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DEFORMATIONS OF SYMPLECTIC GROUPOIDS

CRISTIAN CAMILO CARDENAS, JOAO NUNO MESTRE, AND IVAN STRUCHINER

ABSTRACT. We describe the deformation cohomology of a symplectic group-
oid, and use it to study deformations via Moser path methods, proving a
symplectic groupoid version of the Moser Theorem.

Our construction uses the deformation cohomologies of Lie groupoids and
of multiplicative forms, and we prove that in the symplectic case, deformation
cohomology of both the underlying groupoid and of the symplectic groupoid
have de Rham models in terms of differential forms.

We use the de Rham model, which is intimately connected to the Bott-
Shulman-Stasheff double complex, to compute deformation cohomology in sev-
eral examples. We compute it for proper symplectic groupoids using vanish-
ing results; alternatively, for groupoids satisfying homological 2-connectedness
conditions we compute it using a simple spectral sequence.

Finally, without making assumptions on the topology, we constructed a
map relating differentiable and deformation cohomology of the underlying Lie
groupoid of a symplectic groupoid, and related it to its Lie algebroid counter-
part via van Est maps.

1. INTRODUCTION

In this paper we study deformations of a symplectic groupoid (G, w), construct-
ing the deformation cohomology H3 (G, w) controlling them. Any deformation of
(G,w) gives rise to a deformation class [n] in the cohomology, which can be used in
Moser path methods. We carry out computations for the cohomology in examples,
comparing it with cohomologies associated to related objects.

Symplectic groupoids were introduced by Karasév [49], Weinstein [74] and Za-
krzewski [77], motivated by the search for a quantization procedure for Poisson
structures. They are first of all Lie groupoids, objects introduced by Ehresmann in
the 1950’s [37], which generalize Lie groups and which, among other uses, permit
the unified study of differential geometric objects such as foliations or Lie group
actions. A Lie groupoid equipped with a compatible, i.e., multiplicative symplectic
structure, becomes well adapted to the study of Poisson structures. Poisson struc-
tures are Lie algebra structures on the algebra of smooth functions on a manifold,
which in addition are biderivations of the associative algebra structure. Although
these Lie algebras are infinite dimensional, they are on the infinitesimal side of a
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rich Lie theory, with symplectic groupoids (which are finite dimensional!) playing
the part of the corresponding global object.

In analogy with the relation between Lie groups and Lie algebras, any symplectic
groupoid G=M induces a Poisson structure 7 on its space of units M, such that
the Lie algebroid of G is naturally isomorphic to the cotangent algebroid (T*M ),
associated to the Poisson manifold (M, ). Not all Poisson structures arise in this
way, but for the ones which do, called integrable, it was shown in in [64] that
there is always a natural symplectic groupoid structure on the source 1-connected
integration G of (T* M ),. The symplectic groupoid structure on G was also obtained
by an infinite dimensional reduction procedure in [15], and the characterization of
which Poisson manifolds are integrable was finally settled in [20].

The survey [75] gives an account of Poisson geometry at the early stages of
development of symplectic groupoids, and already then they feature prominently
in the results and the problems presented, some of them now settled, some still
open.

First and foremost (from our specific viewpoint) symplectic groupoids are useful
in the study of the Poisson geometry of the base, both in its local and global
properties. But we should mention that symplectic groupoids have also featured in a
variety of other treatments, for example in geometric quantization [45], deformation
quantization (cf. e.g. [9l[15]), the study of the geometry of varieties appearing in
Poisson-Lie theory (for example [55]) and of moduli spaces of flat connections (e.g.
[B3LT3]).

Particularly motivating for this work was the role played by symplectic groupoids,
both in the study of local and of global Poisson geometry, via Moser path argu-
ments, also known as “the Moser trick”. We mention how it came to influence
our work. Starting with the famous Moser Theorem, the Moser trick has been
used to prove many rigidity and normal form results in symplectic geometry, and
related topics (see e.g. [11]), by reducing deformation problems to cohomological
conditions. It was first used in the context of Lie groupoids, to our knowledge, by
Weinstein [76], in the pursuit of linearization theorems for proper Lie groupoids.
Next, in the geometric proof of Conn’s Theorem of [21I], a Poisson version of the
Moser Theorem was used, together with symplectic groupoids that solved the co-
homological conditions. Further, similar techniques were used around leaves of a
Poisson manifold [28]. These techniques eventually led to the geometric proof of
the linearization of proper groupoids around orbits [30], and to the development of
the deformation cohomology HJ3.(G) of an arbitrary Lie groupoid in [26].

Recent developments related to deformation theory for Lie groupoids include
a rigidity result for foliations [33], the study of deformations of vector bundles
over Lie groupoids [51], and of morphisms of Lie groupoids [12]. Specific classes
of deformations of Lie groupoids (deformations to the normal cone) are also of
importance in non-commutative geometry (see e.g. [31,[32]).

Our work brings this new understanding on deformations of Lie groupoids full
circle back to Poisson geometry, as exemplified by a symplectic groupoid version of
the classical Moser Theorem (detailed further in Sections [ and []).

Theorem 1.1. Let (_C’j, @) be a deformation of a compact symplectic groupoid (G, w)
and let [n] be the deformation class in H3.;(G,w) associated to it. Then, the defor-

mation (G, ) is trivial if and only if [n] = 0 (smoothly).
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DEFORMATIONS OF SYMPLECTIC GROUPOIDS 3

This result also leads to local descriptions of moduli spaces of multiplicative
symplectic forms on a compact Lie groupoid G, given by an analogue of a Kodaira-
Spencer map (See Theorem [(.8 for a more precise and detailed version).

Theorem 1.2. Let (G,w) be a compact symplectic groupoid, and denote by S(G)
the space of multiplicative symplectic structures on G.

Then there are a neighbourhood U of w in S(G) and a neighbourhood V of 0 in
H3.:(G,w), such that there is an explicit 1:1 correspondence

k- U/N i VCHCQief(ng)a

sending the equivalence class of w to 0. The equivalence relation is such that wi ~ wo
if wi + e(we —wy) s a trivial family of multiplicative forms for all €.

The key insight in order to construct the deformation cohomology H2 (G, w),
where the cohomological equations of the Moser Theorem naturally live, was that
the pair of a Lie groupoid and an extra structure on it is more manageable when
interpreted as a diagram. New tools on deformations of morphisms of Lie groupoids
[12] could then be used.

Moreover, in the specific case where the extra structure is symplectic, there is a
description in terms of differential forms on the nerve G(®) of G, of H3+(G), and of
H$.:(G,w). We call the latter the de Rham model for deformation cohomology of
the symplectic groupoid (G, w), and we summarize the results here (see Proposition
1] and Theorem [5.3] for more detailed versions).

Theorem 1.3. Let (G,w) be a symplectic groupoid. Then W’ induces a quasi-
isomorphism

Cler(G) ~ 21(G™)).

The deformation complex C3.(G,w) of the symplectic groupoid (G,w) is isomor-
phic to the mapping cone of the de Rham differential

~dar : et (G) — Q4(G).

In order to effectively use a symplectic groupoid to study the Poisson structure on
the base, it is desirable to have a good description of the symplectic groupoid, or at
least to know some of its properties. There are conditions to characterize whether
a Poisson manifold is integrable [20] and if it is, there is an infinite-dimensional
reduction procedure for the construction of the source 1-connected integration [I5].
Nonetheless, constructing a concrete integration is often still challenging.

Fortunately, symplectic groupoids for several classes of Poisson manifolds have
been described, usually immediately bringing about new insight about the Poisson
structures they integrate; we mention a few of them. Some of the simplest cases are
symplectic manifolds, the zero Poisson structure and linear Poisson structures on
vector spaces and vector bundles [I7]. Even for the zero Poisson structure, symplec-
tic groupoids may provide rich geometry in the form of integral affine structures,
as shown recently in [23]24]. Integrations for any Poisson-Lie group are described
in [B41/56], and these and other symplectic groupoids also have interpretations in
terms of moduli spaces of flat connections, for example in [B3[73]. Integrations of
Poisson fibrations are studied in [4]; integrations of Log-symplectic manifolds are
studied using blow-up and gluing techniques in [44]; a description of the integration
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4 C. C. CARDENAS, J. N. MESTRE, AND I. STRUCHINER

of neighbourhoods of Poisson transversal submanifolds is given in [40]; more exam-
ples appear in relation to the theory of Poisson-Lie groups - for example, symplectic
leaves of double Bruhat cells are symplectic groupoids studied in [55]; and this list
is far from complete.

We carried out computations for the deformation cohomology in a few of these
examples. Most computable examples (G,w) are typically of one of two kinds:
either we assumed some sort of compactness condition, or vanishing of Hjj(G)
and H3(G). Clearly we cannot ask for both vanishing H3g (G) and compactness,
because we deal with symplectic groupoids. In fact, even examples of compact sym-
plectic groupoids with the more reasonable condition of having simply connected
source fibres are very hard to find [241[66,79).

Asking for the symplectic groupoid to be proper (a compactness-type condition),
we obtained the following result (See Section [l for more a detailed version of it),
and applied it for linear Poisson and zero Poisson structures of proper type.

Proposition 1.4. Let (G,w) be a proper symplectic groupoid, and let v denote the
normal distribution to the symplectic leaves. Then there is a 7-term exact sequence

0 — Qg (M)97 = D(r*) 97 — QH(M)T™™ — Hi(G,w) =
— F(V)giinv - Héef(w) — ngf(gaw) =0

and HY (G, w) = HY 1 (w) for k> 2.
In particular, expressed in terms of the de Rham model,

H?ief(g7w) = Hcllef(w)/d(Héef(g))'

With the help of some simple spectral sequence arguments we also provide
descriptions of the deformation cohomology of an arbitrary symplectic groupoid.
Those descriptions, however, become much simpler in the case of proper symplectic
groupoids, as detailed in Sections and

If on the other hand we ask for moderately strong topological conditions - vanish-
ing of first and second de Rham cohomologies, we see a very close relation between
deformation cohomology of (G,w) and Poisson cohomology H,(M) of the base.
Poisson cohomology of (M, 7) is computed by the complex X°*(M) of multivector
fields on M, with differential d, = [r,|sn, i-e., given by the Schouten-Nijenhuis
bracket with . It is the cohomology controlling deformations of the Poisson struc-
ture 7, and in general it is hard to compute. We refer to [65] for an account of
techniques that can be used to compute it in different classes of Poisson manifolds,
as well as for the very recent developments in loc. cit.

Call a Lie groupoid G homologically 2-connected if all the spaces G(™ of its
nerve, as well as its source-fibres, are homologically 2-connected. In this situation
we obtained the following result (Section[d contains precise and improved versions).

Proposition 1.5. Let (G,w)=2(M, ) be a homologically 2-connected symplectic
groupoid. Then

ngf(ng) g‘E[7(1)'(]\4)/]R7 H&ef(g>w) gH;(M) ngf(ng) gHg(M)u
and there is an injective map

ngf(ga w) — H‘;Br(M)
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DEFORMATIONS OF SYMPLECTIC GROUPOIDS 5

Although the conditions do sound restrictive, we focus in Section [ on some
situations in which they are satisfied, for example in the context of linear Poisson
structures, Poisson-Lie groups, and cotangent VB-groupoids.

As a general result without further assumptions on topology of (G,w) other than
connectivity of the source fibres, we construct a map ig : H*(G) — H3(G) as a
global counterpart to the map i : Hy(M) — HJ.;(A) of [27] and prove the following
(more details, and the statement at the level of cochains in Theorem [[0.2)).

Theorem 1.6. Let (G,w) be an s-connected symplectic groupoid. Then ig together
with i and the van Est maps for differentiable and deformation cohomology form
the commutative diagram.

HYG) ———— H}(G)
vE S V Baer

HM(T*M) ——— HE (T*M).

We would like to make some final remarks. We believe that the description of
the deformation complex of a symplectic groupoid is important by itself, because
this work should serve as prototype. It opens the road to similar studies for other
structures on groupoids, which should shed light on deformation theoretic properties
of objects described by them. We expect that similar techniques can be used,
but revealing different phenomena, for multiplicative contact, Poisson, complex
structures, foliations, etc.

The theory developed in this paper should have a version for local and formal
symplectic groupoids, likely using the version of the Bott-Shulman-Stasheff for local
Lie groupoids [52]. In this direction, it would be interesting to study the classes of
deformations of formal symplectic groupoids [14] induced by star products arising
from quantization, or pairs of star products, as in the works of [9] and [47[48]. We
expect that local and formal versions automatically satisfy many of the topological
assumptions we used in computations, bringing the theory closer to the deforma-
tions of the underlying Poisson structures.

Finally, all the work developed in this paper is intimately connected with the
Bott-Shulman-Stasheff double complex [2], therefore lending itself to generalizations
towards twisted presymplectic, and higher (shifted) (pre)symplectic groupoids.

Outline of the paper. In Section 2l we recall needed background material about
Lie groupoid cohomology and deformations, VB-groupoids, multiplicative forms
and symplectic groupoids, and Poisson manifolds.

In Section [B] we introduce deformations and equivalence of deformations of sym-
plectic groupoids, and provide examples of trivial and non-trivial deformations.

In Section @ we explain how the symplectic form of a symplectic groupoid (G, w)
permits a description of deformation cohomology of G in terms of differential forms.

In Section [{] we come to the central object of this paper, the deformation co-
homology Hget(G,w) of a symplectic groupoid. We explain how to construct it
out of the deformation cohomologies of the G and of w. We also prove that there
is a de Rham model for it, in which cochains are differential forms, used for the
computations in the rest of the paper.
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6 C. C. CARDENAS, J. N. MESTRE, AND I. STRUCHINER

In Section [l we carry out the first computations of deformation cohomology,
for symplectic manifolds, and proper symplectic groupoids; we then specialize to
zero Poisson structures of proper type and linear Poisson structures of proper type.
Using simple spectral sequence arguments we present some explicit computations
for general symplectic groupoids.

In Sections [[ and 8 we use the deformation cohomology to prove symplectic
groupoid versions of the Moser theorem, first for specific (source-constant), and
then for general deformations. We also study consequences for moduli spaces of
multiplicative symplectic forms.

In Section [0 we use another spectral sequence to carry out more computations
of deformation cohomology, this time for symplectic groupoids for which the nerve
has vanishing first and second de Rham cohomology. The relation with Poisson
cohomology is very close in these cases; we include computations for linear Poisson
structures, the zero Poisson structure, Poisson-Lie groups, and cotangent groupoids.

In Section [[0] we study, now without topological assumptions on (G, w), relations
between the differentiable and deformation cohomology of G, the Poisson cohomol-
ogy of the base, and the deformation cohomology of the corresponding algebroid.
We do so by providing a map ig : H*(G) — HJ3.;(G) and proving that it is related
by van Est maps to the map ¢ : Hy (M) — H3.:(A) of [27].

Finally, we collect in an appendix the needed material on double structures, used
to prove the Theorem of Section [0

Notation and conventions. We denote a Lie groupoid G over a base M by
G=2 M, usually having source and target maps denoted by s and ¢, multiplication
denoted by m, inversion map ¢ and unit map u. The Lie groupoids in this paper
are assumed to be Hausdorff. That is namely because we use splittings of the short

exact sequence Ker(ds) — TG B s TM , which may fail to exist for non-Hausdorff
Lie groupoids (cf. Example 13.93 in [25]).

We say that a Lie groupoid G is s-connected (respectively s-k-connected) if all
fibres of its source map are connected (respectively k-connected).

Given a vector field X on a Lie groupoid G=M with flow X, and x € M, we
usually omit the unit map, using the notation X (z) instead of 92X (u(z)).

We denote the tangent map of a differentiable map f : M — N either by df or
T f. To avoid confusion with other cohomologies, we denote de Rham cohomology
of a manifold M by HJ,(M).

Given a vector bundle E over a manifold M, we denote the space of smooth
sections of E either by I'(M, E) or simply I'(E).

2. BACKGROUND

We start by recalling some background on Lie groupoids: their cohomology and
deformations, VB-groupoids, and symplectic groupoids. For a general introduction
to Lie groupoids we refer to [22,[611[68].

2.1. Deformations of Lie groupoids. More details on the notions in this section
can be found in [26], where they are discussed in detail.

Definition 2.1. A family of Lie groupoids over a manifold B consists of a Lie
groupoid G= M, together with a submersion p : M — B, such that po§ = pot.
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DEFORMATIONS OF SYMPLECTIC GROUPOIDS 7

In other words, a family of Lie groupoids over B consists of a submersive Lie
groupoid map p : (G=M) — (B=B), from G to the unit groupoid of B. We denote
by Gy=M,, the fibre of p over b € B, i.e. (po3)~1(b)=p~1(b).

Definition 2.2. An equ1valence between famlhes g and g’ over B is given by
a Lie groupoid isomorphism F : G — G’ such that p’ o F = p. A family is said to
be trivial if it is equivalent to the product family given by

(G=M) x (B=B) P27 (B=B).

Definition 2.3. A deformation of a Lie groupoid § is a family of Lie groupoids
g:;M over an open interval I containing zero, such that G is equal to G.

An equivalence between deformations G and G’ of G is given by an equiv-
alence of families F' : FQV‘J — Q~|’J such that Fy := F|, = idg,, where J C INI"is

an open interval containing zero, and §| , denotes the restriction of the family G to
the interval J.

Definition 2.4. A deformation G of a Lie groupoid G for which G=GxIas
smooth manifolds and p = pry is called a strict deformation.

It is called an s-constant deformation if additionally the source map is left
constant, i.e., s. = sg for all € € I.

Remark 2.5. A deformation of a Lie groupoid G determines a collection {G.} of Lie
groupoids parametrized by e € I (the fibres of the family), varying smoothly with
respect to € in the sense that they fit as fibres of a submersion. If the deformation
is strict then the G, are equal as manifolds, and only the structural maps change.

Accordingly, we often denote a deformation of G simply by {G.}, keeping in mind
that there is a specified family that the members of this family fit into.

Similarly, we often denote an equivalence F' : G — G of deformations by the
associated family of maps F; : G. — G..

2.2. The nerve of a Lie groupoid and differentiable cohomology. Let G=M
be a Lie groupoid and denote its space of strings of k composable arrows by

gk = {(g1,---y9k) : 8(g;) = t(giy1) for all 1 <i < k—1},

and let G(© = M. The nerve of G is the simplicial manifold G®) for which the
space of k-simplices is G*), the face maps are d; : G — G("=1 given by

(g2, 9n) ifi =0,
di(gla"'agn): (917'~'7gi9i+17~"7gn) lflglgn—l,
(917"'7gn—1) if 4 =n,

and degeneracies s; : G(™ — G+ are given by inserting the appropriate unit in
the i-th position, s;(g1,...,9n) = (g1,---+9i-1,1 giy ..., gn), for 1 <i<n+1.

Smooth functions on the nerve form a cosimplicial space, out of which we can
construct the cochain complex C3,(G) (also denoted just by C*(G)) computing the
differentiable cohomology of G, denoted by H$,4(G). Explicitly, its spaces of
cochains are C%..(G) = C>°(G*¥), and the differentials are given by

k+1

6= (~1)'d} : Clig(G) = Clii' (9).

=0
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8 C. C. CARDENAS, J. N. MESTRE, AND I. STRUCHINER

The subcomplex of normalized cochains consists of those cochains ¢ € C3,4(9)
which vanish on all degeneracies, i.e., sjc = 0 for all 4; it is quasi-isomorphic to
%:¢(G) (the proof is identical to that for group cohomology [38, Lemmas 6.1, 6.2]).
More generally, k-forms on the nerve of G together with a differential § defined
by the same formula form the cochain complex Q%(G*®). These complexes form
the lines of the Bott-Shulman-Stasheff double complex (Q2°(G(*),5,d) [2I;
the horizontal differentials ¢ : Q9(G(®)) — Q4(G(**+1)) are determined by the sim-
plicial structure of the nerve of G, as described above, and vertical differentials
d:Q*(GP) — Q*+1(G®)) are given by the de Rham differential of forms.

2.3. The deformation complex of a Lie groupoid. We recall the definition
from [26] of the deformation complex of a Lie groupoid G. To that end, let m

denote the division map of G, defined as

m(p,q) = pq~ ", for all p,q € G such that s(p) = s(q).

Definition 2.6. The deformation complex (C3.,(G),d) of a Lie groupoid G,
whose cohomology is denoted HJ3.(G), is defined as follows. For k > 1, the k-

cochains ¢ € C%;(G) are the smooth maps
c: g(k) — Tga (gla o 791@) = C(glv S ,gk) € Tglga
which are s-projectable in the sense that

dso 6(91’927 cee 79/@)

does not depend on g;.
The differential of ¢ € C% () is defined by

(0¢)(g1s-- s grt1) = — dm(c(gr92, - - - Grs1)s (92, - - - Ght1))

k
+ Z(_l)zc(gh s 9iit 1, s Gkg1) + (—1)k+10(91> e OK)-
i=2

For k =0, C9,;(G) :=T'(A) and the differential of o € I'(A) is defined by

0(a) =d + & € Cu(9),

where @ and @ are the right-invariant and the left-invariant vector fields on G

induced by a.

Note that, to interpret the case k = 0, one way to think of a section of A is as a

map c: G = M — TG, with ¢(1,) = ¢, € T1, G, such that ds o c, = 0,.

2.4. The deformation class of a deformation of Lie groupoids. We recall
the definition from [26] of the deformation class of a deformation G=M 2 Tofa

Lie groupoid G.
If G is an s-constant deformation, then the expression

d

21 Elo.) = | melonn)

defines a 2-cochain in deformation cohomology. It is a cocycle and its cohomology
class only depends on the equivalence class of the deformation [26] Lemma 5.3].

Moreover, If we let £ = —6(&) € C’éef(@, then £ = é‘go [26, Prop. 5.7].
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DEFORMATIONS OF SYMPLECTIC GROUPOIDS 9

The expression () no longer makes sense if the deformation G is not, s-constant,
but defining £ in terms of £ is still possible. For that, we need an appropriate
analogue for the vector field % on G.

Definition 2.7. Let gjﬂ B Ibea deforrgation of a Lie groupoid G. A trans-
verse vector field for G is a vector field X € X(G) which is s-projectable to a
vector field V' € X (M), which is in turn p-projectable to 2= € X(I).

Proposition 2.8 (|26, Prop. 5.12]). Let G be a deformation of G. Then

(1) There exist transverse vector fields for G;

(2) For X € X(G) transverse, the restriction of 6X to Gy defines a cocycle
50 € Cgef(g); N

(3) The cohomology class of & does not depend on the choice of X.

Definition 2.9. The resulting cohomology class [£y] € H3;(G) is called the de-
formation class associated to the deformation G of G.

Again, the deformation class is invariant under equivalence of deformations, and
as remarked in [51], this follows already from the independence of the chosen trans-
verse vector field.

Note that G can also be seen as a deformation of its other fibres G., and for such,
the deformation class will be [£.] = [0.X 1g.]-

2.5. Deformations of Lie groupoid morphisms and diagrams. We collect
some background on deformations of Lie groupoid morphisms, which are studied
in detail in [12].

Definition 2.10. Let F': G — H be a morphism of Lie groupoids. A deformation
of the morphism F is a smooth map F : G x I — H such that F(-,0) = F and
for each ¢ € I, the map F. : G — H is a morphism.

More generally, and this will be useful in our study, one can at once deform the
whole diagram F' : G — H, which for simplicity we denote by I’ as well.

Definition 2.11. A deformation of the diagram F consists of a triple (g F.H),
where G and H are deformations of G and H, and the map F:G — Hisa Lie
groupoid morphism sending G. to H., such that Fj := F|g0 =F.

Note that the requirement that Fisa morphism implies in particular that each
F, = F|g€ : Ge = H. is a Lie groupoid morphism as well.

For the purposes of this paper we will be interested in simultaneous deformations
of the Lie groupoid G and the morphism F, or in other words, deformations of the
diagram F where H is kept fixed.

2.6. The deformation complex of a Lie groupoid morphism. The deforma-
tion complex C3.(F') of a Lie groupoid morphism F' : G — H was briefly described
in [26] and is further explored in [I2]. It has the following description, similar to
that of C3,(G). For k > 1,

Ck(F) = {c :¢®) 5 TH c(g1,--.,¢cr) € Tr(g)H and c is s3; — projectable} ,

where ¢ being s —projectable means that dsy o ¢(g1, ..., gr) is independent of g;.
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10 C. C. CARDENAS, J. N. MESTRE, AND 1. STRUCHINER

The differential of ¢ is defined by the same formula as the differential for C%;(G)
(see Definition 2.0)), except using the division dmy of TH instead of the division
dm of TG.

In degree 0, we have C9 ;(F) = ['(F*Ay), and da = @ + o e Cl;(F), where
ﬁ(g) = dRF(g) (Oét(g)) and « (g) = dLF(g) (di(as(g))).

There is a natural cochain complex map F, : C3,(G) — C3,(F), given by
F*c(glu s 79/(3) = ngl(c(glu s 79]@))'

Analogously, for example, to the cases of deformations of morphisms of associa-
tive algebras [41], of Lie algebras [39], and of deformations of holomorphic maps
(see [40] and references therein), simultaneous deformations of G and F can be
controlled by the mapping cone complex of Fy,

Cone(F,)" = Clip(G) @ CLL N (F), 8(c,Y) = (d¢, Fuc — 8Y).

This is part of the work of [12], where this complex is explored in more detail.

2.7. VB-groupoids. VB-groupoids can be thought of as groupoid objects in the
category of vector bundles. They provide alternative ways to look at the repre-
sentation theory and the deformation theory of Lie groupoids (See [26], [43] and
Proposition 2I7)). We review some basics on VB-groupoids which will be useful in
the following sections. For more details we refer to [61], [43] and [6].

Definition 2.12. A VB-groupoid (T', F,G, M) consists of two Lie groupoids to-
gether with two vector bundle structures as in the diagram

r———F

t
(22) 6‘ q
g :S§ M,

where ¢ and ¢ are vector bundles and (I'=2FE), (G=M) are Lie groupoids such
that the structure maps of the groupoid I' are vector bundle morphisms over the
corresponding structure maps of the groupoid G.

A morphism of VB-groupoids

(¢F7¢E7¢Q7¢M) : (F7E>g7M) — (FI7E/7g/7M/)

is a Lie groupoid map (¢r,¢p) : T=E — I'=3E’, such that ¢r and ¢ are vector
bundle morphisms covering ¢g : G — G’ and ¢pr : M — M’, respectively.
Restricting ¢r to the zero section, ¢g turns out to be a Lie groupoid morphism.

Remark 2.13. The requirement that mp : I'® — T is a vector bundle morphism,
is taken with respect to the vector bundle structure of '® over G2,

Example 2.14 (Tangent VB-groupoid). Given a Lie groupoid =M with source,
target and multiplication maps s, ¢t and m, by applying the tangent functor one
gets the tangent groupoid TG=TM with structure maps ds, dt, dm and so on.
This tangent groupoid is further a VB-groupoid over G=M (with respect to the
tangent projections).

Licensed to Universidade de Sao Paulo. Prepared on Thu Oct 30 08:42:48 EDT 2025 for download from IP 143.107.45.1.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DEFORMATIONS OF SYMPLECTIC GROUPOIDS 11

Remark 2.15. Note that in Example[2.T4lone has the following short exact sequences
of vector bundles over G,

(2.3) s*(Ag) =% 7g W (T r)
and
(2.4) (Ag) — TG % s*(T M),

where r and [ are the right and left multiplication on vectors tangent to the s-fibres
and t-fibres of G, respectively; (ds)' and (dt)' are the maps induced by ds and dt
with image in the corresponding pullback bundles.

Example 2.16 (Cotangent groupoid). As noticed in [I7], the cotangent bundle of
a Lie groupoid G inherits a groupoid structure over the dual of the Lie algebroid of
ga

T*"G=Ag,
with source and target maps induced, respectively, from the dual of the exact
sequences ([2.3) and ([2.4). Explicitly, for oy € T;'G and a € I'(Ag),

<§(ag),as(g)> = —(ag,lg 0 di(a))
and
<t(0‘9)>at(g)> = (ag,rg(a)) .
With multiplication determined by

(m(ag, Br), Tm(vg, wn)) = (ag,vg) + (B, wh)
for (vg.wp) € (TG)P.

VB-groupoid cohomology. Let I' be a VB-groupoid. The differentiable complex
of T' (as Lie groupoid) has a natural subcomplex C, (I') given by the fibrewise linear
cochains of T'.

The VB-groupoid complex Cy5(I') of I' [43], is a subcomplex of C%, (I') which
takes into account simultaneously the Lie groupoid and vector bundle structures of
I'. It consists of the left-projectable elements, that is, those ¢ € Cp, (I') for which

(1) 0(0917792a s a’ygk) =0,

(2) e(0g Vg1, Vg2 -+ >Vg) = (Vgrs Vgzs - - -+ Yo )-
This complex turns out to compute the cohomology of the base groupoid with
coefficients in a representation up to homotopy. For the case of the tangent VB-
groupoid it yields an interpretation of the adjoint representation [43]. We will make
use of the following fact.

Proposition 2.17 ([43 Prop. 5.5, Thm. 5.6]). The deformation complex of a Lie
groupoid G is isomorphic to the VB-groupoid complex of its cotangent VB-groupoid,
CYyp(T*G). The isomorphism is giwen by C3.:(G) — Cy5(T*G), ¢ — ¢ with

C/(Wg17~-~7779k) = <77g170(917~-~,gk)> .

We recall also the following result of Cabrera and Drummond, that will let us
substitute the VB-complex by the complex of linear cochains for most purposes.

Lemma 2.18 ([10, Lemma 3.1]). Let (T, E,G, M) be a VB-groupoid. The inclu-
sion v : Cyg(T") — C2,(T) induces an isomorphism of right H3,5(G)-modules in
cohomology.
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12 C. C. CARDENAS, J. N. MESTRE, AND 1. STRUCHINER

2.8. Multiplicative forms, symplectic groupoids, and Poisson manifolds.
Given a Lie groupoid G, a differential k-form a € QF(G) is called multiplicative
if it satisfies

m*a = pria+ pria,
where m is the multiplication of G and pri, pra : G — G are the two projections.
We denote by Q2 .(G) C Q°(G) the subcomplex of multiplicative forms on G.

mult

Remark 2.19. Multiplicativity can be expressed in yet a few other equivalent ways,
some of which will be useful in this study. By definition, multiplicativity of «
amounts to da = 0, where § = prj — m™* + prj is the horizontal differential of the
first column in the Bott-Shulman-Stasheff double complex (cf. Section 2:2]).
Moreover, note that to a k-form a € QF(G) one can associate the map

& @ETG — R,

given by contraction of o with tangent vectors. The map & is skewsymmetric and
multilinear (with respect to the linear structure of ®fTG over G). We can now
determine multiplicativity of « in terms of &.

Lemma 2.20 ([5, Lemma 4.1]). The form « is multiplicative if and only if the map
& is a groupoid morphism (where the groupoid structure on @ETQ is the natural
extension of the structure of TG, and R is seen as an additive group).

A symplectic groupoid is a pair (G,w), where G is a Lie groupoid and w is a
multiplicative symplectic form on G. As seen above this can be interpreted as having
a pair of a Lie groupoid G and a symplectic form w on G for which @ : @ETQ - R
is a groupoid morphism. This point of view will be useful, because it lets us draw
inspiration from the study of deformations of Lie groupoid morphisms (the work of
[12]) in order to study deformations of symplectic groupoids.

Symplectic groupoids are very closely related to Poisson manifolds. Recall that
a Poisson structure on a manifold M is a Lie bracket

[} £ C(M) x C(M) = C=(M)
which is a derivation in each entry, i.e. it satisfies the Leibniz identity

{f,gh}y ={f, gth+g{f h}.

Being a biderivation, it can be seen as a bivector field 7 € I'(A%(T'M)). The pair
(M, ) is called a Poisson manifold.

Any Poisson manifold (M, ) gives rise to a Lie algebroid structure on the bundle
T*M — M, called the cotangent Lie algebroid. The anchor = : T*M — TM
is given by contraction with the Poisson bivector, 7#(a) = 7(a,-), while the Lie
bracket on Q'(M) is defined by

[ Blr = Lz (@) = Laz(pyo = d(m(a, B)).-

Returning to symplectic groupoids, let us recall a few of the many notable prop-
erties they satisfy (see for example [I7] for more). Let (G,w) be a symplectic
groupoid over M. Then

(1) The dimension of G is twice the dimension of M.

(2) M (embedded via the unit map) is a Lagrangian submanifold of G. This is
a consequence of the multiplicativity of w and of the relation between the
dimensions.
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DEFORMATIONS OF SYMPLECTIC GROUPOIDS 13

(3) Let A be the Lie algebroid of G. There is a natural splitting at the units
Tg\M =AeTM,

and since (G, w) is symplectic, it follows from the dimension relation that A and
TM have the same rank. Moreover, the fact that M is Lagrangian, together
with the splitting T'G|; = A®TM, implies that w : @2 TG — R induces a non-
degenerate pairing TM @ A — R, and hence an isomorphism w‘bT v ITM — A*
Its dual map —w‘b ', induces an isomorphism A =T M.

(4) The anchor of A, viewed via the identification above as a map T*M — TM,
is anti-self-adjoint, giving us a bivector 7 € X2(M). Moreover, 7 is in fact
Poisson, and the induced algebroid structure on T*M is that of the cotangent
algebroid of (M, ).

A Poisson manifold (M, ) is called integrable if there is a symplectic groupoid
(G,w) over M inducing the Poisson structure on the base. In that case, as mentioned
above, G integrates the cotangent Lie algebroid T*M. There is a converse to this
statement.

Theorem 2.21 ([64] Thm. 5.2]). Let (M, x) be a Poisson manifold such that the
cotangent Lie algebroid T* M 1is integrable. Then the source 1-connected integration
of T*M admits a matural multiplicative symplectic structure, which induces the
Poisson structure m on M.

Let us mention a few examples of integrable Poisson manifolds, and of symplectic
groupoids integrating them.

Symplectic manifolds. Any symplectic manifold (M,w) can be seen as a Poisson
manifold, with the Poisson bivector being given by the inverse of the symplectic
form, # = w™!'. The pair groupoid M x M=M, equipped with the symplectic
form priw — prijw is a symplectic groupoid integrating . The source 1-connected
symplectic groupoid integrating (M,w) is the symplectic fundamental groupoid
(I (M), s*w — t*w).

Any other s-connected Lie groupoid G integrating 7% M lies between these two
extremes, as there are groupoid submersions II; (M) — G — M x M. Moreover, G

is a symplectic groupoid when equipped with the form s*w — t*w.

Zero Poisson structure. Let (M, 0) be a manifold equipped with the zero Poisson
structure, meaning that the Poisson bracket of any two functions is zero. The source
1-connected symplectic groupoid integrating (M, 0) is the cotangent bundle of M,
with the canonical symplectic structure (T* M, wean). The source and target maps
of T*M are equal to the vector bundle projection, and the groupoid multiplication
is the fibrewise addition.

Linear Poisson manifolds. A linear Poisson structure on a vector space V' is one
for which the Poisson bracket of linear functions is again linear. This happens if
and only if there is a Lie algebra g such that V = g*, and the Poisson bracket is
the Kirillov-Konstant-Souriau bracket, which extends the Lie bracket on g (seen as
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14 C. C. CARDENAS, J. N. MESTRE, AND 1. STRUCHINER

the space of linear functions on g*) to all smooth functions on g*. We denote the
corresponding Poisson bivector by my. Explicitly,

{fr9Y(n) = (n,[dy f,dngle), Y€ g, f,g€C=(g").

The s-connected symplectic groupoids integrating the linear Poisson manifold
g* are of the form (T*G,wean), for any connected Lie group G integrating g. The
groupoid structure of T*G is that of the cotangent groupoid of G, as explained in
Example

The source 1-connected symplectic groupoid integrating (g*, 74) is the cotangent
groupoid (T*G,wean) of the 1-connected group G integrating g.

The cotangent groupoid T*G is also isomorphic to the action groupoid G x g*
of the coadjoint action of G on g*. An isomorphism is given by the trivialization of
the cotangent bundle via right translations, T"G = G x g*.

Cotangent VB-groupoids. Generalizing the previous case, Lie algebroid struc-
tures on a vector bundle A are in 1 : 1 correspondence with Poisson structures
on its dual A* which are linear along the fibres [I8]. By that we mean a Poisson
structure such that the Poisson bracket of two fibrewise linear functions on A* is
fibrewise linear, and the bracket of a fibrewise linear function with a basic function
is basic, and the bracket of two basic functions is zero.

Given any Lie groupoid G=M with Lie algebroid A = Lie(G), the cotangent Lie
groupoid T*G=A* (Example 2.16)) is a symplectic groupoid integrating A*. The
source 1-connected integration of (A* myy,) is the cotangent groupoid (TG, wean)
of the source 1-connected groupoid G integrating A.

3. DEFORMATIONS OF SYMPLECTIC GROUPOIDS

We now come to the notion of a deformation of a symplectic groupoid (G,w). It
naturally consists of an underlying deformation of Lie groupoids of G (Definition
23), with a compatible deformation of the multiplicative symplectic form w. For
simplicity let us start with strict deformations.

Definition 3.1 (Strict deformations of symplectic groupoids). Let (G,w) be a
symplectic groupoid, let G. = (G,m.) be a strict deformation of G and let w. €
0Q2(G) be a deformation of w by symplectic forms. The family (G.,w.) is called a
strict deformation of (G,w) if each (G.,w.) is a symplectic groupoid.

Similarly, we define an s-constant deformation of symplectic groupoids
as one for which the underlying Lie groupoid deformation is s-constant.

An s-constant deformation of (G, w) such that (m.,w.) = (M, w) for all € is called
a constant deformation of (G,w).

Examples of deformations can be easily constructed (at least) in two simple ways.

Example 3.2. Consider (G,w) a symplectic groupoid with (M,7) the Poisson
structure induced on the base M.

(1) (Diffeomorphisms) Let ¢. : G — G be a smooth family of diffeomorphisms
with ¢g = idg. For every e, induce the groupoid structure G. := (G, m.) in
such a way that ¢. : G. — G is an isomorphism of Lie groupoids. Then
(Ge, prw) turns out to be a (strict) deformation of (G,w).
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(2) (Basic gauge transformations) Let a. € Q%(M) be a smooth family of
closed 2-forms, with ag = 0. Denote by €,. = w + s*a, — t*a. the family
of multiplicative 2-forms on G induced by a.. Then (G, §2,,.) is an s-constant
deformation of (G,w) as long as Q,_ stays non-degenerate for small enough
¢ (for example, this happens if G is compact). In particular, (G, ) is the
symplectic groupoid integrating the gauge transformation 7% of w by a..

These classes of deformations will be considered trivial, and lead us to the notion
of equivalence of deformations.

Definition 3.3. We say that a strict deformation (G.,w.) of (G,w) is equivalent

to another strict deformation (G.,w.) of (G,w) if there exists a smooth family of
Lie groupoid isomorphisms F; : G. — G. and a smooth family of closed 2-forms o,
on M, such that Fy = idg, ag = 0, and

Ffwl = w. + 6-(ae), for every € € J,

where 0 (o) = s%(ae) — ti(ae), and J C I NI’ is an open interval containing zero.
A deformation is said to be trivial if it is equivalent to a constant deformation.

General deformations of symplectic groupoids, and their equivalences, are defined
similarly, allowing for non-strict deformations of the underlying Lie groupoid.

Definition 3.4. A deformation of the symplectic groupoid (G,w) consists
of a deformation G=M B I of g, together with a multiplicative 2-form & on G
such that, for every ¢, the restriction w, of @ to G. makes (G.,w.) into a symplectic
groupoid, and (Gg,wo) = (G,w).

We recall that an equivalence bet~ween cieformations 5 and 5’ of a Lie groupoid G
is a Lie groupoid isomorphism F': G|, — g"J such that p’o F' = p, and Fig, = idg,,

where @‘]jﬁ‘ , denotes the restriction of the family G=M to some open interval
J C INI' containing zero.
Let F and Fj; denote the foliations of G and M by the fibres of p. Given a form

@ € QF(G) denote by wr € Q%(G) its corresponding foliated form.

Definition 3.5. An equivalence between deformations (G, o) and (G/,&') of

(G,w) is given by an equivalence of deformations of Lie groupoids F': G|, — 5’1,

and a closed foliated 2-form ar, € Q% (M ,) such that the restriction of ar,, to
My vanishes, and

(F&)r = @F +d(az,),
for some open interval J C I NI’ containing zero.

Example 3.6. Given a strict deformation G, of a Lie groupoid G there is an induced
deformation of Lie algebroids A, = Lie(G.). It in turn induces a deformation of
Poisson manifolds (A7, 7. ) such that each 7 is the fibrewise linear Poisson structure
on A corresponding to the algebroid A.. Finally, each of these Poisson manifolds
is integrated by the symplectic groupoid (T*G.,wean). Since the deformation of
Lie groupoids G. is strict (in fact, a strict deformation of VB-groupoids, cf. [51]),
(T*Ge,wean) = (TG, wean) as symplectic manifolds, but the Lie groupoid structure
of T*G. can vary.

In short, any strict deformation of Lie groupoids induces deformations of Lie
algebroids, fibrewise linear Poisson manifolds, and symplectic groupoids.

Ge ~ AE ~ (szﬂe) ~ (T*gmwcan)-
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16 C. C. CARDENAS, J. N. MESTRE, AND 1. STRUCHINER

4. THE DEFORMATION COMPLEX OF A (SYMPLECTIC) GROUPOID, REVISITED

We revisit the deformation complex of a Lie groupoid G in the case that (G,w) is
a symplectic groupoid. We will use the symplectic form w to identify C3.(G) with
a subcomplex Q1 ;(G*)) of Q1(G(*)), the complex of 1-forms on the nerve of G.

Step 1. Recall that the deformation complex C3(G) can be identified with the
VB-groupoid complex Cy5(T*G) of T*G (Proposition 2.17), which is a subcomplex
of C2 (T*G).

Step 2. We use the fact that the vector bundle isomorphism W TG — T*G is
actually a VB-groupoid isomorphism, due to the multiplicativity of w (Lemma 3.6 in
[7]). Therefore it determines an isomorphism between C, (T*G) and C?, (T'G). We
use it to further identify the deformation complex of G with Cy(TG) C C2 (TG).
Step 3. The inclusion CY5(TG) C CF,(TG) is a quasi-isomorphism (Lemma 3.1 in

[10], Lemma 218)).

Step 4. For each integer k, there is a natural isomorphism (7G)*) = TG®*) In
this way, the elements of C} (T'G) can be viewed as the fibrewise linear functions

on TG® ie., as elements of C2(TGW) = Q1 (G).

Thus, at the level of cochains, we have the following chain of identifications and
quasi-isomorphisms:

b .

Cla(9) = Cly(1°6) = Clp(16) 5 C, (1G) = CR(1GW) = 21 (g).
The last identification of Cp2, (T'G) with Q°(G) is compatible with the differentials
of the complexes involved. In fact, the two differentials correspond to the two
different ways of considering the alternated sum of pullbacks of 1-forms a by the
face maps d; : G — g(n=1) of the nerve of G: as the usual pullback of forms d; a,
or as the pullback of functions (T'd;)* : C2(TG™V) — C2(TG™) by Td;.

We define the subcomplex Q1 (G(®)) of Q1(G(*)) as the image of C3;(G) under
the identifications above. In summary, we have the following.

Proposition 4.1. Let (G,w) be a symplectic groupoid. Then W’ induces an isomor-
phism between the deformation complexr C3$.;(G) of G and the subcomplex Q4 (G(*))
of Q1(G®)). Moreover, Q}+(G*) — QY(G®) is a quasi-isomorphism.

Remark 4.2. The complex Q};(G*)) obtained under the identification above can
be explicitly described by translating the conditions of the VB-groupoid complex
to conditions on 1-forms on the nerve of G. Namely, a 1-form « on g<’€>, with &£ > 0
will belong to Q% ;(G*¥) if the following two conditions are satisfied (when k = 0
there are no conditions imposed).

(1) a € T(G®, T*G*)) comes from a section & of the bundle pr;T*G — G*)
where pr; : G%) — G is the projection on the first component. That is,
there exists a necessarily unique section & such that the left triangle below
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commutes;

T*g(k) (dpri)” pr’f (T*g) T*g

(4.1) Pgh) || Pg

g pr G

(2) «is left-invariant for the action g-(g1,...,gx) — (991, ..., gx) of G on G),
In terms of cochains, the identification of Proposition 1] is the composition of
the following maps

Ciu(G) —— Cf @9~ (1G) s Qfer (GH)

lin lin
c — — (W) —— ¢
where ¢ (1g,, .-, ) = (Ng1>¢(91,- -, 9x)) and, by construction,

é(vglﬂ e ,'ng) = (wb)*cl(vgla e ,'ng)
= c/(wb(vgl)a v 7wb(vgk))
== (& (clgr, - 91)) 00, )
= = [pr)* (@ (elgr, - 90))] Wars - 0.

In other words, ¢ € C%(G) corresponds to the section —w’oc : G*) — priT*G of
condition (1) above. Condition (2) holds for ¢ as it amounts to the s-projectability
condition of c¢. In degree zero, this correspondence C9,(G) = T'(4) = QY(M)
amounts to the identification —w"’ 4 A= T M, at the level of sections.

(4.2)

Remark 4.3. Note that, in the identification above, we only use the multiplicativity
and non-degeneracy conditions of w. Then, in particular, such an identification also
holds for twisted symplectic groupoids (cf. [§]).

Remark 4.4. Denote by o the vector bundle maps (dprq1)* given by the diagram
@1, for any k. If (G, w.) is an s-constant deformation of (G,w), then under the
identification above the deformation cocycle &y of G. corresponds to the 1-form
Co = —o(w(é,-) € Q4 (6P). And, since o = Id for k = 1, it follows that for
X € C};(G) the corresponding 1-form on G will be —iyw = —w’(X).

5. THE DEFORMATION COMPLEX OF A SYMPLECTIC GROUPOID

Our approach to find the deformation complex of a symplectic groupoid is to
construct it out of the deformation complex of a Lie groupoid [26] (taking also into
account the discussion of Section[]), and the deformation complex for multiplicative
forms (part of the work of [12]).

In Section[dwe will study the resulting complex, looking at cocycles and cobound-
aries related to deformations and equivalences, confirming that this approach leads
indeed to the correct complex.
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18 C. C. CARDENAS, J. N. MESTRE, AND 1. STRUCHINER

Deformations of symplectic groupoids in terms of morphisms. Let (G., w.)
be a deformation of the symplectic groupoid (G,w). The first step is to consider
the associated morphism @ : EBQ TG — R, described in Remark ZI9 Doing so,
(G-, w.) can be replaced by the simultaneous deformation (@ TG.,&.) of the Lie
groupoid @2 TG and of the morphism @.

Note that this is a very particular type of simultaneous deformation of a Lie
groupoid and a morphism having that groupoid as domain. The deformation of
P> TG is of the form @°T(G.) and the deformation of & is by (closed, non-
degenerate) bilinear and skewsymmetric morphisms w.. Let us then first examine
these separate pieces.

Deformations of multiplicative 2-forms. Let us first describe the deformation
complex C3,(w) of a multiplicative 2-form w, defined in [12]. Tt is the subcomplex of
bilinear and skewsymmetric cochains of the deformation complex C3.¢(&) of the
associated Lie groupoid morphism @. Concretely, using the natural isomorphism
B> T(GP) = (P*TG)P, the complex C3.;(w) is defined to consist of the cochains
¢ € C%¢(w) for which the composition

TG®)aT(G®) = (TGaTG)® -5 TR2RaR 23 R

is a (fibrewise) bilinear and skew-symmetric map T(G®)) @ T(G*)) — R.

Using this description, it is a straightforward computation to check that C’&ef(w)
can be identified with the subcomplex C'(@2 TG)o—lin,sk consisting of 2-linear
skewsymmetric cochains of the differentiable complex of the groupoid @2 TG. Fur-
thermore, this is in turn isomorphic to the complex Q2(G(®)) of 2-forms on the nerve
of G. A deformation w, of w induces a family of cocycles %E:)\(DE in CIp(wy) [12;
we do not use this fact, giving instead in Proposition [.]] a self-contained proof that
the cochains we will use are indeed cocycles .

In our setting, w is closed and we are interested in deformations of it via closed
multiplicative forms. The deformation complex to consider is then the subcomplex
O3 (w) C O34 (w), corresponding to closed 2-forms on the nerve of G. Our notation
differs from the one in [I2], as we reserve the notation C3(w) for the deformation
complex of a closed multiplicative form w.

Tangent lifts of deformation cochains. For any Lie groupoid G, the tangent
lift of deformation cochains, described in [51], is the inclusion of cochain complexes
Taet : C344(G) = C34(T'G) determined by composing the canonical involution (also
called canonical flip, cf. [67, Section 8.13]) Jg : TTG — TTG and the differential d
of a smooth function:
T4etc := Jg o dc.

We also call tangent lift its natural extension ®*Tyer : C3.,:(G) — C3(*TG)
defined as ®2Tyet(c) := B?(Tyerc), of which we will make use.

As remarked in [121[51], the tangent lift includes the deformation cocycles of G
into the deformation complex of ®2TG, as cocycles associated to deformations of
the form @ T(G.).

The deformation complex. We come back to the idea that deformations of sym-
plectic groupoids can be seen as particular simultaneous deformations of @2 TG,
of the form EBz TG., and of a morphism @, via morphisms associated to (closed,
non-degenerate) multiplicative forms.
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DEFORMATIONS OF SYMPLECTIC GROUPOIDS 19

We can then, following ideas from [I2], use the mapping cone construction to
control simultaneous deformations. As described in Section [Z6 & induces a map
Wyt 5ef(@2 TG) — C3.4(&) between deformation complexes. In fact, the bi-
linearity and skewsymmetry of w imply, by direct computation, that its image is
contained in the subcomplex C§ (w).

Definition 5.1. The deformation complex of the symplectic groupoid (G,w),
denoted by C3.(G,w), is the mapping cone complex of the map

UD* o @QTdef : Cv;ef(g) — C&ef(w)'

Remark 5.2. Considering deformations of symplectic groupoids as simultaneous
deformations of a morphism of Lie groupoids and of its domain, the work of [12],
already indicates that the element

d .
e — 2V € Clet(Ge) @Céef(%)

should be the deformation cocycle associated to the deformation (G.,w.). Here &
is the deformation class of the underlying deformation of Lie groupoids, described
in Section [Z41 But we will reach this same construction explicitly (see Section [7])
and give a self-contained proof using the alternative description of the deformation
complex given by Theorem

Theorem [(.3] shows that using identifications given by the symplectic form w,
the mapping cone complex defined above has a more familiar presentation, given
in terms of differential forms. Recall from Remark [£4] the map o = (dpry)*.

Theorem 5.3. Let (G,w) be a symplectic groupoid. Under the correspondence
C3.:(G) = QL;:(G®), induced by the isomorphism W’ (see Proposition Il), the
map @, 0 @>Tyer agrees with the de Rham differential dag : Q4 (G®) — Q% (G®)
up to a sign. That is, the following diagram is commutative.

o 0. 0®?Taet g
(5.1) Cer(9) — Cler(w) -

- |-

QL (G®) —2 5 02 (G*)

Proof. Let us review the correspondence C3.:(G) = Q};(G®)) of the previous sec-
tion in terms of vector fields. Given any splitting 7 : t*TM — TG of the target
map dt : TG — t*TM of G, any deformation cochain ¢ of C¥_;(G) induces a vector
field X, € X(G™) on G¥). For example, if ¢ € C2;(G) is a degree 2 deformation
cochain, the vector field X, is determined by

Xe(g,h) = (c(g, h), n(ds(c(g, h))))-

Analogously, for a higher degree cochain ¢, the components of the vector field X,
are determined by successively s-projecting and 7-lifting the deformation cochain
c. The correspondence C3.:(G) = Q1 :(G*®) induced by the isomorphism w” can

be written as

¢ —ix, (priw) € e (GY),
where prq : G**) — G is the 1st-component projection map. Note that even though
X, depends on 7, the form —ix_(priw) does not.
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Therefore, when doing the same for the tangent groupoid TG, we are free to
choose a convenient splitting 7 of the target map dt : TTG — t*TTM, where { :
TG — T M is the target map of TG. We choose 7 to be induced by previous splitting
7 via 7 := dr, under the canonical isomorphism of bundles t*T(T'M) = T(t*TM).

We denote by X the vector field induced by the splitting 7 and the deformation
cochain & € CX (TG).

A direct computation now shows that there is a compatibility between Xz and the
tangent lift X' € X(TG™) of the vector field X, which is defined as XTI = JgoX,
(cf. [61, Prop. 9.6.6]). Precisely, one obtains X' = X7, ... For example, for k = 2,

Xtype = (Taerc, dm 0 d3(Therc)) = (Jg o de, dr o d3(Jg o dc))
= (Jgode,Jgod(todoc)) =Jgod(c,To50c)=X".
Finally, we are ready to check the commutativity of the diagram (BII). Let ¢ €
C% +(G) and pry : (TG)*) — TG be the projection on the first component. Then
d}* o @QTdef(C) = dd}(Tdefca Tdefc)
= da(dﬁrlXTdch7 dﬁrlXTdch)
= do(dpr, XL, dpr X7).

Let F. be the flow of the vector field X.. Then TF, will be the flow of the

tangent lift X7 and the expression above becomes

d
dd)(dﬁrlX;‘F,dﬁrng) = e

_ i‘
" dele=0
= Lx, (pr1)*w

= dqgr(ix priw),

@(ﬁrlTFsaﬁrlTFs)

e=0

EX(pri)*w

which proves the commutativity of the diagram. (Il

Corollary 5.4. The deformation complex C3.:(G,w) of the symplectic groupoid
(G,w) is isomorphic to the mapping cone of the de Rham differential

—dar : Qe (G)) = Q2 (G).
Ezplicitly, according to our convention for the mapping cone complez, the differen-
tial D : chicf(g(.)) @ le(g(kl)) - Qtlicf(g(.+1)) ® le(g(')) is given by
(Cv a) = (5<a _ddRC - (SO()

We call this complex the de Rham model for deformation cohomology of the
symplectic groupoid (G,w).

Remark 5.5. Notice that dgg : Q1(G®)) — Q2(G*®) is a part of the vertical differ-
ential of the Bott-Shulman-Stasheff double complex (2°(G(*)),d,d4r). This allows
us to identify the deformation complex C3.¢(G,w) with the total complex of a sub-
double complex B**(G) € Q*(G(*). This sub-double complex consists of the subset
QL.:(G®) of the second line Q(G(*)) and of the subset Q%(G(*)) of the third line
02(G®) of the Bott-Shulman-Stasheff double complex (and it is zero in all other
bidegrees). In fact, the map

et (G7) @ QA(GTY) = Tot" 1(B**(G))

Licensed to Universidade de Sao Paulo. Prepared on Thu Oct 30 08:42:48 EDT 2025 for download from IP 143.107.45.1.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DEFORMATIONS OF SYMPLECTIC GROUPOIDS 21

defined by
(€ a) = (¢ (=1)"a)

gives us the isomorphism of the complexes. The shift in degree appears naturally
since multiplicative symplectic forms, while being degree two forms, give rise to
degree three cocycles in the Bott-Shulman-Stasheff cohomology. More generally, a
groupoid G equipped with a pair (w, ¢) € Q%(G) ® Q3(M) such that 00D w D¢ €
Tot?(Q2*(G(*))) is a cocycle is called a ¢-twisted presymplectic groupoid [8].

Another interpretation for Bott-Shulman-Stasheff cohomology is that it is the
de Rham cohomology of the differentiable stack M//G presented by G. We note
also that degree three cocycles belonging to B®'® i.e. corresponding to deformation

cocycles of (G,w), and satisfying an integrality condition are related to S!-central
extensions of G [I, Thm. 5.1].

6. EXAMPLES AND COMPUTATIONS

6.1. Deformation cohomology in small degrees. We start by interpreting co-
homology classes in small degrees in a geometric way via direct computations; but
see also the computations of small degrees in terms of a spectral sequence, in Sec-
tion Using the de Rham model for the deformation cohomology, a simple
computation shows that

Hget(G,w) = {a € Qier(M) | da = 0, da = 0} = Qg (M),

i.e. the space of closed invariant 1-forms on M.

In degree 1, again using the de Rham model, a deformation cocycle on (G,w) is
given by a pair (¢, @) € Q};(G) ® Q% (M) such that 6¢ = 0 and d¢ = da. Using
the terminology of [8L16], this means that ¢ is a relatively a-closed multiplicative
1-form.

Under the isomorphism w® : TG — T*G, the form ¢ corresponds to a vector field
X on G such that —w’(X) = ¢. Multiplicativity of ¢ and of w mean that X is
multiplicative as well, meaning that X is a Lie groupoid morphism X : G — TG.
Therefore, X is an infinitesimal automorphism of G, its flow preserving the Lie
groupoid structure. However, since ( is not closed but only relatively a-closed,
the flow ¢. of X does not preserve the symplectic form w. Instead, it satisfies
¢iw = w + 0(e), so it applies a gauge transformation by d(ear) to . Because of
this we call 1-cocycles twisted infinitesimal automorphisms of (G, w).

A degree 1 coboundary is a pair of the form (63, d3) € Q4.;(G)HQ2(M). Adding
it to a relatively a-closed multiplicative 1-form ¢ we obtain a relatively («a + d3)-
closed multiplicative 1-form ¢ + 3. We call these transformations of the form
((,a) = (¢ + 06, a+ dp) trivial gauge transformations. We conclude that

Twisted infinitesimal automorphisms of (G,w)

H} ,w) =
der (9, ) Trivial gauge transformations
In degree 2, as mentioned in Remark [5.2] deformations of symplectic groupoids
give rise, after taking a first-order approximation, to cocycles in C%_;(G,w); equiva-
lences between deformations provide 1-cochains transgressing the difference between
the corresponding deformation cocycles. Thus

Infinitesimal deformations of (G, w)

H3 =
et (G, ) Infinitesimal equivalences
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22 C. C. CARDENAS, J. N. MESTRE, AND 1. STRUCHINER

This is the main use of the deformation cohomology, and we will study it in detail
in Sections [ and Bl

6.2. The cone exact sequence and proper Lie groupoids. Before we start
analysing the deformation cohomology of a symplectic groupoid in particular exam-
ples, we recall a simple consequence of the definition of the deformation complex.
As the mapping cone of @, o ®*Tyer : Chy(G) — Cp(w), it fits in a short exact
sequence of complexes

0— C&ef(w)[_l] - C(;ef(gaw) — C&ef(g) — 0.
This induces the long exact sequence in cohomology
_ 3
(6.1) s Hygt(w) = Hi(Gow) = Hie(G) = Hier(w) = -+,

where the connecting homomorphism 9 = H (@, o ©2Tye) is the map induced in
cohomology by @&, 0 @2 Tyes.

Example 6.1 (Symplectic manifolds). A Lie groupoid G integrating a connected
non-degenerate Poisson manifold (M,w™1!) is transitive. For a transitive Lie group-
oid it holds [26] Prop. 3.1] that H3(G) = H*(G,g), where G is the isotropy Lie
group at any point of the base, acting on its Lie algebra g via the adjoint repre-
sentation. By simple dimension counting we know that the isotropy groups are
discrete, so g = 0.

Thus, for a symplectic groupoid (G, s*w — t*w)=(M,w™1), the long exact se-
quence (G.I)) implies that

H$(G,8%w — t'w) = H3 (s*w — trw).

For the pair groupoid of M, any multiplicative 2-form is cohomologically trivial,
so H3.;(M x M,prijw — priw) = 0. This translates to the fact that deformations of
(M x M, priw — priw) are given by gauge transformation of dw = priw — priw by
dwe, where w + w, is a deformation of the symplectic structure on the base.

Another situation in which we can make further use of this long exact sequence is
for proper symplectic groupoids. A Lie groupoid is called proper if it is Hausdorff
and

(s,6): G—>MxM
is a proper map. Examples of proper groupoids include compact Lie groupoids,
pair groupoids, and the cotangent Lie groupoid T*G of a compact Lie group G.

Proper symplectic groupoids are the subject of recent extensive work [23]24]
78], and satisfy many remarkable properties not shared by a general symplectic
groupoid, and much less by non-integrable Poisson manifolds. They generalize
many aspects of the geometry of compact symplectic manifolds and of Lie algebras
of compact type.

Proper symplectic groupoids are also very special among proper Lie groupoids,
in a way which is analogous to how the adjoint action of a compact Lie group G on
its Lie algebra g is special among actions of G (compare for example [23]24] with
Chapters 2 and 3 of [36]). For example, for an arbitrary Lie groupoid G=M the
isotropy Lie algebra i, and the normal space v, to the orbit of G through x € M
are the kernel and cokernel of the anchor map of A = Lie(G) at . In general there
is no further relation between these two objects, which feature prominently in the
study of the geometry of proper Lie groupoids; when G is a symplectic groupoid,
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DEFORMATIONS OF SYMPLECTIC GROUPOIDS 23

however, v, inherits a linear Poisson structure from M by linearization at x, such
that its dual Lie algebra v} is naturally isomorphic to i.

We recall the following vanishing result for the deformation cohomology of proper
Lie groupoids.

Theorem 6.2 ([26, Thm 6.1]). If G is a proper Lie groupoid, then
Hier(G) = T()77™,  Hi(G) =T ()™, and Hgy(G) =0 for k> 2.

Let us give a brief explanation of the objects in the statement of this result. The
isotropy bundle i is the kernel of the anchor map of the Lie algebroid of G,

i=Ker(p: A—>TM).

Differentiating at the units the conjugation by elements g : * — y induces a map
adg :ip — iy.

Strictly speaking, i is a distribution with possibly varying rank, so it is only a
bundle if G is a regular groupoid. Nonetheless, it makes sense to consider I'(i) as
the space of smooth sections of A which land in i C A. Among these, the space of
invariant ones is

L) = {a e I(i) | adg(as) = o }.

~

It was shown in [26] that in fact H) (G) = I'(i)97™" for any Lie groupoid, not only
proper ones.
The normal bundle of G is

v = Coker(p) = TM/p(A),

and once again it is only a smooth vector bundle for regular G. But once more, there
is a way to make sense of its space of smooth invariant sections T'(v)9~1. First
of all, the space of smooth sections is defined as I'(v) := X(M)/p(A). A section
[V] € T'(v) is called invariant if there is a vector field X € X(G) which is both s and
t-projectable to V. This condition is independent of the choice of representative
V. In the regular case, this notion recovers the usual notion of invariant sections
of the normal representation of G. We refer to Section 4.4 of [26] for more detail.

For an arbitrary Lie groupoid G, deformation cocycles of degree one are mul-
tiplicative vector fields on G, i.e., vector fields which are Lie groupoid morphisms
X : G — TG. Any such vector field X is in particular s and ¢-projectable to a
vector field V' on the base. Mapping X to the class of V" modulo Im(p) induces a
linear map H} (G) — T'(v)97v 26, Lemma 4.7]. Part of Theorem [6.2]is that for
proper Lie groupoids this map becomes an isomorphism.

Proposition 6.3. Let (G,w) be a proper symplectic groupoid. Then there is a
7-term exact sequence

0 — Qg (M)97 = D(v*) 7™ — QF (M) = Hiy(G,w) —
- ]_'\(V)g—inv - H(]icf(w) - chf(gﬂw) —0
and HE +(G,w) = HY H(w) for k > 2.
In particular, in terms of the de Rham model for deformation cohomology,
Héef (w) H&ef (UJ)

Haet9:) = Gt @7y = Gior.. (@) /6@ (3D
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24 C. C. CARDENAS, J. N. MESTRE, AND 1. STRUCHINER

Proof. Simply use Theorem together with the long exact sequence (G.II), the
discussion of Section [6.] for deformation cohomology in small degrees, and recall
that i, = v} for symplectic groupoids. O

6.3. Zero Poisson structures of proper type. The source l-connected inte-
gration of the zero Poisson structure on a manifold M is given by the symplectic
groupoid (T*M, wean), viewed as a bundle of abelian Lie groups over M, and so it
is never proper. However, (M, 0) may still be integrated by a non-simply connected
proper symplectic groupoid, having interesting consequences for the geometry of
M. Proper s-connected symplectic integrations of (M, 0) are in 1:1 correspondence
with integral affine structures on M ([23] Prop 4.2], see also [24] 3.1.6]).

An integral affine structure on M can be described by a Lagrangian smooth full
rank lattice A in T* M i.e., a subbundle A C T* M, whose fibres are full rank lattices
in the fibres of T* M, and which is a Lagrangian submanifold of 7*M. The proper
symplectic integration corresponding to A is (T*M,wean)/A. The Lie groupoid
Ta :=T*M/A is a torus bundle and the form we,, descends to a symplectic form
w7 on it, so (Ta,w7) is a symplectic torus bundle over M.

Since (Ta, w7 ) is a bundle of Lie groups, its source and target maps coincide, so
using the de Rham model for deformation cohomology we see that

chf(na UJT) = Qil(M)TAiinv = Q(I:I(M)
Moreover,
Hger(Ta) = Qe (Ta)/8(Q (M) = Qe (Ta)
and
Hdlef(w'r) = Qzl,mult (77\)/6(931(]\4)) = le,mult (77\)
Therefore, in this case the 7-term sequence from Proposition becomes
0= Q4(M) = Q' (M) 5 Q% (M) = Hi(Tha, 1) —
= Qe (T8) > Qe (Ta) = Hieg (Ta,wr) = 0
and HY ((Th,wr) = HY M wr) for k> 2.
In particular,
ngf(’TA; WT) = H2( ;nult(lﬁ\)v ddR)v
the second de Rham cohomology of the subcomplex of multiplicative forms on 7j.
6.4. Linear Poisson manifolds of proper type. The Lie groupoid TG = G x g*

integrating the linear Poisson manifold (g*, 7y) is proper if and only if the Lie group
G is compact. In this case, we know from Proposition that

Héef(wcan)
[}, (T*G) /5((g7))]

But since g* is contractible, H3z (g*) = 0, so 692 (g*) = ddQ'(g*) = do2' (g*) and

Hiot (TG, wean) =

therefore
H2 (T*G w ) ~ Q?nult,cl (T*G)/éggl(g*) _ Q?nult,cl(T*G)/d(SQl(g*)
aef T d[QL (TFG) J6( (7)) A (TG /6(2(g7))]

which is the same as H?(Q® ..

(T*G),dar)-
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6.5. Spectral sequence computations for deformation cohomology I. For
computational purposes, it is useful to use the identification of the deformation
complex of (G,w) with the total complex of the very simple double complex

0 0 0
OH(M) —— Q%4(9) —— Q%(GP) —2— 0%(G®)) —— -

| d d dl

QL (M) —— QL:(G) —= QL (G®) —2= QL (G®) — -

HO

as per definition of the mapping cone, and detailed in Remark We recall
again that the inclusion Q}(G®) c Q'(G(®)) is a quasi-isomorphism. As such,
we can also compute deformation cohomology of a symplectic groupoid using the
cone of —dgr : Q1(G®)) — Q2(G®) instead of —dgr : Q4 (G®)) — Q% (G®). For
the “rows first” spectral sequence associated to the corresponding double complex
[3, Sec. I11.14], the second page Es is

1| Har(Q4(M)97™)  HagHs(Q4(G)) HarHs(Q24(G9))

0 Qg (Mg (Haet(9))ar (Hiet(9))a

where (H1;(G))a denotes Ker(d) ¢ Hs(Q'(G"™)). Let us also use the notation
HZ (M)~ = H2(Q*(M)97",dyg). Since the double complex was concen-
trated in the first two rows, the spectral sequence stabilizes at this page. Therefore
HE (G, w) = ExO @ EE11 as vector spaces, and more explicitly

Q4G )s—a

k—1,1
(6.2) By ©8(Q4(GHF2)) + dap(QH(GED)s_q)

When we know more about G, it is possible to have a better description of these
pieces. For example, either equation ([6.2)) for k = 2 or the same argument used for
linear Poisson manifolds of proper type (Section [64]) shows the following.

Proposition 6.4. If G=M is a symplectic groupoid and H3g (M) =0, then
H?ief(g7w) Hr?nult(g) D (chief(g))d'
If additionally G is proper, then

ngf(gaw) H2 ult(g)
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By the previous discussion of this section and of Section 6.1l we can also compute
the cohomology in degrees zero and one, so for the sake of completeness, we recall
that Hi¢(G,w) = Q4 (M)~ and Hj,(G,w) = Hgp(M)97™ & (Hie(G))er-

6.6. Spectral sequence computations for deformation cohomology II. Let
us now use the “columns first” spectral sequence for the double complex associated
to the mapping cone of —dyp : Qéef(g(')) — le(g<°>). Its first page is

1 H3r(M) — Q%(6)/dar(Qiet(G)) = Q2(GP)/dar(Qiet(GP))
0 Qs (M)a —— Qs (§)ag ———— Qéef(g@))d
0 1 2 3

where Q}_;(G*)) denotes the kernel of dgg : Q4 (G*)) — Q2(G*)). This spectral
sequence stabilizes at the third page, and so H% (G, w) = E§’O @ E§_171, where
E3* = HY(Qies(G%)a1)
and
_ _ QQ (g(k—l))
Ek 1,1 — Ker (dk 1,1 . kal ( cl ) — Hk+1 Ql go . ) )
3 2 5 ddR(Q(lief(g(kil))) 5 ( def( ) 1)

Again, if we know more about G, these formulas become simpler. If G is proper,
we can make use of the following variation of Theorem

Proposition 6.5. If (G,w) is a proper Lie groupoid, then
HE(Qaer(6)a) = 0
for all k > 2.

Proof. We will first rewrite the homotopy operator of C3.(G) in terms of the de
Rham model Q) (G(*)); we then check that it restricts to a homotopy operator for
the subcomplex Q}ief(g('))cl. We recall that the homotopy operator is described
in terms of a Haar system and a cut-off function, which exist for any proper Lie
groupoid, and permit integration along the target fibres. We refer to [26] for details
and for the proof of Theorem using this operator.

Let k > 2 and let 8 € Q) (G*T1);5_.1. The homotopy operator on the de Rham
model Q) ;(G(*)) assigns to 3 the transgression a € Q} ;(G*)) defined by

a(X) ..., Xk ) = ( )ﬂ(X;l,...,X;“k,rh(ds(ng)))dh,
5(9k
where 7 : t*TM — TG is a splitting of the target map of G. Notice that, since
B € Q}ief(g(k"’l)), the expression in the integral actually does not depend on the
value of the tangent vectors at h € G (cf. Remark [L2]). We remark that this
expression can also be obtained by using the homotopy operator for VB-cohomology
as in [10]. Equivalently, if X € X(G*)) the homotopy operator has the form

o) = [ B g,
t-fibres
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where X (*+1) € 2(G(k+1) is the vector field

XED (g1 grn) = (X (g1, s 98)s Tgrss (ds(dpri X (g1, - -, 98))))

induced by X.
We now prove that the transgression « of a closed 1-form 3 € Q(lief(g(’)) is a
closed 1-form. Recall that the de Rham differential of 1-forms can be written as

da(X,Y) = —a([X, Y]) + X (aY)) = Y (a(X))
= an(Y) — LyOz(X) — a(LXY)

Let B € QL (G*+V)s5_q be such that d3 = 0, and let X,Y € X(G*)). Then,

(xa)V) = ( 41] _ (e¥)a) )

e=0

= 2| o)1) el

_ / da
t-fibres de

- / L BY* ) dpg,
t-fibres

X(k+1)

B Y™ )0y

x (B+1)
e=0 €

dug

using that 8 € Q4 (G*Y) to pass from the second to the third lines. Similarly
we can compute (Lya)(X). And finally,

a([X,Y)) = /ﬁ BX, Y] * ) dpg

:/ B(Lx<k+1>Y(kH))dug (because g € Q(lief(g(kﬂ)))_
t-fibres
Therefore, with these computations we get that

da(X,Y) = / dp(X Dy (k) —
t-fibres

which proves the claim. (Il

This result, together with the formulas for E§ 0 and for E§ 11 from the begin-
ning of this section, leads to a simpler description of HY (G, w) = E:’f’o ® E;f_l’l.
Corollary 6.6. Let G be a proper Lie groupoid. Then for k > 2

02/(g*Y)
ddR(chicf(g(k_l)))) '

HE () = B (

7. THE DEFORMATION COCYCLE OF $-CONSTANT DEFORMATIONS,
AND MOSER TRICKS

In this section we describe the deformation cocycle mentioned in Remark
by using the simpler presentation of the deformation complex given by Corollary
B4l We then use such a cocycle to state a result analogous to the classical Moser
Theorem in the context of symplectic groupoids. We first carry out this work for
s-constant deformations, where the deformation cocycles involved are canonically
determined. In the case of general deformations it is only the deformation coho-
mology class that will be well-defined. We consider that case in Section 8
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7.1. The deformation class. Let (G.,w.) be a deformation of (G,w). In Remark
we associate the cocycle &, — %wa € C2%(G,w) to the deformation (G.,w.).
Alternatively, using Corollary 5.4 we can express such a cocycle as an element 7. of
the mapping cone complex of the de Rham differential —dgr : Q1(G(*)) — Q2(G(*)).
Explicitly,
ne = G —w: € QG & Q*(G).

As we will show in Proposition [[.]] and Remark [.5] every 7. is indeed a 2-cocycle
of the deformation complex C3.;(G:,w.) when viewed in terms of differential forms
as in Corollary 54l The corresponding cohomology class [n.] will be called the
deformation class.

We now prove that 79 € C3,(G,w) is in fact a cocycle, which will be called the
infinitesimal deformation cocycle associated to the deformation (G.,w;).

Proposition 7.1. Let (Ge,w:) be an s-constant deformation of (G,w). The 2-
cochain 1y = (o — wo € QYGPD)P N2(G), defined above, is a 2-cocycle. The
corresponding cohomology class in ngf(g,w) depends only on the equivalence class
of the deformation.

To prove Proposition [7.]] we first enunciate two technical lemmas. In what
follows, denote by G[?! the domain of the division map m of G, i.e., the space of
pairs of arrows with the same source; denote by p; : G2 — G the projections on
G, and denote by pr; : G& — G the projections from the space of composable
arrows to G, for i = 1,2.

Lemma 7.2. A k-form w € Q¥(G) is multiplicative if, and only if

(7.1) m'w = pjw — phw.

Proof. We just need to show that equation (Z.I]) is equivalent to the equation
(7.2) mw = priw + pryw.

This follows from the diffeomorphism 1 : G — G3) | (p,q) — (p,i(q)), where

i : G — G is the inversion map of G. Indeed, by applying ¥* to equation (7.2 and
since i*w = —w [8, Lemma 3.1], we obtain equation (Z]). O

Lemma 7.3. Let (G,m.) be an s-constant deformation of G. Define for every
e € I the diffeomorphism M. : G — GBI (p,q) — (M.(p,q),i:(q)) and the
map . : G — g§2), (p,q) — (p,ic(q)). These families of maps satisfy the
following properties:

(1) W0, =pi=(pr1)-ote;

(2) proM. =m.ou.;
(3) D2 OM;1 =i 0py = (pr2)€ 0 1e.
(4) IfV. denotes the time-dependent vector field on G2 associated to the smooth

family of diffeomorphisms M. (i.e., % e M, (p,q) = Vo(M.(p,q))), then

Vo) = (0nico). 4| inlic)).

T=¢

Proof. Ttems (1)-(3) are straightforward once that M;l(p, q) = (me(p,ic(q)),1(q)).
For item (4) note that V.(p, q) = -+ (M, owgl)(p, q), so its proof follows from

dr lr=¢

applying | __to (M, o M. )(p,q) = (M (me(p, ic(q)),i=(q)),ir (i=(0)))- O
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Proof of Proposition [[1l. The proof of the first part follows from differentiating the
multiplicativity condition (1)) of the family w,. In fact, by taking derivative with
respect to € and reordering the terms, we get
d
w5)> .
e=A

d
we) +p1( 5=

d d "
de wa)_p2(_

@3 (| moen = (-micq -

e=A\ e=A e=A

Now, we use Lemma and the family of diffeomorphisms M, : G 2 gl
defined there. Since Mc(p,q) = (me(p,q),i:(q)), then d% |€=/\ miwy is equal to
% o Mg*prfw{, which is equivalent to % |E:>\ M3 (M. OM/\_l)*prTw,\. In this way,
letting = := M.o M N ! (which, by construction of V, is its time-dependent flow),
then we have

d VEIaV r— L%, % Vi d * %
i . M3 (M o My ') piws = M; e . (=) piwa
= Mj Ly, (piw»)-
That is, by items (1)-(3) of Lemma [T.3] equation (Z3]) becomes
_ d d d
L * :Mfl*_—*_ R k(0 6_*_ B
i) = O (<mi(E| e +nilE| wr-ng] @)

= =X (pr1)i( P R we) + imi( P . we) — 3 (pra) X ( P R We)
d

ok SA

- ’lp)\d (d€ EZAME)'

Also, since wy is a closed form, by Cartan’s formula we have
(3 )" Ly, (Piwn) = d (93 1) (Va s piwn))
= d[(92)Va 3 (¥ 1) piwn]
= d[(¥n)«Va 2 (pri)iwal
= —dQy,
where the last equality follows from identification ([@.2)) in Section @ Namely,

((¥2)+Vaa(pri)iwa) g,n)

= ()3l [ 4], (0o (@03) 000 VL 1500)

= @il |4, €0
= —(x(g,h) (by identification (L2)).

Therefore, we conclude that

d
déy =6t (— %) )
de|._y
That is, —d(y — 6 (— % — we) = 0. This completes the first part of the proof by
taking A = 0.

Take now (G.,w.) an equivalent deformation of (G,w), and denote by 7 its

infinitesimal cocycle. We will prove that ny — 7 is exact. This follows from taking
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derivatives at € = 0 of the equivalence condition FXw! = w, + d.(ac) (recall that
ap = 0). Doing so, we obtain

Fg (dizow6 + w{)) =wy + (50(@0),

where Z. is the time-dependent vector field associated to the family F.. Hence,

o

o) (J:)O = —diZOOJ/O + 50(@0).

On the other hand, since F;. : G. — G. is an isomorphism for every e, then the
groupoid deformation cocycles & and &) satisfy that &) — & = 33 (Zy) [26, Lemma
5.3]. In terms of differential forms, this amounts to {y — (o = do(—iz,w) (see
identification ([{2))). Therefore, the equation above becomes

Mo — 1 = —Wo + o — (—wp + o)
= o — o + (W) — o)
= (50(i20w) — ddR(iZOw) + 50(@0)
= Dy(izyw — dyp). U

Corollary 7.4. The 2-cocycle associated to the trivial deformation vanishes in
cohomology.

Remark 7.5. Since a deformation (G.,w.) of (Gp,wp) can be seen as the defor-
mation (Geqx,wetn) of (Ga,wy) for any A € I, then the corresponding cochain
nx € C3:(Ga,wy) is also a cocycle. Furthermore, in the case of a trivial defor-
mation we can say even more: every 7, is exact. This follows from noting
that the deformation (G.,w.) of (Gop,wp) being trivial implies that (G.yx,wetn) is
also a trivial deformation of (Gx,wy), for any A € I. Moreover, 1, admit primitives
which are smooth with respect to A - this can be proven directly but it will also
follow as a particular case of Theorem

In the next section we show that, under appropriate regularity and compactness
conditions, the converse statement of Remark is also true.

7.2. Moser arguments and moduli spaces.

Theorem 7.6 (Moser theorem for symplectic groupoids). Let (Ge,we) be an s-
constant deformation of a compact symplectic groupoid (G,w). Then, the deforma-
tion (Ge,we) is trivial if, and only if, the deformation class

Ne = (e —we € Cgef(gaaws)
vanishes smoothly.

Proof. We will show that the smooth exactness of the deformation cocycles 7.
implies the triviality of the deformation (G.,w.). Remark shows the converse
statement. Thus, let us assume that 7. is a smoothly exact family of cocycles.
Then, we get

67’(_XT) = C‘l’ and — d}T = _d(_XT) - 57’(&7')3

where x, € QY(G,) and a, € Q?(M) are smooth families of forms. The first
equation amounts to §7..(X;) = &, where X, is the smooth family of vector fields
such that x, = tx w, for every 7. Let (¢., ¢.) be the flow of the time-dependent
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vector field X, (starting at time zero). Then, by letting &, := fOT(go:da)de be the
primitive of the curve 7 +— @Xda,, we obtain

) e d _
wr = —d(1x,wr) + - ((¢7 1) —|s=r @),

ds
which is J
d_€|6:7' [szws - 6€(d6)] =0.
That is,
Prwe — 0c(ae) = w, for ae = ag — a@c.
Hence, one concludes that the deformation (G.,w.) is trivial. (]

As a consequence of this version of the Moser Theorem we can describe a neigh-
bourhood of w in a moduli space of multiplicative symplectic structures on G for a
compact symplectic groupoid (G,w). We say a moduli space and not the moduli
space, because there are a few options of which equivalence relation to consider.
We will use one that is suggested by the equivalence relation on deformations of
symplectic groupoids.

The space of closed multiplicative 2-forms on a Lie groupoid G is the subspace
le,mult (G) € Q2(G). It is a linear subspace, being the intersection of the kernel of
the two linear operators dgr and 0. Non-degeneracy is an open condition, so the
space of multiplicative symplectic structures on G is an open neighbourhood of w
in Q2 (G), which we denote by S(G).

cl,mult

Definition 7.7. Two multiplicative symplectic forms wy,wy € S(G) are said to
be convex gauge-isotopic if the deformation (G,w.) given by wy + e(ws — wy)
is a trivial deformation of symplectic groupoids (in particular w, is required to be
non-degenerate for all € € [0, 1]).

Denote by ~cgi the equivalence relation on S(G) generated by convex gauge-
isotopies.

Theorem 7.8 (Moduli space). Let (G,w) be a compact symplectic groupoid. Then
there is a neighbourhood U of w in S(G) and a neighbourhood V of 0 in H3 (G, w),
such that the map k: U — H3;(G,w), defined by k(w1) = [0 & (w1 — w)] induces a
1:1 correspondence

U] ~egi YV C Hig(G,w),

sending the equivalence class of w to 0.

Proof. The map k descends to the quotient: if w; and wy are convex gauge-isotopic,
then the deformation (G, wy +e(wa—w1)) of (G, wy) is trivial, so its deformation class
[0 (wa —w1)] € H24(G,w1) vanishes. Therefore [0 @ (w2 —w1)] € H2;(G,w) also
vanishes. Thus k(w2) — k(w1) = [0 (w2 —w)] — [0® (w1 —w)] = [0 (we —wy)] = 0.

Let U"” be a convex neighbourhood of w in S(G), and let wy,ws € U” be such
that x(w1) — k(w2) = 0. By definition, [0 & (w1 — w2)] = 0 € H3;(G,w), mean-
ing that (w7 — ws) is exact in deformation cohomology. We can consider the s-
constant deformation (G, ws+e(w1 —ws)) of (G,w2) (it is a deformation of symplec-
tic groupoids because U is convex). This deformation has a constant deformation
class [0 (w1 —w2)] =0 € H3;(G,ws) for all £, which we know to be exact. There-
fore the deformation classes are smoothly exact and by Theorem we conclude
the triviality of the deformation. This implies that (G,w1) and (G, w2) are convex
gauge-isotopic. Hence k descends to an injective map.
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Neighbourhoods U’ of w and V' of 0 can be chosen such that x maps U’ onto
V'. The reason for this is that by Proposition any class in H3;(G,w) has a
representative of the form 0 @ w; with w; € Q2 ;. (G). Let V' be small enough
that for every class in V' there is such a representative 0 @ w; for which w + wq
is non-degenerate, and w; belongs to U”. By definition k(w + w1) = [0 ® wi],
so kU = rk1(V') = V' becomes surjective. Finally, let / C U’ be a convex
neighbourhood of w, and let V = s(U). O

Remark 7.9 (On the relation with Kodaira-Spencer maps). The map x plays a
similar role to a Kodaira-Spencer map in the theory of deformations of complex
structures [0, Sec. 4.2]. Allowing for some heuristics, and if we disregard issues
with spaces of infinite dimension, there is a tautological (infinite-dimensional) fam-
ily of symplectic groupoids
prsg) 1 6 = (G x 8(9),w) — 8(9),

where @ is the tautological prgg)-foliated 2-form on & = G x S(G) with values
&(g,w) = w(g). The fibre prg(lg)(w) of this family over w € S(G) is equal to (G,w).

By analogy with the case of complex manifolds, the Kodaira-Spencer map of this
family is a map KS : T,8(G) — H3.(G,w); given a smooth curve v : I — S(G),
define KS(%(0)) to be the deformation class of the deformation p : v*& — I.
Since S(G) is an open subset of the vector space anulm(g), there is a natural
identification T,,S(G) = anult’cl(g). Under this identification, the Kodaira-Spencer
map K S corresponds to k.

For a compact symplectic groupoid (G,w), taking the analogy further, a germ of
a neighbourhood of 0 in H3;(G,w) plays the role of what is called a Kuranishi space
(cf. [13] Def. 4], see also Corollary 9 in loc. cit.) because infinitesimal deformations
of (G,w) are unobstructed, as the proof of Theorem [[.§] shows.

Remark 7.10 (Other versions of the Moser theorem). It also makes sense to study
deformations of multiplicative symplectic forms on a fixed Lie groupoid G, up to a
stricter equivalence relation where triviality is given by paths of symplectic groupoid
isomorphisms (i.e., not allowing for cohomologically trivial gauge transformations
as equivalences). In this case, the correct deformation complex to consider would
be (22,.1:(G),dar), and a Moser theorem in that setting is detailed in [I2]. It is
similar to Theorem in the sense that when G is compact, deformations will be
trivial if and only if their deformation classes in H2, . (G) are smoothly exact. This
in turn will lead to a similar correspondence to that of Theorem [.8] of the form

U~ «— VCHauw(9),

for neighbourhoods U of w in S(G) and V of 0 in HZ ;. (G). Here ~ denotes the
equivalence relation generated by convex isotopies, where wy and w; are convex-
isotopic if the form we = wp + e(w1 — wp) is symplectic for all £ € [0,1], and there
is an isotopy F: of G such that each F. is a Lie groupoid isomorphism satisfying
Flw. = wp.

Remark 7.11. Any deformation p : (QVZM) — (I=1) of a compact Lie groupoid
G is a trivial deformation [26, Thm. 7.4, Rem. 7.9]. If moreover p is proper,
then the entire family Gis trivial, without the need to restrict to a smaller interval
J C I. This means that any deformation (G., w.) of a compact symplectic groupoid
is equivalent to one of the forms (G, ¢fw.), and in particular s-constant, for e
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small enough. Thus, by Proposition [ any deformation class in H3.(G,w) is
represented by a cocycle of the form 0 @& wy € C3;(G) ® Cl¢(w), and has also a
corresponding cocycle in H2 . (G).

Therefore, if the space of Lie groupoid structures on a compact manifold G
(or perhaps having an underlying submersion s : G — M as source) were locally
path-connected, then the correspondences of Theorem [Z.8] and of Remark [.I0] can
be upgraded. They would give local descriptions not only of moduli spaces of
multiplicative symplectic forms on G, but of symplectic groupoids structures on the
manifold G (respectively, with underlying source s : G — M). Although we do not
know if the space of Lie groupoid structures on G is locally path-connected, in this
direction we note that the space of actions of a compact Lie group on a compact
manifold is, indeed, locally path-connected [70].

8. THE DEFORMATION CLASS OF GENERAL DEFORMATIONS

In this section we show how general deformations of symplectic groupoids can
also be handled in an infinitesimal way.

8.1. Defining the deformation class. In order to describe the deformation class
of a deformation (G,&) we first reinterpret the definition of the deformation cocycle
in the case of s-constant deformations (é = G x I,w.). The deformation cocycle
7e = (- — We can be alternatively expressed as

(81) Ne = U(Uv(édcf(a/ag)a '))\ggz) - (‘68/35(:))‘95’

where /8¢ is the vector field on G whose flow F. is (g, A) — (g, A+ ), and
o priT*G — T*G?

is the map of vector bundles over G(?) defined in Remark @4l by o = (dpry)*.

Note also that @ is a 2-form on G which restricts to w. over the fibre G x {e}.
This alternative description of the deformation cocycle can be extended in such a
way that the deformation class still makes sense for a general deformation.

Proposition 8.1. Let (G,&) be a deformation of (G,w), and let X € X(G) be a
transverse vector field; that is, a vector field on G which projects by p o § to the
vector field 0/0e on I. Then,

(8.2) 0. = 0(@(0aer X, ))lger — (Lx@)lg. € er(G2)) © Q*(G)

defines a family of cocycles n. € C3;(Ge,w:). Moreover, the cohomology class ]
at time zero does not depend on the choice of the transverse vector field X .

Definition 8.2. The resulting cohomology class [ng] € H2.;(G,wg) is called the

deformation class associated to the deformation (G,®).

Remark 8.3. Equivalently, the family of cocycles 1. can be viewed as a single cocycle
1 on the “foliated version” (C&ef(g,(:))]:,D]:) of (C&ef(g, @), D). That is, on the
mapping cone of the leafwise de Rham differential dr : Q1 (G(®)r — Q2(G(*).
Here, to shorten the notation we let F refer to the foliation F(™ on each G with

leaves gé”), induced by the foliation on G previously denoted by F, having the fibres
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G. as leaves. The space Qécf(g (#))  is the space of the foliated forms corresponding
to forms in Q1 ;(G(*)). Explicitly, we have
(8.3) 0 = 0(@(0act X, )l rer — (Lx@)|F € Qer(GP)r ® Q5(G).

Proof of Proposition 81l Let M : G® - G be the diffeomorphism defined by
M(g,h) = (M(g,h),i(h)), where M is the multiplication of G.
On the one hand, notice that

M*Lx® = M*prilxd
= M Lxmpri@, where XI' = (Xg, (X)) € TigmG?
= Lxn M*pric, where X[y = (M XP™) g p)
= (Xgn - (1 X)n-1, Xn) € TgmG®?
= Lyn M*
= Lxupriw + Lxmpryw.
That is,

(M*ﬁxb:})(g’h) = (ﬁXMpTT@ + ﬁXNIpTSQ) (a.h)

= (dux v pri@) g,y + (dgmpr1)* (do(Xgn - di(Xn), —, —))
+ (ﬁprT';(:))(g,h).
On the other hand,
(priLx@)(g,ny = (Pritxd®)(gn) + (d pritx®)g.n)
= (d(g,nypr1)"dw(Xg, —, =) + (d priix®)g.n)
and
prolx® = Lxmpraw.
Therefore,
(pTT[,XcZJ — M*ﬁxdl +p7‘;‘cX@)(g,h)
= (d(g,h)prl)*da)(Xg, - _) + (d pTTLX‘D)(g,h) - (dLXMpTT(D)(g,h)
— (digmpr1)* (dis(Xgn - di(Xn), =, —))
= (d(g,pypr1) do(Xy — Xgp - di(Xpn), —, —) + (d(pri‘LXcZ) — LXMpri‘of)))(gﬁ)
= (L(fsdefX,O)prikd@) (g,h) + (db(5defX,0)pr>lk@) (g,h)"
Thus, since (dqerX)(g,n) is tangent to the fibres of G, of G and each restriction
we = wlg. is a closed 2-form, then
(L(600s x,0)PTTAD) ’GE =0,

for all €, proving the first part of the proposition. Let X’ be another transverse vec-
tor field, with associated cocycle . Let Y = X' — X, and let Y = —0(0(daetY, *)) 7-
Then

0 —n=0(@0atY;)r — (Ly®)r = =07V +drY = —Dx(V),

where we have used Lemma for the second equality. We conclude that the
deformation class does not depend on the choice of transverse vector field. O
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Remark 8.4. Alternatively, since the tangent lift map @©2Tyr takes transversal vec-
tor fields to transversal vector fields, Proposition B.I] can also be proved in terms
of deformations of Lie groupoid morphisms by using the results of [12].

8.2. Triviality of deformations with exact class. In this section we generalize
Theorem to general deformations of compact symplectic groupoids.

Theorem 8.5. Let (§, @) be a deformation of a compact symplectic groupoid (G, w)
and let n = o(0(0get X, )| 72 — (Lx@)| 7 be the deformation cocycle in the foliated
cohomology C3.¢(G, @) r, associated to the deformation via a transverse vector field
X on G. Then, (G,®) is trivial if and only if n is exact.

The proof of this result will be based on Lemma

Lemma 8.6. Let (G,@) be a deformation of (G,w) as in Theorem BH. Then, the
associated foliated form wr induces the isomorphism

Cet(G)F = Qher(GD) 7, € —0(@(E,)F = —0r(@F(£, ).

Under this isomorphism, the image Y = —iy&r of an element Y € CL . (G)r
satisfies
drY = —(Ly@)r, and 65y = —0(0(dderY, ")) F-

Proof. Checking that @r induces an isomorphism is done by essentially the same
arguments as those for Proposition 1]

drY = (—diyw)r
= (—diy@)r + (—tydd)r = —(Ly®)F,
T
where the second equality is due to the fact that @ is dz-closed. Moreover,
0rY = —dr(tywr) = —0r(ty@)r = —(6ty@)
= (6(@") (V)7 = (@) (BaetY)) 7 = —0(&(Saer; ) 7 O

Proof of Theorem B3 If 1 is exact, then there exists V@ a € Q}_(G)r & Q2(M)
such that

U(Q(édefXa '))|]:(2) = 53)

and
(84) —(ﬁxa}”}‘ = —5]:(04) - d]:y
Since the foliated 2-form @ induces the isomorphism C(G) 7 — Q4+(G™))
(see Lemma B0l), it follows that J = —iy@x for some vector field Y on G which is
tangent to the fibres G. of G. Therefore, the first equation is equivalent to
(8.5) 0(@(0aer X, )| re = =0 (0(daerY’ )| F
and equation ([84]) becomes
(86) (ﬁx+y@)_7-‘ = (5]:(04).

Thus, equation (83]) says that X + Y is a multiplicative and transverse vector

field on G. Let us denote by F. the flow of X +Y on G. Then equation (B8] is
equivalent to

d ~ *
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Denote by (., ¢.) the family of restricted morphisms F.|g, : Go — G.. Then, by
restricting the previous equation to the fibre Gy we get

L i, = (8. (0))

de
= dg, (92ac)
d _
= 6g0 (d_é‘aa)
d _
= d_85g0 (Oéa),
where a, = fOT(d):aE)de is the primitive of the curve ¢ — ¢ a.. Hence, the
sequence of equalities tells us that the expression ®fw. — dg,(a.) is constant in e.

Thus,
Drw. = wo + dg, (ac).

Therefore, if ® : G x I — G is the isomorphism determined by the family ®. and
a e QQf(M x I is the closed foliated 2-form which equals &. when restricted to
the fibre G,, then

(@) F = (prowo)F + 67 (),

where prg : G x I — G is the obvious projection to G. This proves the triviality of
the deformation (G,®). O

Remark 8.7. Alternatively, Theorem could be deduced from Theorem by
first using the Reeb stability theorem for the foliation of G by the fibres G. (at
least for G Hausdorff ) and using the triviality of proper deformations of compact
Lie groupoids [26], Thm. 7.4]. Nonetheless, it seems to us that it is useful having
a direct proof of the general version of the theorem at hand, without the need to
pass through a specific type of deformation. This proof should also leave more
room for generalizations to relative or semi-local versions for groupoids admitting
well adapted tubular neighborhoods, or normal forms, around submanifolds as for
example in [23] Section 8], or [40].

9. MORE EXAMPLES AND RELATION WITH POISSON COHOMOLOGY

We once more use a spectral sequence in order to compute deformation co-
homology, as done in Sections and This time we turn to the “columns
first” spectral sequence for the double complex associated to the mapping cone of
—dar : QYG®)) — Q2Z(G®). Tts first page is

1| Hig(M) - Hip(G) - Hip(6®) - Hiz(G®)

0 QLM) — Q4(6) — Q4(GP) — h(G®)
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If we assume that M, G and G have vanishing first and second de Rham
cohomology, then this page becomes

1 0 0 0 H2,(6®)

0 | dC*(M)) > d(C=(G)) - d(C=(G?)) — Q4(G")

In this case the second page is

1 0 0 0 Hs(Hir(6®))

0 | Hs(d(C™(M)) Hs(d(C™(G) Hs(d(C®(G®)  Hs5(Qa(G?)

and therefore the deformation cohomology of the symplectic groupoid (G,w) is very
closely related in degrees up to 3 (the most important ones for deformation theory)
to the differentiable cohomology of G, which is Hs(C>®(G®))).

Recall also that there is a van Est map relating differentiable cohomology of G
with the algebroid cohomology of its Lie algebroid [19], which is naturally isomor-
phic to the Poisson cohomology of the base, in the case of a symplectic groupoid.

We now take a closer look at some (families of) symplectic groupoids satisfying
these conditions. We start by illustrating a general strategy with the following case.

9.1. Linear Poisson structures - part 2. Let (g*, m4) be a linear Poisson struc-
ture and let G be the 1-connected Lie group integrating the Lie algebra g. We
recall that the cotangent groupoid (T*G,wean) is & source 1-connected integration
of (g*,mg), and that TG = G x g*.

Proposition 9.1. Let g be a Lie algebra and let G be the 1-connected Lie group
integrating it. Then there are isomorphisms

Hiot(T* G, wean) = Hgg (6)/R,  Hie(T*G,wean) = HZ';K'B (g%),
fori=1,2, and an injective map
Het (T* G wean) — Hgﬂ (g%)

Proof. Using that T*G = G x g*, we compute the deformation cohomology of
(T*G,wean) using the “columns first” spectral sequence for the double complex
associated to the mapping cone of d : Q'((G x g*)(*)) — Q2 ((G x g*)(*)). Tts first
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38 C. C. CARDENAS, J. N. MESTRE, AND 1. STRUCHINER

page is

1 | Hig(g") - Hip(Gxg") = Hip((Gx g*)?) - Hiz((Gxg")®)

0 Qu(g") — QG xg") — QLG xg)?) — QL((Gxg")?)

For the action groupoid G x g*, the nerve is (G x g*)(™) = G" x g*. Because
G is a 1-connected Lie group, and since m2(G) = 0 for any Lie group, we conclude
by Hurewicz’s Theorem that (G x g*)(") has vanishing first and second de Rham
cohomology for any n.

Thus, the first line of the page above vanishes, and the de Rham differential
induces a surjective cochain map onto the 0-th line, d : C*°(G*® xg*) — QL (G* x g*).
The first page becomes

Since both G and g* are connected, the kernel of d consists of constant func-
tions, forming the complex R SRYR AR M . ts cohomology vanishes
in all degrees except 0, where it is isomorphic to R. Therefore, the terms of this
spectral sequence stabilize at the second page, where we have on the 0-th line that
Hy(Q4 (")) = Hyg (G x g7) /R and for i > 0, Hs((G' x g*)) = Hig(G x g°).

Finally, since the s-fibres of G x g* are 2-connected, the van Est map relating
differentiable and algebroid cohomology is an isomorphism up to degree 2, and
injective in degree 3. The statement follows, as the algebroid cohomology of the
algebroid of G x g* is naturally isomorphic to the Poisson cohomology of g*. [

9.2. Groupoids with homologically 2-connected nerve. As is clear from the
proof of Proposition [0}, a similar situation happens for other symplectic groupoids
(G,w)=(M, ) with simple enough topology. We will see examples of them in the
rest of this section. First of all, exactly the same arguments as for the proof of
Proposition let us prove the following results.

Proposition 9.2. Let (G,w)=(M, ) be a symplectic groupoid such that for every
n > 0 the space G is homologically 2-connected. Then the de Rham differential
d:C3(G) — Q1(G®) induces isomorphisms

H((i)lff(g)/R = H((i)ef(gaw)a Hclhff(g) = Hcilef(g7w) fOT‘i > 0.
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Combining this with the van Est Theorem from [I9] we obtain the following.

Corollary 9.3. Let (G,w)=(M, ) be a symplectic groupoid with homologically k-
connected source fibres, and such that G is homologically 2-connected for each
n > 0. Then

Hc(l)ef(g>w) = Hg(M)/R> Héef(g7w) = H;(M)>
for 1 <i <k, and there is an injective map
Hi ' (G w) — HEPH(M).

Remark 9.4. If (G,w) satisfies the conditions of Corollary @3] for k£ = 2, then it also
satisfies Proposition Combining the two, we obtain

HZ(M) = H2 00 (G) ® (Hio(G))ar.

Note that the maps inducing the isomorphisms in these results are the de Rham
differential d : C*(G) — QY(G(*)) and the van Est map VE : H*(G) — H2(M).
We will revisit them in Theorem (see also Remark [[0.3) for arbitrary source
connected symplectic groupoids, without further topological assumptions.

There are several examples of symplectic groupoids satisfying these topological
conditions. For example, let G=M be a Lie groupoid such that the source map s
is a fibration with k-connected fibres, over a k-connected manifold M. Then g
is k-connected for all n. This can be seen by inductively considering the long exact
sequences in homotopy groups for the source map s : G — M and for the fibrations
s*: G =G x, G — G»=1) (the pullback of s along (topr,) : G=1 — M).

9.3. Zero Poisson structures. Let us focus on the source 1-connected symplectic
groupoid (T* M, wean)=(M, 0) integrating the zero Poisson structure on M. In this
case, the nerve is T*M ™ = @"T* M, so Hi, (T*M™) = Hk, (M), for all k,n > 0.
The source fibres are contractible, being vector spaces. We also note that for the
zero Poisson bivector m = 0, the differential of the Poisson complex vanishes, so
H2(M,0) = X*(M). Thus, using Corollary [0.3], we come to the following result.

Corollary 9.5. Let M be a homologically 2-connected manifold. Then
Hjief(T*Ma Wean) = H‘flr(Ma 0) = xl(M)
fori>1, and HY(T*M,wean) = C(M)/R.

9.4. Poisson-Lie groups. A Poisson-Lie group is a Lie group G equipped with a
Poisson structure 7 for which the multiplication m : G x G — G is a Poisson map,
where G X G is equipped with the product Poisson structure. This amounts to the
bivector wg being multiplicative. Multiplicativity of mg implies that it vanishes at
the identity e € G, so its linearization at e induces a linear Poisson structure on the
Lie algebra g. Therefore it induces a Lie algebra structure on the dual g*. The dual
Lie group of GG is then the 1-connected Lie group integrating the Lie algebra g*,
and is denoted by G*. It is also a Poisson-Lie group, which we denote (G*, wg+).

For each & € g*, denote by ¢ and £" the left-invariant and the right-invariant
1-forms on G with value £ at the identity, respectively. The maps

Apigt = X(G), M) =5, pl6) = —mG(E)
define the left and right infinitesimal dressing actions of g* on G, respectively.
We say that a multiplicative Poisson tensor m¢ on G is complete if each left (or,
equivalently, each right) dressing vector field is complete on G.
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In [56], Lu and Weinstein have constructed, for any Poisson-Lie group G, a sym-
plectic groupoid I integrating GG, with a second compatible groupoid structure on I"
making it into a symplectic groupoid integrating G*. In general I' is a submanifold
of G x G* x G* x G. In the simplest case, when (G, n¢g) is a simply connected
complete Poisson-Lie group, I' is G x G*, which is in this case also diffeomorphic
to the double group D of G; the groupoid structures on D are in fact action Lie
groupoid structures, for actions of G and G* on each other obtained by slightly
modifying the dressing actions (see [54] Section 4.1]).

Corollary 9.6. Let (G,m¢g) be a simply connected complete Poisson-Lie group with
dual Lie group G* and 1-connected integration denoted by (D,w)=(G,7g).
Then there are isomorphisms

ngf(D>w) = H7OTG (G)/Rv Héef(Dvw) = erc; (G)v
fori=1,2, and an injective map
Hor(D,w) = HZ (G).

Proof. Both G and G* are 2-connected, and so D= has 2-connected base G and
source fibres (diffeomorphic to G*). The source map of D is a fibration, since D is
an action groupoid. Therefore, DG satisfies the conditions of Corollary with
k=2. O

Exchanging the roles of G and G* and bearing in mind that a Poisson-Lie group
G is complete if and only if G* is complete [54] Prop. 2.42], one obtains an analogous
result for the symplectic groupoid structure of D over G*. When G is equipped with
the zero Poisson structure, then G* is g* seen as an abelian group, with the linear
Poisson structure, and D = T*@; so in this sense Corollary [0.6lrecovers Proposition
for complete G. Other interesting, and non-trivial, Poisson-Lie group structures
have been constructed, for example for connected compact semi-simple G [57].

9.5. Cotangent VB-groupoids. For any cotangent VB-groupoid T*G=A* of a
Lie groupoid G, the nerve (T*G)(®) is a simplicial vector bundle over the nerve of
G. Moreover, the core exact sequence of T*G (dual to sequence (2.4) in Remark
217 implies that the source fibres of T*G are affine bundles over the source fibres
of G. These facts together with Corollary lead to the following result.

Corollary 9.7. Let G be a Lie groupoid such that G\ is homologically 2-connected
for all n > 0 and such that its source map s has homologically k-connected fibres.
Let myin be the linear Poisson structure on A* (cf. Section 28|). Then there are
isomorphisms

ngf(T*g>wcan) = Hgnn (A")/R, Héef(T*g7Wcan) ~ ! (A*)>

Tlin

for 1 <i <k, and an injective map

HY TG, wean) — HETH(A”).

Tlin

Remark 9.8. The results of this section indicate that at the infinitesimal level, the
deformation theory of a symplectic groupoid (G,w)=(M,n) with homologically
2—connected nerve and source fibres is very closely related with that of (M,7)
itself. And moreover, that this situation occurs in many natural examples.

Both H2,(G,w) and HZ(M) encode infinitesimal deformations modulo trivial
deformations, while H}(G,w) and H}(M) encode infinitesimal automorphisms
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modulo trivial ones. The missing piece, from the point of view of deformation
theory, is relating obstructions. On the Poisson side, H3 (M) encodes obstructions
to extending an infinitesimal deformation to a formal one. This interpretation
uses the Schouten-Nijenhuis differential graded Lie algebra (DGLA) structure on
X (M).

There is a well known principle of deformation theory due to Deligne [34] and
Drinfeld [35], and in an equivalent form, to Schlessinger and Stasheff [72] (now
formalized as a theorem in derived deformation theory [58[71]), and explored further
by many others; it states that every reasonable formal deformation problem in
characteristic zero is controlled by a DGLA g. Equivalence classes of infinitesimal
deformations are given by elements [c] € H?(g); obstructions to extending c to a
formal deformation are detected by a squaring map [-,-] : H2(g) — H>(g) (degrees
may vary according to the index convention for g).

It is not known to date how to describe such a DGLA (nor an L..-algebra)
structure on the deformation complex of a Lie groupoid G (not even when G is a Lie
group!). The work of [69] points to its existence, although in a non-constructive way,
via an interpretation of deformations of Lie groupoids as deformations of certain
kinds of diagrams of C'*°-schemes. Similarly, we do not know how to describe such a
structure for C3 (G, w). It is our hope that understanding better the close relation
between the deformation complexes of G and of (G,w) with known DGLA’s (such
as X*(M), as in this section, or the deformation complex of a Lie algebroid, in
the next) may help in eventually finding an explicit description of the DGLA (or
Loo-algebra) structures on these complexes.

In any case, if H3 ;(G,w) does encode obstructions to extending an infinitesimal
deformation of a symplectic groupoid to a formal one, it is reasonable to expect that
the map of Proposition sends the obstruction for an infinitesimal deformation
[n] of (G,w) to the obstruction of a corresponding infinitesimal deformation [A] of
Poisson structures on the base. If that is the case, injectivity would say that if [A]
is unobstructed, then so is [n]. On the other hand, if [n] is the deformation class
associated to an actual deformation of (G,w) then the corresponding infinitesimal
deformation [A] of Poisson structures should also be unobstructed.

10. THE MAP BETWEEN DIFFERENTIABLE AND DEFORMATION COHOMOLOGIES

In the previous section we have explored the relation between deformation co-
homology and Poisson cohomology for symplectic groupoids with somewhat simple
topology. We now turn our attention to what can be said about the relation be-
tween the deformation cohomology of any symplectic groupoid (G,w) and other
related cohomologies, such as H3,4(G) and Poisson cohomology of the base.

Let (M, 7) be a Poisson manifold and let (7% M), be its associated Lie algebroid.
In the study of deformation of Lie algebroids of [27], the authors define a map
i: HY (M) — H3; (T*M),) between the Poisson cohomology of (M, ), which
controls deformations of Poisson structures, and the deformation cohomology of the
algebroid (T*M),. In this section we construct the global counterpart ig of the
map ¢.

We collect in Appendix [Alsome material, including definitions, on double vector
bundles and VB-algebroids (vector bundle objects in the category of Lie algebroids),
that is of use in the proofs of this section.
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10.1. Deformation cohomology of Lie algebroids. We recall the deformation
complex of a Lie algebroid A, denoted by (C3.:(A), ) and defined in [27]; we recall
also its interpretation in terms of VB-algebroids.

A derivation on a vector bundle E — M is a linear operator D : I'(E) — T'(E)
such that there exists a vector field op € X(M), called the symbol of D, which
satisfies

D(fs) = fD(s)+op(f)s, for s e T'(F) and f € C>(M).
A multiderivation of degree n on E is a multilinear and antisymmetric map
D:T(E)x - xT'(E) —T'(E)

n+1 times

which is a derivation in each entry, i.e., there is a symbol map

op :T(E) x - x T(E) — X(M)

n times

which is C*°(M)-linear in each entry and satisfies

D(50781>"‘7f8n) = fD(SO>"‘7Sn) +UD(807" wsnfl)(f)sna

for s; € I'(E) and f € C*°(M). The space of multiderivations of degree n is often
denoted by Der™(E). One sets Der~1(E) = T'(E).

The deformation complex of a Lie algebroid A is the complex for which the
space of k-cochains C¥ ;(A) consists of the multiderivations of degree k — 1 on A,
ie., Ck .(A) = Derk=1(A), with differential given by the ‘de Rham type’ formula

5(D) (a0, -, ) = Zo(~1)' i, D(ao . s - ., )]

+ Zi<j(_1)i+jD([aivaj]va0a cee ;&ia .. '7&ja <. 'aak)'

VB-algebroid complex. For a VB-algebroid D — F over A — M, the VB-
algebroid complex of D is the subcomplex Cy5(D) = Cp, (D) of C*(D) (the
Chevalley-Eilenberg complex of D) consisting of cochains which are linear in the
following sense: regard the cochains in C¥(D) = I'(E, A¥D%) as the k-multilinear
and alternating functions ©%D — R; a k-cochain is called linear if it is fibrewise
linear with respect to the vector bundle structure of &% D over @k, A (cf. [10], see

also [27]).

Remark 10.1. As pointed out in [27), Prop. 7], there is an interpretation of the
deformation complex of the Lie algebroid A in terms of the VB-algebroid complex
of T*A* — A* (see Example [A10). In fact, given any vector bundle E — M,
define the isomorphism [27] section 4.9]

Dp : X5, (E) — Der* " Y(E*), Dp(X)(s1,...,81) = X(lsy,-,1s;),
where s; € T'(E*) and | : ['(E*) = C2(E) is the function assigning to a section
s € T'(E*) the corresponding (fibrewise) linear function on E. Thus, if E = A*,
then XF (A4*) = CLg(T*A*), and Da- : Xp, (A*) — C3;(A) is moreover an
isomorphism of differential graded Lie algebras, where on X}, (A*) one considers
the Schouten bracket of multivector fields.
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The map i. Let (M, ) be a Poisson manifold. We now revisit the cochain map
i:Co(M) — C3,¢(T*M) introduced in [27]. It is defined in terms of cochains by
i: CF(M) — C* (T*M), X — Dx, where Dx € Derk=Y(T*M) acts on exact
forms by

DX(df17"'7dfk) = d(X(f177fk))

An expression for the multiderivation Dx acting on arbitrary forms can also be
obtained (see [27, Prop. 3]), but the previous formula is enough for our purposes.

In order to study the map ¢ in another way, we use the notion of the tangent
lift X*(M) — X (TM) C X¥(TM) of k-multivector fields, defined as follows.
Regard the k-vector fields as the k-multilinear alternating functions

k k
(M) = T(N\TM) € (" b Fmiinens gy,
M M

Thus,

k k
xk(TM) = F( /\ T(TM)) C {@ T* (TM) k'mlﬂnear R}
T™ ™

Then, if X € X*(M), its tangent lift X is given by

k k
(10.1) X :=TXoa"05,,  PT"(TM) — PT(T*M) — R,
TM TM

where TX € C’,S‘ilm(EBK}M T(T*M)) means the tangent lift, induced by the differ-
ential, of the k-multilinear function corresponding to the vector field X.

Notice further that, in this way, X is (fibrewise) linear with respect to the vector
bundle structure of @?M T*(TM) over @f\/f T*M (TX is (fibrewise) linear with
respect to the bundle projection &*pr- s, and @¥O )y is an isomorphism of DVBs;
prey 2 T(T*M) — T*M is the tangent projection and ©gps is the Tulczyjew
map, see Proposition [A11)). That is, X € XE (TM), i.e., the tangent lift of the

multivector field X € X*(M) is a linear multivector on T'M.

We identify the map ¢ with the tangent lift of multivector fields, through the
isomorphism Dypjy; of multiderivations with linear multivector fields. The map ¢ is
determined by the composition

PIN Dert=Y(T*M), X ~— Dra(X).

(10.2) xF(M) — xE (TM)

For simplicity we will verify the equality in the case k = 2. Let

2
1 X2(M) — C° (D T M)
M
be the correspondence assigning to bivector fields on a manifold M the associated
bilinear antisymmetric functions on @?\4 T*M. With this assignment, one can write
the element T'X in expression (I0) as T'(Ix) € C’,‘;‘ihn(@pr T(T*M)). Thus, one
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gets

Dyar(X)(dfr, dfz) = X (lag, Lag,)

l5(dfi,df2) (where fi :=lgs,is the tangent lift of f;)
(Ix) 0 O7p,(dfr, df2)

(Ix)(T'(df1), T(df2))

(Ix (dfy, df2))

P

|
N4 94

(Ix(df1,df2))
(X(f1,f2)) (by definition of 1)

i(X)(df1, df2),

where in the fourth equality we use that ©p o T(df) = df (see [61, p. 394]), and
in the fifth equality we use Lemma [A-T4(1).

|
SUEg¥

10.2. The map ig and van Est commutativity. We now define the map
ig : H3ig(G) — Hgee(9)

which will be regarded as the global counterpart of the map ¢ in the sense of
Theorem As we will see, similarly to what happened for C3(G,w) (Remark
[E3) the map ig can be identified with a piece of the Bott-Shulman-Stasheff double
complex.

Recall from Proposition 217 that C3,:(G) = Cy5(T*G), and moreover, by
Lemma 2.I8| that Hyp(T*G) = HY (T*G).

Thus, we will define the map (between cohomologies!) ig : H3:5(G) — H3.:(9)
in terms of a chain map j : C3,5(G) — Cp,(T*G); the latter is the composition

wh)*
Cha(9) 5 b (16) s ¢t (176),

where wf := (W”)~!: T*G — TG, and T is the natural tangent lift of groupoid
cochains. It is given by T'(c) : (vg,, ..., g, ) — dc(vg,, ..., g, ), using the canonical
identification (TG)(*) = TG*),

The main property of the map ig is that for s-connected symplectic groupoids,
it is indeed the global counterpart of the map 4 of [27].

Theorem 10.2. Let (G,w) be a symplectic groupoid. If G is s-connected, the map
ig: C35(G) L Cp(T*G) X C3.:(G), defined above, is the global counterpart of the

lin
map i. That is, ig together with i and the van Est maps for differentiable [19] and
deformation cohomology [10L26] form the commutative diagram.

Cke(G) —— G (T*G) o 31 (9)
VE O V Eget

CHT*M) ———— Ck (T*M).
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In the statement of this result, and throughout the rest of this section, we let
%.¢(G), or simply C*(G) (respectively Cy5(T') and Cp, (T")) denote the subcom-
plex of normalized cochains of G (respectively normalized VB-cochains and linear
cochains of T"), which we recall are those that vanish on all degeneracies.

Remark 10.3. The map ig : Hy5(G) — H3.¢(G), according to its definition, can
essentially be viewed as the de Rham differential dgp : H3e(G) — H*(QY(GHM)).
In fact, the two maps are related by the following diagram.

(W)

Her(9) H*(Q'(g™))

X dun

i (9)-

Therefore, just as C3.(G,w) could be identified with the total complex of a
subcomplex of the Bott-Shulman-Stasheff double complex (Remark [5.5]), the map
ig appears as the vertical differential between the first two lines of the double
complex.

Note also that the maps

Clin(9)-

C*(T"M) Cin(T79)

appearing in the statement were precisely the ones used to relate deformation co-
homology of (G,w) and Poisson cohomology of the base in Section [@] in cases with
simple topology.

The proof of Theorem[I0.2lmakes use of the tangent lift of algebroid cochains,
T :C*(A) — Cp2,(TA) which is the infinitesimal analogue of the tangent lift of

groupoid cochains, and is defined as follows. A k-cochain ¢ € C*(A) = T'(AkA*)

can be regarded as a k-linear and skew-symmetric map c : EBk A — R. Its tangent
lift Tc € CE (TA) is

lin

Te(vy, ... vg) :=de(vy, ..., vk),

for (v1,...,v) € @;M TA, using the identification T()" A) = @;M TA.
It is shown in Section of the Appendix that the tangent lift is a map of
cochain complexes, and we detail some of its properties in Lemma [A.15]

Remark 10.4. Notice that if A =T*M is the Lie algebroid associated to a Poisson
manifold (M, 7), then the tangent lift of algebroid cochains agrees with the tangent
lift TX of multilinear elements used in expression (I0.) to define the tangent lift
of multivector fields on M.

Proof of Theorem [[0.2] The proof follows from working on each of the properties
of the symplectic form w (non-degeneracy, multiplicativity and closedness). On
the one hand, notice first that, from non-degeneracy and multiplicativity, the map
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j = (w*)* o T fits into the following diagram

(W)

Chi(§) —T— CE(TG) ————— CE(T*G)
VE (I VE
(10:3) ve ) Ok (Arg) U Gk (Ageg)
~|j5 (IT1) (05"
CH(A) —Ts Ch (A~ Ok (T )y,

The commutativity of diagram (I) (which we prove in Subsection [[0.3)) is a gen-
eral fact relating the tangent lifts of cochains on Lie groupoids and Lie algebroids
by the van Est map, and it does not involve the symplectic structure. The com-
mutativity of diagram (II) follows from the naturality of the van Est map with
respect to morphisms of Lie groupoids (Lemma 2.10 [10]). And finally, the com-
mutativity of diagram (II7) amounts to regarding the morphism of Lie algebroids
Lie(w”) : Apg — Ap«g in terms of the (canonically) isomorphic Lie algebroids T'Ag
and T*Ag. We denote such a morphism by L(w)’ : TAg — T*Ag. Moreover,
since this latter morphism is the infinitesimal counterpart of a morphism of Lie
groupoids induced by a multiplicative 2-form on G, then it also turns out to be
induced by a 2-form L(w) on A (that fact explains our notation L(w)” for the mor-
phism). In fact, one can explicitly describe such a 2-form L(w) by using the tangent
lift w?' € Q*(TG) of the form w € Q2(G). One obtains L(w) = t}w?, where ¢4 is
the inclusion map Ag < T'G. This last point is developed in [7, Prop. 3.7].

Composing the reversal isomorphism 7™ A* B ey (Section [A2)) and the iso-
morphism D4~ (Remark [[0.1]) with the lower part of diagram (I0.3]), we obtain

HY4(G) —L— HE(T*G) = HY(9)
(10'4) VE V Eiin V Eqet
L(w)H)*oT * D sx
HR(A) BT k(7 Ay s HRL (T A 225 HE(A).

On the other hand, adding the closedness property of the 2-form w, we get both
a Poisson structure m on M and, at the infinitesimal level, an isomorphism of Lie
algebroids o : Ag — (T*M),. Thus, having in mind the expression ([I0.2) for the
map 4, we have the following commutative diagram.
(10.5)
—1\%
CHA) — Ty OB (T A — A Ok (T A% — 24" Derh=1(A)

(Cah (To= 1) (Tw)*)¥ (CaP

9—1 *
Ok (T* M) —T—s Ok, (T(T*M))in M CE (T (TM))iw 2225 Der™ =1 (T* M),

<M
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where © 4+ is the isomorphism of VB-algebroids induced from ©pj; by using the
isomorphism o : A — T* M. That is,

04 = ((TU*)?U*),I)

(see Remark A7) and for simplicity we write simply © 4« = ((To*)*) " 0Opp0T0.

Hence, comparing the upper part of diagram (I0.5]) and the lower part of diagram
(04, we obtain two VB-algebroid isomorphisms from T* A* to TA: L(w)*oR4 and
@Z} . We will prove now that these two maps are the same, which will complete the
proof of the theorem (just put together diagrams (I0.4) and the diagram induced
in cohomology by (I0H)). In fact,

O = (To*)) 0Oy 0 (To)
= ((To*)*) " o (Ryar 0 wlyy) 0 To (Prop. [ATI)
= Ry- o (To)* ow’,, 0oTo (Prop. AS)
= R' o (0" wean)’

= Ry o L(w)’,

1
O@TM oTo :TA — T*A*

where the fact that R4+ = Rgl is easily verified from a local point of view and the
last step follows from the characterization of the linear 2-forms on Ag coming from
multiplicative 2-forms on G [7, Prop. 4.6]. O

Remark 10.5 (IM-2-forms). It is worth to mention that the map o of the previous
proof is the IM-2-form associated to the multiplicative 2-form w (cf. [BL[7,[8,29]),
and it makes sense even when w is only multiplicative but not closed.

10.3. Proof of the commutativity of diagram (I). Here we complete the proof
of Theorem by proving the commutativity of diagram (I) in (I03). We will
proceed by using the properties of the tangent lift detailed in Lemma [A.14] and
by working on core sections and tangent lift of sections, which together span all
sections of the tangent algebroid (Example [A4]).

Recall the definition of the van Est map VE : C*(G) — C%4(Ag), between the
differentiable cohomology of a Lie groupoid and the algebroid cohomology of its as-
sociated Lie algebroid. Given ¢ € C%+(G), VE(c) is defined (using the conventions
from [I0L19]) by

VE(e)(X1,..., Xg) = Y sgn(0)Ro(x,) © -+ © Rox,)6; for X; € T(Ag),

oES,
where if X € ['(Ag), the map Ry : Ckq(G) — Ck1(G) is given by
d -
Rxelgr, - g6-1) = — (WX (Hg1)), 915 1),
€ e=0

1/)5 being the flow of the right invariant vector field associated to X € I'(Ag).

We prove explicitly the commutativity of (I) for kK = 2, commenting along the
way how to extend the proof to the general case. Note that, for ¢ € C%4(G), by
definition of Rx we have
o d
- d€1

d

10.6 Rx, R —
( ) ( X1 ch)(w) o dey

¢ (b2 (0% @), v (@)

82:0
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where Vi = p(X;) € X(M) is the projection of X; by the anchor, and ¢! is its
flow.

In order to use formula ([I0.6) for sections of the tangent Lie algebroid, we study
the flow of the appropriate right-invariant vector fields on T'G. We then split the
proof in three cases:

Linear sections: (X; = jg o (Tw;), a; € T(Ag), i =1,2.)

In this case, the flow \pr of )?i € X(TG) is the tangent lift of the flow of &;
[63, Thm 7.1], thus for instance,
U (Tu(wy)) = (TYZ)(Tu(w,))
= T()F ou)(wy)

d .
= a o dje Ou(’y()‘))a

for v(A) a curve determining w,. Then,

d
dc ( —
£9=0 d\

d
o, B Faxao

= d(Rm Raz C) (wg)-

(Rx, Rx,(T¢))(w,) =
d d

e1=0 d€2

= G CCTOMREICION

Therefore, it follows that VE(T'c)(X1, X2)|,, = d(VE(c)(au,a2))l,, , which,
by item (1) in Lemma [A:T4] is the same as

jé(VE(Tc))(Tal,Tag)} =T (VE(c)) (Tal,Ta2)|ww .

Wy

The same argument works for any k-cochain (k > 0) if we take only linear sections.

One core section case: Let & € T'(T Ag) be the core section associated to a € T'(Ag),
and X := jgoa.

In this case, the right-invariant vector field on T'G associated to X is X = (@)t
"~
[63, Thm 7.1], therefore its flow is given by NS (vg) = vg +€dy.
Let X; := jgoTay and Xa := jg o da. Denote by Vi = p(aq) € X(M) and note
that
trg o U2 = trg o TYZ = T(tg o Y1) = Tl

€17
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the last equality holding because a} is t-related with V;. Then

49

d d . B )
(Bx, By (T0) ) = 37 des Tc (‘1’522 (trg (UXH (ws))), U2 (wx))
€1 £1=0 E9 €520
d d o ) .
= Terl._ e, TP () en Gl TV ()
R0 (@)
€1
d d .
= o > T ! T aq N
d51 £1=0 d€2 c0=0 C(w¢;,11 ()’ €1 (’U} ))
0
d d B
+ d_El o d_€2 o dc (52 042|¢;/11 (z) ’wall (x))
_ d d ds (Vi & )
N der €1=0 dX ,\:oc( A (¢51 (), €1 (2)
= (RalRazc)(w) B

where in the third equality we use the linearity of T'c over G2 (Tc € C,

2
lin

(TG))-

+
Similarly, denoting by V2 = p(a2), and by @Xf the flow of VJ € X(TM),

(Rx, Rx, (T€))(w,)
d d B R )
= | Te| @ | @2 (wa) | WD (wr)
€2 c,—0 de1 ., =
wete2(Va)e wa+e2(d2)s
d d B
T des — de ((TY8)(22(Va)a), £2(d2)x
dea |, _o de1 |, g c (T21)(e2(Va)a), £2(A2)a)
d d B
el a de( T
i dea e2=0 deq e1=0 C( 1/}61 (wx)’wﬂf)
d d
= o R g dc T a1 - V2 T . —
des|,,_o det|.,_o (( beh) (5 O (). 7 .
d d d . )
= — _ “ ol A s
dez |, _g de1 |, —g €2 gy ,\:oc( S (B\2 (2)), ¥ (x))
_d d - .
- dEl e1=0 dA )\:06( 51( A (l‘))’ A (l‘))
- (RO‘QROMC) (x),

where in the second equality we view dc as an element of C7 (T'G). Hence, it follows

that VE(TC)(Xl,Xg)(wI) = (VE(C)(@hOtz))(g;)’

J(VE(Te))(Tay, a2)|,, | = T(VE(e))(Tan, é2)l,,)

(wg)
as we want.

The main ideas used in the proof of this case are the following.
(a2)"
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which, by Lemma [A.14] is

(i) in the
expression We™? (v;) = vy + € da|, for the flow of the right-invariant vector field

on TG associated to the core section o, the parameter € only appears multiplied
by dsl,; (ii) by the linearity of Tc € CZ, (T'G) and (i), we can form two vectors of
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(TG)?: one multiplied by e, the other one independent of 5. Using these facts,
a completely analogous argument works for k-cochains. In fact, by skew-symmetry
of the elements of C*(Azg), we can assume that X € I'(A7g) is the core section
in the expression VE(T¢)(X1,...,Xk), so that the proof of the equality is just like
that above.

More than one core section case: (X; := jgod&;, a; € T'(A),i=1,2.)
(Rx, Bx,(Tc)) w.)
d d

= 2 B 1o (U (1 U (wy)), TED (w,
Tl o]y T (VED (rgW3 (), W5 ()

d d 5T
= — _ T (t \I/(Oél) xT o T x o w)
dEl e1=0 d52 €2=0 ‘ rote (w ) - ° (az) vt el(al)

d d
= 5 - T T T N zy Wy o] T
= c(wz +e1(p(ar))z + 2(d2)p, we +€1(01)2)

d d

= — _ T Y
deq o dey o C(w:c +€1(,0(041));c,wx +51(a1)x)

d d

d€1 £1=0 d52
=0.

That is, j& [VE(Tc)](da,cd2) = 0. Then item (3) in Lemma [AT4] completes
the commutativity in this case. Analogously it is shown that the equality holds
for k-cochains if we have more than one core section: it suffices to decompose the
vector in (T g)<’€> as a sum of two vectors, one depending only on £; and another
depending only on 5.

This finishes the proof that the van Est maps intertwine tangent lifts of cochains
(of Lie groupoids and Lie algebroids), i.e., of the commutativity of the diagram (7).

TC (Eg(&g)m, Om)

52:0

Remark 10.6. Recall that any strict deformation of Lie groupoids induces de-
formations of Lie algebroids, fibrewise linear Poisson manifolds, and symplectic
(VB-)groupoids (Example B.6]).

gs ~ As ~ (A:/’Ts) ~ (T*gsawcan)~

There are now plenty of relations between these objects at the level of the cor-
responding deformation cohomologies. There is a van Est map H3((G) — H3.;(A4)
[26, Thm. 10.1]; there is an isomorphism H3(A) = Hy ;. (A*) [27, Prop. 8J;
the map ¢ : Hy(A*) — H3; (T A*) relates infinitesimal deformations of Poisson
structures on A* and of Lie algebroids on T*A*. Corollary gives a relation
between H2(A*) and H$.¢(T*G,wcan). There is also an inclusion induced by the
tangent lift of [51], H3(G) — His1in(T7G) C H3(T*G), a linear version of ir-g.

APPENDIX A. DOUBLE STRUCTURES

A.1. VB-algebroids. The infinitesimal counterparts of VB-groupoids are objects
called VB-algebroids [42/[59], which are vector bundle objects in the category of Lie
algebroids. Similarly to the situation with VB-groupoids, VB-algebroids provide
alternative viewpoints on the deformation cohomology (Remark [[0:1]) and on the
representation theory of Lie algebroids [42].
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Definition A.1. A double vector bundle (D, E, A, M), or just D, is a diagram
qD
D—=2 L+ FE

(A.1) a3 O s

A—2 5 M,
such that the rows and columns are vector bundles, and ¢& and the addition map

D
of D & E, +g : D®g D — D are vector bundle morphisms over g4 and the
addition of A, +: A&y A — A, respectively.

In the vertical bundle structure on D with base A, D4, we use the notation
0:A—D, a— 6;14 for the zero-section; similarly, in the horizontal vector
bundle structure on D over E, Dg, we write 0% : E — D, b — 0F. The
vector bundles A and E over M are called the side bundles of (Al); we denote
their zero-sections by 04 and 07, respectively.

Definition A.2. A morphism of double vector bundles
(¢7¢E>¢A7¢M) . (D7E7A7M) — (DI7E/7A/7M/)

consists of maps ¢ : D — D', ¢p : E — E', ¢pp : A — A, ¢pr : M — M’
such that each of (¢, dg), (¢, da), (05, dar) and (P4, Par) are morphisms of the
corresponding vector bundles.

If M =M, E=FE and ¢ = idg, one says that ¢ preserves E. If, further,
A= A" and ¢4 = ida one says that ¢ preserves the side bundles.

The core bundle and core and linear sections. A third vector bundle over
M associated to (D, E, A, M) is the core bundle C, defined as the intersection of
the kernels of g2 and ¢%. To avoid confusion, when regarding ¢ € C' as belonging
to D, we will denote it by ¢. The core fits into an exact sequence of vector bundles
over A.

~ D!
(A.2) 0= ¢iC ™ Dy B ¢ E 0,

where (¢2)' is the induced projection on ¢% F and 74(a, c) = 02 + ¢ (which makes
sense because (i) 02 and ¢ € D are in the same ¢2-fibre over OqEA(a) and (ii) ¢f is

a morphism of vector bundles, thus 74(a,c) € Dy is over a € A). This sequence is
called the core sequence of D over A. Analogously, there is a core sequence of
D over E.

An important aspect of the core sequences is that, for instance in (A.2)), a section
of C induces a section in T'(A, D) of D 4. In fact, ¢ € I'(C) defines ¢* € T'(A4, D) by

A a) == 7(a,Cqua)) = 02 +2 Cgaa)-

The section ¢ is called the core section over A corresponding to c. The

space of core sections over A is denoted by T'core(A, D). Analogously, with the core
sequence over I/, one gets core sections over F.

Another special type of sections of D4, called the linear sections of D over A,
is those which are vector bundle morphisms from A — M to D — E. The space
of linear sections is denoted by I';in (A4, D).
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52 C. C. CARDENAS, J. N. MESTRE, AND 1. STRUCHINER

An important fact about linear and core sections is that together they span all
sections of D over A [62].

Definition A.3. A VB-algebroid is a DVB as in (Al), where D — F is a Lie
algebroid with anchor map pp : D — TE being a vector bundle morphism over
A — T'M and such that the Lie bracket [, ]p satisfies the following conditions:

(1) Min(E, D), Tin(E, D)|p C T'in(E, D),

(2) [Flin(E, D)v 1_‘corc(Ea D)]D C 1_‘corc(-Ev D)a

(3) [Fcore(E> D)7 Fcore(E’u D)]D =0.

As pointed out in [42], a VB-algebroid D — E induces a Lie algebroid structure
on A — M and the structure maps (projection, zero section, sum) of the vertical
bundle structures form Lie algebroid morphisms. In this sense, a VB-algebroid can
be thought of as a vector bundle in the category of Lie algebroids [42] Thm. 3.7].

Example A.4 (Tangent prolongation DVB; tangent Lie algebroid).

(1) Applying the tangent functor to the structure maps (projection, addition,
zero-section) of the vector bundle E —s M yields the DVB

TE — ', T)p

E—9% M,

with core E. The core sections over E and T'M corresponding to o € T'(E)
are respectively:

o' €eT(E,TE), a'(e) =0F 475 alps(e)) = dia (e + ea(pr(e))),
e=0

called the vertical lift of o, and
& € T(TM,TE), a(vy) =0, +p a(z) € Tys E.

Note that 07M = T(0F), and a(z) = aT(0F).

For any X € T'(E), its tangent prolongation T(X) := d(X) € I'(TM,TE)
is a linear section of TE over T M. Linear sections of TE over E are called
linear vector fields on F.

(2) Let F : E — E’ be a vector bundle morphism over f : M — M’
The tangent prolongation of F' induces the morphism of vector bundles
(TF,Tf,F,f): TE — TE'.

Given a Lie algebroid A —— M, there is a Lie algebroid structure on T A N ™
making it into a VB-algebroid. Denote by X; € ['core(TM,TA), i = 1,2, the core
section corresponding to X; € I'(A). It suffices to define the Lie bracket on core
sections and linear sections of the form T'(X), X € I'(A):

(A.3) [TX1,TXs] =T[X1,Xs], [TX1, Xa] = [X1, Xa], [X1,Xa2] =0.
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The anchor pr is defined by pr = J o T'(p) where

—>TTM

%ﬁ

is the canonical involution of the double tangent bundle T'(T'M), called the canon-
ical flip, determined locally by J(z;, Z;, dz;, 0%;) = (x;, 04, &4, 0&;), where for local
coordinates (z%) of M, (i*) are the coordinates on the fibres of TM and (%, §i")
are the coordinates on the fibres of T(TM) ™ TM.

Example A.5. [Dual DVB] By dualizing the core exact sequence over A, we can
induce a double vector bundle
Di

dox
Dy —2 o

(A4) qDA O qo*
A
A— M,

with core E*, where D7 denotes the dual over A, and qf‘*“ : D% — C* comes
from the dual of 74:

(467 (na).¢) = (as 7a(a. <))

for 7, : (¢§)"(a) AR and ¢ € Cya(a)- The addition +¢- : DY ®¢- DYy — D
is defined in such a way that the natural pairing (,) : D% @ D4 —> R is linear with
respect to the vector bundle structure over C* @), F, i.e.,

(N +c* Nors da +1 dor) = (Nay da) + (M, deyr) -

Note that n, +¢= 7}, is determined by the expression above due to the fact that
any element in (DA)a+a/ can be written as the sum of elements d € (DA) and
d' € (Da)g. Tt is not hard to see that +c- given in this form is well-defined. The

linear

zero above k € C, denoted by 004 ([)A)O;_x = [Ker(¢7)'Joa == R, is defined by
<(~)Ez,(~)SE +4 E> = (k,c), fore € E,, c€ C,.

Analogously, one can take the dual of the core exact sequence over F, inducing a
DVB (D3, E,C*, M) with core A*. See [61] or [60] for further details.

Remark A.6. Similarly to the dual of a morphism of vector bundles over the same
base covering the identity, one defines the dual of a morphism of DVBs which have
one same side bundle. If (¢, ¢g,ida,drr) : (D,E,A,M) — (D', E', A, M) is a
DVB morphism preserving A, dualizing ¢ as a morphism of vector bundles over A
yields (¢%, o5, ida, our) + (D5, (C)*, A, M) — (D%, C*, A, M), a DVB morphism
preserving A with core morphism ¢}, : (E')* — E™*.
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Isomorphisms of duals of DVBs. As Example[A.5lshows, there are two different
ways to dualize a DVB: the wertical and the horizontal dualizations, which are
related by mixed iteration. Indeed, the horizontal dual ((D%)&., C*, E, M) of the
dual DVB (A7) is a DVB with the same side and core bundles as (D3, E,C*, M).
One can check that they are isomorphic DVBs. Namely, Zg : D}, — (D%)&-

is the isomorphism induced by a natural pairing | -,- | between the vertical and
horizontal duals D% and D3, as vector bundles over C*. The pairing is defined by
(A.5) | Naybe |= (Nay d)a — (b, d) B,

where 7, € D%, 0. € Dy, with qg;*“ (na) = qgi*E (0.) and d € D is any element such
that the canonical pairings in the RHS make sense.

Of course, this pairing also yields the isomorphism D% Z%/} (D3) &~ which induces
the identity on the cores E* and on the side bundles C*, and is —id4 on the
remaining side bundles A [61, Corollary 9.2.4]. Summing up, taking duals over
C* interchanges the vertical and horizontal duals of (D, E, A, M). Or equivalently,
mixed iteration of vertical and horizontal duals interchanges the duals of D (e.g.
horizontal dual followed by vertical one is the flip of the vertical one, where the flip
of aDVB (D,E, A, M) is (D, A, E, M)).

A.2. Reversal isomorphism. The reversal isomorphism of DVBs

Rp:TYA* — T*A
is a Legendre type map which allows us to relate two cotangent spaces. We present
here some details of its definition.

Examples [A.4] and [A.5] show us two important ways to get double vector bundles
from usual vector bundles (by tangent prolongation and dualizing). By considering
also dualization of vector bundles, there exists a certain compatibility between
these processes: dualization commutes with tangent prolongation (up to a canonical
isomorphism). Indeed, the tangent lift of the canonical pairing, (,),, between A
and A* over M induces the tangent pairing ((,)) , between T'A and T'(A*) over
TM. For (va*,wa) e TA* Dry TA,

(e ) a = | e alea,

where () and a(e) are curves on A* and A representing vy« and w,, respectively,
with pa=(v(¢)) = pa(a(e)). This pairing yields the isomorphism

Iy :TA* — (TA)T
which is moreover an isomorphism of DVBs: between the tangent prolongation of
the dual of A and the (horizontal) dual of the tangent prolongation of A. The

isomorphism [ 4 preserves the sides and core bundles, and is often called the inter-
nalization map [61Il Prop. 9.3.2].

(TAYT

T A* Tqax TM (TA)}M dr M TM
I
(A.6) DPax o 2% e qf:;A)*TM O 22
A* qax M A* gax M.
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Consider now the tangent prolongation DVB of A — M. The natural pairing
(A5) existing between its (horizontal and vertical) duals induces the isomorphism

Zp:T"A=(TA)Y — (TA)Tar)a-

Composing such an isomorphism with the dual (14)%. of I4 over A*, one obtains
the following isomorphism of DVBs

(In). 0 Za : T*A — T* A*

which (like Z,4) induces —id4 on the side bundles A and preserves the cores T*M
and sides A*. The reversal isomorphism R, : T*A* — T*A is then defined
by Ra := ((Ia)%. 0 Za)"! o (—ax 0idpsa+), which will be then an isomorphism of
DVBs preserving the sides and inducing —idr«y; on the cores.

Alternatively, it is possible to describe this map in a simple way by using local
coordinates. Let (z,u4) and (z°,u?) be (fibred) local coordinates of the vector
bundles A — M and A* — M. Let then (2%, ug, %, 1) denote the tangent
coordinates on T A, where (i?) are the coordinates of elements in T, M and (74) the
ones of tangent elements to the fibre A, of A — M, which identify with elements of
A, and therefore are also called the core coordinates of T'A. Similarly, the vertical
and horizontal duals of TA have a local description. Denote by (z%, ug, dz¢, dug)
the cotangent coordinates on T* A, and let (2%, (4, 4%, 14) be the coordinates on the
dual T*A := (T'A)%,;, where (4 and ng are the dual components to u? and 0¢,
respectively. In these coordinates, the dual map (I4)%. : (T*A)%. — (TA*)%. is
given by the flip

(xi7 ada Biv 77(1) = (xi7 Nd, 517 ad)a
analogously, the isomorphism Z4 above is determined locally by
(2%, ul, 62, Su?) — (2%, —u?, 52, du?).

Therefore, since locally the automorphism — g«id7+ 4« only changes the sign on the
third and fourth components, the reversal isomorphism has the form

(A7) Ra(xt, ud, 6z, 6u?) = (2, 6u?, =0z, u?).

The following propositions tell us about some naturality properties that the
reversal isomorphism satisfies, and which will be useful for us later on. In order to
state them, we first adopt some convenient notation for the dual of morphisms of
vector bundles and DVBs.

Remark A.7. Consider two vector bundles A — M7 and B — M>, and a vector
bundle morphism ® : A — B covering the diffeomorphism f : My — M. Notice
that the pointwise dual of ® induces a natural morphism ®*_, : B* — A* between
the duals of B and A covering the diffeomorphism f~!.

We remark that such a dual construction can also be made for morphisms of
DVBs which share one of their side bundles. For instance, let f : A — B be an
isomorphism, then one has the dual of the DVB morphism 7'f : TA — T'B (which
covers the isomorphism f), denoted by (T'f)}-. : T*B — T™A.
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Proposition A.8. Consider two vector bundles A and B over M. If f: A — B
is an isomorphism covering the identity, the following diagram commutes.

T A — B4 A
(A.8) (TG ey o (TF)5s

T*B* — 7B
Proof. The commutativity of this diagram follows directly from the local description
of the reversal isomorphism given in (A.7). O

Remark A.9. The reversal isomorphism R, satisfies some additional properties
related to symplectic geometry: to begin with, it is an anti-symplectomorphism
with respect to the canonical symplectic structures on the cotangent bundles 7™ A*
and T*A [61, Thm 9.5.2]. Another property involving the canonical symplectic
structure on T*M is given in Proposition [A 11l

Example A.10 (Cotangent Lie algebroid). The reversal isomorphism allows to
make sense of the so called cotangent Lie algebroid. It is well known that a Lie
algebroid A — M induces a Poisson structure on its dual A* — M, which is
linear with respect to the vector bundle structure over M [I8, Thm. 2.1.4]. In this
way, the cotangent bundle of A,

1

Ry
T"A £ T"A* — A

inherits a Lie algebroid structure, which is also a VB-algebroid over A — M. Such
a VB-algebroid is also often defined as the dual VB-algebroid of T A (see Section 3
in [42)).

For a Lie groupoid G with Lie algebroid Ag, the tangent and cotangent algebroids
of Ag are (isomorphic to) the Lie algebroids of the tangent and cotangent groupoids
(Section 277) of G, respectively. In fact, the canonical flip Jg : T(TG) — T(TG)
restricts to the isomorphism of Lie algebroids

TAg 2% Arg

over TM [61l, Thm 9.7.5]. And the dual of the map Jg gives rise to the isomorphism
between the Lie algebroid of T*G and the cotangent algebroid. Explicitly, the
isomorphism

Org = J5 0 Irg : T(T*G) —> (T(TG))sa; — T*(TG)

given by the composition of the internalization map and the dual of the involution
induces the isomorphism [61] p. 463]

Ap-g 2% T* Ag.

The map Opps = J* o Ity is actually defined for any manifold M, and it is
often called the Tulczyjew map. It is closely related to the canonical symplectic
structure weay on the cotangent bundle 7M.
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Proposition A.11 ([6I, Thm 9.6.7]). Given a manifold M, the Tulczyjew and
reversal isomorphisms Oryr and Rpps are related by the following commutative
diagram

T(T*M) —2T s T%(TM)

Rrum

T (17 M),

where Wean € Q2(T*M) is the canonical symplectic structure on the cotangent bun-

dle T*M.

Remark A.12. In the case of a Poisson manifold M, the Tulczyjew map of M
Orp : T(T*M) — T*(TM) has an additional property: it is an isomorphism of
VB-algebroids (i.e., it is an isomorphism of DVBs which preserves the Lie algebroid
structures involved), between the tangent algebroid and the Lie algebroid associated
to the linear Poisson structure on TM [61], Prop. 10.3.13].

A.3. Tangent lift of algebroid cochains. Recall that C}} (T'A) denotes the VB-

algebroid complex of A (cf. Section [[0.]), consisting of those cochains which are
fibrewise linear with respect to the vector bundle structure of &%.,,TA over &%,A.
Just as there is a tangent lift of Lie groupoid cochains, there is an infinitesimal
version, allowing to lift algebroid cochains from a Lie algebroid A to the algebroid
TA. Let us recall its definition, and detail some of its properties.

Definition A.13. Let A — M be a Lie algebroid. The tangent lift of algebroid
cochains is the map

T:C*(A) — CE(TA)

defined as follows. An algebroid k-cochain ¢ € C¥(A) = I'(A¥A*) can be regarded
as a k-linear and skew-symmetric map c : @k A — R. We define its tangent lift
Tce CE (TA) by

lin

Te(vy, ... vg) :i=de(vy, ..., vk),

where (vy,...,vx) € EB;M TA, and using the identification (" A) = @;M TA.

Lemma A.14. Let k be a positive integer. The tangent lift of Lie algebroid cochains
T : CF(A) — CF(TA) satisfies the following conditions:

(1) (Linear sections)
Te(Tay,. .., Tag)l,, = T0)w, (Toar(wy),...,Tag(w,))
= [T (c(aq, ..., ox))] (ws),

(2) (One core section) Te(Ta, ..., Tag-1,ax)|,, = clai,...,ax)l,,
(3) (More than one core section) Te(Tay, ..., Tag—o,dk_1,dx)|,, =0.

W
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Proof. Part (1) is direct. For simplicity, we prove the parts (2) and (3) for k = 2,
the general case (k # 2) being completely analogous.
Te(Tay, az)l,, = (T¢)@w,)(Tai(ws), dz(w;))
S Tal(:c)A

T oA 1
= (T)(w,) | Tar(we), TO™ (wz) +4 (ag)oa

= (TC)(wJL) (Tozl(wx),TOA(ww))
=0
+ (T'c)(a) (631 () (ag)of) (Linearity of T'c over @3, A)
d
- | cloa(e) os(o)
= c(ar,az)|(,) (Bilinearity of ¢ (over M)),

where in the third equality the first term vanishes by multilinearity of T'c with
respect to the vector bundle TA — T M.
Finally, considering more than one core section:

Te(d, a)l, = Te(T0*(we) +a4 (0])oa, T0O (wz) +4 (a))oa)
= Tc(T0*(w,), T0* (w,)) + Te((ad)oa, (0d)oa)

d
=04+ 5 o C(/\Oél(.’lf),/\OKQ(x))
d 2
== A:O)\ ~c(an (), az(z))
-0,

where in the third equality T'c(7T04(w,), T04(w,)) = 0 by multilinearity of T'c with
respect to the vector bundle TA — T M.

To extend the proof to the case k # 2, one again uses the linearity of T'c to get
a sum of a vanishing term with a simpler expression in ¢ and sections of Ag. O

Lemma A.15. Let A be a Lie algebroid over M. The tangent lift is a cochain
complex map

T:C*(A) — Cp(TA) C C*(TA).

Proof. We divide this proof in three cases, by evaluating the cochain §(7c) on
tangent and core sections of TA — T'M, which together span all sections of the
tangent algebroid (Example [A4).

First we remark some useful facts about the anchor pr4 of TA and the image
of core and tangent sections by the anchor. Recall that pra = Jy; odpa. Then, on
core sections

pra(@) = (p(a))",

where for X € X(M), XT € X(T M) denotes the vertical vector field on TM induced
by X. This follows from the facts that the involution map Jy; identifies Ths(T'M)
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with the vertical bundle V(T'M), and it is the identity on Vi (TM). On tangent
sections,

pra(Ta) = pa(e)’,

where for X € X(M), XT € X(TM) is the tangent lift of X. Recall also the
compatibility between the tangent lifts of vector fields and functions: X7 applied
to the tangent lift T'f of f € C°°(M) is the tangent lift of the function X (f).

Let now ¢ € C*(A) be an algebroid k-cochain.

o Tangent sections
The compatibility between the tangent lifts of vector fields and functions allows
to check directly that §(Tc) = T(dc) when applied to k + 1 tangent sections Tay;
of TA.

e One core section
Recall that, by the second statement of Lemma [AT4]
TC(TOél, . ,Tak,l, Cvlk) = pM*(C(Oq, ceey ak)),

thus on the one hand T'(6¢c)(Ta, ..., Tok, dg+1) = par*(dc(aq, ..., ax41)). On
the other hand,

0(Te)(Tay,...,Tag, dg1)
=Y (=) part(e(ow, o], ns - agg))
+ S (1) pra(Toy) (parte(an, .y Qi1, Qigty oy Q1))

+ (=D pra(aria)(T(c(ar, . .. ar)))-

Now, since in the second and third rows of this equation we have the tangent
and vertical lifts of vector fields of M, we use the expression for their flows and
that will allow us to prove the equality with T'(0¢)(Tavq, ..., Tag, Ggi1)-
e More than one core section
On the one hand, statement (3) of Lemma [A14] says that

T(éc) (TOQ, ey dk, dk+1) =0.

On the other hand, the same statement (3) implies that

§(Te)(an,y ..., g, dgp1) = (— 1)kaA(ak)Tc(Ta1, ey Q1 Qg1
+ (=) pra(dp ) Te(Tay, . . ., )
= (- 1)k(PA(04k)) pue(ar, . o1, Q)
+ (=) palorsr)) 'par*elon, . .. o)
=0. 0
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