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Abstract

Beta regression models are a class of models used frequently to model response variables
in the interval (0, 1). Although there are articles in which these models are used to model
clustered and longitudinal data, the prediction of random effects is limited, and residual
analysis has not been implemented. In this paper, a random intercept beta regression model
is proposed for the complete analysis of this type of data structure. We proposed some
types of residuals and formulate a methodology to obtain the best prediction of random
effects. This model is developed through the parameterisation of beta distribution in terms
of the mean and dispersion parameters. A log-likelihood function is approximated by the
Gauss-Hermite quadrature to numerically integrate the distribution of random intercepts.
A simulation study is used to investigate the performance of the estimation process and
the sampling distributions of the residuals.

Keywords: Gauss-Hermite quadrature; maximum likelihood estimation; beta distribution;
beta regression

1. Introduction

The class of models known as beta regression models is used to model variables
that assume values in the interval (0,1), e.g., rates, proportions, or percentages, as this
type of data appears so frequently that these models have received the attention of many
researchers. Paolino [1], Kieschnick and McCullough [2], and Smithson and Verkuilen [3]
proposed a beta regression model with applications for political science, market shares, and
psychology. Ferrari and Cribari-Neto [4] defined a parameterisation of the beta distribution
in terms of the mean and precision parameter and proposed a beta regression model with a
regression structure for the mean.

Extensions of the regression model proposed by Ferrari and Cribari-Neto [4] have
been developed. Venezuela [5] developed a generalised estimating equation to analyse
longitudinal data by considering marginal beta regression models. Simas et al. [6] proposed
a regression structure for the precision parameter and nonlinear regression structure for the
mean. Ferrari and Pinheiro [7] considered regression structure for the precision parameter
and performed small-sample inference for beta regression models.

Cribari-Neto and Souza [8] performed testing inference in beta regression models
based on a second parameterisation of the beta distribution that considers the mean and
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dispersion parameters. Rigby and Stasinopoulos [9] incorporated this parameterisation into
the framework of generalised additive models for location, scale, and shape (GAMLSS).

Some more recent theoretical works include those by Karlsson [10], Abonazel and
Dawoud [11], and Algamal [12] in which different estimators are proposed to address the
problem of multicollinearity in the regression model. In applied publications, the work
of Mullen [13] illustrates the use of these models in solar radiation predictions; the work
of Douma [14] highlights the use of this type of models in ecology and evolution; the
work of Geissinger [15] emphasises their application in the natural sciences; the work of
Abonazel [16] shows a comparative study in medical science; and the work of Cribari-
Neto [17] shows a beta regression analysis of COVID-19 mortality in Brazil.

A mixed beta regression model provides a class of models for the analysis of clustered
and longitudinal data for beta-distributed responses. Early contributions of this class of
models include a logit random intercept beta regression model implemented by Rigby and
Stasinopoulos [9] on the R gamlss package, a logit random intercept beta regression model
via Template Model Builder (TBM) implemented by Brooks et al. [18] on the R glmmTMB
package, and a mixed beta regression model with logit and log link functions, a special
case of which is the finite mixture model proposed by Verkuilen and Smithson [19].

The main goal of this article is to propose a random intercept beta regression model
using a parameterisation scheme defined in terms of the mean and dispersion parameters
by considering different link functions and utilising an estimation method different from
the GAMLSS model. In this model, the parameters related to fixed and random effects are
estimated jointly using the maximum likelihood method. The advantages of using random
intercept beta regression model instead of the usual beta regression model are that by intro-
ducing random effects into the mean, we describe the heterogeneity of the means between
clusters, and by introducing random effects into the dispersion, we can describe the dis-
persions between clusters. According to Lee, Nelder, and Pawitan (2006) [20], introducing
random effects in the dispersion can describe abrupt changes among repeated measures.

Also, with the proposed model, we can analyse hierarchical datasets, such as clustered
data, repeated measurements, and longitudinal data. We also develop predictions of
random effects and propose residuals for the proposed model. An application is provided
with the longitudinal data from a prospective ophthalmology study described in the work
of Meyers et al. [21], in which the percentage of gas left in the eye of each patient was
recorded on different follow-up days.

The rest of this paper unfolds as follows. In Section 2, we define the random intercept
beta regression model and present the associated log-likelihood function. Further, we
obtain closed-form expressions for the score function and observed information matrix. In
the third section, we define the mean, variance, and covariance of the marginal distribution
of beta random variables and use them to build the marginal residual. In Section 4, we
describe randomised quantiles and conditional and marginal residuals to detect outlying
observations and standardised random effect estimates to detect outlying clusters. The
prediction of random effects used to build the proposed residuals is presented in Section 5.
The results of the simulations regarding the performance of the estimation method and the
residuals are presented in Section 6. In Section 7, we analyse a dataset with the proposed
model. Finally, concluding remarks are presented in Section 8. Some technical details are
collected in the Supplementary Material.

2. Random Intercept Beta Regression Model

In this section, we present two different parameterisations of the beta distribution, the
random intercept model, the likelihood inference, and the estimation procedure.
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2.1. Beta Distribution

Suppose Y is a response variable that follows a beta distribution. Ferrari and Cribari-
Neto [4] proposed a parameterisation of its density indexed by the mean y and precision
parameter ¢. The parameterisation is given by

fyim¢) = r(w)rlq((("i)_ ) yHr=1(1 — ) -1, "

where0 <y < 1,0 < u <1,and ¢ > 0. The mean and variance of Y are given, respectively,
by E(Y) = pand Var(Y) = (1 — )/ (1 + ¢).

Alternatively, the beta distribution can be parameterised in terms of the mean y and
the dispersion parameter ¢.

1, 0) = [((1-c%)/0?) ((1-0%)/0%)-1
f o) =R =e2 e e - A= 7a) @

x (1—y)I-mia-e?)/e)-1

with0 <y <1,0 < pu <1,and 0 < ¢ < 1. In this parameterisation, the mean of Y is
E(Y) = u, and the variance of Y is Var(Y) = c?u(1 — ).

The relationship between the precision parameter in (1) and the dispersion parameter
in(2is¢p = (1—0?)/c?

2.2. Random Intercept Model

Without loss of generality, we assume that (0,1) = (a,b), where a and b are known
scalars, a < b. If the response variable is constrained to the interval (a,b), we model
(y —a)/(b—a) instead of y.

Letyj, i =1,2,...,N, be the observed repeated measurements on the i-th clusters,
andlett;;, j =1,2,...,n; be the corresponding times on which the measurements are taken
on each cluster. In the beta random intercept model, it is assumed that the conditional
distribution of y;; given v; = (71, 7i2)T follows a beta distribution with a density given by
Equation (2). Given 7;, the repeated measurements, y;1,i2, - - -, Yin; are independent. We
will assume the following model:

ind
yij | vin vz ™ Be(puig, 03p),
&1 (i) = M = Xjj By + 11, ©)
8 (0ij) = Nip = xiszﬁz + 7i2,

where x;j; = (xjj11, Xijp1, - - .,xijpll)T and x;p = (Xij12, Xij22, - - - ,xijpzz)T contain values of
explanatory variables, possibly defined in terms of tij. The vectors B; = (B11,B21,-- -, Bpi1 )T
and B, = (B12, P22, - - -, ,szz)T are fixed parameters that do not depend on the time. The
random intercepts ;; and v, are shared among measurements within the same cluster.
The link functions g; : (0,1) — R and gy : (0,1) — R are strictly monotonic and twice
differentiable. The same or different link function may be used for the mean and the
dispersion parameter, e.g., logit, probit, clog-log, log-log, or cauchit. For a discussion of
these link functions, see McCullagh and Nelder [22].

The random intercepts ;1 and 7, are independent and identically distributed normal
random variables.
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where A and A, are the standard deviations of random intercepts. Larger estimates
of these parameters, A1 and A,, imply greater differences between the groups. In the
particular case where A; = 0, the mean of the response variable can be modelled without a
random intercept.

2.3. Likelihood Inference

Let f(yij | i1, viz; By, B,) denote the probability density function of y;; | i1, Vio-
Let f(7i1;A1) and f(7i2;A2) denote the probability density functions of 7;; and 7, re-
spectively. The parameter vector is 6 = ( ﬁ?, ,Bg, A1, A2)T. The marginal distribution of

Yy = (.‘/ilr]/iZ/-u/]/mi)T is given by
fly:;® //W Hf Yij | it vizs B By) - f(vis A) f(7vizs A2) dyindyia, )

and the likelihood function of 6 given the observed datay = (y;,¥,,...,yy)" is

N 3 n;
= H/ /9?2 LT/ ij L v vizs Bro By) - £ (vins M) f (vi2; A2) dyindyia. (6)
=1/ IR

Unlike a Gaussian linear model, the marginal distribution (5) and the likelihood
function (6) do not have closed-form expressions. The main difficulty of likelihood inference
for a random intercept beta regression model is the evaluation of intractable integrals
in likelihood function (6). Common approaches include Monte Carlo integration, EM
algorithms, and approximation methods (see Wu [23]). In this work, we use multivariate
Gauss—-Hermite quadrature to approximate the integrals. Thus, the likelihood function is

Q1 Q n e Wi
Lo H(z 5 150 | Bz, Bz B ) )

ki=1ky=1j=1 T

and the log-likelihood function can be written as

1 Qo n
Zlog< Z Z Hfl] %] ‘ \[Alzklz \f)\zzkzlﬁ]/ﬁz) Wk2>/ (7)

1 ki=1ky=1j=1 T

where Q1 and Q, denote the numbers of quadrature points, z;, and z;, are the quadrature
points, and wy, and wy, are the corresponding quadrature weights. For more details on
multivariate Gauss—-Hermite quadrature, see Fahrmeir and Tutz [24].

2.4. Estimating Procedure

The maximum likelihood estimators (MLEs) of 8 = ( ﬁ?, ,Bg, A1, A2)T are obtained as
the solutions of the nonlinear system U(6) = 0, where U(0) denotes the p-dimensional
gradient of £(0), with p = p; + p2 + 2. The score function is U(0) = (U;l (0), UEZ(B),
Uy, (6), Uy, (0))T, where the vectors UEI(G) and U%Z(B) and the quantities Uy, () and
Uy, (0) are defined in the Supplementary Material.

The maximum likelihood estimators do not have closed forms and must be computed
by numerically maximising the log-likelihood function (7) using a nonlinear optimisation
algorithm, e.g., Newton’s method or a quasi-Newton algorithm. As initial values for ,B? and
B, we suggest B? and Bg, the estimates from the beta regression model without random
intercepts, i.e.,
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ind
yij ~ Be(uij, if),
g1(pij) = xj1 By,
82(03j) = x[2By-

These models can be fitted in R, for example, using the packages gamlss or betareg,
developed by Rigby and Stasinopoulos [9] and Cribari-Neto and Zeileis [25], respectively.
For the parameters A; and A;, the standard deviations of random intercepts, we suggest
starting with initial values of 0, which corresponds to the usual beta regression model.

To obtain the covariance matrix of 8, the (p x p) observed information matrix is
required, which can be written as

Jﬂlﬁ1 Jﬁlﬁz J[51/\1 Jﬁlf\z

_ | Jep Jgapy Jpori Jpoa
J(60)

Tag, T, Tun Tan

Tnag, T, Tor Taon

where the elements of J(0) are defined in the Supplementary Material.
Under the usual regularity conditions for maximum likelihood estimation, the MLEs

6 of 6 are such that /n(0 — 0) B Noy4pa+2(0,J(8) 1), where B denotes convergence
in distribution.

3. Moments

The moments of the marginal distribution of y in model (3) are given by

(#3) = (BGui)* +E(02) - E(us (1 = i), (8)
(Vij : Plij') — E(pij) 'E(Vij’)r i

where the expectations involving y;; and 0;; are taken with respect to the distributions

Cov(yijr yi]'/ )=

of the random intercepts 7;; and ;. Note that the results depend on the link functions
used for u and ¢. To obtain these moments, the required integrals must be solved using
numerical integration methods.

4. Prediction of Random Effects

In practice, we are usually primarily interested in estimating the fixed-effect param-
eters, but it is often useful to obtain predictions of the random effects ;; and v;, as well.
Because the random effects reflect between-cluster variability, they are particularly use-
ful for detecting unusual response profiles or groups of clusters whose profiles evolve
differently over time. Moreover, estimates of the random effects are needed whenever
cluster-specific predictions are of interest (Fitzmaurice et al. [26]). We propose using an
empirical Bayes method to obtain the best predictor (BP) of the random intercepts, which
takes the following form:

n; A~ A A a
I Jse vin Hlf(]/ij | Yir, Yizs B1, Ba) f (vits A1) f(vizs A2) dyindyin
j:

7

Y = Elvin | ;0] = 0 . A R
[ Js2 Hlf(yij | Yit, Yizs By, Bo) f (vit; M) f (vizs A2) dyindyin
]:
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n; A A A A
I Js2 vi Hlf(%'j | Yir, Yios Br Bo) f (vin; A1) f (vi2; A2) dyvindyin
]:

4

Yio = E[vio | yi;; 0] = ni - R A
I [ Hlf(yij | Yit, Yizs Bis Bo) f (vivs M) f(7vi2; A2) dvindyin
j=

wherei=1,2,...,Nandj=1,2,...,n,.

5. Residual Analysis

Authors such as Hilden-Minton [27], Verbeke and Lesaffre [28], Pinheiro and Bates [29],
and Nobre and Singer [30] have presented different types of residuals that accommodate the
additional sources of variability present in linear mixed models. To study departures from
these assumptions, outlying observations, and clusters, we adopt three types of residuals
that account for the extra variability in the proposed model: randomised quantile residuals
(see Dunn and Smyth [31]), standardised conditional residuals and standardised marginal
residuals. In addition, we define standardised random effect estimates for y and ¢ to assess
the distribution of random effects and to study the presence of outlying clusters.

To assess the overall adequacy of the random intercept beta regression model for the
data, we proposed the randomised quantile residual, which is given by

raij = 7 (F(yijs ij, 03f)), ©)

where ®(-) denotes the cumulative distribution function of the standard normal distribu-
tion, and F(y;j; fl;j, 0;j) denotes the cumulative distribution function of Be(fl;j, 0;).

To study outlying observations, we consider the standardised conditional and marginal
residuals. The standardised conditional residual is defined as

L Yij _E(]/ij | ’Yil,’)’iz)
cly —— ,
\/ Var (yi; | vi1, 7i2)

(10)

where E(yl] | Yils ’71‘2) = ﬁl] and @(yll | Yils ’71‘2) = &121121](1 - ﬁij)' with .ﬁl] = gl_l(x;l}ligl +
¥i1) and 0;; = g, 1(xiT]-Z,B2 +912); B; and B, are the maximum likelihood estimators of 8,
and B,; and 9;; and ¥, denote the best predictors (BPs) of ;1 and 7, respectively.

The standardised marginal residual is given by

'mij = — === (11)

= N o= N .2 . N N
where E(y;;) = E(f1;j) and Var(y;;) = E(7) — (E(f;j))” +E(07) - E(y(1 — ).
Thus, when the logit link function is used for y and o, the mean and the variance are
given by

1
Blyi) =1 E(w)

1 1 2
varlo) =g ) [E(rreem)
27i2 Yit
2 e e
#7511 ) B e )

T T ~ A
where a = ex"ﬂﬂ Tandb = exiﬂﬁ 2. Replacing B, B,, i1, and 7;», we obtain B, B,,4i1, and

Y2, as well as E(yij) and Vﬁlr(yi]-). Note that to calculate these estimates, multivariate



Modelling 2025, 6, 128

7 of 14

Gauss-Hermite quadrature is used to approximate the integrals in parameter estimation
and random intercept prediction.

To study outlying clusters and assess the random effect distribution, we consider the
standardised random effect estimates for y and o, defined as

/)“,.

Frui = Tﬂ’ (12)
1

Troi = ﬁr (13)
2

withi = 1,2,...,N, where J;; and 4, are the BPs of 9;; and 7,5, and A; and A, are the
maximum likelihood estimates of A1 and A,.

Atkinson [32] and Kutner et al. [33] suggested the use of probability plots with simu-
lated half-normal envelopes as diagnostic tools. Such plots are useful for identifying outliers
and examining the adequacy of the fitted model, even when the residual distribution is
unknown. Half-normal plots with a simulated envelope can be produced as follows:

1. Fit the beta random intercept model and generate a sample of n independent observa-
tions, treating the fitted model as the true model.

2. Fit the beta random intercept model to the generated sample and compute the ordered
absolute residuals.

3. Repeat steps (1) and (2) k times.

4.  For each of the n positions, collect the k order statistics and compute their average,
minimum, and maximum values.

5. Plot these values together with the ordered residuals of the original sample against the
half-normal scores ¢! ((i +n — 0.125)/(2n + 0.5)), where i is the ith order statistic,
1 <i < n,and n is the sample size.

The minimum and maximum values of the k-order statistics define the envelope.
Observations with absolute residuals outside the simulated limits warrant further investi-
gation. Moreover, if a considerable proportion of points falls outside the envelope, there is
evidence against the adequacy of the fitted model.

6. Simulation Study

The purpose of this simulation study is twofold. First, we study the behaviour of the
estimates of B, B,, A1, and A; as the number of clusters, cluster size, and the standard devi-
ations of the random intercepts in p and o for clustered and longitudinal data. Second, we
investigate the sampling distribution of the residuals for identifying outlying observations
and clusters.

The data were generated according to the following random intercept beta regres-
sion model:

ind

vii | vi, vi2 ™ Be(pij, o),
g(mij) = Bu1 + Barxaij + Barxaij + Vi,
g(0ij) = P12 + Boaxuij + BaaXaij + Vi,

where i = 1,...,N, j = 1,...,n;, g(-) is the logit function, and B; = (B11,B21,B31)"
and B, = (B12, B22, Bs2)T are parameter vectors. The covariates are generated following
simulation studies with longitudinal data, such as those by Park and Wu [34], Guoyou
and Zhongyi [35], and Fu and Wang [36]. The covariate xy;; is generated from the uniform
distribution, U(0,1), with a different value for each pair ij. The design time points are
taken between 0 and 1 as xp;; = (j — 1) /n;, taking the same values for each cluster. Both
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parameter vectors are identical B; = B, = (—0.15,0.15, —0.15)T, and are independent of
the random intercepts, which are generated as ;1 ~ N(0, A%) and 7, ~ N(0,A3).

We examined all combinations of five clusters, N, (20,40,60,100,150); four clus-
ter sizes, n;, (3,5,8,12); and three standard deviations of the random effects, Ay, Ay,
(0.5,1.0,1.5). In total, there were 60 combinations, and we simulated 10,000 datasets
for each of them. For the Gauss-Hermite quadrature method, Q; = Q» = 8 quadrature
points were used to obtain the estimates and predictions of the random intercepts. All
analyses were conducted in R [37]; the R glmmML package proposed by Brostrom and
Holmberg [38] was used to calculate the points and weights needed for Gauss—Hermite
quadrature, and the R Stats function nlminb [37] was used to maximise the log-likelihood
function (7).

To study the maximum likelihood estimates of 8 = (B, B,, A1,A2)T, we used the root
multivariate mean squared error (RMSE) for 8, following Wissel [39], which is defined as

A A

RMSE = (trace(2(8)) + (8 — 0)T(8 — 0))'/2.

To analyse the convergence of the optimiser used in the estimation process, we com-
puted the convergence rate (CR), defined as

CR — 1Of000 .ztemt.zons,
Final iterations

where “final iterations” corresponds to the number of iterations required to complete
10,000 simulations. If the convergence rate equals one, this indicates that 10,000 iterations
were sufficient. If it is less than one, more than 10,000 iterations were needed to complete
the simulation study. Additional iterations occur when the algorithm does not converge
because the simulated values of y are very close to zero or one due to large variances in the
random effects.

Table 1 presents the RMSE across 10,000 simulated datasets for A1 = 0.5 and 1.5. The
RMSE decreases as the cluster size (1;) increases for fixed (N) and (A1, Ay), indicating
improved estimation with larger within-cluster information. For example, with A; = 0.5,
Ay = 0.5,and N = 150, the RMSE values are (0.476,0.339,0.252,0.210) for n; = 3,5,8, and
12, respectively. RMSE also decreases with a larger number of clusters (N), holding (n;)
and (A1, Ap) fixed. For instance, with A; = 1.5, A, = 0.5, and n; = 12, the RMSE values are
(1.075,0.771,0.646,0.553,0.454) for N = 20,40, 60, 100, and 150. Conversely, RMSE increases
with higher A, for given fixed values of A1, (N), and (n;), reflecting reduced estimation
accuracy under greater random-intercept variability. For example, with A; = 1.5, N = 60,
and n; = 3, the RMSE values are (1.134,1.244,1.364) for A, = 0.5,1.0, 1.5. Exceptions arise
for N =20 and n; = 3 with A; = 0.5and 1.5, and for N = 20 and n; = 5 with A; = 0.5. A
similar pattern is observed for A1: RMSE increases as A rises for fixed #;, N, and A,. For
instance, with A, = 1.5, N = 60, and n; = 3, the RMSE values are (1.062,1.364) for A; = 0.5
and 1.5.

Table 2 presents the convergence rate (CR) over 10,000 simulated datasets for
A1 = 05,1.5and A, =05,1.0,1.5.

To study the sampling distributions of the proposed residuals, we used the maximum
likelihood estimates and the best predictors (BPs) of the random intercepts for y and o,
computed in each replication of the study, to obtain the residuals rq and r¢, as well as the
standardised random effect estimates ;, and ;.. In addition, estimates of the mean and
variance of the marginal distribution of y were used to compute the residual r, defined in
expression (11).



Modelling 2025, 6, 128 9 of 14

Table 1. RMSE of 8 when A; = 0.5,1.5and A, = 0.5,1.0,1.5.

A1 = 0.5 A =15
Az Az
N n; 0.5 1.0 1.5 N n; 0.5 1.0 1.5
3 2.897 3.188 2.296 3 3.577 3.619 3.506
20 5 1.388 1.499 1.497 20 5 1.811 1.822 1.868
8 0.918 0.995 1.116 8 1.279 1.369 1.543
12 0.706 0.807 0.950 12 1.075 1.191 1.458
3 1.250 1.462 1.472 3 1.645 1.737 1.789
40 5 0.781 0.860 0.954 40 5 1.031 1.157 1.301
8 0.572 0.638 0.782 8 0.857 1.000 1.189
12 0.435 0.558 0.745 12 0.771 0.928 1.181
3 0.937 1.014 1.062 3 1.134 1.244 1.364
60 5 0.590 0.663 0.756 60 5 0.816 0.903 1.092
8 0.430 0.518 0.658 8 0.693 0.816 1.061
12 0.347 0.443 0.656 12 0.646 0.805 1.050
3 0.638 0.688 0.727 3 0.777 0.859 1.005
100 5 0.432 0.459 0.570 100 5 0.593 0.692 0.909
8 0.315 0.387 0.540 8 0.556 0.677 0.901
12 0.257 0.356 0.537 12 0.553 0.675 0.895
3 0.476 0.528 0.566 3 0.599 0.682 0.963
150 5 0.339 0.368 0.466 150 5 0.491 0.641 0.861
8 0.252 0.314 0.478 8 0.490 0.590 0.822
12 0.210 0.295 0.407 12 0.454 0.573 0.792
Table 2. CR when A = 0.5,1.5and A, = 0.5,1.0,1.5.
A1 = 0.5 A =15
/\2 AZ
N n; 0.5 1.0 1.5 N n; 0.5 1.0 1.5
3 0.997 0.849 0.903 3 0.700 0.957 0.970
20 5 1.000 0.958 0.975 20 5 0.875 0.985 0.943
8 1.000 0.990 0.978 8 0.996 0.979 0.893
12 0.998 0.999 0.969 12 0.992 0.942 0.817
3 0.870 0.960 0.977 3 0.869 0.983 0.950
40 5 0.992 0.999 0.988 40 5 0.981 0.968 0.867
8 1.000 1.000 0.970 8 0.993 0.940 0.779
12 1.000 1.000 0.951 12 0.967 0.883 0.648
3 0.953 0.986 0.988 3 0.940 0.979 0.913
60 5 1.000 0.999 0.987 60 5 0.992 0.960 0.846
8 1.000 1.000 0.962 8 0.985 0.917 0.686
12 1.000 1.000 0.923 12 0.964 0.842 0.524
3 0.994 0.999 0.985 3 0.987 0.973 0.855
100 5 1.000 1.000 0.974 100 5 0.989 0.929 0.724
8 1.000 0.998 0.937 8 0.962 0.866 0.511
12 1.000 0.997 0.860 12 0.935 0.742 0.348
3 1.000 1.000 0.991 3 0.996 0.959 0.785
150 5 1.000 1.000 0.962 150 5 0.986 0.894 0.610
8 1.000 0.998 0.909 8 0.964 0.814 0.398
12 1.000 0.994 0.814 12 0917 0.647 0.229
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Figure 1 presents normal probability plots for the randomised quantile (r;), stan-
dardised conditional (7.), and standardised marginal residual (r,,) for N = 20, A; = 0.5,
n; = 3,5, and Ay = 0.5,1.0,1.5. Each panel includes the three residuals. The plots show that
the randomised quantile residuals follow an approximately normal distribution, while the
conditional and marginal residuals exhibit symmetry with heavier tails, consistent with
Student’s t distribution. Similar results were obtained for n; = 8 and 12.
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Figure 1. Normal probability plots for randomised quantile (column 1), conditional (column 2), and
marginal (column 3) residuals with N = 20, A; = 0.5, n; = 3, and n; = 5.

Figure 2 displays normal probability plots for the standardised random effect estimates
rr, and rr,, with N = 20 and n; = 3,5. Both distributions are well approximated by the
normal law. Similar plots were generated for N = 20, A; = 0.5, and n; = 8,12, and
comparable results (not shown) were also obtained for A; = 1.0,1.5and N = 40, 60, 100, 150.
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Figure 2. Normal probability plots for standardised random effect estimates for i and o with N = 20,
A1 =0.5,n; =3,and n; = 5.
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7. Application

In this section, we analyse data from a prospective ophthalmology study reported
by Meyers et al. [21], with emphasis on heterogeneous mean and dispersion. Previous
analyses of these data have examined homogeneous and heterogeneous dispersion using
simplex regression models [40,41]. In the study, intraocular gas (C3Fg) was used in complex
retinal surgeries to provide an internal tamponade for retinal breaks. The concentration
levels of C3Fg administered were 25%, 20%, and 15%. The primary objective was to assess
whether the concentration of injected gas affected its decay rate. The sample comprised
29 patients, each followed-up with between 3 and 15 times over a 3-month period. Let y;;
denote the proportion of remaining gas volume relative to the initial injected volume for
patient i at time j on follow-up day ¢;;. Since the response variable lies in (0, 1), the beta
regression model is an appropriate choice.

As the initial specification, we adopted the quadratic model proposed in [40]:

logit ;7)) = P11 + Parlog(tij) + Barlog? (i) + Barxij + vin,
logit(cj;) = P12 + Pa2log(t;) + Bazlog’ (ij) + Parxij + Yias

withi = 1,...,29, where 7;; ~ N(0,A%) and 7, ~ N(0,A3). Here, ti; denotes the time
covariate (days after surgery) and x;; represents the standardised gas concentration, coded
as 1(25%),0(20%), or —1(15%).

The standard beta regression model was first fitted to the data, after which nonsignifi-
cant variables were removed. The final specification for y;; and ;; was

logit(;{,‘j) = B11 + lelog(ti]') + ,B4lxij/

(14)
logit (Uij) = ﬁlZ'

Subsequently, a random-intercept beta regression model for u was fitted, using the
same linear predictors as in (14). The resulting specification for y;; and 0;; was

logit (pij) = P11 + Balog(ti;) + Barxij + vit,

15
IOgit(O'ij) = ‘312. ( )

Finally, a random-intercept beta regression model for both y and o was fitted, using
the same linear predictors as in (14). The specification for y;; and ¢;; was

logit(pij) = P11 + Pailog(tij) + BarXij + vin,

. (16)
logit(c7j) = B12 + Yiz-

Table 3 summarises the parameter estimates and standard errors for the beta regression
model (BRM), the beta regression model via TBM (TBMBRM), and the mixed beta regression
model (MBRM). The Akaike information criterion (AIC) values were —97.2325, —138.2,
and —169.034 for BRM, TBMBRM, and MBRW, respectively, leading to the selection of the
MBRM as the best-fitting model. The results indicate that gas concentration is statistically
significant, showing that higher concentrations are associated with slower decay of gas
volume. Moreover, A1 was greater than A, suggesting greater variability in the random
intercept of the mean.
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Table 3. Parameter estimates and standard errors for models (15) and (16).

Model Est-s.e ﬁn ,321 ﬁ41 ﬁu A A
BRM Est. 1.911 —0.669 0.245 —0.190 - -
s.e. 0.187 0.069 0.100 0.078 - -
TMBBRM  Est. 2.650 —0.958 0.239 —0.187 0.807 -
s.e. 0.254 0.070 0.243 0.060 0.898 -

MBRM Est. 2.590 —0.928 0.184 —0.817 0.909 0.411

s.e. 0.222 0.080 0.191 0.123 0.132 0.111

Figure 3 presents the half-normal probability plot with a simulated envelope for the
randomised quantile, standardised conditional, and standardised marginal residuals of
the random-intercept beta regression model. As no observations fall outside the simulated
envelope, we conclude that the beta regression model with random intercepts provides an
adequate fit to the data.

Ordered absulute value of standardzed cordiconal residual
Ordered absolute value of siendardized maranal residual

T T T T T T T T T T T T
20 25 (3] 03 10 15 20 25 0.0 05 10 1.5 20 25

Expected value of nall-narmal order stalslics Expectzd valie of half-normial Didsr SLastics EXPECIEd vaLie 1 halT-NOral 108! StAlistics

Figure 3. Half-normal probability plot with simulated envelope for randomised quantile, standard-
ised conditional, and standardised marginal residuals.

8. Conclusions

In this paper, we proposed a random-intercept beta regression model for the analysis
of clustered and longitudinal data expressed as proportions, rates, or percentages. The
model accommodates heterogeneity and heteroscedasticity across clusters by incorporating
random effects in both the mean and dispersion structures. Maximum likelihood estimation
was carried out using Gauss—Hermite quadrature to approximate the integrals of the log-
likelihood, allowing simultaneous estimation of parameters and hyperparameters and
straightforward prediction of random effects. We also introduced new residuals to evaluate
model adequacy and detect potential outliers at both the observation and cluster levels.
Simulation studies confirmed the effectiveness of the methodology, and its application to a
real dataset demonstrated its practical usefulness.
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