vanishes at quadratic order in any dimension:

(Rups)* —4(R,)*+R2=0+0(13). (2.22)

This is the familiar Gauss-Bonnet (GB) combination. The

fact that it vanishes at O(h?) for arbitrary d was first noticed

in [61] in the context of the low-energy limit of string
theories.’

®The GB combination vanishes exactly in d = 3 due to the
exact vanishing of the Weyl tensor. The combination is a total
derivative in d = 4, the Euler number density, and is thus again
irrelevant for EFT.

D. The reduced Einstein-Maxwell EFT

We conclude that, at least when the relevant physical
observable is the four-photon amplitude, we can reduce
the Einstein-Maxwell EFT using the O(h?)-vanishing of
the Gauss-Bonnet term and Einstein’s equation. The final
result is

EEM,red = Ekin + &1 (F’”’FW)2 + &2FWFUPFPUF0H
+yCl F"F,, + O(F, ...)

with

& +4d - 16
~ 4(d-2)
1
T2d-4Y T d-1)(d-2)
(d—-4) a
(@-1)(d-2) <"‘9+¥ |

a5+

+ (2.23)

4
&2:a2+a4+4a5—a7+—a8

d—2
2d a
+<a9+1°>,

y) > (2.24)

y = as. (2.25)

III. BOUNDS FROM EXTREMAL BLACK HOLES
AND PHOTON SCATTERING

We review the positivity bound produced by the con-
dition that extremal black holes must decay, for any
dimension d > 4. We then review the four-photon (4y)
amplitude generated by F* operators for any d > 3. It will
be shown in Sec. VI and Appendix C that the bounds
obtained from 4y amplitudes upon discarding the 7-channel
graviton pole match approximately the black hole bound.

A. Positivity bound from extremal black holes

The nonrotating charged black hole (Reissner-
Nordstrom) solution is parametrized by a mass M, and
total charge Q, in Planck mass units. In Einstein gravity,
the charge-to-mass ratio is bounded from above as

d-3
ez, z.-

V4
M, d-2

(3.1)

beyond which the Reissner-Nordstrom solution would
feature a naked singularity. A black hole saturating this
bound, i.e., Z, = Z,, is said to be extremal.
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There are compelling arguments that all black holes,
including extremal ones, must be able to decay [3,27]. This
conjecture is sometimes referred to as the black hole WGC,
however we avoid using this term here to prevent naming
confusion.

Extremal black holes can decay if the particle spectrum
satisfies the WGC, i.e., if there is at least one particle
satisfying (1.4) in the spectrum, in which case the black
hole discharges via the Schwinger effect [62]. However,
when no such particle is present in the theory, which is
the case in our IR EFT where all massive particles are
integrated out, the extremal black hole should still be able
to decay. In such a situation, the extremal black hole can
only decay into smaller black holes. This is kinematically
allowed if the extremality bound deviates from the GR one.
The most general condition is that the charge-to-mass ratio
decreases with the mass [56].

For extremal black holes with sufficiently large radius r,
satisfying the condition

glg|M

ry > m2 s

(3.2)

the electromagnetic field is weak at the horizon, such that
the Einstein-Maxwell EFT is valid. In this regime, the
Einstein-Maxwell operators given in (2.6) induce a devia-
tion to extremality; see, e.g., [27,31] and also [35,63] for
higher order. It follows that the charge-to-mass ratio bound
in our IR Einstein-Maxwell EFT takes the form Z,6 < Z,
where

zZ 4(d=2)(d—-3)* ((d—2)(d—3) 4n9~" \ 7=
2. TG ( 02 11%&)

(3.3)

Since the extremal black holes can decay if Z is a
decreasing function of Q2 ~ M2, (3.3) implies the positivity
bound

Cr > 0. (3.4)

We can write

CIR - CUV + AC, (35)
where Cyy is the contribution from the UV operators and
AC is the contribution produced upon integrating the
massive charged particles. The expression of AC as a
function of the EFT operator coefficients is given in
Appendix C. In that calculation, we use the basis (2.6),
and not the reduced basis (2.23). This is because for
arbitrary d > 4 the Gauss-Bonnet combination does not
vanish beyond quadratic order in general, and hence, the
reduction step in Sec. IIC is not allowed in the black
hole case.

B. Four-photon EFT

In d = 2, the photon does not propagate, and hence, our
analysis does not apply. We focus on d > 3 for which the
photon has d — 2 physical polarizations.

For d = 3, the photon has a single polarization. There
is a single independent F* operator which can be chosen
to be (F,, F*). The other possible F* structure satisfies
F, FPF ,,F* =1 (F,, F")%.

For d > 3, the EFT contains two independent Lorentz
structures:

Lps = 6{1(FWF"”)2 + 0, FPF , F"

= a0 + O (3.6)

with
O = (F, F"), 0= 4F ,,F*PF ,,Fo* = 2(F,,F*)?, (3.7)

where the O, O basis is introduced for further convenience.
The translation between the two bases is given by

a; =a—2p, a, =4p. (3.8)
Notice that for d = 3, we have O =0 algebraically. In
d=4, we have O = (F,,F*)? where the dual tensor

io o= 1 guwpo
is F, =5e"7F ;.

C. Positivity bounds from photon scattering

1. General considerations

In the absence of gravity, positivity bounds on the F*
operators can be derived using unitarity of forward ampli-
tudes or causality. In the presence of gravity, exploiting
the forward amplitudes is complicated due to singular
t-channel graviton exchange,

(3.9)

See [3,40,41,43,44]. A work-around to eliminate the
unwanted graviton pole may be to perform an appropriate
spatial compactification that removes the t-channel infrared
singularity; see [44]. This approach suggests that the
t-channel graviton pole may simply be discarded in the
proof of the positivity bounds. It was, however, argued that
the obtained results appear to be overly strong [5,6], at least
in the 4d case. Another approach to the graviton pole is to
work at finite impact parameter and focus on appropriate
sum rules [10]. In contrast, causality bounds from low-
energy photon propagation apply without extra complica-
tion in the presence of gravity. The standard F* positivity
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bounds in d = 4 are independently obtained from causality
arguments; see [64] and also [25].

Our approach in the present work is to use the most
standard F* positivity bounds, already presented in [3],” to
avoid any technical digression. In doing so, we assume
a priori that the ¢-channel pole can be neglected in the case
of photon scattering, as hinted by d = 4 causality bounds.
This IR consistency bound will be compared to the one
from extremal black hole decay, and we will find they are
consistent with each other.

2. Bounds

Infrared consistency bounds on the F* operators are
easily extended to any dimension as follows. We follow the
approach of [65]. We consider the four photon amplitude
A,,_.,, with ingoing (outgoing) momentum p; , (p34) and
ingoing (outgoing) polarization vectors €] , (€3 4). We then
take the forward limit

Afw

yy—yy P4, €1 = €3,6) = €4>

(3.10)

= Ayy—»}’}/(pl - p3 p2

and require positivity of .A%_)y}, for all € .
d > 3 case. The d > 3 case is analogous to d = 4. We
obtain

AR, = 160,57 (61 - €)% + 4,57 (€1 - €2)* + (e1)*(€2)?)

(3.11)

= 16as*(e; - €)% + 165> ((e1)*(€2)* = (€1 - €2)?).

(3.12)

From the second line, the requirement A{,‘;’_,W > ( for all

€1, implies positivity of the Wilson coefficients in the O, @)
basis defined in (3.6)8:

a3 20

Bla=3 2 0. (3.13)

d = 3 case. For d = 3, the photon has a single polari-
zation, i.e., it is equivalent to a scalar.” We can use (3.12)

with (e; - €;)? = 1. AN > 0 implies that

aly_3>0 (3.14)

For more refined positivity bounds, see, e.g., [4-9,11-24].

The F* positivity bounds presented in, e.g., [25,64] take the
form 4, — 3a, > |4a1 — &,|. This is equivalent to (3.13) upon
translatlon to the O, O basis given in (3.8).

°In d = 3, F* transforms as a vector of SO(3) This can be
seen by computing the dual tensor F*“e,,, = d,¢, where the
scalar ¢ is the only degree of freedom of F**.

while the term multiplying S vanishes identically, in
accordance with the property of the O, O basis (3.6).

IV. THE ONE-LOOP EFT OF CHARGED
PARTICLES

We consider the gravitational EFT of fields with
spin 0,%,1 and with U(1) charge g. It is described by
the effective Lagrangian L. 1y that contains local higher
dimensional operators involving F,,, R,,,, as well as the
charged fields.

Our focus here being on the four-photon interactions
induced by L. v, it is enough to write explicitly the
local F* operators, while neglecting the other higher-
dimensional operators. The UV operator involving the
charged fields would contribute only at higher order, while
R, can be reduced along the lines of Sec. II. We have
therefore the ultraviolet EFT Lagrangian

Loty = Lin + Lptuv + Liatier (4.1)
with
Lpsyy = ayy (FPF,,)? + ayy . F*F,,F°F,,
+ YUVCMWFWFM' (4.2)

The ayy;, yyy coefficients are free parameters in the
UV EFT. They encapsulate the effects of the dynamics
of the UV completion in the sub-Planckian four-photon
scattering. See Appendix A for a few known examples of
contributions. In the following, we remain agnostic about
auv,i> YUV-

The charged particles with spin s = 0, 1
by the following matter Lagrangians.

Spin 0. The Lagrangian is

.5, | are described

[’0 = _|Duq)‘2 - m2|CD|2 - §|(I)‘2R, (43)

where @ is a complex scalar. We have D,® = 9,®+

d-2

igqA,®. A conformally coupled scalar has & = ¥a=n) 10
addition to m = 0.
Spm The Lagrangian is
1-
'Cl/2 = ——lP(D — m)‘P (44)

where ¥ is a Dirac spinor. We have D = y#D, with y* the

n x n Dirac matrices in d dimensions, with n = 2[9/2] the
dimension of spinor space [54,66].

Spin 1. In order to consistently couple a massive vector to
the photon, we consider a nonlinearly realized theory with
gauge group SU(2) broken to U(1). The charged gauge
boson lives in the SU(2)/U(1) coset. See, e.g., [67] for
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details.'” This approach fixes unambiguously the U(1)
magnetic moment of the charged vector. The Lagrangian,
including a R.-type gauge fixing, is

1 .
L+ L8 = =5 WP + igg P w, W

1
—EIDﬂW"I2 - m* [ WHP2, (4.5)

where W, is the complex vector field. The field strength
WH is defined as W* = DFWY — D*W*, where D, is the
U(1) covariant derivative. In the following, we choose the
Feynman gauge &, = 1.

ES
e

Here, the dots represent the U(1) charges, the double
wiggles represent gravitons, and the internal bubbles can be
of any of the charged particles.

At energy scales below the charged particle mass, the
A,,-,, amplitude can be described by an infrared EFT in
which the massive charged particle is integrated out, as
explained in Sec. I A. The generic form of the effective
Lagrangian is given in Eq. (2.6).

For even spacetime dimensions, some of the diagrams
in (4.6) contain UV divergences. These divergences
renormalize the local F* operators already present in the
UV effective Lagrangian. The initial value of the ayy, fyv
coefficients is assumed to be defined from the .AW_,W
process at Planckian energy E ~ M, such that the running
produces logarithmic corrections of the form log% in the
F* operators of the IR EFT."

Both the renormalization flow and the finite effects from
the loops of the charged particle are encoded into the one-
loop effective action. An efficient way to extract both of
these bits of information is to use the well-known expan-
sion of the effective action into heat kernel coefficients.
See [47,49] for seminal papers and [48] for a review. Other
useful references are [50,51,54]. Our main technical
references are [48,54].

'OThis is analogous to the W boson of the Standard Model
upon decoupling the U(1), gauge field.

""The U(1) gauge coupling is not renormalized in the IR EFT,
as can be verified by dimensional analysis.

The coefficient of the U(1) magnetic moment operator
iF*™W,W; can be generalized to other values since it is
invariant under U(1) gauge transformations. In this work,
we only use the value shown in (4.5), which is the one
enforced by the underlying non-Abelian gauge symmetry.

A. Integrating out charged particles at one-loop

The leading contribution of the charged particle to the
four-photon interaction is through one-loop diagrams.
Three kinds of contributions appear that are respectively

(99

MdZ

and

proportional to (gq)*, T

1. Expanding the one-loop effective action

The one-loop effective action induced by the matter
fields takes the form

P = () 5 Tr log[(-O+m? +X),]  (47)

with [0 = g, D*D* being the Laplacian built from back-
ground-covariant derivatives. The covariant derivatives
give rise to a background-dependent field strength €, =
[D,.D,], encoding both gauge and curvature connections.
It takes the general form

Q iFa; LR

— c
w — T m/ta 2 /uzp J

o (4.8)
where 7, and J,, are the generators of the gauge and spin
representation of the quantum fluctuation, respectrively.
X is the “field-dependent mass matrix” of the quantum
fluctuations; it is a local background-dependent quantity.
The effective field strength Q,, and the effective mass X
are, together with the curvature tensor, the building blocks
of the heat kernel coefficients. Using the heat kernel

method reviewed in Appendix D, F&Zt takes the form

[ = —— E t b
mat — 2 47_[ / \/_ — Zr d r 2r )

(4.9)

with tr the trace over internal (nonspacetime) indexes.
Analytical continuation in d has been used, and the

045009-8



GRAVITY-INDUCED PHOTON INTERACTIONS AND INFRARED ...

PHYS. REV. D 112, 045009 (2025)

expression is valid for any dimension. The local quantities
b,, are referred to as the heat kernel coefficients.

For odd dimensions, all the terms in Eq. (4.9) are finite.
For even dimensions, there are log-divergences. These log

divergences renormalize Eé?t) The terms with negative
powers of masses in Eq. (4.9) are finite. They amount to
an expansion for large m and give rise to the one-loop

contribution to the effective Lagrangian Li}ﬁ,

11 & I(r-9

- 2
2 (4r)t Z

1
‘Ciff) = (_)F WU‘ bzr(x). (410)
r=idj2]+1

Only the first heat kernel coefficients are explicitly known,
and the coefficients up to bg contribute to the observables
considered in this work.

2. Spin 0

The one-loop effective action following from the
Lagrangian (4.3) is

) = %Tr log[(~0 + m? + £R)].  (4.11)
The geometric invariants are
X = ¢RI, Q,, = —igqF,,. (4.12)
3. Spin 1/2

The one-loop effective action following from the
Lagrangian (4.4) is

| i 1 .
Fg/)z = —ZTr log[(—D + m? +ZR + S* gqFﬂy)]
(4.13)

with $# = £[y#,y*]. The geometric invariants are

1 i , 1
X=2R+5r"7"94F . Qu =—i9qFu+ 771" Ryou.

(4.14)

4. Spin 1

For the massive spin 1 particle, the contributions from
the ghosts and the Goldstone boson must be included. In
the Feynman gauge, these degrees of freedom are degen-
erate and do not mix. The ghosts contribute as —2 times a
scalar adjoint with £ = 0. Similarly, the Goldstone con-
tributes as +1 the scalar term [see, e.g., [54,67]]. As a
result, the one-loop effective action following from the
Lagrangian (4.5) is

i) = %Tr log[((=0 + m?)#*, + R¥, + 2igqF*, )]

—éTr log[(-0 + m?)], (4.15)

where the last term is the ghost 4+ Goldstone contribution.
The geometric invariants of the vector fluctuation are

Xﬂl/ = Rﬂl/ + 2igqFMl/9 (Q,uu)/)o' = _Rpf’l“/ - iag'gqF;w'

(4.16)
B. The coefficients

The complete expressions of the heat kernel coefficients
are given in Appendix D. Only a subset of terms is relevant
to our study. Terms which are total derivatives can be
ignored since they are irrelevant for scattering amplitudes.
As explained in Sec. II, in the EFT framework, we can
use the leading order equations of motion to reduce the
effective Lagrangian.

The relevant pieces to compute the Einstein-Maxwell
EFT are the following.

1. R? terms

The curvature squared contributions from the b, coef-
ficient,

1

b4:%(

5R* —2R,,R* + 2R,,,,R*"°) + ...  (4.17)

HUpo

with [ the identity matrix for internal indexes. For our
purposes, these can be further reduced using the O(h?)
vanishing of the Gauss-Bonnet term; see Sec. II C.

2. RF? terms

The RF? contributions come from the b coefficient.
These are those with three powers of X, two powers of X
and two derivatives, and one curvature and two powers of
X. We have thus

— 1 (
° 7360
- 12Q,,97Q," + 6R,,,, QY — AR YO
+ 5RQ,, Q" + 60X[IX + 30D, XD*X — 60X?
- 30XQ,, Q" + 30XXR) + ...

b 8D,Q,, D’Q™ + 2D Q,, D, + 12Q,, (1"

vp

(4.18)

To reduce by, we use the photon equation of motion
(EOM), the Bianchi identities, and the Ricci identity, as
detailed in Sec. II B.

3. F* terms

The F* coefficients come from the bg heat kernel
coefficient, which can be found in Ref. [51]. Converting
to Minkowski space, we have
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1 N N
by = — (y<1 V(F L F)2 475 >FWF”/’FMF’1”) + .o

24
(4.19)
(") = (é%) (4.20)
(y(ll/Z)’yél/Z)) - Gn-%n) (4.21)
(ygv)’ ygv)) (d 1248 ’ d 4;5240) (4.22)

and (71", 7)) = (A" 8) = (1Y) for the massive
spin 1 particle.

C. The reduced Einstein-Maxwell effective action

Putting together the results from previous sections, we
obtain the low-energy Einstein-Maxwell effective action
generated by integrating out the charged particles of spin
s = 0,5, 1. The leading contributions are encoded in the

one-loop effective action, r§”.

We apply the reduction computed in (2.23). The reduced
Einstein-Maxwell effective action is

Mg =00+t 4 (4.23)
with

i = / e (80 (F P + DG PO F P

AP CP"WFWFM), (4.25)
4 4
RO g9'q d\ (s
Ay, = (47[)d/2 8—d (4 - 2) 1.2
9°q d\ (s
+ 6-dpqd 2F<3_2>b12
LI ) (s) 4.26
+4dM2d4 7 )2 (4.26)
g_ L g d\ s
Ap) = L el (373 d¥.  (4.27)

The coefficients for each spin are

o _ 1 -
(1/2) n (172 _ Tn
LT T T 360 (4.28b)
1y d—49 1 _d+239 49
T gy 0 @ 360 (4.28¢)
=_——|(306-5 + u (d—4)
b = 20 —1)(d-2)
1
4.2
(43 )h 2] (4299
(1/2) - _L _ 4 d—4
b =m0 [( St (d - 1)(d—2)) 2(d -2)
13(d —2) — 4
-, 4.29b
o (42%0)
(1)_i 4(d—|-59) B _31 d—4
by _720[((d—1)(d—2) 3(d—-31) d-2
4(d - 1)(d + 120)
4.2
(d— 2)2 ’ ( 9C)
o__ L4y 8 4.2
2 360( +d—2)’ (4.29d)
S UC L L ST (4.29)
2 360\ d-2
0~ (4a4 119) 4+ 34+ ) 4.29f
bt 360<(d+ 9) += (4.29f)
L0 _ 1 6+&(6-3)(d—4)* 3(3d-38)
720 4 (d=2)? (d-2)?]
W = 6—10, (4.30a)
Qi __n (33d-8) (d-4)
! 960\ (d=2)2 ' (d-2)2)
72 = %, (4.30b)
(1):L (d—]])(d—4)2_(d+9)(3d—8)
b 240 2(d-2)? (d-2)% |
V) = %. (4.30¢)
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0 = ~ 150" (4.31a)
41— (4.31b)
360
d+ 59
40 = _ 1+80 (4.31c)

Before reduction of the Einstein-Maxwell Lagrangian,
our results for the RF? operators from spin  in d = 3 and
from spin 0,% in d = 4 match, respectively, those found

in [53,68] and [52,68]. For d = 3, the ") coefficients with

¢ = 0 match with [45], and for d = 4, the a(lf% coefficients
match those from [69-71], upon appropriate conversion to
the (O, O) basis using (3.6).

1. Beta functions and logarithmic corrections

The Gamma functions in Ad;,, Ay diverge for certain
even dimensions. These are physical divergences, appear-
ing here via the framework of dimensional regularization.
These divergences imply that there is a renormalization
group equation associated to the corresponding local
operators contained in I'®). In that situation, the values
ayy,; or yyy are understood as the values at the initial
condition of the renormalization flow that we choose to be
the Planck scale. That is, 4 = M with y the renormalization
scale, and ayy,; = a;(M), yyy =y(M). These are the
values appropriate to study the physical process A,,_,,
with energy scale near M. To study A,,_,, at lower
energies, the renormalization scale must be changed
accordingly to minimize higher-order contributions to
the one-loop prediction.

Let us compute the beta functions explicitly. Divergences
occur when r —4~ —n, ie., d ~2n + 2r with neN. We
define € = 2n + 2r — d. Introducing the renormalization
scale y in the Lagrangian, we have

Z_ir(r _ g) =9 (_nl!)n 2 G +log (%) ) L (432)

Such terms from the one-loop effective action I'") combine
with the coefficients of the local operators in I'®). One
absorbs the 1/e constant into the definitions of the co-
efficients, leaving only the log(y) dependence. The physi-
cal parameter is identified (at one-loop order) as

o™ = () + B;log =, (4.33)
m

where the generic B; coefficient is computed from

(4.28)—-(4.31), and analogously for y. Requiring

d—‘fla?hys =0 determines the one-loop beta function for

the Lagrangian parameter

d
a; = —B; + O(higher order loops).

ﬁa,- dlogﬂ 1

(4.34)

The beta functions for the couplings of the F* and CF?
operators are presented in Sec. V.

Finally, when the renormalization flow is caused by a
massive particle, it stops at the scale y = m. Below this
scale, we work with the IR EFT (i.e., the Einstein-Maxwell
EFT) in which the only remainder of the charged particles
is the set of finite contributions to the local operators
[see [58]]. The coefficients in the IR EFT take the form

- M
aR; = ayy; + AaiM® + B; logE (4.35)

and analogously for y.

V. THE F* BETA FUNCTIONS AND INFRARED
CONSISTENCY

In this section, we assume that the charged particle is
exactly massless. We compute the 1-loop beta functions
and discuss the F* renormalization flow.

A. The beta functions

We compute the 1-loop beta functions of the F* and CF?
operators along the lines presented in Sec. IV C 1. For a
massless spin-1 particle, the corresponding heat kernel
coefficients are given by a,(-” = al(.v) - 2a§0). At zero mass,
the only beta functions of the F* operators appear for
d =4, 6, and 8. They are given in Tables I-III.

In d = 4, graviton and photon loops produce an addi-
tional contribution to the R? operators. Note these are the
loops that cause the d = 4 conformal anomaly in the IR

. unction a icient.
TABLE 1. Beta function of the a coefficient
Spin
1

d 0 2 1
4 19 1 _ 13 1 29 1

48072 M? 32022 M* 6407 M*
6 23-50¢ &*q° 13 &4 661 _Fq

768007° M? 48007° M” 384007° M*
1 4 4 1 4.4 __ 47 44
8 1843207" 9 4 28807 9 4 307207 9 4
TABLE II. Beta function of the f coefficient.
Spin
1

d 0 5 1
4 19 1 _ 13 1 29 1

480> M* 3207% M* 6407% M*
6 ¢ 17 13 &4

76807 M* 48073 M* 96073 M*
1 4 4 __ 71 4.4 __ 4l A4

8 1843207 9 4 115204 9 4 307207 9 4
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TABLE III. Beta function of the y coefficient in d = 6.
Spin 0 3 1
1 ¢4 1 g 13 &4
576000 M* T 144077 MT 11522 M*
EFT [see, e.g., [48,72]]. Following Sec. IIB, in the

Einstein-Maxwell EFT, these loops of gravitons and
photons contribute to the renormalization flow of the F*
operators via diagrams such as

The corresponding graviton contribution to the b, coef-
ficient is

553
b = 414R2, + == R?
4 180( T )

23 1

FWF, FPF,, —— (FWF 2), 5.1
== ( Z(FFL). (5)
where we have used the Gauss-Bonnet identity (2.22) and
the leading-order Einstein equation (2.9). This corresponds

to 45" = —p5" = ;2. Translating to the O, O basis,

we obtain the contributions

23
%lrav _puav ) 52
b 64072 (52)
The photon loop contributes by an additional %agl), where

the % accounts for the photon being a real vector. Due to the
fact that the graviton and photon are massless, such loops
do not contribute to the running of F* in other dimensions.

B. Discussion

Whenever the charged particle is massless or if m << M,
the coefficients of the F* operators at low-energy scales are
controlled by their beta functions. The renormalization flow
washes away any finite correction, that becomes negligible
compared to large logarithms. When m = 0, the running
coefficients at y < M is

M
a,-(,u) %Bi log* (53)
u

From Tables I and II, we can see that f|,_, and f3|,_g are
negative for loops of all spins. Therefore, in d = 4, 8, the
coefficients of the @, & operators tend to grow positively

when the theory flows towards the infrared. It would be
tempting to conclude that the renormalization flow tends to

make the theory infrared-consistent. However, the positiv-
ity bounds we are using strictly require m # 0 and thus do
not apply in the present case.

In fact, the opposite behavior appears in d = 6. The
spin % and 1 beta functions are positive for both a and j
coefficients. The scalar beta function for the  coefficient is
positive, as is the beta function for a if £ < 23 . This includes

the conformal coupling value in d = 6, &= % These

positive beta functions imply that the coefficients of the
0, 0 operators are driven towards negative values at
sufficiently low energy scales. If positivity bounds applied
atm = 0, they would be necessarily violated in the deep IR,
implying that the gravitational EFTs of massless particles in
d = 6 are infrared-inconsistent. Such a strong conclusion is
avoided if none of the positivity bounds apply for m = 0.

Nevertheless, we will see in next section that, in the
presence of a small nonzero mass, the positivity of f|,_¢
tends to create a tension with the positivity bounds. It
would be interesting to find if other ingredients like a
gravitino or nonminimal couplings can make the beta
function negative, along the lines of [33]."2

Finally, we find that the sign of the beta function of the
CF? operator, given in Table III, depends on the spin. This
has no consequence for the positivity bounds we are using.
The sign of the y coefficient is irrelevant in the positivity
bounds given in, e.g., [44], which involve |y|, and in the
present work we use a simpler positivity bound that is
independent on y.

The beta function for the C coefficient of the extremality
relation, defined in (3.3), follows the same sign pattern as

Po and pg.

VI. FINITE CORRECTIONS AND INFRARED
CONSISTENCY

In this section, we assume that the charged particle is
massive, m > (. Photon scattering at energy scales below
m is described by the infrared EFT, that encodes the finite
corrections induced when integrating out the charged
particle.

For any even dimension, at least some of the coefficients
of the IR EFT receive logarithmic corrections that are large
when m << M. Some of these logarithmic corrections
correspond to the beta functions presented in Sec. V.
The renormalization flow of the massless case is recovered
when taking m — 0 at finite energy or finite x, and the only
difference occurs in the spin-1 case since there is no
Goldstone boson in the massless case.'”

The contributions to the F* Wilson coefficients in the IR
EFT take the form

2We mention that the a-theorem in d = 6 also presents an
unexpected behavior compared to d = 2, 4; see [73,74].

BThe other corrections simply do not exist in the n — 0 limit,
since the charged particle is not integrated out.
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4 4 2.2
9'q 94 ¢
Ao =a i +b mo—dpd2 + mA—Adp 24

(6.1)

We define a reduced notation that is used throughout this
section.

A. Reduced notation

The corrections induced by the charged particles are
second order polynomials in ¢?; see (6.1). In terms of the
charge-to-mass ratio z introduced in (1.4), we have

Z:MM%.
m

_ 4 2
AG—W(GZ ‘I‘bZ +C)1

(6.2)

Note that [g] =2 —¢ and hence z is dimensionless for
any d.
We further define the loop factor

Kd = {Zdﬂi—l

2977

and work with a scaled dimensionless version of (6.2),
given by

if d even

6.3
if d odd (63)

Aa

az* + b? + ¢ = Kym*IM**Aa.  (6.4)
Similar definitions hold for aR, ayy, f; and for the f
coefficients (i.e., Af, fr., Puv, and Bp)- The infrared
consistency condition (3.13) is equivalent to
P 2 0.

aR > 0, (6.5)

B. General analysis of positivity

The ar(z) polynomial is defined on R_. Due to this
restricted domain, studying the positivity of @k (z) requires
distinguishing various cases that we classify here.

Let a* be the rightmost extremum of the quartic poly-
nomial Aa(z), namely,

c, if
a*=19, .
4ac-=b , ifa

4a

Ql
S

>0 o
<0, (6.6)

S

and let 0 < z; < z, be the two roots of aR(z) in R,.
Depending on the coefficients, the positivity constraint
(6.5) imposes restrictions on the charge-to-mass ratio z,
which are classified into the following cases.
(1) Case a >0
(a) If ayy > —a*, then we have that agg > 0 holds
for all z > 0.
(i) Case b>0
If ayy < —a* = —¢, then there is a lower bound on z in
the form z > z, > 0.
(i) Case b <0

If ayy < —¢, then there is a lower bound on z in the
form z > z, > 0.
If -¢ <ayy < —a*, then there is another allowed
region for z, so that z € [0, z;] U [z3, o).
2) Case a <0
(a) If ayy < —a*, then the infrared consistency
condition is violated (i.e., ag < 0 for all z > 0).
In this case, we say that this value for ayy is
excluded.
(i) Case b>0
If ayy > —¢, then there is an upper bound on z in the
form 0 < 7 < z,.
If —a* < ayy < —¢, then there is a lower and an upper
bound on z in the form z; < z < 7.
(i) Case b <0
If ayy > —a, = —¢, then there is an upper bound on z in
the form 0 < z < z,.

Case (1) with sufficiently small ayy implies the exist-
ence of a WGC-like bound on z. Conversely, in case
(2) with sufficiently large ayy, z gets always bounded in a
finite region.

For d > 3, we need to consider these conditions for both
0,0 operators, i.e., for both ag, BIR coefficients, so that
the most restrictive condition dominates. The above analy-
sis applies whether or not logarithmic contributions are
present. This is because the logarithms depend only on the
scale ratio 47, which can be treated as an independent
quantity with respect to the charge-to-mass ratio z. Also, for
d > 8, the logarithms factor out of the entire polynomial
and are thus irrelevant for the positivity analysis.

C. Positivity bounds and the WGC

This section presents the synthesis of our results for the
relations between positivity bounds and the WGC. We
consider the positivity bounds from infrared consistency of
vy = vy (or =0, fr > 0), discussed in Sec. I C, and
those from extremal black hole decay (Cig > 0), discussed
in Sec. III A. We remind readers that, here, WGC means
specifically that there exists a nonzero O(1) lower bound
for the charge-to-mass ratio, i.e., 7 > z, > 0 [see (1.4)].

Part of our focus is the dependence of the various relations
with respect to spacetime dimension. As argued in Sec. I, we
take the viewpoint that dimensional dependence is a test of
robustness. A relation that holds in any d might be profound,
while one that only holds for certain d may be viewed as
more coincidental. The systematic analyses for each dimen-
sion are collected in Appendixes B and C.

The positivity bounds from IR consistency and black
hole decay are fundamentally different. The latter does not
apply for d = 3 and is still a conjecture, while the former is
rigorous.14 Yet, both Cig and apg, fr are quadratic in z2,

"“Another difference is that the IR consistency bounds are
nonstrict while the black hole bound is strict. This has no practical
consequences.
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and hence, we can apply the analysis of Sec. VI B to all of them. Their relations to the WGC-like bounds turn out to be very

similar, hence we summarize them together.

1. Results for d < 11

The results for Aa, Af and AC, and the condition on &y, fyy for the WGC-like bounds on z to exist, are collected and
discussed systematically in Appendixes B and C for spacetime dimensions from d = 3 to d = 11. In the scalar case, the
positivity bounds are presented as exclusion regions in the z&-plane; see Figs. 1-4.

We summarize the results using the following diagram:

Ok
Not for all d >3

& OéUv,ﬁUV dependent

Each of the implication arrows in this diagram come with
conditions that are detailed below. The annotations sum-
marize the essential message.

@ Infrared consistency and extremal black hole decay
both imply a WGC-like bound ford = 3,4,5,7, 8, 11,
for any spin, if @y, fyy. Cuy are sufficiently small or
negative. In these dimensions, Aa, Af, AC are
positive for large enough z; i.e., case (la) or (1b)
of the general analysis (see VIB) applies. In sharp
contrast, for d =9, 10, IR consistency does not
imply a WGC-like bound. In these dimensions, Aa,
Ap, AC are negative at large enough z; i.e., case (2a)
or (2b) applies, such that z is bounded in a finite
region.

® The WGC implies IR consistency and extremal black
hole decay for d =3, 4, 5, 7, 8, 11, unless ayy,
puv, Cyy are too negative. For d =09, 10, the
positivity bounds are respected only if the UV
coefficients are positive and large enough for a given
z. A remarkable consequence is that, in d = 9, 10, the
WGC does not imply that extremal black holes can
decay in the IR EFT—this instead must be ensured by
the presence of sufficiently positive Planckian F*
operators.

Infrared D Extremal Black Hole
Consistency ~ J° T > Decay
(AN >0) For all d >4 © (Z > Z.)

450

.. Not for all d >4
& Cyy dependent

® Infrared consistency implies approximately the ex-
tremal black hole decay condition for any d > 4,
independently of the UV operators.

@ Extremal black hole decay implies approximately the
orr > 0 condition from IR consistency for any d > 4,
independently of the UV operators.

The implications ®, @ are approximate in the sense that
the expressions for Aa and AC have O(1) differences in the
72 and 7° coefficients, however, without qualitative impli-
cations. This can be seen directly at the level of the
expressions for Aa, AC in Appendixes B and C. As an
example, for spin % in d = 5, the bound on z for negligible
UV operators is z > 2.77 from the IR consistency condition
(see Table IX), while it is z > 2.78 from the black hole
condition (see Table XXIV).15

In the special case of d =6, we find that implication
® produces WGC-like bounds that are enhanced by a

log % factor. This happens for spin 3, 1, and 0 with & > 33

The implications @ and @ can also be studied at the level of
the EFT coefficients. In particular, it would be interesting to
investigate the connection to the compactified bounds of [44],
that are slightly stronger than Eq. (3.13). The generalization to
d > 4 requires a thorough analysis that we leave for future work.
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in the Aa case and is a manifestation of the positive beta
functions found in Sec. V (see Appendix B and Table XII).
Conversely, from implication @, we conclude that there
exists a WGC-like bound that ensures that the d = 6 IR
EFT is infrared-consistent and that extremal black holes
can decay.

2. Results for d > 11

For d > 11, a pattern appears. The higher dimensional
cases are qualitatively analogous to the cases d = 8, 9, 10,
11, mod 4. Furthermore, the cases d = 8 and 11 (respec-
tively, d = 9 and 10) are also similar to each other, up to the
overall factor log% which does not imply significant
changes. Each of the analogous cases has the same sign
pattern for a, b, and ¢.

(i) d=8+4n (respectively, d=1144n), n=

1,2,3..., is analogous to d =8 (respectively,
d = 11). Assuming aUV,fUV, Cyy are zero, z is
unbounded for any spin.1

(i) d=9+4n (respectively, d=10+4n), n=

1,2,3,..., is analogous to d =9 (respectively,
d = 10). Similar to d = 9 and 10, taking vanishing
ayvy, Puv. Cyy implies a violation of the positivity
constraint for any spin. Nonzero positive @yy, fuy
(respectively Cyy) are then mandatory to ensure IR
consistency (respectively extremal black hole decay).

VII. SUMMARY

We computed the four-photon operators generated by
charged particles in any dimension in the presence of
gravity. We then used consistency conditions from four-
photon scattering and extremal black holes to derive a set of
bounds on the gravitational EFTs of charged particles.

The general setup is a sub-Planckian (i.e., UV) gravita-
tional EFT of a U(1) charged particle of spin 0, 1, or 1. The
EFT Lagrangian features local F* operators that encode the
effects of the UV completion of quantum gravity on four-
photon scattering. We briefly review some realizations of
these UV F* operators from strings and branes.

We computed the effect of loops of charged particles
within the UV EFT, with focus on their contributions to four-
photon scattering. From a diagrammatic viewpoint, besides
nongravitational box diagrams that generate F* operators,
triangles and bubbles of charged particles attached to gravi-
tons generate RF and R? operators. We compute the effect
of all these loops directly via expansion of the one-loop
effective action encoded in the heat kernel coefficients.

The one-loop divergences of the effective action renorm-

alize the F*, RF? and R? operators in certain dimensions.

"For spin 0, the bounds on z become independent of ; i.c.,
when n > 1, the exclusion region analogous to Fig. 4 becomes
empty.

Furthermore, in the case of massive charged particles, the
one-loop effective action provides the IR EFT in which
charged particles are integrated out. Following the standard
rules of EFT, the basis of the F*, RF?, and R? operators can
be reduced, to some extent, using the equations of motion,
1.e., field redefinitions.

Our focus is ultimately on the physical process of four-
photon scattering. Gravitons contribute at one-loop, but
without self interactions—to the exception of diagrams that
renormalize R? operators in d = 4. We further use that the
Gauss-Bonnet combination of R? operators vanishes at quad-
ratic order of graviton fluctuation in any dimension. The
combination of these two facts implies that the basis of EFT
effective operators can be reduced to F* and CF? operators
in any dimension in the calculation of 4y amplitudes.

We provide the general result for the reduced one-loop
effective action for charged particles of spin 0, % or | in any
dimension. Gravity induces a renormalization flow of the
F* operatorin d = 4, 6, 8 and of CF? in d = 6 dimensions.
We verified the consistency of our results with some
independent results on d = 3, 4 Einstein-Maxwell theory
from [52,53,68,70,71].

Turning to positivity bounds, we compute four-photon
scattering in any d > 3, and apply a standard infrared con-
sistency argument that provides positivity bounds on the F*
operators. We also compute the bound produced by the condi-
tion that extremal black holes can decay in any dimension
d>4 [27]. We find that both approaches yield nearly
equivalent results, even though in the amplitudes we discard
the graviton t-channel pole and use the vanishing of the
Gauss-Bonnet term at quadratic order for any d. The bound
obtained without the graviton 7-channel is also supported by
independent results from causality in d = 4 [64].

The infrared consistency of four-photon scattering and
the decay of extremal black holes put bounds on the UV
EFT of charged particles, our results are as follows.

In d =4 and d = 8, the F* beta functions are negative,
driving F* to positive values in the infrared. In contrast,
the d = 6 beta function from spin 0, %, and 1 drives the F*
toward negativity. While for a massless particle, the F*
operator flows to arbitrarily large and negative in the
infrared; there is no immediate inconsistency because our
positivity bounds do not apply for strictly zero m. Still, it
would be interesting to find if some additional ingredient can
reverse the beta function sign, for example, due to the
gravitino or nonminimal couplings along the lines of [33].

For massive charged particles, we investigate the pos-
itivity bounds on the IR EFT in any dimension, with
specific focus on d from 3 to 11. Our results always depend
on the value of the UV F*operators encapsulating unknown
super-Planckian effects. We remain agnostic to its value
a priori, but for concreteness we discuss cases where it is
either negligible or large and positive.
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The F* positivity bounds can constrain the charge-to-
mass ratio z provided the UV F* coefficients are not too
large and positive. The quantities constrained are quadratic
polynomials in z> defined on R,. A variety of bounds
appear depending on the shape of these polynomials. The
bounds on z can be from above or below and can be one or
two-sided, and disjoint domains are also possible.

For d =3, 4, 5, 7, 8, 11, we find that the positivity
bounds imply O(1) lower bounds on z similar to the
d-dimensional weak gravity conjecture for any spin, and for
sufficiently small or negative @y, fyy. We systematically
present the condition on ayy, Pyy for the WGC-like
bounds on z to exist. The bounds on the scalar depend
on £ except in d = 4; they are presented as exclusion
regions in the z&-plane.

In the specific case of vanishing ayy, fyy. or Cyy, neat
WGC-like bounds appear, for example, in d =5 for all
spins. This feature is not general, however. For instance, in
d = 3, the spin 0 and spin % cases remain unbounded. This
conclusion differs from the one from [40], but simply
because the finite contribution from R> was ignored or
equivalently absorbed into the UV coefficient in this
reference.

For d = 6, the positivity bounds produce WGC-like

bounds that are enhanced by a , /log ¥ factor. This happens

for spin %, 1, and 0 with & > % in the Aa case, and it is a
manifestation of the positive beta functions found in d = 6.

Finally, for d =9, 10, it turns out that the logic is
different. The UV coefficient must be large enough for
positivity bounds to be satisfied for a given value of z. In
these cases, z is bounded in a finite range. As a result, even
if the UV coefficients are very large, there is necessarily an
upper bound on the charge multiplied by a power of mass.
For higher dimensions, similar cases arise following a mod
4 pattern. A remarkable implication of these d =9, 10
results is that the WGC does not imply extremal black hole
decay in the IR EFT.

A general takeaway from our study is that the connection
between positivity bounds (from IR consistency, extremal
black hole decay) and the WGC may not be so profound, as
it appears to be strongly dimension-dependent.

On the other hand, the approximate correspondence that
we observe in any dimension between the IR consistency
bounds and extremal black hole decay deserves further
investigation. In d =4, it can be noticed that an IR
consistency bound obtained via the compactification
method of [44], which is slightly more stringent than the
one used here, turns out to match precisely the extremal
black hole bound once both electric and magnetic cases are
taken into account. It would be very interesting to verify
whether this correspondence persists in d > 4, that would
likely hold only up to O(35) corrections due to the
nonvanishing Gauss-Bonnet contribution to the extremality
relation. This investigation requires, however, a thorough

analysis of the compactification method for higher d, that
we leave for future work.
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APPENDIX A: EXAMPLES OF F* OPERATORS
FROM STRINGS AND BRANES

The ultraviolet F* operators are generated in string
theory. For example, the four-photon interaction arising
at low-energy from perturbative open string amplitude in
d =10, at lowest order in the string coupling g,, can
be found in [75,76]. For large string tension Sz W€
deduce from the string amplitude the following effective
Lagrangian [see also [77] ]:

8
+ O(a).

1 1
£F4.string =5 Ys (271'“;)2 <FﬂDvaFpo-Fa/4 - Z (F}wFﬂv)z)
(Al)

The prediction holds under the compactification of spatial
dimensions; however, in that case, contributions from the
Kaluza-Klein modes should also be taken into account,
which likely dominate the low-energy F* operators.

The ultraviolet F* operators also appear in models where
the photon arises from a D-brane, and charged particles
correspond to open strings attached to the brane. This
configuration was shown in [78] to be described by a
Born-Infeld action. We deduce the effective Lagrangian
[see also [79] ]17:

1
cm:—bzwde{mﬁm)“’2 —det(n,,)  (A2)

— Ypup, L (por, P, ~ L per,)
- _Z ﬂu+@ up rr/,t_Z( ;w)
o). (A3)

"In d =4, we recover the original BI Lagrangian Lg; =
D (1= 1+ 5 FF = i (FF,,)?) 180
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In the result of [78], upon suitable field normalization, one
obtains b= = g,(2za) that exactly reproduces the overall
coefficient in Lpt gying-

Once expressed in the O, O basis, the specific combina-
tion of F* operators generated by the string models implies

agy = puv >0 (Ad)
in any dimension. Such a positivity bound is not surprising.
Since string theory must be a consistent completion of
quantum gravity, the Planckian F* operators have to satisfy
the positivity bound regardless of the presence of light
fields in the theory, which implies Eq. (A4).

The F* operator can also appear in compact extra
dimension models with the photon localized on a brane.
In that case, a universal tree-level contribution comes from
the Kaluza-Klein graviton exchange, i.e., the massive
version of the tree diagram (3.9). Each massive graviton

h,(ZL) couples to the brane-localized photon stress tensor,

[ —— ndh,(fz) T#. The F* operators are generated by
integrating out the massive gravitons, whose propagator

i Gl = et (3 (PP + P PL)) — gL PP

1
d-1
with Pf,',? =N — p;_?. In the EFT, these massive gravitons
generate the operator

1
‘Cgrav & TﬂDT;u/ - ﬁ T?
d+38

R A TPy

(F™F, )%  (AS)

The subsequent ayy, Pyy coefficients turn out to be
positive for any d > 3. In the d = 4 case, the combination
becomes F¥F,,FP°F,, —iF"”FW as in the string case.
This matches the results from [67,81].

Even though the above results suggest positivity of the
ayy, Puy coefficients in the ultraviolet EFT, we should
keep in mind that negative contributions do exist, for
instance, from charged KK modes, as can be seen from
our massive results from Sec. VI. In this work, we do not
systematically evaluate the contributions that appear upon
compactification. Our approach is to remain fully agnostic
about the values of ayy, fyv.

APPENDIX B: DETAILED BOUNDS FROM
INFRARED CONSISTENCY

We discuss the consequences of IR consistency for each
spacetime dimension. The results follow a pattern at large
dimension. Lower dimensions require separate discussion,
and we cover the cases from d =3 to d =11. In the
following, we report systematically the implications of the
positivity bounds (6.5) while remaining agnostic about
the values of ayy, fuv-

TABLE IV. Reduced coefficient Aa in d = 3.
Spin Aa

7 (1=-108)22 | 60£2-20£+3
0 1930 T 480 T 480
1 o - 1
2 350~ 4% T 40

12724 _ 1122 1

! 965 ~ 60 T30
TABLE V. Condition for the existence of IR consistency

bounds on the charge-to-mass ratio z and IR consistency bounds
on z if ayy =0 in d = 3.

Spin Condition for z bounded Bound if ayy =0
_ 60220643 e £ o 1 Unbounded
0 ayy < { mgzﬁ%ﬂ 1 0= 1?
~ 68 if &> g5
% ayy < _2é7 Unbounded
1 ayy < 25 7 <0.464 or z > 1.08
1. Case d=3

The values of Aa are presented in Table IV. We remind
readers that there is only one independent operator in
d =3, chosen to be F, F*" with reduced coefficient
C_lIR == (_XUV + A(_Z

From Table IV, we have a > 0, ¢ > 0 for all spins, b<0
for spin 4 and 1, and sign(b) = sign(1 — 10¢) for spin 0.
Therefore, cases (1a) and (1b) from the classification in
Sec. VI B apply. It follows that the positivity bound a5 > 0
can constrain the charge-to-mass ratio z depending on the
value of the UV coefficient ayyy. The exact condition for the
existence of a bound on z is shown in Table V.

We see that for spin % and for spin 0 with any ¢, ayy has
to be sufficiently negative in order for z to be bounded. For
spin 1, z can be bounded for small positive ayy.

As an example, we may consider the specific case where
ayy 1s negligible, setting ayy = 0. For spin %, we have
ayy =0 > —5k=a", thusag >0, V z€R,, and hence
z is unbounded. On the other hand, for spin 1, we have
ayy =0 < % = a*, so that z is bounded on a region
[0, z1] U [z2, ), corresponding to the second case of (1b).
In the spin-0 case, for any ¢, the ayy coefficient has to be
negative to produce a bound, therefore z is unbounded.

Our expressions from Table V reproduce the ones from
[42] upon neglecting the ¢ coefficient and changing the
convention for z."® Our conclusions for ayy = 0 differ from
those in [42] due to the ¢ contribution—originating from
the R? operator, which is not taken into account in [42]. As
seen above, the ¢ contribution crucially favors positivity.
The case studied in [42] is instead exactly recovered from
our results by tuning ayy + ¢ to zero.

Bn [42], for d = 3, the convention M :% is used and z is

defined as %‘. This differs from our definition of z by a factor of V2.
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TABLE VI. Reduced coefficient Aa, Af in d = 4. TABLE VIII. Reduced coefficients A@ and Af in d = 5.
Spin Aa Ap Spin Aa Ap
T 2 1 15eM 2 _ 2 1o M 74 (3-58)2 6082206423 2
0 1490 — 180 T 120108 7430 ~ T80 T 120108 0 5880 ~ 360 = 2165 2880 ~ 216 120
1 2 _ U2 1M 724 _ U2 4 1o M 1 #1234 72472 1
2 50~ 360 T 301087 360~ 360 T 301087 2 150 — 180 — 133 e = 5 — 16
2924 _ 3122 4 13 150 M 2724 3122 | 13 5o M 6724 _ 1972 _ 151 6zt _ 2522 _ 1
1 T60 — 60 T 126108 % T60 — 60 T 120108 % 1 R~ 36— 1080 =S —
TABLE VII. Condition for the existence of IR consistenc .. . .
LT y TABLE IX. Condition for the existence of IR consistency
bounds on the charge-to-mass ratio z in d = 4. . .
bounds on the charge-to-mass ratio z and IR consistency bounds
Spin Condition for z bounded on z if ayy = pyy =0in d =5.
0 ayy < g5 — m5log or fuy < 95— 5 log Bound if Bound if
1 o 121 _ 1150M o BB 121 110 M Spin Condition for z bounded agy =0 =0
2 auv < 5760 ~ 30192 OF Suv < 10080 ~ 30108 p . uv Pov
G 961 _ 13 M B 961 _ 13 M 60£2-20¢423 . i
1 auv < 3616 ~ 136102 5 OF Buv < 5615 — 150102 4, 0 . {% if & Z% Fig. 1 z>3.87
uv 720E2-50064269 - 3
5120 if & <3
2. Case d=4 o oV < 5o
. Cased= 1 - 211 7 337
_ 2 ayy < 2160 or ﬁUV < 6430 Z Z 277 Z Z 199
Q 1 ~ 136661 3 74029
The values of Aa, Ap are presented in Table VI. The 1 agy < 136661 or By < 240 7>248 z>239

scalar case is independent of £ in d = 4 due to the vanishing
of the trace of the stress tensor; see (2.10). The ¢ coefficient
originating from R? features a logarithm that corresponds to
the effect of the 4d beta function shown in Tables I and II.

From Table VI we have that both @ and ¢ are positive and
b negative for any spin, for both Aa and A. We are thus in
case (1b). A bound on z appears if @y or fyy is sufficiently
negative, and the exact condition is given in Table VII. As
an example, we may consider the specific case where ayy,
Puv are negligible, setting ayy = 0, fyy = 0. Assuming
that 2 > 50, z is unbounded for any spin.

Our results reproduces those from [42] for d = 4 when
ignoring the logarithmic term (i.e., ¢) or absorbing it into
ayv, fuv and changing the convention for 2 Accordingly,
the special case considered in [42] is exactly reproduced
here by tuning ayy + ¢ = 0.

3. Case d=5

The values of Aa, Af are presented in Table VIII. We
have a > 0, ¢ < O for all spins, for both Aa, AB and any &
We have b < 0 for spin % and 1, and for spin 0 we have
b < 0 for Ap and sign(b) = sign(3 — 5¢) for Aa. We are
thus in cases (1a) and (1b). A bound on z appears if ayy or
Puv is sufficiently small, and the exact condition is given in
Table IX.

As an example, we may consider the specific case where
ayy, Puy are negligible, setting ayy =0, fuy = 0. We
obtain WGC-like bounds for all spins, as shown in

Yn [42], for d = 4, the convention M? = %is used. Hence, the
definition of z differs from ours by a factor of 2.

Table XXIX. In the spin-0 case, the bound is &-dependent.
Positivity excludes a region in the z&-plane, as shown in
Fig. 1. For reference, we include in Fig. 1 and in analogous
figures in higher dimensions the value of £ for which the
scalar is conformally coupled if m — 0. The allowed region
in Fig. 1 has a critical point to the left, which imposes a
lower bound on the charge-to-mass ratio for all £. The

subsequent WGC bound for all £ is 7 > \/%9W =~ 1.56.

Spin 0, d=5

151 +

10F : > ]

= o

-10t b . ‘ g

FIG. 1. Infrared consistency bounds on the charged spin 0
particle in d = 5.
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Spin 0, d=6

151 S

-10¢ . ) . ]

FIG. 2. Infrared consistency bounds on the charged spin 0
particle in the regime log > 1 (here with log = 100) in d = 6.

4. Case d=6

The values of Aa, Ap are presented in Table X. The b
and ¢ coefficients originating, respectively, from F?R and
R? feature a logarithm that corresponds to the effect of the
6d beta function from Tables I and II. This logarithm will in
turn influence the WGC-like bounds, as discussed below.

From Table X, we have a > 0, ¢ < 0 for all spins, for
both A@, AB and any £ We have b < 0 for spin § and 1,
and for spin 0 we have b <0 for A and sign(bh) =
sign(50& — 23) for Aa. We are thus in cases (1a) and (1b).

TABLE X. Reduced coefficients Aa and AB in d = 6.

TABLE XII. IR consistency bounds on z if @,y = fyy = 0 and
logZ>>1ind=6.

Spin Bound if ayy =0 Bound if By =0
0 Fig. 2 2> 3.46, [log ¥
> 2> 279, log4 2> 1.85, /log4
1 22242, /logt 2>227,/log¥

A bound on z appears if ayy or Byy is sufficiently small,
and the exact condition is given in Table XI.

As an example, we may consider the specific case where
ayy. Puy is negligible, setting ayy =0, fyy = 0. We
obtain WGC-like bounds for all spins, that depend on
log. We focus on the regime where log2 > 1, and the
results are shown in Table XII. The bounds presented are
weaker than those obtained for small log% and thus hold
for any value of .

We emphasize that the logarithmic enhancement occur-
ring in the bounds is tied to the positive sign of the 6d beta
functions. While the positive beta functions lead to stronger
bounds on z at large log % negative beta functions would
lead to weaker bounds on z, that are independent of the
logarithm.

In the spin-0 case, the £-dependent bound is shown in
Fig. 2, where log% was set to 100 to plot the exclusion
region. The allowed region in Fig. 2 has a critical point to
the left which imposes a lower bound for the charge-to-
mass ratio for all £. This critical lower bound increases with

880+5V93410 ., | 55 For

log%, converging to the limit i

Spin Aa Ap
; 3-508)7 2554 (21 M
0 Jip— (B 4 158553 g M fian — (5 + o) log
1 z 1322 | 31 M 724 272 1 M
2 i5— (95 + i) log ¥ 15— (3 +2) log it
5574 26922 | 1 M 4974 722 1 1 M
! 55— (8% ) logh S5 — (5 +g) logy
TABLE XI. Conditions for the existence of bounds on z in d = 6.
Spin Condition for z bounded
= 158256431 M : 23
ayy < —5—log” ifé>s
0 > SPosery | (=508 M veom % o Buv < (55 + g5 log ) log
ayy < ( 330+ aso00 108 E) logi, if &<
% aygy < (% + 5 log %) log% or fuy < (% + %log %) log%
! ayy < (5 + Faom log i) log i or Buv < (5 +§log ) log i
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smaller log %, the bound is only slightly weaker, with, e.g.,
2> 127 if log¥ = 1, which holds for any log2 > 1 and
any & Finally, if £ < 2, the WGC-like bound strengthens to
(23 50.»:)

50°
7> log , which holds for any value of %,

analogous to other bounds in Table XII.

5. Cased=7

The values of Aa, Af are presented in Table XIII. We
have @ > 0, ¢ > 0 for all spins, for both Aa, Af and any &
We have b > 0 for spin % and 1, and for spin 0 we have
b > 0 for Af and sign(b) = sign(37 — 90¢) for Aa. We are
thus in cases (1a) and (1b). A bound on z appears if ayy or
Puv is sufficiently small, and the exact condition is given in
Table XIV.

As an example, we consider the specific case ayy = 0,
Puv = 0. For spin %, we are in case (1a) with &* > 0, hence
z is unbounded. For spin 1, we are in case (Ib) with
—a* > 0. As aresult, z is bounded to two disjoint regions,
with the one at larger z being WGC-like. For spin 0, the Af
does not constrain z, while a £-dependent bound exists from
Aa. This is shown in Fig. 3.

This region in Fig. 3 has critical points on the left and

bottom. If z < \/1U5Y2T v 1,64, then ag 2 0, V & and if

E< %@z 1.08, then @ >0, V z. Conversely,
when ¢ > 1.08, the domain of z is restricted to two disjoint
regions, corresponding to the —c¢ < ayy < —a* case in
(1b). The domain at larger z is WGC-like.

TABLE XIII. Reduced coefficients A@ and Af in d = 7.
Spin Aa Ap
0 (37-90&)z> | 540£2—180£+83

o+ 1500 =+ 550 Tt 3%t
1 83z 74 6l
2 + 50+375 180 + so+3o
1

47 4 577 287 4124 | 12722 | 4
20 1 + 2350 240 T 7150 +3 45

TABLE XIV. Condition for the existence of IR consistency
bounds on the charge-to-mass ratio z and IR consistency bounds
on z if ayy = fyy =0in d = 7.

Bound if Bound if
Spin Condition for z bounded agy =0  Pyy =0
0 540821806483 - 37 Fig. 3 Unbounded
ayy < { 108052—?228§+197 li °= I :
1m0 M E>5

: 1
or fuv < — 155

Unbounded Unbounded
Unbounded Unbounded

= 17 o 3
ayy < =335 Or fiyy < —m

287 7 4
~ 2250 OF Puv < IS

—_— =

&UV <

Spin 0, d=7
201 : : ' : E
: 4
15} : o
w, 10 : .
,»° Excluded

50 |

v’:f ---------------
L S Conformally coupled
1 2 3 4 5

2
FIG. 3. Infrared consistency bounds on the charged spin 0

particle in d = 7.

6. Case d=8

The values of A&, A are presented in Table XV. All
coefficients feature a logarithm corresponding to the effect
of the 8d beta function shown in Tables I and II.

From Table XV, we have @ > 0 and ¢ > 0 in all cases.
We have b < 0 for spin 1 for both A@ and AS, and b > 0
for both spin % and 0 for Ap, while for Aa we have b > 0 for

TABLE XV. Reduced coefficients Aa and Af in d = 8.

Spin Aa Ap
0 (27-708)z> | 1582-5¢+2 M
(720+ 60 T 270 )log; (720 13s )
1 ,
2 ( +l§115 +27o) log— ( +%17%Zs %) OgZ
17

1 28974 | 145922 M 24724 | 1122
720- 1260 +270 log 7 720° + 135 T 210 log

M
m

TABLE XVI. Condition for the existence of IR consistency
bounds on the charge-to-mass ratio z and IR consistency bounds
on z if ayy = fyy =0in d = 8.

Bound if  Bound if
Spin Condition for z bounded agyy =0 Pyyv =0
0 15825642 : 27 Fig. 4 Unbounded
ayy < logi! { 8822 217582.§+163 %f °s 72(;
37044 it &>55

M
or fuy < —iglog

—2log or fyy < —55log¥  Unbounded Unbounded

ayy < —25log or By < —J%log Unbounded Unbounded

ayy <

—_ Nl
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Spin 0, d=8
20f ' ' ' ' g
”
’
15} R
o, 10 -
.-~ Excluded
Mmoo ’
£ Conformally coupled |
0 1 2 3 4 5
2
FIG. 4. Infrared consistency bounds on the charged spin 0

particle in d = 8.

spin 1 and sign(b) = sign(70¢ — 27) for spin 0. We are thus
in cases (1a) and (1b). A bound on z appears if ay or fyy
are sufficiently small, the exact condition is given in
Table XVI.

As an example, we consider the specific case ayy = 0,
Suv = 0. For spin % and 1, we are in case (1a) for both Aa
and Ap; hence, z is unbounded. For spin 0, Af does
not constrain z, while a £-dependent bound exists from Aa.
It is shown in Fig. 4. The region in Fig. 4 has critical

points to the left and bottom. If z < \/% ~ 1.83, we

have ajg > 0, V & and if £ < %mz 1.68, we have
ar > 0, V z. Conversely, when £ > 1.68, the domain of z
is restricted to two disjoint regions, corresponding to the
—¢ < ayy < —a* case in (1b). The domain at larger z is
WGC-like.

7. Case d=9

The values of Aa, Af are presented in Table XVII. We
have @ < 0, ¢ < 0 for all spins, for both Aa, Aj and any &.
We have b < 0 for spin % and 1, and for spin 0 we have
b > 0 for Af and sign(b) = sign(100& — 37) for Aa. We
are thus in cases (2a) and (2b). The positivity bounds are
satisfied if @y and fyy are sufficiently large and for a finite
range of z. That is, z always features an upper bound in
d = 9. The exact condition for having IR consistency for
some z is given in Table XVIIIL.

As a first example, we consider the specific case
ayy = 0, Byy = 0. For spin 1, 1 and for the A coefficient
of spin 0, we are in case (2b) with —a* = —¢ > 0; hence,
these cases are fully excluded.

A second example is to consider ayy, fyy > 1. In that
case, for any spin, there is an upper bound on z. The bounds
take the form z < C(ally. Bii) with C = (=a)~"/4, and the
exact values are given in Table XVIII. Translating to the
nonreduced notation, we have the bound

glglmi < Cayly (B1)

with C = C‘Ké/ 4 and similarly for fByy. This upper bound
on g|g| is independent of the strength of gravity, depending
only on the UV coefficient.

The bound (B1) may be compared to strong coupling
estimates of EFT coefficients. Ignoring all loop factors for
simplicity, we have ayy ~ A™, m < A, with A being the

TABLE XVIL. Reduced coefficients A@ and Af in d = 9.

Spin Aa Ap

0 724 (37-1008)2%  150062-5006+183 &2
720 2520 44100 720 210 450

1 _ 4z _ 8372 _ 424 _ 7482 2

2 45 7 315~ 11025 45 7 315 75

1 3774 24722 1397 _31t 17222 _ 1

315 22050

TABLE XVIII. Condition to have IR consistency for some z and IR consistency bounds on z if @y = fyy = 0 or
aUv,ﬂUV >1lind=09.
Bound if Bound if
Spin Necessary condition for IR consistency ayy = /_JUV =0 ayy, BU\, >1
8000£2-230006+1721 37 _1/4
0 oy > { 1_50_052 5632481%% = if &> 190 Excluded Z< 3.18(191\,/4
= —500&+ : 37
44100 1 if & <555 7 < 5.18fyy
or fuy 2 155
% &UV > 71?%35 or ﬁUV > % Excluded 7 < 183&%}/\‘}
2 < 1598
1 ayy > 3o O fuy = 3 Excluded < 125&{}/\‘,‘
z < 1315
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TABLE XIX. Reduced coefficients Aa and Af in d = 10.

Spin Aa Ap

0 _ (;2‘(*) n (97;2135)% I 2705?1—592065%1) log 4 - (% 4 % + %) log 4
% (5 + 125+ 42) log ~(4 + 5+ ) oe
! (19 4+ 145 + 12) g ~(55 + 55 + ) rout

TABLE XX. Condition to have IR consistency for some z and IR consistency bounds on z if &yy = fyy = 0 or

ayy.Puy > 1 in d = 10.

Bound if Bound if
Spin Necessary condition for IR consistency ayy = Puv =0 ayy, Puv > 1
0 486082-297006+1597 - Excluded 720 ~ \i
G > logM ) ~ 2903040 if &> 2 2 S (Fy0gu AUV
UV Z 1087, 2702-906431 if < " |
11520 =770 s< (205 )i
- log% uv
3 1 M
or ﬁUV > ml()g%
1 7 4T 100 M or B LloeM i
! ayy Z geglog i or fuy = 35log s Excluded z< (—8 Itng aUV)4
1
45 7 \1
z= (14log%ﬂUv)
~ 499 M o B 19 100 M ~ \i
1 ayy > 11520 log m or ﬂUV 2 720 log m Excluded z < (29;?(())gﬂ (IUV):1

1
40 »  \i
< (83logEﬂUV)

EFT cutoff. The bound (B1) is less constraining than the
strong coupling estimate g|q| ~ A™>/? except if m ~ A.
Conversely, in a weakly coupled UV completion, with,
e.g., ayy N%, A< 1, the bound (Bl) can easily be
constraining—while maintaining the assumption ayy > 1,

m’

1.e., ayy > U

8. Case d=10

The values of Aa, A[_} are presented in Table XIX. All
coefficients feature a logarithm. The sign pattern is exactly
the same as that for d = 9. As a result, similar conclusions
follow: IR consistency is satisfied if @y and fyy are large
enough; see Table XX. Moreover, z is always bounded
from above, as exemplified in Table XX. Translating to the
nonreduced notation, we obtain the upper bound

1 4
glglm? < Cayly (B2)

with C = CK;)* and similarly for fyy.

9. Case d=11

The values of Aa, AS are presented in Table XXI. We
have a > 0, ¢ > O for all spins, for both Aa, Af and any &
We have b > 0 for spin % and 1, and for spin 0 we have

b > 0 for Af and sign(b) = sign(123 — 350¢) for Aa. We
are thus in cases (1a) and (1b). A bound on z appears if ayy
or Byy is sufficiently small, and the exact condition is given
in Table XXII. The sign pattern is similar to d = 7.

TABLE XXI. Reduced coefficients Aa and AB in d = 11.
Spin Aa AP
0 774 (123-3508)2% | 2940£2-980£+323 Pad 1z2 1
foso 20250 T 255150 1080 T 6075 T 1575
1 16z* | 221672 2896 28z% | 904722 | 8
2 135 T Jon2s T 127573 135 T 6075 1523
3124 | 65622 548 2524 | 26272 4
! 108 2005 T 35515 08 + 1215 1315
TABLE XXII. Condition for the existence of IR consistency

bounds on the charge-to-mass ratio z and IR consistency bounds
OnZif(_ZUV:ﬂUVZOind: 11

Bound if Bound if
Spin Condition for z bounded agy =0  Puy=0
0 _ 294029804323 ¢ g<in Unbounded Unbounded
a 255150 =350
@uv <\ 9700:-358 if £ > 12
2278125 350
7 1
or fyy < =375
1 - 2896 P 8
3 ayy < — 139595 OF fuy < — 5% Unbounded Unbounded
= 548 7 4
1 ayy < —pez or fyy < —3z Unbounded Unbounded
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Consider the specific case @y = fyy = 0. For spin % and
1, we are in case (la) with a* > 0; hence, z is unbounded.
For spin 0, A does not constrain z, while a £-dependent
bound would be expected from Aa. However, as in d = 3,
for every & the coefficient ayy must be negative20 to
generate a bound on z; hence, z is unbounded in this case.

APPENDIX C: DETAILED BOUNDS FROM
EXTREMAL BLACK HOLES

We present the results from extremal black hole decay
for each spacetime dimension. The discussion follows the
same structure as that in Appendix B and does not need to
be repeated.

1. Coefficients

Translating Eq. (B.15) of [27] to our operator basis and
conventions, we obtain the Cjg coefficient:

2 2
Cpr = a +%+ (d—4)a; Z((jéi 2—)211d+ 16)ay
(2d® — 164> + 45d — 44) a5
2(d—3)(d - 2)?
(d—4)as + (d —3)(a7 + ag)
2(d-2) '

+ (C1)

Using the formalism of Sec. IIIA, we have Cj =
Cyv + AC, where the correction AC produced by charged
particles takes the form

: I [g'¢ d\ ()

2.2
gq d\ ()
sl (3 - 5) bY

1 d\ (s
+ mA—dp2d=4 r <2 - 5) Cc ] . (€2)
The coefficients for each spin are
(0) 7 ©0 _ (30&—11)d —120¢ + 38
ac = — s bc = B
1440 720(d - 2)
(C3a)
(1/2) n (1/2) n 19d —-52
=, b = - _ C3b
9c T 360 c 1440 (d - 2) (C3b)

Different from d = 3, a curious cancellation of the &2 term
occurs in the condition for z bounded with & > %. Despite this

cancellation, for any £ in this domain, the Aa coefficient has to be
negative to produce a bound.

(1) 7d+233 ) 11d? + 401d — 1162
ap) = ——"— by = -
¢ 1440 ¢ 720(d - 2)
(C3c¢)
o 1 [23-d)(2d*>—11d+16)
C =
€ 71440 (d—=3)(d-2)?
4(2d> —16d> +45d —44)  5(1—6&)*(d—4)*
(d-3)(d-2)? (d—2)? ’
(C4a)
(/2 _n 39d> —305d> +822d — 760 Cab
‘C T 11520 (d—-3)(d—2)? ’ (C4b)
) 1 9a* +86d> — 1073d> + 3118d — 2800
C =
€ 1440 (d-3)(d-2)?
(C4c)
2. Bounds

We apply the positivity analysis performed on the a
and f coefficients in Sec. VI, but now on the C coefficient
of the black hole charge-to-mass ratio. We present
in Tables XXIII-XXX the results from d =4 to d = 11,

TABLE XXIII. Reduced coefficient AC in d = 4.

Spin AC

0 iR SR M
1400 — 200 T 120108

1 221 M

2 56~ 50 T 301085,

1 2924 _ 10322

4 1B 10e M
160 — 240" T 120108,

TABLE XXIV. Reduced coefficient AC and extremal black
hole decay bounds on z if Cyy =0 in d = 5.

Spin AC Bound if Cyy =0
0 724 (17-308)2% _ 12£2-4¢43 Fig. 5
7880 2160 PEy)
1 2 B2 5 7>2.78
2 180 1080 216 =
1 67z4 55922 13 z7>243

720 1080 72

TABLE XXV. Reduced coefficients AC and extremal black
hole decay bounds on z if Cyy =0 in d = 6.

Spin AC Bound if Cyy =0

0 74 (7=158)2% | 135£2-456+16 m  Similar to Fig. 2
7440 ( T T ) log &

1 2 (312, 101 M - >2.781log M

2 B—(lso +m)‘°ga £= 200008

1 554 7> 2.44log4

_ (4122 47 M
288 (36 + 216) log?,
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Spin 0, d=5
20F : . . . ._
15}
10} ]
weo 5F 1
0"'""'"";'""==::::::::ZZ§{M;:H;..;C:M;.;;'
-5- Excluded 1
1)) S : : .
0 1 2 3 4 5
z
Spin 0, d=9 Spin 0, d=10
20f T ‘ K 20F ‘ ‘
15 15
10} 1, 10 2
e Excluded : W Excluded
,’l /” Jl,"’ .
50 - A ] 5} ]
12 Conformally coupled L Conformaly coupled |
1 2 3 4 5 0 1 2 3 4 5
z z
FIG. 5. Extremal black hole decay bounds on the charged spin 0 particle if Cyy =0in d =5, 9, 10.
TABLE XXVIL. Reduced coefficients AC and extremal black
TABLE XXVI. Reduced coefficients AC and extremal black  hole decay bounds on z if Cyy = 0in d = 8.
hole decay bounds on z if Cyy = 0in d = 7. - Z
Spin AC
Spin AC Bound if Cyy =0 (ﬁ ESESEN 300527100&23) loa M
2 3 .y ) 720 216 5400 &
0 7t (13230928 | 45815644 Similar to Fig. 3
1440 600 750 1 42 11022 4 29 ) oo M
1 i + 972 + 571 Unbounded 2 45 + 27 + 600 0og m
; PR 1 28974 | 27522 | 179 M
1 42 4 97 | L6 Unbounded ( o T o+ m) log 7
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TABLE XXVIII. Reduced coefficients AC and extremal black
hole decay bounds on z if Cyy =0 and Cyy > 1 in d = 9.

TABLE XXX. Reduced coefficients AC and extremal black
hole decay bounds on z if Cyy = 0 in d = 11.

Bound if
Cyv =0

Bound if
Cuy > 1

Spin AC

0 74 (61-1508)2% 1350082 —45006+947
3

720 3780 96900
474 _ 3472 _ 2591

Fig. 5

2 <3.18CY

s AL/4
135 ~ 99225 Excluded 7 < 1.83Cyy

37z _ 166922 _ 15023 Excluded le.25@b@

90 1890 198450

—_ N
S~
W

TABLE XXIX. Reduced coefficients AC and extremal black
hole decay bounds on z if Cyy = 0 in d = 10.

Bound if Bound if
Spin AC Cyv =0 Cyv > 1
0 724 | (2=58)2% | 37822-1265+25 Fig. 5 720 & Vi
‘<m+ oo+ e >log% & zs (710g%CUV)4
1 8z* | 2372 19 M 45 7 1
2 (% + %5 + 35) log Excluded 7 < (gt Cov)?
101z*

1 _ 3292 | 809 M
(240 +o%0 16128) log5,

PN
Excluded ; < (ﬁ CUV)“

in the same format as those presented in Sec. VI for the
analysis of amplitudes.

Finally, we present the exclusion region in the z&-plane
for d = 5 to exemplify the similarity with the results from
amplitude consistency; see Fig. 1. We also show the figures
for d =9 and d = 10, which were not presented before
|

bo =355 (

8D,Q,, D’Q" + 2D Q,, D, + 12Q, 00" — 12Q,,Q7Q # + 6R

Spin AC Bound if Cyy =0
0 724 Jr(83—2105)z2 +5880§2—1960§+373 Unbounded
1080 12150 510300
1 1624 | 125672 | 3881 Unbounded
2 135 + 6075 + 255150
1 3lgt 4 4582 | 493 Unbounded
108 1215 20412

because the ayy = 0 condition was considered together
with the fyy = 0, which is stronger.

APPENDIX D: THE HEAT KERNEL
COEFFICIENTS

The general expressions for the coefficients appearing
in (4.9) and (4.10) are [47,48]

by =1
b, = Lrr—x
6
bi=3¢5 (120R + 5R> = 2R, R* + 2R, ,,R*"° )]
—1DX—1RX+1X2+iQ Qw (D1)
6 6 2 I

QU — 4RV Q,, + SRR, Q"

HUpo

— 601°X + 60XIX + 30D, XD+X — 60X* — 30XQ,, Q* — 10ROX — 4R, D*D*X — 12D,RD*X + 30XXR

HUpC

pPuv p v

1
— 12XOR — 5XR? + 2XR,, R" —2XR R’“’”") + 7 (18D2R +17D,RD"R — 2D ,R,,D’R" — 4D ,R,, D" R

+9D,R ;D" R*** + 28RCIR — 8R,,LIR* + 24R,,D,D'R* + 12R,,,,L0R** + 35/9R? — 14/3RR,, R*

+ 14/3RR,,,,R*7° — 208/9R,,, R’ R", + 64/3R,,R

uvpe

+ 80/9R, ", "R Ry )1

with I being the identity matrix for internal indexes.

R#7 — 16 /3R R,y R + 44/9R™ 4R

po

wpo R poaf}

(D2)
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