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e Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Brazil 
f School of Forestry & Environmental Studies, Yale University, New Haven, CT 06511, USA   

H I G H L I G H T S  

• Review of air quality modeling in the Metropolitan area of São Paulo from 2001 to 2022. 
• Strategies for urban air quality simulation impacted by vehicular emissions. 
• Analysis of air quality model performance for O3 and PM2.5 simulations.  
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Numerous studies have used air quality models to estimate pollutant concentrations in the Metropolitan Area of 
São Paulo (MASP) by using different inputs and assumptions. Our objectives are to summarize these studies, 
compare their performance, configurations, and inputs, and recommend areas of further research. We examined 
29 air quality modeling studies that focused on ozone (O3) and fine particulate matter (PM2.5) performed over 
the MASP, published from 2001 to 2023. The California Institute of Technology airshed model (CIT) was the 
most used offline model, while the Weather Research and Forecasting model coupled with Chemistry (WRF- 
Chem) was the most used online model. Because the main source of air pollution in the MASP is the vehicular 
fleet, it is commonly used as the only anthropogenic input emissions. Simulation periods were typically the end 
of winter and during spring, seasons with higher O3 and PM2.5 concentrations. Model performance for hourly 
ozone is good with half of the studies with Pearson correlation above 0.6 and root mean square error (RMSE) 
ranging from 7.7 to 27.1 ppb. Fewer studies modeled PM2.5 and their performance is not as good as ozone es
timates. Lack of information on emission sources, pollutant measurements, and urban meteorology parameters is 
the main limitation to perform air quality modeling. Nevertheless, researchers have used measurement campaign 
data to update emission factors, estimate temporal emission profiles, and estimate volatile organic compounds 
(VOCs) and aerosol speciation. They also tested different emission spatial disaggregation approaches and tran
sitioned to global meteorological reanalysis with a higher spatial resolution. Areas of research to explore are 
further evaluation of models’ physics and chemical configurations, the impact of climate change on air quality, 
the use of satellite data, data assimilation techniques, and using model results in health impact studies. This work 
provides an overview of advancements in air quality modeling within the MASP and offers practical approaches 
for modeling air quality in other South American cities with limited data, particularly those heavily impacted by 
vehicle emissions.   
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1. Introduction 

The Metropolitan Area of São Paulo (MASP) is the largest megacity in 
South America and it is commonly positioned in the top ten most 
populated cities in the world (United Nations, 2018). Like many other 
megacities, the MASP suffers from high levels of air pollution, being 
ozone (O3) and fine particulate matter (PM2.5) the pollutants that 
frequently exceed the state air quality standard. To quantify the levels of 
air pollution in the State of São Paulo, the State Environmental Agency 
(CETESB) deployed an air quality network to measure criteria pollut
ants, becoming one of the air quality networks with most spatial 
coverage in South America (Riojas-Rodríguez et al., 2016). 

Air quality networks are insufficient to fully characterize the air 
quality of a region. They are expensive for installation and maintenance, 
which can be a limitation, especially in developing countries. Because an 
air quality station only produces information for one point in space, it is 
difficult to know all the conditions that led to the measured concen
trations (Zhong et al., 2016). Even with one of the best air quality net
works, monitoring data is not available for all time periods and locations 
of interest in the MASP. For example, air quality stations are mainly 
located inside the City of São Paulo, they are mainly located in urban
ized areas, and not all the stations measure the same pollutants. 

Air quality modeling is another approach to estimate the pollutant 
concentrations. They are a mathematical computer code that represents 
the physics, dynamics, radiative, and chemical processes of the atmo
sphere (Jacobson, 2005). But air quality models have uncertainties 

based on the quality of their inputs (e.g. the emission inventory, land-use 
data, elevation, etc), and the limited knowledge we have to describe a 
phenomenon (e.g. turbulence, precipitation, urban physics, etc). 
Therefore, they require evaluation by the government and the scientific 
community before they can be used to address research questions that 
are difficult to answer with monitors: What are the concentrations of 
species that are not measured by the air quality network? What 
physical-chemical formation processes lead to that measurement? And 
how different emission scenarios or meteorological conditions will affect 
the concentrations? (Simon et al., 2012). 

In the MASP, several studies have used air quality models to estimate 
pollutant concentrations to answer different research questions. In this 
review, we covered the studies that used Eulerian 3-D air quality models, 
performed in the MASP that focused on O3 and PM2.5, published be
tween 2001 and 2023. Our goals, therefore, are to summarize their 
configuration and inputs, compare their performance, and recommend 
areas of further research based on the limitations we found. This work is 
of interest to the air quality modeling community in South America, as it 
is the first review focused on a South American city. The experience in 
the MASP can help to perform air quality modeling in cities of the 
continent where the data is scarce and the vehicular fleet is the main 
source of pollution. 

We start by describing the characteristics of the MASP air pollution. 
Then we summarize existing air quality model studies for the MASP. We 
describe their input emissions, their configurations (chemical and 
meteorological boundary conditions, chemical mechanism, aerosol 

Fig. 1. Key features of air quality in the MASP. A) Location and topography of the MASP, b) Local climate zones (LCZ) in the MASP (Stewart and Oke, 2012), and 
location of air quality stations: dots denote O3 measurements, exes denote PM2.5 measurements, and diamonds denote both pollutant measurements. The green 
diamond shows the location of Pico do Jaraguá station. The city of São Paulo is highlighted in thick white line c) Mean maximum monthly MDA8 Ozone from 
available air quality station in the MASP (The dashed line is the Air quality standard for O3 = 140 μg m− 3 8 h rolling mean, vertical lines show the standard deviation) 
and d) Monthly Maximum PM2.5 daily averages from available air quality station in the MASP (The dashed line is the air quality standard for PM2.5 = 60 μg m− 3 daily 
average, the vertical lines show the standard deviation). Data in c) and d) come from the automatic air quality stations of CETESB. 
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modules, photolysis schemes, domain configurations, and physics op
tions), their simulation performance based on the comparison with ob
servations, and the scientific questions they answered. We end the 
review by identifying limitations and recommendations for future air 
quality studies for the MASP. 

2. Air pollution in the metropolitan area of São Paulo 

The MASP is located in the State of São Paulo in Southeast Brazil 
(Fig. 1a). It has an area of 8000 km2 and it is populated by 21.9 million 
people (IBGE, 2020). By its location, the MASP presents a subtropical 
climate (Andrade et al., 2017). The South Atlantic Convergence Zone 
(SACZ) is one of the main atmospheric systems affecting precipitation 
during the summer, while the polar and subpolar jet streams affect the 
formation of fronts that reach the MASP. Air masses from the south pole 
produce cold fronts, enhancing thermal inversions and winds from 
Southeast to Northwest. During the pre-frontal systems, wind direction 
changes to Northwest and then to Southeast (Andrade et al., 2004). 

As the MASP is close to the littoral (~60 km to the coast, see Fig. 1a) 
the sea breeze is an important factor in pollutant dispersion. Freitas et al. 
(2007) showed that during winter the MASP urban heat island accel
erates the sea breeze up to the city center, where the sea breeze is 
delayed. This means that urban characteristics of MASP already affect its 
urban climate. This is aggravated by the unorganized development of 
the city, which has created an even more heterogeneous urban 
morphology (Lima and Magaña Rueda, 2018) (Fig. 1b). 

In the MASP, O3 and PM2.5 concentrations frequently exceed the São 
Paulo State air quality standards (140 μg m− 3 or ~ 70 ppb 8-h rolling 
mean for O3 and 60 μg m− 3 daily average for PM2.5) (CETESB, 2021). 
Fig. 1c shows that the maximum monthly MDA8 O3 frequently exceeds 
the state standard. Fig. 1d shows that the maximum monthly PM2.5 daily 
means have passed and are very close to the PM2.5 state air quality 
standard. Both figures highlight that even with the implementation of 
emission control policies, O3 and PM2.5 concentrations have not been 
reduced (Carvalho et al., 2015; Pérez-Martínez et al., 2015). 

Ozone concentrations are frequently higher in spring (September to 
November). During summer (December to February) high concentra
tions are also measured but depend on the meteorology conditions (i.e. 
no precipitation) (Carvalho et al., 2015; Schuch et al., 2019). For PM2.5 
spring is also the season when higher concentrations are observed, 
because September and October are periods when biomass burning takes 
place. Winter (June to August) is the season with the highest levels of 
primary pollutant concentrations. In winter, the dry period, 
high-pressure systems (blocking highs) produce clear skies, radiative 
inversions, and low wind speeds that increase the concentration of pri
mary pollutants (Carvalho et al., 2015; Ulke and Andrade, 2001). 

The vehicular fleet is the primary source of precursors and direct 
emission of regulated air pollutants in the MASP (Andrade et al., 2017; 
CETESB, 2021). The vehicular fleet is characterized by the extensive use 
of biofuels, which creates a particular atmosphere with high O3-forming 
volatile organic compounds (VOCs) (Alvim et al., 2020). According to 
CETESB (2021), from the total emissions, the vehicular fleet is respon
sible for 96% of carbon monoxide (CO), 73% of VOCs, 65% of nitrogen 
oxides (NOX), 40% of particulate matter (PM), and 11% of sulfur oxides 
(SOX) emissions. It extensively uses gasohol (a mixture of 78% gasoline 
and 22% ethanol) and biodiesel (diesel with 8–10% biodiesel). Half of 
the low-duty vehicular fleet is flex-fuel, which can run with any amount 
of gasohol and ethanol (CETESB, 2021). Emission strategies were 
implemented to reduce air pollution, including the Air Pollution Control 
Program for Motor Vehicles (PROCONVE) and the Air Pollution Control 
Program for Motorcycles and Similar Vehicles (PROMOT), resulting in a 
reduction of primary pollutants even with the increase of the vehicular 
fleet (Andrade et al., 2017). 

The MASP is a VOC-limited atmosphere due to the high levels of NOX 
emitted by the diesel heavy-duty fleet (Sánchez-Ccoyllo et al., 2006). 
But recent studies performed during the COVID lockdown found that 

this situation is not homogeneous for all urban areas. Sokhi et al. (2021) 
illustrated that in the same urban area, there are NOX-limited and 
VOC-limited controlled regions. The same was shown for other South 
American cities by Seguel et al. (2022) in an analysis also during the 
COVID lockdown, for São Paulo, Santiago, Lima, and Bogota. All these 
cities presented different behavior concerning O3 and PM2.5 concen
trations, not only due to emission sources but also due to the meteoro
logical conditions and topography. Consequently, air quality modeling 
need to represent the meteorological conditions over the MASP and 
correctly calculate and distribute its emissions inventory to estimate 
pollutant concentrations. 

3. Air quality models used in the MASP 

To the best of our knowledge, Bischoff-Gaub et al. (1998) performed 
the first air quality modeling in the State of São Paulo. It was not per
formed in the MASP but in Cubatão, an industrial area located closer to 
the State of São Paulo coast. The authors simulated SO2 concentrations 
using a modeling system that includes the Karlsruher Atmospheric 
Mesoscale Model (KAMM) and Dreidimensionales Ausbreitungs-und 
Immissions-Simulationsmodell (DRAIS) dispersion model (Adrian and 
Fiedler, 1991). The following year, as far as we know, the first work 
using neural network models to estimate ozone formation in the MASP 
was published by Guardani et al. (1999). We found that the use of 
Eulerian 3-D air quality models started at the beginning of the 2000s 
with the work of Ulke and Andrade (2001). 

We carried out a systematic literature review regarding air quality 
modeling in the MASP. Our dataset consists of 29 modeling studies with 
Eulerian 3-D air quality models performed over the MASP or that 
included it inside their simulation domains. These studies covered a 
period of 23 years from 2001 to 2023. We selected forecast and post- 
analysis simulation studies. Table 1 shows the selected studies for this 
review. In the Supplementary Material, we present a brief description of 
the six air quality models used in the MASP and shown in Table 1 
(Fig. 2a). 

Our dataset has 27 studies (93 %) that performed post-analysis 
simulations. It also has 16 studies using offline models (55 %) and 13 
using online models (45 %). Offline models require meteorological 
predictions generated separately to simulate the pollutant concentra
tions. The meteorological prediction usually comes from a meteorolog
ical simulation that could have different spatial and temporal 
resolutions; therefore, interpolation is required. Online models, on the 
other hand, calculate the meteorological fields and pollutant concen
trations within one model system using the same grid and time-step of 
integration. The major difference between both types of models is that 
online models can address the feedback between the meteorological and 
chemistry components of the atmosphere (e.g. aerosol feedback to 
photolysis and radiation via direct effects and to cloud and precipitation 
via indirect effect) (Baklanov et al., 2014; Zhang, 2008; Zhang et al., 
2012a, 2012b). 

Although in some cases, results from other pollutants were included 
as they helped to explain the model results (i.e. NOX and CO), we mainly 
focused on O3 and PM2.5. They are pollutants with a higher number of 
air quality standard violations, with important health impacts and 
climate implications. 

4. Emissions used in air quality models 

All air quality models in Table 1 require an emission inventory to 
run. An emission inventory describes the mass of pollutants released to 
the atmosphere by source for a given time and space (Pulles and 
Heslinga, 2007; Vallero, 2014). Pulles and Heslinga (2007) stressed that 
its estimation is a difficult task, and it is usually pointed as the main 
cause of differences between model results and observations. 

Processing the emissions into the model is demanding. Besides 
knowing the total emissions, they need to be distributed in space and in 
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time, and to be speciated according to the selected chemical mechanism 
or aerosol module (Matthias et al., 2018). In the MASP, from the local 
emission inventory developed by CETESB, researchers speciated NOX 
(into NO and NO2), and the total VOCs emissions into the different 
organic species. PM emissions are also speciated into fine and coarse 
particle emissions, and in their components like SO4, NO3, organic 
carbon (OC) and elemental carbon (EC). Laboratory and field experi
ments have helped in this speciation endeavor. The same speciation is 
required when global emission inventories are used. 

Some modeling systems have an emission preprocessor to assimilate 
the local emission inventory, but they are difficult to use as they require 
much detailed information that is limited in South American cities. For 
example, The Sparse Matrix Operator Kernel Emissions (SMOKE) 
modeling system or the emiss_v03 tool, for CMAQ or WRF-Chem 
respectively, represent a real challenge to implement and usually 
many assumptions are made to use them. There are also emission pre
processors that work for different models like PREP-CHEM-SRC that 
create emission for WRF-Chem and CCATT-BRAMS models from global 
emission inventories (Freitas et al., 2011). In most cases, researchers 
developed their own emissions preprocessors or emission files for ad-hoc 
simulations (Andrade et al., 2015; Vara-Vela et al., 2016; Gav
idia-Calderón et al., 2018; Ibarra-Espinosa et al., 2018; Schuch et al., 

2020). For that reason, the studies in our dataset have used different 
emission estimates, calculated using different methodologies and 
distributed in space and time with different proxies. 

In the MASP air quality simulations, the most used emission sources 
are anthropogenic emissions, biomass burning emissions, and biogenic 
emissions. As the MASP has more detailed information, it is common to 
extrapolate the emission information from the MASP to other cities 
located inside the simulation domain (Andrade et al., 2015). 

4.1. Anthropogenic emissions 

Because the vehicular fleet is the main source of air pollution in the 
MASP, 17 (58.6 %) studies only used vehicular emissions to account for 
anthropogenic emissions. This approximation usually works for the 
representation of O3 but is incomplete to estimate PM2.5 as part of its 
emission sources are not yet quantified (e.g. industry, road resuspension, 
etc.). 

To calculate the vehicular emissions, researchers used the emissions 
factor and intensity use values from CETESB’s air quality reports (htt 
ps://cetesb.sp.gov.br/ar/publicacoes-relatorios/), vehicular emissions 
reports (https://cetesb.sp.gov.br/veicular/relatorios-e-publicacoes/), 
and from tunnel experiments (Martins et al., 2006b; Nogueira et al., 

Table 1 
MASP air quality modeling studies included in this review.  

Reference Models Chemical mechanism/aerosol modulea Simulated pollutants Seasons /Year 

Ulke and Andrade (2001) CIT Condensed version of the LCC (Lurmann et al., 
1987) 

O3 Summer/1989 

Andrade et al. (2004) CIT SAPRC99 O3, NOX, CO Winter/1999 
Freitas et al. (2005) RAMS-SPM SPM O3 Winter/1999 
Martins et al. (2006a) CIT SAPRC99 O3, NO2, NO, PAN Winter/1999, 2000 
Sánchez-Ccoyllo et al. (2006) CIT SAPRC99 O3 Winter/2000 
Vivanco and Andrade (2006) CIT SAPRC99 O3, NOX, VOC Winter/1999 
Sánchez-Ccoyllo et al. (2007) CIT SAPRC99 O3, NOX, VOC, CO Summer/2000 
Martins and Andrade (2008a) CIT SAPRC99 O3 Spring/2004 
Martins and Andrade (2008b) CIT SAPRC99 O3, NOX, VOC, CO Fall, winter/2000 
Alonso et al. (2010) CCATT-BRAMS RACM O3, NOX, CO Summer, winter, spring/2005 
Carvalho et al. (2012) BRAMS-SPM SPM O3, NOX Summer/2003 
Longo et al. (2013) CCATT-BRAMS RELACS O3, NOX, CO Winter/2011 
Silva Junior and Andrade 

(2013) 
WRF-Chem RADM2/MADE-SORGAM O3, CO Spring/2006 

Andrade et al. (2015) WRF-Chem/BRAMS- 
SPM 

CBMZ/MOSAIC-8bins O3, PM2.5, NOX Summer/2013, 2014 

Vara-Vela et al. (2016) WRF-Chem RADM2/MADE-SORGAM PM2.5, PM10, O3 Winter/2014 
Hoshyaripour et al. (2016) WRF-Chem MOZART/GOCART O3, NOX, VOC Winter/2012 
Scovronick et al. (2016) CCATT-BRAMS Not specified PM2.5 Year/2019–2020 
Albuquerque et al. (2018) CMAQ CB05/AERO4 PM10, PM2.5, O3, BC, SO4, NH4, 

NO3 

Winter/2008 

Vara-Vela et al. (2018) WRF-Chem CB05/MADE-VBS O3, PM2.5, EC, BC Winter/2014 
Gavidia-Calderón et al. (2018) WRF-Chem CBMZ O3 Fall, pring/2006 
Albuquerque et al. (2019) CMAQ CB05/AERO4 PM2.5 Winter/2008 
Pellegatti-Franco et al. (2019) WRF-Chem CBMZ O3 Spring/2008 
Schuch et al. (2020) WRF-Chem CBMZ/MADE-SORGAM O3, PM2.5 Summer/2019 
Andreão et al. (2020) WRF-Chem RADM2/GOCART PM2.5 Winter/2015 
Guerrero et al. (2021) BRAMS-SPM SPM O3 Summer/2005, 2010, Spring/ 

2001 
Duarte et al. (2021) EURAD-IM RACM-MIM/MADE-SORGAM PM10, PM2.5 Winter, spring/2006 
Ibarra-Espinosa et al. (2022) WRF-Chem RADM2/MADE-SORGAM PM2.5, O3 Spring/2014 
Peralta et al. (2023) WRF-Chem CBMZ O3 Spring/2018 
Benavente et al. (2023) WRF-Chem MOZART4/GOCART O3, PM2.5, NOX, CO Winter/2017, 2018, 2019 

CIT: California Institute of Technology airshed model, CMAQ: Community Multiscale Air Quality model, EURAD-IM: The European Air Pollution Dispersion and 
Inverse Model, WRF-Chem: The Weather Research and Forecasting model coupled with Chemistry, BRAMS-SPM: The Brazilian Development on the Regional At
mospheric Modeling System with the Simple Photochemical Module, CCATT-BRAMS: The Coupled Chemistry Aerosol-Tracer Transport model on the BRAMS. 
LCC: Lurmann, Carter and Coyle mechanism; SAPRC99: California Statewide Air Pollution Research Center photochemical mechanism, SPM: Simple Photochemical 
Module; RACM: Regional Atmospheric Chemistry Mechanism; RACM-MIM: RACM with Mainz Isoprene Mechanism; RELACS: Regional Lumped Atmospheric Chemical 
Scheme; RADM2: Regional Acid Deposition Model, version 2; CBMZ: Carbon bond mechanism, version Z; MOZART4: Model for Ozone and Related Chemical Tracers, 
version 4; CB05: Carbon-bond mechanism, version 5. 
MADE-SORGAM: Modal Aerosol Dynamics model Europe – Secondary Organic Aerosol Model; MOSAIC: Model for Simulating Aerosol Interactions and Chemistry; 
GOCART: Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport model; AERO4 the fourth-generation modal CMAQ aerosol model with 
extensions for sea salt emissions and thermodynamics: MADE-VBS: MADE- Volatility Basis Set. 

a Only CIT and BRAMS-SPM do not have an aerosol module. 
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2014; Pérez-Martínez et al., 2014). Emission factors from CETESB re
ports have been mostly combined with those obtained from tunnel ex
periments, as they more closely reflect the real-drive conditions in the 
MASP. There are emission factors for each type of vehicle (e.g. 
heavy-duty vehicles, light duty-vehicles, motorbikes, etc.) and for each 
type of fuel (e.g. ethanol, gasohol, and diesel). Besides considering 
exhaust emissions, evaporative emissions are also included as they are 
an important source of VOCs (Andrade et al., 2017). One of the chal
lenges is accounting for flex-fuel vehicle emissions because they can 
operate rather with ethanol or gasoline which usually depends on the 
fuel prices (Salvo and Geiger, 2014). 

The hourly temporal distribution for vehicular emissions is per
formed by assuming double Gaussian distributions to represent morning 
and late afternoon rush hours (Guerrero et al., 2021). Recent works used 
vehicular count profiles for light and heavy-duty vehicles from tunnel 
experiments as shown in Martins et al. (2006a) and Andrade et al. 
(2015). Nevertheless, most of the studies did not consider weekday 
variation; instead, a standard day emission along the simulation period 
is used. This situation has implications for representing the high ozone 

weekend effect that happens in the MASP (Andrade et al., 2017). 
The spatial distribution is based on different proxies. For example, 

total vehicular emissions are distributed based on the street length in 
each grid cell using the approach of Andrade et al. (2015), on nocturnal 
lights satellite images (Gavidia-Calderón et al., 2018; Albuquerque et al., 
2018), or on different ratios to distribute emission between urban and 
industrial land use types (Freitas et al., 2007). Other approaches include 
the distribution of emission inventories based on population density and 
total vehicular fleet (Andreão et al., 2020). Finally, Martins and Andrade 
(2008b) and Silva Junior and Andrade (2013) used a CO emissions map 
calculated using a traffic simulation from EMME/2 software for the 
MASP as a spatial proxy. 

New emission preprocessors such as the VEIN emission model 
(Ibarra-Espinosa et al., 2018) improves the representation of the 
vehicular emissions in the MASP. It includes, besides the exhaust and 
evaporative emissions, emissions from the cold-start process. It is also 
able to compute the emission profile based on GPS count (Ibarra-Es
pinosa et al., 2020), which include weekday variation. 

Global emissions inventories are often used to include other 

Fig. 2. Frequency of different configuration features in our studies sample. In e) Statistics, MB: Mean bias, R: Pearson correlation, RMSE: Root mean square error, 
IOA: index of agreement, MAE: Mean absolute error, NME: Normalized mean error, MNB: Mean Normalized bias, MFB: Mean Fractional bias, NMB: Normalized mean 
bias, MNE: Mean Normalized Error, MFE: Mean fractional error, PPA: Pair peak accuracy, FAC2: Fraction of prediction within a factor of two. In i) Input emissions, 
Veh.: Vehicular, Ind: industrial emissions, Bio: Biogenic emissions, Res: Residential emissions, BB: Biomass burning emissions, Global Emi.: Total anthropogenic 
emissions from global emission inventories. 
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anthropogenic emissions sources. The Emissions Database for Global 
Atmospheric Research (EDGAR) and the Global emission data set 
developed with the GAINS model have been used in the MASP. Hosh
yaripour et al. (2016), Vara-Vela et al. (2018), and Peralta et al. (2023) 
used local vehicular emission inventories together with EDGAR-HTAP 
global emissions to include industrial, domestic, and shipping emis
sions. Current versions of global emissions inventories (e.g. EDGAR6) 
have a spatial resolution of 0.1◦ which is suitable for simulation at 9 km, 
but still have limited spatial representation for simulations at higher 
resolutions. Furthermore, as shown in Huneeus et al. (2020) there are 
bigger differences between global emissions inventories for South 
America in sector aggrupation of each global emission inventory. Un
certainties of emissions for Brazil from EDGAR 4.3.2 are high, for 
example, 44.7 % for SO2, 123.5 % for NOX, 123.4 % for CO, 146.5 % for 
non-methane VOC (NMVOC), and 56.5 % for PM2.5 (Crippa et al., 2018). 

Local information is limited about other anthropogenic sources other 
than ground transport, like energy, industries, domestic, ship, and 
aviation emissions. CETESB, besides including vehicular emissions, also 
published industrial total emissions without their location or informa
tion about their temporal variation, which limits its spatial and temporal 
distribution. More detailed information about vehicular emissions and 
the lack of information from other sources is another reason for its 
common use in air quality modeling in the MASP as the only anthro
pogenic emission source. 

4.2. Biomass burning emissions 

Biomass burning episodes are common in South America during the 
dry season, between August and October (Hoelzemann et al., 2009). 
Aerosols from these biomass-burning episodes in the Amazon can be 
effectively transported to urban areas in southeastern South America, 
such as the MASP (Vara-Vela et al., 2021). In addition, high concen
trations of particulate matter in the MASP during the dry season have 
been attributed to the transport of aerosols from areas affected by sug
arcane burning in inland regions (Pereira et al., 2017). Because biomass 
burning emits elemental carbon, organic carbon, and PM2.5, it is 
important in simulating particulate matter concentrations. Biomass 
burning is also important in the simulation of O3, as gas species such as 
CO, SO2, and VOCs are also emitted. 

In studies using WRF-Chem, Hoshyaripour et al. (2016), Vara-Vela 
et al. (2018), and Benavente et al. (2023) incorporated biomass burning 
emissions using the Fire Inventory from NCAR (FINN) emission model. 
In the case of CCATT-BRAMS studies, Longo et al. (2013) employed the 
Brazilian Biomass Burning Emission Model (3BEM). Both FINN and 
3BEM models provide daily emissions from open biomass burning, 
including wildfires, agricultural fires, and prescribed burning, on a 
global basis and at a resolution of 1 km2. Recent approaches that couple 
these models with fire radiative power (FRP) observations have shown 
significant improvements in representing particulate matter (Pimonsree 
et al., 2018; Kumar et al., 2022). Therefore, the utilization of FRP-based 
tools could result in an overall enhancement of air quality simulations 
over MASP, particularly during severe long-range transport events. 

4.3. Natural emissions 

In works using WRF-Chem, Vara-Vela et al. (2016), Gav
idia-Calderón et al. (2018), and Pellegatti-Franco et al. (2019) used the 
Guenther scheme (Guenther et al., 1994; Simpson et al., 1995) to 
calculate online biogenic emissions. Hoshyaripour et al. (2016), Vara-
Vela et al. (2018), Peralta et al. (2023), and Benavente et al. (2023) used 
the Model of Emissions of Gases and Aerosols from Nature (MEGAN) 
model (Guenther et al., 2006). The WRF-Chem v3.9.1.1 emission guide 
highlighted that even though the Guenther scheme is easier to run, as it 
does not require preparing additional input files, it has limited vegeta
tion types which reduces the emission of important chemical species like 
isoprene. 

In Martins et al. (2006a), biogenic emissions inventory for isoprene 
and terpenes were estimated by VOCs sampling based on the gradient 
flux method. Isoprene and terpenes were spatially distributed by RAMS 
forest type in the simulation domain and by types of vegetation based on 
the International Geosphere-Biosphere Programme (IGBP), to later 
simulate O3 using the CIT model. Alonso et al. (2010) mentioned that 
CCATT-BRAMS emission preprocessor used biogenic emissions from 
Global Emissions InitiAtive (GEIA/ACCENT) activity Databases. 

In WRF-Chem dust and salt emissions are calculated online using the 
wind speed and land cover information. Because of the lack of mea
surements, an evaluation of the natural emissions calculation in the 
MASP have not yet been performed. 

5. Configuration features 

Fig. 2 summarizes different model configurations from our dataset. It 
highlights the variety of models, spatial resolutions, nested domains, 
and calculated performance statistics. In this section, we addressed these 
features in more detail. 

5.1. Simulation periods 

Fig. 3 summarizes the simulation periods for all the studies shown in 
Table 1. Most of the simulations (22 or 76%) are carried out at the end of 
winter and during spring, between the ends of August until the end of 
November. Biomass burning emissions also reach the MASP during 
September and October. This means that researchers have focused on 
worst case scenarios to simulate, which typically occur in spring. Days 
with precipitation were reported in 12 (41 %) studies. 

Other simulations focused on high O3 concentration episodes like 
Carvalho et al. (2012), which can happen in summer when, despite 
being the wet season, solar radiation is higher and maximum hourly 
concentrations are recorded. Works like Gavidia-Calderón et al. (2018) 
and Pellegatti-Franco et al. (2019) selected their simulation periods 
based on the availability of ozonesondes (Andrade et al., 2012). On the 
other hand, to associate mortality burdens to pollution exposure, 
Scovronick et al. (2016) performed a full year run simulation. 

Most of the simulation periods covered around three days, a typical 
week, or a full month. The simulation periods in early studies were very 
short, usually focused on pollution episodes. The increase of computer 
resources in the last 10 years permitted the simulation of longer periods as 
shown in the works of Peralta et al. (2023) and Benavente et al. (2023). 

5.2. Domain configuration 

Simulations in the MASP usually have one to three nested domains, 
all the simulations used at most three nested domains (Fig. 2c). The 
atmospheric scale most represented in these studies is the regional scale. 
The most used horizontal grid resolution is 5 km (13 studies), followed 
by 3 km (5 studies) (Fig. 2d). Only the works of Pellegatti-Franco et al. 
(2019) and Duarte et al. (2021) reached the local scale, as they used 1 
km of grid space. Still, performing long term air quality simulation at a 
local scale demands a high computational cost. 

Regarding the vertical resolution, simulations using the CIT model 
used five vertical levels. The top level’s height ranges between 1100 and 
2300 m, and the first level height ranges between 20 and 80.5 m. This 
setup covers the planetary boundary layer (PBL), and each vertical level 
increases its thickness. For WRF-Chem, BRAMS-SPM, BRAMS-CCATT, 
and WRF (i.e. to feed the offline models), it was used over 31 levels to 
describe the atmosphere until the stratosphere. In those cases, strategies 
to describe the lower troposphere include variable spacing until 1700 m 
using a proportion of 1.1, and then constant separation until 19 km 
(Freitas et al., 2005). Alonso et al. (2010) from a first level of 100 m it 
increased the thickness using a geometric progression of rate 1.2. The 
impact of domain configuration in terms of grid space and vertical levels 
have not been addressed. 
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5.3. Meteorological and chemical boundary conditions 

The first air quality modeling studies in the MASP used offline 
models. To create the meteorological fields, researchers used informa
tion from meteorological weather stations and CETESB ground stations 
to produce meteorological initial and boundary conditions (IC/BC). The 
methodology involved the spatial interpolation of these observations in 
the modeling domain (Andrade et al., 2004). Later, meteorological 
simulations from mesoscale meteorological models, like RAMS and 
BRAMS, produced the meteorological fields, which were run with the 
analysis (horizontal resolution of 1.875◦) from the Center of Weather 
Forecast and Climate Studies of the Brazilian National Institute for Space 
Research (CPTEC/INPE) (Sánchez-Ccoyllo et al., 2006). 

In the case of the online models from our sample, the meteorological 
IC/BC came from reanalysis and analysis of global meteorological 
models, such as the Global Forecast System (GFS) analysis (Vara-Vela 
et al., 2016), the European Center for Medium-Range Weather Forecasts 
(ECMWF) reanalysis (Hoshyaripour et al., 2016), and CPTEC/INPE 
analysis (Freitas et al., 2005). GFS analysis was used to create meteo
rological IC/BC for WRF meteorology simulation to run CMAQ (Albu
querque et al., 2018) and EURAD-IM (Duarte et al., 2021). Currently, 
analysis and reanalysis have a finer spatial resolution. For example, GFS 
analysis is available at 0.25◦ (https://rda.ucar.edu/datasets/ds083.3/) 

and has been used in Benavente et al. (2023). 
For chemical initial and boundary conditions, studies with the CIT 

and CMAQ models used surface CETESB air quality network data. The 
considered pollutants were O3, NO2, SO2, CO, and VOCs, which were 
interpolated using a weighted average methodology. The Copernicus 
Atmospheric Monitoring Service (CAMS) was used as chemical IC/BC in 
the EURAD-IM model (Duarte et al., 2021). In the case of WRF-Chem, 
model runs used The Model of Atmospheric Transport and Chemistry- 
Max-Planck-Institute for Chemistry version (MATCH-MPI) runs (Silva 
Junior and Andrade, 2013), the default chemical IC/BC (Andrade et al., 
2015), the Model for Ozone and Related Chemical Tracers, version 4 
(MOZART4) model output (Gavidia-Calderón et al., 2018), and The 
Community Atmosphere Model with Chemistry model output (Bena
vente et al., 2023). 

WRF-Chem has the mozbc tool to assimilate chemical IC/BC from 
global chemical transport models (CTM). If not used, WRF-Chem uses a 
default IC/BC based on a northern hemisphere clean condition simula
tion using the NALROM model. CCATT-BRAMS and CMAQ also count 
with BC-PREP and ICON BCON modules respectively to assimilate CTM 
results as chemical IC/BC. 

Regarding the works of CMAQ in the MASP, Albuquerque et al. 
(2018, 2019) updated the default BC using averages from CETESB air 
quality stations and previous simulations test with adjusted values; the 

Fig. 3. Summary of air quality modeling studies in the MASP, air quality models, simulation periods, and focused analyzed pollutants.  

M. Gavidia-Calderón et al.                                                                                                                                                                                                                    

https://rda.ucar.edu/datasets/ds083.3/


Atmospheric Environment 319 (2024) 120301

8

organic speciation was based on Martins et al. (2006b). For CIT simu
lations that also used air quality station and measurement data, the 
surface BC was repeated for the five vertical levels and for its lateral 
boundaries. In these studies, the species considered were NO2, NO, O3, 
VOC, and SO2. Andrade et al. (2004) also considered BC for aldehydes, 
formaldehyde, and methyl ethyl ketone. 

The main challenge to create the chemical IC/BC is to map the 
chemical species from CTM or observations to those used in the chemical 
mechanism and aerosol module in the regional air quality. If the selected 
chemical mechanism is different from the global CTM a remapping is 
required, and this remapping may be a source of errors. Still, an eval
uation of different global CTM simulations is mandatory to select better 
chemical IC/BC for the MASP and other South American cities. 

Finally, to reduce the impact of initial conditions a spin-up time is 
usually discarded from the total simulation period. Our sample showed 
that for simulation periods of around one month, more than 10 days 
were considered for spin-up (Longo et al., 2013), meanwhile, for sim
ulations of a week to three days, one day of spin-up was considered 
(Sánchez-Ccoyllo et al., 2007). Other studies used 3 days (Gav
idia-Calderón et al., 2018) and 2 days (Ibarra-Espinosa et al., 2022; 
Vara-Vela et al., 2018) as spin-up time (Fig. 3h). Peralta et al. (2023) is 
the first work to run with updated meteorology IC/BC each five days of 
simulation. There is no consensus in the effect of spin-up days for air 
quality simulation for both gases and particulate matter. 

5.4. Chemical mechanism, aerosol modules, and photolysis schemes 

The chemical mechanism is the component of the air quality model 
that describes the pollutant chemistry. It includes the pollutant reaction 
pathways and kinetics (Kaduwela et al., 2015). Table 2 shows the 
chemical mechanisms that have been used in the air quality modeling 
studies described here (Fig. 2f). 

Because the extensive use of ethanol in the MASP increased the 
emission of ethanol, all CIT simulations used the SAPRC99 chemical 
mechanism extended to explicitly describe ethanol, methane, methanol, 
isoprene, H2O2, and SO2. Likewise, the CBMZ mechanism was chosen to 

perform the air quality forecast in MASP with WRF-Chem for its inclu
sion of ethanol explicitly (Andrade et al., 2015). 

Researchers also use different aerosol modules to simulate fine and 
coarse particulate matter (Table 3). They used a sectional aerosol 
scheme as the Model for Simulating Aerosol Interactions and Chemistry 
(MOSAIC, Zaveri et al., 2008); a bulk aerosol scheme like Goddard 
Chemistry Aerosol Radiation and Transport (GOCART, Chin et al., 
2000); and a modal aerosol scheme like the Modal Aerosol Dynamics 
model Europe/Volatility Basis Set (MADE-VBS, Ahmadov et al., 2012). 
Because organic mass represents around 40 % of PM2.5 (Brito et al., 
2013), more complex aerosol modules that account for primary (POA) 
and secondary organic aerosol (SOA) have been tested. For example, 
Vara-Vela et al. (2018) used MADE-VBS to include SOA and processes 
like aerosol aging. 

Photolysis schemes are required to calculate the photolysis rate co
efficients (Real and Sartelet, 2011). In earlier air quality models these 
coefficients were calculated based on pre-calculated look-up tables for 
assumed clear-sky condition. In this approach, spatial and temporal 
attenuation factors are used to account for aerosol and clouds. This was 
the approach used in the simulation using CIT in the MASP. For instance, 
Andrade et al. (2004) used a correction to account for cloud coverage 
based on Holtslag and van Ulden (1983). In other works, clear sky 
conditions were assumed, and photolysis rates were calculated using 
Peterson (1976) actinic fluxes estimations. In the works with CMAQ, 
Albuquerque et al. (2018) use JPROC that produces look-up tables for 
clear sky conditions, it is recalculated each simulation day and includes 
cloud cover correction. 

Online models like CCATT-BRAMS and WRF-Chem have online cal
culations of photolysis rates that account for clouds and aerosols. Sim
ulations using CCATT-BRAMS used the Fast-TUV based on Madronich 
(1987). In the simulations with WRF-Chem, researchers have used 
Madronich (1987), Fast-J (Wild et al., 2000), and Fast-TUV. In these 
models, the photolysis scheme is typically linked to the aerosol modules. 
The concentration of cloud droplets is predicted based on activated 
aerosols within the microphysics schemes. This information then serves 
as input for the shortwave radiation schemes, thereby affecting the 

Table 2 
Chemical mechanism used in air quality model in MASP.  

Chemical mechanism Number of species Number of reactions Used in MASP Reference 

LCC 35 106 1 Lurmann et al. (1987) 
SAPRC99 70 223 7 Carter (2000) 
RACM 70 237 1 Stockwell et al. (1997) 
RACM-MIM 84 244 1 Geiger et al. (2003) 
SPM  15 3 Freitas et al. (2005) 
RELACS 37 128 1 Crassier et al. (2000) 
RADM2 63 136 4 Stockwell et al. (1990) 
CBMZ 67 164 5 Zaveri and Peters (1999) 
MOZART4 85 157 2 Emmons et al. (2010) 
CB05 52 156 3 Sarwar et al. (2008) 

LCC: Lurmann, Carter and Coyle mechanism; SAPRC99: California Statewide Air Pollution Research Center photochemical mechanism, SPM: Simple Photochemical 
Module; RACM: Regional Atmospheric Chemistry Mechanism; RACM-MIM: RACM with Mainz Isoprene Mechanism; RELACS: Regional Lumped Atmospheric Chemical 
Scheme; RADM2: Regional Acid Deposition Model, version 2; CBMZ: Carbon bond mechanism, version Z; MOZART4: Model for Ozone and Related Chemical Tracers, 
version 4; CB05: Carbon-bond mechanism, version 5. 

Table 3 
Aerosol modules used in air quality simulation in MASP.  

Aerosol module Scheme Solve SOA Used in MASP Reference 

MADE-SORGAM Modal YES 4 Schell et al. (2001) 
MOSAIC-8bins Sectional NO 1 Zaveri et al. (2008) 
GOCART Bulk NO 3 Chin et al. (2000) 
AERO4 Modal YES 2 Binkowski and Roselle (2003) 
MADE-VBS Modal YES 1 Ahmadov et al. (2012) 

MADE-SORGAM: Modal Aerosol Dynamics model Europe - Secondary Organic Aerosol Model; MOSAIC: Model for Simulating Aerosol Interactions and Chemistry; 
GOCART: Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport model; AERO4 the fourth-generation modal CMAQ aerosol model with 
extensions for sea salt emissions and thermodynamics: MADE-VBS: MADE- Volatility Basis Set. 
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cloud’s optical depth. Consequently, in the presence of clouds, photol
ysis rates of gas species below the cloud base can be attenuated (e.g. Fast 
et al., 2006). Even though their importance is in ozone formation and in 
secondary aerosol formation, there has not been any evaluation of the 
photolysis schemes. 

Since the chemical mechanism and aerosol modules determine the 
speciation of emission inventories, the main challenge is the speciation 
of VOCs to the selected chemical mechanism and the speciation of PM 
into aerosol module species. Additional emission measurements are 
required to fill this gap. Furthermore, the evaluation of aerosol module 
that can represent SOA is of importance in the MASP. Depending on the 
use of the simulations, the question of the most suitable chemical 
mechanism and aerosol module for research or forecast is still 
unanswered. 

5.5. Physics and dynamics options 

In air quality models, the representation of sub-grid processes, like 
turbulence, affects the prediction of pollutant concentrations. Table 4 
shows the parameterizations used in studies with WRF-Chem and studies 
that used WRF (only meteorology) simulations as input for offline 
models. Yonsei University parameterization (YSU) is the most used 
planetary boundary layer (PBL) scheme, together with Noah as land 
surface parameterization, and MM5 similarity for surface layer param
eterization. In some cases, the selected physics options depend on each 
other. For example, Pellegatti-Franco et al. (2019) had to run with 
BouLac PBL scheme to use the Building Environment Parameterization 
(BEP) for urban canopy. In the case of Albuquerque et al. (2018), they 
chose the Pleim-Xiu surface layer and surface model to also use the 
Asymmetric Convective Model (ACM2 PBL) scheme. 

The most used microphysics parameterization was the Purdue Lin 
scheme together with Morrison 2-moments. The Grell 3D ensemble was 
the most used cumulus scheme. The longwave radiation (LW) scheme 
most used was the Rapid Radiative Transfer Model (RRTM), while for 

shortwave radiation (SW) the most used was the Goddard scheme. In 
newer versions of WRF (>v3.7), as a good practice RRTMG scheme is 
used simultaneously for SW and LW. 

WRF-Chem and CCATT-BRAMS include aerosol-radiation feedback. 
From our sample, Vara-Vela et al. (2016), Vara-Vela et al. (2018), and 
Ibarra-Espinosa et al. (2022) activated the feedback option in 
WRF-Chem. They found that during MASP dry-season it can reduce O3 
concentration by 2%. Ibarra-Espinosa et al. (2022) also found that in
direct effects included an increase in precipitation and PBL that produce 
lower pollutant concentrations. 

We still require an evaluation of the impact of the physical param
eterization on the air quality simulation in the MASP. Works like Misenis 
and Zhang (2010), where they performed an assessment of these op
tions, are fundamental to improve the meteorology representation of the 
MASP and, therefore, improve the air quality simulations. 

6. Model performance 

Many sources of errors exist in the air quality models. Zhang et al. 
(2012a) and Baklanov and Zhang (2020) summarized the following 
errors: representation of planetary boundary layer height and atmo
spheric turbulence, chemical boundary conditions, uncertainties in 
emissions, and limited knowledge of the treatment of chemical processes 
of urban chemistry such in SOA formation. Therefore, thorough model 
evaluation must be conducted to determine if model results are fit for 
their intended purpose (McNider and Pour-Biazar, 2020; Rao et al., 
2020). 

The comparison of model results against observation is also a source 
of irreducible uncertainty as it involves the comparison of volume av
erages against point measured data (Rao et al., 2020). It is important to 
consider that more than one air quality station (AQS) can be located in 
the same grid cell, which is more probable when using lower spatial 
resolution. Furthermore, the model performance is calculated based on a 
limited number of grid points that depends on the number of AQS. 

Table 4 
PBL, Land surface, and surface layer parameterizations in WRF and WRF-Chem simulation.  

Reference PBL Land surface Surface 
Layer 

Microphysics Longwave 
radiation 

Shortwave 
radiation 

Cumulus 

Silva Junior and Andrade 
(2013) 

MYJ Noah Eta similarity Purdue Lin RRTM Dudhia Grell 3D ensemble 

Andrade et al. (2015) YSU Noah – WRF single-moment 5-class 
scheme 

RRTM Goddard Grell 3D ensemble 

Hoshyaripour et al. (2016) YSU Noah – Morrison 2-moments RRTM Goddard Grell 3D ensemble 
Vara-Vela et al. (2016) YSU Noah MM5 

similarity 
Purdue Lin RRTM Goddard Grelll 3D ensemble 

Gavidia-Calderón et al. 
(2018) 

YSU Noah MM5 
similarity 

Purdue Lin RRTM Goddard Grell 3D ensemble 

Albuquerque et al. (2018)a ACM2 
(Pleim) 

Surface model 
Pleim-Xu 

Pleim-Xu Thompson RRTM Dudhia Kain-Fritsch (new 
ETA) 

Vara-Vela et al. (2018) YSU Noah MM5 
similarity 

Morrison 2-moments RRTMG RRTMG Multiscale Kain- 
Fritsch 

Albuquerque et al. (2019)a ACM2 
(Pleim) 

Surface model 
Pleim-Xu 

Pleim-Xu Thompson RRTM Dudhia Kain-Fritsch (new 
ETA) 

Pellegatti-Franco et al. 
(2019) 

Boulac Noah Eta similarity Purdue Lin RRTMG RRTMG  

Andreão et al. (2020) YSU Noah MM5 
similarity 

Morrison 2-moments RRTMG RRTMG Multiscale Kain- 
Fritsch 

Schuch et al. (2020) YSU Noah MM5 
similarity 

Morrison 2-moments RRTMG RRTMG Grell 3D ensemble 

Duarte et al. (2021)a YSU Noah – WRF Single-Moment 3-class RRTM Dudhia Grell 3D ensemble 
Ibarra-Espinosa et al. 

(2022) 
YSU Noah MM5 

similarity 
Purdue Lin RRTM New Goddard Grell 3D ensemble 

Peralta et al. (2023) BouLac Noah MM5 
similarity 

Morrison 2-moments RRTM RRTMG Grell 3D ensemble 

Benavente et al. (2023) YSU Noah MM5 
similarity 

Morrison 2-moments RRTMG RRTMG Grell 3D ensemble 

MYJ: Mellor-Yamada-Janjic; YSU: Yonsei University; ACM2: Asymmetric Convective Model; BouLac: Bougeault-Lacarrère; RRTM: Rapid Radiative Transfer Model, 
RRTMG: RRTM for general circulation models (GCM). 

a Offline models that used WRF simulation as meteorological input. 
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Because a denser number of air quality stations are installed in the most 
urbanized part of the city, the model performance is mainly represen
tative for that urban area (Swall and Foley, 2009). 

There are four types of model evaluation: operational, diagnostic, 
dynamic, and probabilistic (Dennis et al., 2010; Seigneur et al., 2000; 
Simon et al., 2012). Operational evaluation compares model output 
against routine observations, while the diagnostic focuses on evaluating 
the effect of a specific process in the model results; the dynamic evalu
ation detects the model response to perturbations such as in meteo
rology conditions and emission scenarios. Probabilistic evaluation aims 
to estimate the level of confidence (uncertainty) in the model results. In 
our dataset, the main type of model evaluation included operational 
evaluation, diagnostic evaluation, and dynamic evaluation. Probabilistic 
evaluation was not performed. 

From our sample of 29 studies, only 20 (69%) registered model 
performance statistics. To increase the sample, if a study performed two 
simulation periods, we count each simulation period as one observation 
(Simon et al., 2012). We aggregated the statistics of air quality station’s 
individual performance statistics for each simulation period. The per
formance statistics considered were calculated based on hourly con
centration simulations from the inner domain. None of the selected 
studies that deal with air quality forecasts performed bias correction 
methodologies (e.g. Kalman filters). All works point out that errors in 
emission inventory and in the representation of meteorology are the 
main source of model errors. 

Different studies used different performance statistics. The formulas 
to calculate these statistics are available in Table S1 in Supplementary 
Material. Pearson correlation (R), mean bias (MB), and root mean square 
error (RMSE) were the most common model evaluation performance 
statistics (Fig. 2e). These performance statistics were also found as the 
most used in Simon et al. (2012). 

6.1. Ozone 

To compare model performance, we first transform the units to ppb 
using a conversion factor of 1 ppb = 1.96 μg m− 3 (25 ◦C and 1013 mb). 
When compared against recommendations from Emery et al. (2017), we 
found that all the studies reach the criteria benchmark for the Pearson 
correlation coefficient (R > 0.5) and more than half of the studies reach 
the goal criteria (R > 0.75). In the case of the normalized mean bias 
(NMB), seven simulations are in the criteria benchmark zone (<± 15 %); 
meanwhile, only two simulations reached the normalized mean error 
(NME) criteria benchmark (<25 %). In O3 modeling studies, the results 
are hourly concentrations (not the MDA8 concentrations). Martins and 
Andrade (2008b) used cut-off values of 60 ppb and 40 ppb for spring and 
summer simulations respectively, and Peralta et al. (2023) used cut-off 
values of 40 ppb. 

The Mean bias (MB) median is around zero which means that half of 
the studies overestimated O3 while the other half underestimated O3 
concentration. The R values ranged from 0.62 to 0.93, the MB values 
from − 18 ppb to 12 ppb, and the RMSE from 7.7 to 27.1 ppb (Fig. 4a to 
e). The model performance does not depend on the simulated season. 

One of the causes of the overestimation of ozone concentrations is 
the overestimation of nocturnal ozone concentration. Gavidia-Calderón 
et al. (2018) and Vara-Vela et al. (2018) found that the underestimation 
of nocturnal NOX emissions reduced O3 titration during the night, 
avoiding the consumption of O3. CIT simulations (Andrade et al., 2004; 
Vivanco and Andrade, 2006) showed that ozone underprediction was 
mainly caused by the overestimation of NOX emission. The spatial and 
temporal distribution also affects the performance, as it is based on 
proxies and assumes the same temporal distribution of emission in every 
grid cell (Andrade et al., 2015). As noted by Harrison (2018), problems 
in temporal and spatial distribution can create bigger errors than 

Fig. 4. Distribution of air quality model performance statistics. Pearson correlation (R), Mean bias (MB), Root mean square error (RMSE), Normalized mean bias 
(NMB), and Normalized Mean Error (NME). 
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problems in underestimation or overestimation of emissions, especially 
in finer spatial resolution domains. Additionally, the speciation of VOCs 
in the chemical mechanism is also a source of error that has not been 
extensively evaluated. 

6.2. PM2.5 

From eleven studies that evaluated PM2.5, only nine reported per
formance statistics. Only two simulations reached the R goal benchmark 
on PM2.5 (R > 0.7). NMB was used in only four studies and their values 
ranged from 4.30 % to 50.60 %, with only two studies reaching the 
Emery et al. (2017) NMB criteria benchmark (NMB within ±30 %). NME 
(three studies) values ranged from 40.44% to 68.94%, and only one 
work reached the NME criteria benchmark (NME <50 %). R values 
ranged from 0.19 to 0.73, MB values from − 32.2 to 76.4 μg m− 3, and 
RMSE values from 3.8 to 35 μg m− 3 (Fig. 4f to h). Like in the case of O3 
simulations, the model performance is independent of the simulated 
season. 

In the case of the representation of PM2.5, the underestimation of 
concentrations is mainly caused by not considering all emitted sources, 
as well as uncertainties in the current treatments of secondary organic 
aerosol (SOA) formation in models. Regarding the missing sources – 
primarily from industrial and residential sectors - they are not spatially 
and temporally distributed, while the total amounts provided by 
CETESB are mostly outdated. Furthermore, including the biomass 
burning emission from FINN or 3BBM also add another layer of uncer
tainty (e.g. Vara-Vela et al., 2018). On the other hand, there are classes 
of SOA precursors that have yet to be included in models. However, even 
if SOA formation processes were accurately described in terms of the full 
set of underlying reactions, it would likely be infeasible within models 
due to the high computational costs involved. 

7. Purposes and types of air quality applications 

7.1. Model evaluation 

Andrade et al. (2004) evaluated the CIT model performance to check 
the vehicular emissions reduction on O3 concentrations. This work 
implemented CIT to perform air quality simulations over the MASP. 
They found that when using the official emission inventory, O3 con
centrations were lower than observations. They used NOX/CO concen
tration ratio to estimate the correct emission ratio from the total 
emissions of the official inventory. Reducing NOX emissions by half 
yielded better results, suggesting an overestimation of NOX emission in 
the official inventory. 

Silvia Junior and Andrade (2013) evaluated WRF-Chem performance 
to simulate O3 and CO concentrations. This study is the first imple
mentation of WRF-Chem to simulate air quality over the MASP. After the 
emissions were spatially and temporally calibrated, the model produced 
O3 and CO in good agreement with observations. 

Longo et al. (2013) evaluated the performance of CCATT-BRAMS at 
different scales. They simulated air quality in the MASP at a local scale. 
The model showed an underestimation of CO and an overestimation of 
NOX. NOX and O3 simulations were closer to measurements at the 
countryside air quality stations. 

Albuquerque et al. (2018) evaluated the performance of 
WRF-SMOKE-CMAQ modeling system in representing meteorology and 
air quality. The simulations showed underprediction of PM2.5. The 
model produced NH4, black carbon, and NO3 concentration close to 
observations. The authors reported WRF limitation to represent rainfall 
and the overestimation of wind speed. Air quality performance reported 
below the expected desired value. The performance of O3 and atmo
spheric aerosols were acceptable. 

Andrade et al. (2015) implemented the air quality forecast system 
(AQF) over Southeast Brazil. The authors detailed the WRF-Chem and 
BRAMS-SPM methodologies to implement the AQF. They showed a new 

spatial distribution of vehicular emissions based on road lengths. The 
authors highlighted that the AQF is useful to authorities and the com
munity concerned with the impact of regulatory pollutants on health. 

Duarte et al. (2021) evaluated the EURAD-IM model to simulate 
aerosol concentration and local and long-range transport sources. 
EURAD-IM produced a good PM10 simulation with a correlation above 
0.7. 

Hoshyaripour et al. (2016) compared WRF-Chem, the deterministic 
model, against a statistical model. Results showed that WRF-Chem 
better simulated O3 daily mean and peak concentrations. The advan
tage of the statistical model is its runtime velocity and a good repre
sentation of O3 daily mean. The author also used data from the 
Measurement of Pollution in the Troposphere (MOPITT) satellite in
strument to spatially evaluate WRF-Chem simulation. They compared 
the CO column (mol cm− 3) from MOPITT against WRF-Chem estimates 
for coarse and inner domains. 

Finally, Benavente et al. (2023) evaluate WRF-Chem simulation 
using satellite information, together with observation from a mobile 
station, and CETESB air quality stations. This work showed a method
ology to quantitatively evaluate the simulated pollutant concentrations 
with satellite data retrieved from the MOPITT, the Moderate resolution 
Imaging Spectroradiometer (MODIS), and the Ozone Monitoring In
strument (OMI) sensors. 

7.2. Model development 

Ulke and Andrade et al. (2004) improved the method to calculate 
turbulent diffusion on the CIT model. The new implementation pro
duced a better representation of turbulence inside the PBL. It produces 
higher O3 concentrations closer to observations. 

Freitas et al. (2005) developed a simplified and operational photo
chemical model, the BRAMS-SPM. It consisted of a simplified photo
chemical module in the RAMS mesoscale model. Results showed a good 
correlation between observations even in representing nocturnal O3 
concentrations. BRAMS-SPM is suitable for operational air quality 
forecasts. 

7.3. Impact of model inputs 

Gavidia-Calderón et al. (2018) evaluated the impact of using 
dynamical boundary conditions on the representation of O3 concentra
tion with WRF-Chem. They used MOZART4 as chemical background 
concentrations. They found that the impact on O3 simulation was higher 
during periods of lower photochemical activity (during Fall), and the 
impact was lower during spring. It improved the representation of 
nocturnal O3 and the O3 vertical profile. 

Pellegatti-Franco et al. (2019) improved the land-cover information 
by assimilating World Urban Database and Access Portal Tools 
(WUDAPT) information into WRF-Chem. They simulated O3 using three 
nested domains with the inner domain of 1 km of spatial resolution. 
Even when there was an improvement in the meteorological represen
tation, especially in wind speed, the O3 concentration was worse when 
using the improved land-use configuration. This suggests that there is an 
error compensation in air quality models where errors in emission in
ventory sometimes are corrected by errors in the meteorology part. 

7.4. Evaluation of emission inventories 

Alonso et al. (2010) developed a vehicular emission for South 
America, they distributed emissions estimates from EDGAR and REan
alysis of the TROpospheric chemical composition (RETRO) emission 
inventories based on an algorithm that delimits urban areas using 
remote sensing data. It avoids representing cities that are close to each 
other as a single urban area. They highlighted the need to include 
monthly and diurnal variability (day of the week) to improve the O3 
estimated when running CCATT-BRAMS simulations. 
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Recently, Andreão et al. (2020) evaluated emission estimates of PM 
based on the Brazilian top-down vehicle emission inventory. PM emis
sions were spatially distributed based on the population and the vehic
ular fleet of each evaluated city. EDGAR emission inventory was used for 
comparison. WRF-Chem results showed that using EDGAR produced 
higher PM concentrations because EDGAR includes other emissions 
sources than vehicle emissions. The proposed spatially distributed in
ventory produced better results. 

7.5. Impact of emission scenarios 

Vivanco and Andrade (2006) evaluated the official NOX and VOC 
vehicular emission estimates from CETESB. They used the concentration 
of CO and NOX during 7 a.m. and 8 a.m. (local time) to correct vehicular 
emission estimates. It assumed that the lower reactivity of these pol
lutants occurs in the morning hours, and that CO was correctly 
measured. They found that NOX emission was 0.5 times lower and VOCs 
emissions 1.2 higher than CETESB estimates. 

Sánchez-Ccoyllo et al. (2007) evaluated the O3 sensitivity to pre
cursors from different emission scenarios. They found that using 
pre-1989 technology vehicular emissions produced the worst air quality 
scenario. When using policies to control emissions (i.e PROCONVE), 
lower O3 concentrations are achieved. In this case, the CIT model re
ported problems in simulating nocturnal O3 concentrations. 

Scovronick et al. (2016) used CCATT-BRAMS to estimate the effects 
on air quality and health of ethanol fuel scenario and of gasoline fuel 
scenario. The gasoline scenario led to a reduction of PM2.5 and O3 
concentrations which reflected a reduction in mortality. The authors 
recommended that new emissions regulations on ethanol must be 
addressed. 

Albuquerque et al. (2019) evaluated emission control strategies to 
reduce PM2.5 concentrations using the WRF-SMOKE-CMAQ modeling 
system. The authors evaluated a baseline scenario and different emis
sions scenarios reducing gas emissions of SO2 and NH3, and particle 
emissions of sulfate (SO4) and nitrate (NO3). Reducing SO2 is not an 
effective strategy. Reduction in PM2.5 concentration is not related to the 
same emission reduction ratio. Reducing 50% of NH3, SO2 and NOX lead 
to a bigger reduction. SOA and black carbon need to be addressed in 
policy strategies as they formed 70% of PM2.5. 

Schuch et al. (2020) estimated changes in O3 and PM2.5 under 
emissions scenarios from ECLIPSEv5a: Current legislation (CLE), miti
gation, maximum feasible reduction (MFR) under Representative Con
centration Pathway (RCP4.5) climate scenario using WRF-Chem. MFR 
produced cleaner air with a reduction of 3%–75% of O3 and PM2.5 
respectively. CLE increased O3 and PM2.5 concentrations by 1% and 11% 
respectively. 

7.6. Ozone formation 

Martins et al. (2006a) estimated the impact of using Biogenic VOCs 
(BVOCs) on O3 formation using the CIT model. Emissions that included 
BVOC emissions (isoprene and terpenes) produced 15% more O3. Mar
tins and Andrade (2008a) evaluated the impact of different VOC species 
on O3 formation. Simulations are more sensitive to VOCs emission than 
NOX, determining that the MASP presents a VOC-limited regime. Prin
cipal species that affect O3 formation were aromatics, olefins, ethene, 
and formaldehyde. 

Martins and Andrade (2008b) evaluated the impact of the reformu
lation of gasohol and ethanol on O3 formation. This is the first work that 
used speciation from vehicle exhaust from tunnel measurements. The 
scenario where all light vehicles run on pure ethanol improved air 
quality. 

Guerrero et al. (2021) used BRAMS-SPM to study the formation of 
nocturnal O3 peaks in the MASP. They found that nocturnal O3 peaks are 
more related to vertical transport from higher levels to the ground than 
synoptic conditions. 

7.7. PM2.5 formation 

Vara-Vela et al. (2016) estimated the impact of vehicular emission on 
PM2.5 concentrations using WRF-Chem. The reaction of primary gases 
resulted in the formation of secondary particles that represented 
20–30% of PM2.5 mass. Hydrocarbons produced 40% of PM2.5 mass. 
Feedback activation produced a reduction of 2% in O3 concentration. 
Later, Vara-Vela et al. (2018) estimated the impact of biomass burning 
emissions on aerosol concentration and properties. During long-range 
transport of biomass burning products, PM2.5 and O3 concentrations 
are 15 μg m− 3 (24%) and 26 μg m− 3 (32%) higher. Biomass burning is 
responsible for 20% of baseline particle number concentration. In both 
works, the authors showed the versatility of models when changing the 
default model aerosol bins to match the aerosol bins of the analyzer. 

7.8. Meteorology and air pollution interactions 

Sánchez-Ccoyllo et al. (2006), using the CIT model estimated the 
impact of meteorological variables and emissions regimes on O3 for
mation. They found that wind speed, PBL height, and air temperature 
influenced the most in O3 concentration peaks. As the reduction of VOC 
emissions lead to a reduction in O3 formation, the authors concluded 
that the MASP presented a VOC-limited regime. 

Carvalho et al. (2012) studied a high O3 episode using BRAMS-SPM. 
They found that weak wind during the night and during the early 
morning accumulates O3 precursors, the timing of sea breeze also im
pacts O3 formation and was correctly simulated by the model. 

Ibarra-Espinosa et al. (2022) evaluated the impact of vehicular 
emissions on meteorology and air quality. Aerosol feedback was acti
vated when running WRF-Chem. The aerosol feedback is stronger during 
the wet period. During the dry season, the aerosol effect reduced 1.3% 
solar radiation and 1.5% O3 concentration. The indirect effect increases 
precipitation, increases PBL height, and therefore reduces pollutant 
concentration. 

Peralta et al. (2023) studied the impact of atmospheric conditions 
from RCP scenario 4.5 and 8.5 on O3 formation for the year 2030. Re
sults showed higher peak O3 concentrations on both scenarios, being the 
RCP 8.5 scenario the one with the higher values (5.92 % more). 
Nevertheless, precipitation registered in days in scenario RCP 8.5 could 
lead to lower O3 concentration. 

8. Challenges and limitations 

Researchers pointed out that uncertainties in the emission inventory 
and errors in the representation of meteorology are the main causes of 
low model performance. This is mainly caused by the limited informa
tion available on pollutant measurements, emission inventories, and 
urban meteorology measurements in the MASP. 

When building the emission file, limited information on different 
sources other than vehicular emissions avoids accounting for the com
plete sources of air pollutants in the MASP. In the case of industrial 
emissions, as noted before, the information is outdated and reported in 
totals. For biogenic and biomass burning emissions, although they can 
be estimated through modeling, still there are not enough emissions 
measurements to evaluate the accuracy of their estimates. 

The lack of information also limited the model evaluation. The 
pollutant observations for comparison came from the CETESB air quality 
network (See Supplementary Material). Unfortunately, measurements of 
VOCs concentration are not available, and the analysis of the model’s 
performance regarding other precursors of O3 and SOA is also limited. 
The same happened with the simulation of meteorological conditions, 
which are mainly evaluated in terms of temperature, relative humidity, 
wind speed and direction. Other meteorological parameters that affect 
pollutant concentrations, such as radiation and PBL height, have not 
been fully evaluated. Additionally, since all air quality stations are 
located in urban areas, we have insufficient knowledge about the 
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performance of models in rural areas. Works like Squizzato et al. (2021) 
and Benavente et al. (2023) can help to reduce this gap as they used a 
mobile air quality monitoring station to cover rural areas without air 
quality and satellite data respectively. 

Despite the lack of information, researchers have made use of mea
surement campaigns performed in the 23 years interval of this work. 
When available, researchers have used information from ozone sound
ings, lidar, and aircraft measurements (Freitas et al., 2005; Gav
idia-Calderón et al., 2018; Pellegatti-Franco et al., 2019; Vara-Vela 
et al., 2018). Moreover, there have been four tunnel experiments in the 
MASP that provided new emissions factors, vehicle counts, VOCs and 
aerosol composition and speciation (Sánchez-Ccoyllo et al., 2009; 
Pérez-Martinez et al., 2014; Nogueira et al., 2021). This information 
helped to improve official emission factors, estimate emission temporal 
profiles, and set up VOC and aerosol speciation for chemical and aerosol 
mechanisms. Also, to better represent the vehicular emissions spatial 
distribution, different proxies have been tested, from land use categories 
to nighttime lights and street length. These methods are reflected in the 
development of emission tools for the MASP, such as AAS4WRF (Var
a-Vela et al., 2017) and VEIN (Ibarra-Espinosa et al., 2018), which have 
been used in other cities than the MASP (González et al., 2018; Pinto 
et al., 2020). 

To improve the meteorological representation, researchers have 
updated meteorological input data in the air quality models. For 
instance, instead of only relying on surface meteorological stations for 
initializing the IC/BC, they have transitioned to using global meteoro
logical reanalysis with a higher spatial resolution, reaching up to 0.25◦

(Benavente et al., 2023). Efforts to update the urban parameterization in 
models have also been made (Pellegatti-Franco et al., 2019), but even 
when having a better urban classification, lack of geomorphological and 
radiative parameters (e.g building height, roof width, road with, 
anthropogenic heat, etc) for each urban class still need to be estimated 
and refined. 

Another limitation was the computer resources. One of the reasons 
for short-period simulation times was the limited computational re
sources. Simulating entire months or even years of O3 and PM2.5 posed 
significant challenges, particularly when incorporating feedback 
mechanisms. In the case of online air quality models, such as WRF- 
Chem, running air quality simulations required approximately five 
times the computational time needed for meteorological simulations 
alone. If the model involved interactions with weather patterns and 
advanced aerosol chemistry, the computational cost could escalate up to 
10 to 100 times a standalone WRF simulation (Ahmadov et al., 2018). 
Fortunately, the lower cost of computational resources, and collabora
tion with other institutions’ supercomputers, will allow more detailed 
air quality simulations: higher spatial resolution, more complex chem
ical mechanisms, aerosol modules, and feedback between the chemistry 
and meteorology. 

9. Perspectives and recommendations 

We identified the following areas of research that have not been 
tackled yet:  

• Given that the MASP is one of the most populated cities in the region, 
assessing the impact of climate change on air quality is mandatory. 
Therefore, it is crucial to investigate the implications of various 
climate scenarios, including the Representative Concentration 
Pathways (RCP) and the emerging Shared Socioeconomic Pathways 
(SSP), on the concentration of O3 and PM2.5. Especially when these 
pollutants have not decreased their concentration despite of the 
emission mitigation policies.  

• It is important to use air quality models to study the impact of the 
pollutants on health in the MASP. Air quality models provide high- 
resolution pollutant concentration that facilitates the analysis of 
spatio-temporal variability of pollutant concentration. This allows a 

better association between health effects and air quality and expo
sure estimates (Rao et al., 2011). In addition, air quality models 
through the manipulation of the emission file allow linking the 
health effects to a specific emission source and even to a specific 
pollutant (Gao et al., 2018). Previous works that studied the effect of 
air pollution on health (Costa et al., 2017; Santana et al., 2020), only 
relied on CETESB data.  

• Satellite data can also improve model input data (Vijayaraghavan 
et al., 2008). In the MASP, they can be used to update land use data 
and vegetation types, which are usually outdated datasets in the 
models. Inversion modeling with satellite data to improve emission 
inventories, e.g. Wang et al. (2020), have not been performed in the 
MASP and should be explored.  

• As in the work of Misenis and Zhang (2010) an evaluation of the 
different physical parameterization must be studied in the MASP. 
The evaluation of different model physics parameterizations should 
be addressed to improve the representation of cloud, precipitation, 
radiation, and nocturnal boundary layer. Furthermore, urban pa
rameterizations need to be configured and evaluated to better 
represent the MASP urban climate.  

• Likewise, the evaluation of different chemical mechanisms, aerosol 
modules, and VOCs and PM speciation should also be studied to see 
what is suitable for research and forecasting in the MASP. Other key 
points in the model configuration that must be studied include the 
effects of photolysis schemes, the implication of activating aerosol 
feedback, and the performance of biogenic and biomass emission 
models.  

• As in the MASP no modeling study used data assimilation modules (e. 
g. WRFDA), applying bias correction methodologies should be 
evaluated and implemented. These methodologies could improve the 
operational air quality forecast estimates. 

Finally, to tackle the above challenges and to improve the air quality 
modeling practices in the MASP, we suggest the following 
recommendations:  

• In the spirit of reproducible research, we recommend sharing the 
model configuration and the emission files in a data repository, as 
these inputs are fundamental to reproduce and explain the model 
results.  

• It should be a common practice to include the model evaluation of 
the meteorological parameters, as they help to interpret the 
modeling results.  

• Consequently, an emission dataset could be harnessed and perform a 
model intercomparison. Differences in simulated pollutant concen
trations could be caused by differences in the model emission in
ventories. This could also guide us toward a model ensemble to 
forecast air quality in the MASP.  

• Satellite data should be used in combination with CETESB air quality 
network to improve spatial model evaluation. Especially in locations 
with less density of air quality stations around the City of São Paulo. 
Satellite information can be used to check the model representation 
of the MASP air pollution plumes. Currently, there are more satellite 
databases available for different chemical species that are not 
measured by the CETESB that can be used in future modeling works 
(e.g., formaldehyde and aerosol properties from the TROPOspheric 
Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor 
satellite).  

• We recommend using Emery et al. (2017) benchmark statistics to 
improve model performance intercomparison. At the same time, to 
compare the results with other cities’ simulations, we also recom
mend including the calculation of daily maximum 8-h average 
(MDA8) in the performance statistics. The simulated O3 MDA8 could 
also be compared with São Paulo state current legislation.  

• WRF-Chem and CMAQ were implemented in the MASP to make 
operational air quality forecasts. Nevertheless, the forecast only 
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consists of pollutant concentration estimations. Models should be 
used to provide other services like the forecast of air quality indices 
or alerts that are more understandable to the population based on the 
ones used by CETESB. 

10. Summary and conclusions 

We reviewed 29 air quality modeling studies performed over the 
MASP published between 2001 and 2023. These studies exemplify how 
air quality models, together with field experiments and observations 
from the air quality network, improved the understanding of the at
mospheric chemistry of this megacity. 

Researchers have used offline models such as CIT, CMAQ, and 
EURAD-IM and online models such as BRAMS-SPM, CCATT-BRAMS, and 
WRF-Chem. Earlier applications focused on O3 formation with simula
tion periods up to three days describing pollution episodes. In later 
years, simulations focused on PM2.5 and SOA formation, and the simu
lation periods were extended from a few days to complete weeks and 
months. 

WRF-Chem was the most used model followed by the CIT model; 
together they represent 69 % of our dataset. The air quality modeling 
covered the regional scale with a most frequent spatial resolution of 5 
km, which is commonly used through a three-nested domain configu
ration. Only two works performed a simulation of 1 km spatial resolu
tion. Most of the simulation periods have been performed during the end 
of winter and the spring as higher concentrations of ozone and PM2.5 are 
recorded during these seasons. 

The main source of uncertainties is the emission inventory as re
searchers usually recommended its improvement and calibration. 
Vehicular emission was mainly used as total anthropogenic emission 
input, and other anthropogenic sources such as industrial were 
completed using global emission inventories, which are not precise for 
South America as the information is scarce. Efforts to include industrial 
emissions are important. This information, therefore, should be freely 
available like the information from the air quality network. Biogenic 
emissions are usually estimated using MEGAN and biomass burning 
emissions using FINN. Validation of those methodologies could also 
improve the modeling. 

Measurement campaigns must continue. Tunnel experiments are 
essential to improve the emission estimates by improving the emission 
factors and the VOCs and PM speciation required to create the emission 
files that depend on the chemical mechanism and aerosol module. PM 
composition analysis is also important to evaluate PM formation 
mechanisms in the model (e.g. SOA formation). On the other hand, 
meteorological parameters as PBL height inside the urban areas will 
improve the evaluation of PBL and urban physics parameterizations. 

The most used performance statistics were the mean bias (MB), 
Pearson correlation coefficient (R), and the root mean square error 
(RMSE). Ozone modeling performance statistics reached Emery et al. 
(2017) Pearson correlation criteria benchmark (R > 0.7). PM2.5 simu
lations were not as good as O3 estimates. Future air quality modeling 
studies should follow the recommended statistics (R, NMB, and NME) 
from Emery et al. (2017) and include the calculation of MDA8 perfor
mance statistics to increase the intercomparison with simulation with 
other cities. Evaluation of new chemical mechanisms, aerosol modules, 
and VOC and PM speciation should be studied to see what are the most 
suitable for research and forecasting. Meteorological and chemical data 
assimilation for air quality simulations and bias correction methodolo
gies for air quality forecast have not been applied. These techniques 
should be explored to improve model performance. 

Many fields of application are still missing like studies on the impact 
of climate change on future air quality, and the impact of air pollution 
on population health. The use of satellite data for model evaluation as 
well as the use of bias correction techniques or data assimilation will 
improve the operational air quality forecast. 

Researchers have made many efforts to implement and run air 

quality models in the Metropolitan Area of São Paulo. They created the 
emission files, tested new chemical mechanisms and aerosol modules, 
updated IC/BC with higher resolution data, and added information from 
experiment campaigns. These simulations studied the sensitivity to 
precursors of O3 and PM2.5, the influence of emissions scenarios, and 
new emissions estimations. We believe that this review provides a 
reference for further air quality studies over MASP. We also believe that 
the model configurations and strategies to distribute emission in
ventories can be used for other cities in the region with limited infor
mation and where the main source of air pollution is the vehicular fleet. 
Kumar et al. (2018) included modeling in the five steps to improve air 
quality, we hope that this review takes us closer to that goal. 
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Tomaz, E., Guardani, M.L., Martins, M.H.R.B., Junior, O.M.A., 2006b. Emission 
factors for gas-powered vehicles traveling through road tunnels in São Paulo, Brazil. 
Environ. Sci. Technol. 40 (21), 6722–6729. https://doi.org/10.1021/es052441u. 

Matthias, V., Arndt, J.A., Aulinger, A., Bieser, J., Denier van der Gon, H., Kranenburg, R., 
et al., 2018. Modeling emissions for three-dimensional atmospheric chemistry 
transport models. J. Air Waste Manag. Assoc. 68 (8), 763–800. https://doi.org/ 
10.1080/10962247.2018.1424057. 

McNider, R.T., Pour-Biazar, A., 2020. Meteorological modeling relevant to mesoscale 
and regional air quality applications: a review. J. Air Waste Manag. Assoc. 70 (1), 
2–43. https://doi.org/10.1080/10962247.2019.1694602. 

Misenis, C., Zhang, Y., 2010. An examination of sensitivity of WRF/Chem predictions to 
physical parameterizations, horizontal grid spacing, and nesting options. Atmos. Res. 
97 (3), 315–334. https://doi.org/10.1016/j.atmosres.2010.04.005. 

Nogueira, T., Dominutti, P.A., de Carvalho, L.R.F., Fornaro, A., Andrade, M.D.F., 2014. 
Formaldehyde and acetaldehyde measurements in urban atmosphere impacted by 
the use of ethanol biofuel: metropolitan Area of Sao Paulo (MASP), 2012–2013. Fuel 
134, 505–513. https://doi.org/10.1016/j.fuel.2014.05.091. 

Nogueira, T., Kamigauti, L.Y., Pereira, G.M., Gavidia-Calderón, M.E., Ibarra-Espinosa, S., 
Oliveira, G. L. de, Miranda, R. M. de, Vasconcellos, P. de C., Freitas, E. D. de, 
Andrade, M. de F., 2021. Evolution of vehicle emission factors in a megacity affected 
by extensive biofuel use: results of tunnel measurements in São Paulo, Brazil. 
Environ. Sci. Technol. 55 (10), 6677–6687. https://doi.org/10.1021/acs. 
est.1c01006. 

Pellegatti-Franco, D.M., Andrade, M. de F., Ynoue, R.Y., Ching, J., 2019. Effect of Local 
Climate Zone (LCZ) classification on ozone chemical transport model simulations in 
Sao Paulo, Brazil. Urban Clim. 27 (December 2018), 293–313. https://doi.org/ 
10.1016/j.uclim.2018.12.007. 

Peralta, A.H.D., Gavidia-Calderón, M., Andrade, M. de F., 2023. Future ozone levels 
responses to changes in meteorological conditions under RCP 4.5 and RCP 8.5 
scenarios over São Paulo, Brazil. Atmosphere 14 (4). https://doi.org/10.3390/ 
atmos14040626. 
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vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan 
Area: a numerical study with the WRF-Chem model. Atmos. Chem. Phys. 16 (2), 
777–797. https://doi.org/10.5194/acp-16-777-2016. 
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