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a b s t r a c t

The nebulization quality of oil flames, an important characteristic exhibited by combustion processes of
petroleum refinery furnaces, is mostly affected by variations on the values of the vapor flow rate (VFR).
Expressive visual changes in the flame patterns and decay of the combustion efficiency are observed 
when the process is tuned by diminishing the VFR. Such behavior is supported by experimental evidence 
showing that too low values of VFR and solid particulate material rate increase are strongly correlate d.
Given the economical importanc e of keeping this parameter under control, a laborator ial vertical furnace 
was devised with the purpose of carrying out experiments to prototype a computer vision system capable 
of estimati ng VFR values through the examination of test charact eristic vectors based on geometric prop- 
erties of the grey level histogram of instantaneous flame images. Firstly, a training set composed of fea-
ture vectors from all the images collected during experimen ts with a priori known VFR values are 
properly organized and an algorithm is applied to this data in order to generate a fuzzy measurement 
vector whose components represent membership degrees to the ‘high nebulization quality’ fuzzy set.
Fuzzy classification vectors from images with unknown a priori VFR values are, then, assumed to be
state-vecto rs in a random-walk model, and a non-linear Tikhonov regularize d Kalman filter is applied 
to estimate the state and the corresponding nebulization quality. The successful validation of the output 
data, even based on small training data sets, indicates that the proposed approach could be applied to
synthesize a real-time algorithm for evaluating the nebulization quality of combustion processes in
petroleum refinery furnaces that use oil flames as the heating source.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction 

Automatic diagnosis of technical defects in industria l plants has 
been a long date desire of the maintenanc e engineering commu- 
nity. Such an aim, however, can not be achieved unless the knowl- 
edge to detect an anomalous behaviour and to infer its most likely 
causes be properly represented and coded in order to emulate the 
ability of the expert responsible for the maintenanc e task. Various 
architectures of expert systems to deal with that class of problems 
have been proposed so far, encompassing rule-based (Qian, Li,
Jiang, & Wen, 2003 ), Bayesian networks (Heo, Changa, Choib, Choic,
& Jee, 2005 ), fuzzy rule-based (Azadeh, Ebrahimipour, & Bavar,
2010), neural networks (Calisto, Martins, & Afgan, 2008 ) and neu- 
ral-fuzzy networks (Sahu, Padhee, & Mahapat ra, 2011 ).

Automatical ly identifying faults in petroleum plants, however,
imposes to the expert system develope r some very strict demands.
The project of a control system capable of optimizing the energetic 
efficiency of petroleum refinery furnaces in order to reduce the 
ll rights reserved.
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emission rates of pollutants such as CO, NOx and particulate mate- 
rial, requires the setting up of a large network of heteroge neous 
sensors (thermocouples, flow meters, air–fuel ratio gauges, opacity 
meters, pressure sensors etc.) dedicated to measure the main vari- 
ables of the process and to give feedback to the controller. In the 
last two decades, however, video CCD (Charged Coupled Device )
cameras and frame grabbers have been incorporate d to this mea- 
suremen t apparatu s, since image sequence s of flames captured 
by a near infra-red sensitive CCD and properly analyzed by suitable 
computer vision methods may provide a large quantity of useful 
informat ion to the controlle r.

Correlations between the brightness, spectral and geometric 
propertie s of flame images and the corresponding variables of
the combustion process have been reported by several authors,
who developed different methods to build characteri stic vectors 
and use them to estimate a subset of the state variables that char- 
acterize a combustion point of operation. Among those methods , it
is worthwh ile citing neural networks (Santos-Vi ctor, Costeira,
Tomé, & Sencieiro, 1993 ), fuzzy rules based on triangular member- 
ship functions (Tuntrakoon & Kuntanapreda, 2003 ), hot spots iden- 
tification through the application of thresholding and logical 
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Fig. 1. Partial view of the vertical furnace used in the experiments.
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operators to a collection of sequentially grabbed images of flames
(Bertucco, Fichera, Nunnari, & Pagano, 2000 ), spectral analysis of
the hottest zones of flames obtained from images selected through 
a segmentation process (Baldini, Campadelli, & Lanzarotti, 2000 ),
investigatio n of correlations between flame image measured 
parameters (area and centroid of the luminous region, ignition 
point position and spread angle) and physical data (particle size 
of the pulverized coals tested and mass flow rate of the primary 
air) and used them to build a characteri stic vector of the combus- 
tion process (Yan, Lu, & Colechin, 2002; Yan, Lu, & Colechin, 2004 ,
and Lu, Gilabert, & Yan, 2005 ), and self-organizing feature maps 
associated to cepstral analysis (Hernández & Ballester, 2008 ).

Particularly , a combustion diagnosis system developed by
Wójcik and Kotyra (2009), based on the analysis of image flames
captured at a frequenc y of 25 frames/s by an ordinary monochro- 
matic video camera equipped with a fiberscope, uses a computer 
vision algorithm that generate s, for each image of the temporal 
series, a characteri stic vector whose components are shape param- 
eters of the image flames, like area, perimeter, centroid coordinates 
and Fourier descriptors of their contours. Analyzing the temporal 
values of the shape parameters associated to oil flames exhibiting 
previously air–fuel ratios and different instability characterist ics,
the authors stress that there is a clear correlation among the 
parameters calculated and the phenomena examined, but do not 
present a method to automaticall y discriminate the flames accord- 
ing to the physical properties concerning the focused events. Sim- 
ilarly, using a set of four spatial luminous parameters (mean value,
standard deviation , kurtosis and skewness of the spatio-temp oral 
brightness image distribut ion) and one temporal spectral parame- 
ter (flicker frequency) extracted from flame images grabbed by a
high-speed CCD video camera, the researchers in (González-
Cencerrado, Peña, & Gil, 2012 ) investigated the relative influence
of the above-mention ed paramete rs on combustion processes with 
different a priori known air-to-fuel ratios and combusti on camera 
mean temperature s. Aided by multivariate regression methods,
important correlations between the temporal evolution of both 
the image features and the respective combusti on process vari- 
ables could be identified; however , as admitted by the authors,
an image feature based method to automaticall y characterize the 
combustion process should require a more thorough investiga tion.

In a research project developed at São Paulo State Institute of
Technology (IPT) (Fleury, 2006 ), the authors of the present article 
proposed various computer vision algorithms to extract features 
of instantaneous and average flame images, in order to generate 
crisp decision rules that could be used to diagnose several kinds 
of abnormalities of the combustion process, encompassing: flame
extinction, lack of symmetry, instability, high or low excess air 
and low nebulization quality. Despite the good agreement between 
the decisions issued by the applicati on of those rules to image test 
sets and the known a priori physical conditions concerning the cap- 
ture of such images, three drawbacks of this diagnostic system 
must be pointed out: firstly, it required the calculatio n of average 
images and the application of heterogeneous computer vision 
methods to generate the parameters used by the majority of the 
diagnostic decision rules, what imposed a limitation to the compu- 
tational performanc e; secondly, only two states – either strict nor- 
mality or abnormality of the process – could be diagnosed,
although the decisions that can be made by a human expert on
the combustion process are not so strict; finally, history of mea- 
surements were complete ly ignored, for the diagnost ics were pro- 
posed on the basis of present measured values only.

In a further work (Fleury, Trigo, & Martins, 2010 ), the same 
authors focused the particular problem of identifying flames exhib- 
iting nebulization patterns of low quality. As the experimental evi- 
dence indicate, such flames emerge from combustion mixtures 
with low values of vapor flow rate (i.e., the quotient between the 
nebulizati on vapor flow and the fuel oil flow). After capturing 
images of flames from combustion processes with varied levels 
of VFRs, a dedicated diagnostic system was developed to classify 
them according to the nebulization patterns observed . Compare d
with the results reported in Fleury (2006), the performanc e of this 
new diagnostic system was much improved , due to the following 
changes: (i) feature vectors are based only on few propertie s of
instantaneo us images, which permit to apply simpler computer vi- 
sion algorithms; (ii) fuzzy linguistic variables are used in the clas- 
sification process, making the diagnostics more realistic; (iii)
predictio ns are obtained through a stochastic minimum variance 
least squares estimator, giving rise to more reliable classifications.

The present research intends to validate the nebulization qual- 
ity classification method described in Fleury et al. (2010) by apply- 
ing it to sequence s of images of flames whose values of VFRs are not 
known a priori , thus asserting the approach as an effective tool for 
combusti on diagnost ic. A Tikhonov-regul arized version of the Kal- 
man filter is used to estimate the state, a vector of properties from 
grabbed images. It must be emphasized that Sections 2 and 3 of
this paper, which describe the currently used experimental set- 
up and the procedure for obtaining the image feature vectors,
contain extended versions of the material previousl y presented 
by Fleury et al. (2010).
2. Experimen tal apparatus and data collection 

As illustrated in Fig. 1, the furnace used in the experiments at
IPT is a vertical one, with the burner settled at the bottom and 
the gases exhaustion at the top. Having a total height of 4.0 m, it
is subdivided in 12 independent water cooled blocks and can pro- 
cess number 1 fuel oil (number 1 fuel oils are distilled oils, i.e., they 
have low viscosity and are free of sediments and inorganic ash) at a
maximum flow rate of 80 kg/h. The burner has two (primary and 
secondar y) air entrance s for natural air suction with manual flow
regulatio n valves (Fig. 2).

In order to produce flame images of combusti on processes 
exhibiting previously defined characterist ics, it was necessary to
monitor several significant variables, for which a data acquisition 
system connected to a heterogeneous network of measure ment 
instruments had to be set up. Concerning the fuel, pressure was 
measure d by a membrane- type manometer, mass flow by an oval 
gear meter equipped with a pulse generator, temperat ure by a
type-T thermocoup le. Monitoring of nebulization vapor variables 
required a membrane- type manometer , an orifice plate connected 
to a different ial pressure sensor through seal pots and a type-T 
thermocoupl e, respectively for pressure, flow and temperat ure 
measurements. Regarding the emitted gases, a type-K



Fig. 2. Burner schematics.

Fig. 3. Housing details.
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thermocoupl e was used for temperature measureme nt, infra red 
gas analyzers for measureme nt of CO, CO2 and SO2 contents, a
paramagneti c analyzer for O2 concentratio n and a chemilumines- 
cent gas analyzer for NOx content measureme nt.

Flame images were captured by a standard monochromatic RS- 
170 CCD camera (Marshall Model 1070) using an objective lens 
(6 mm, f1.2) supplied with a narrow band-pass (±10 nm) interfer- 
ometric filter at the 900 nm reference wave length, near to the sen- 
sitivity luminanc e peak (750 nm) of the CCD sensor and in the 
range of radiation of the soot, that correspond s to the major part 
of the radiation emitted by a typical fuel oil flame. All these optical 
components lie inside an air–water cooled housing (Fig. 3) with a
double glass window, which is inserted into the furnace through 
a proper orifice. The CCD camera output composed-vi deo signals 
are sampled at 25 Hz by a frame grabber (Sensoray Model 611)
as a series of interlaced 640 � 480 pixels images that are finally
transferred to the computer memory through specific frame grab- 
ber driver functions.

Using the equipme nts and instruments referred above, a series 
of experime nts to produce combusti on processes with controlled 
vapor flow rates gave rise to a collection of flame images that were 
further off-line processed by the image-base d diagnostic system 
whose main tasks are described in the next topics.

3. Image flame analysis 

Although combusti on process characterization could be made 
on the basis of a large number of image feature properties, encom- 
passing geometry , luminance and spectral aspects of the flame im- 
age, it was established that, to attend real-time performance 
requiremen ts, only the simplest and fastest algorithms should be
applied. Considering that the shape of image grey-level histograms 
changed for flames with different vapor flow rates (Figs. 4(a) and 
(b), 5(a) and (b)), ten geometric properties of these histograms 
have been selected to compose the characteristic vector {vi} of a
particular image flame Ii: vi1 = x-coordinate of the centroid;
vi2 = y-coordinate of the centroid; vi3 = x-projecti on of the radius 
of gyration; vi4 = y-projection of the radius of gyration; vi5 = coordi- 
nate x correspond ing to 33% of the accumulate d area of the histo- 
gram; vi6 = coordinate x corresponding to 66% of the accumulate d
area of the histogram; vi7 = coordinate x of the highest peak of
the histogram; vi8 = coordinate y of the highest peak of the histo- 
gram; vi9 = coordina te x of the second highest peak of the histo- 
gram; vi10 = coordinate y of the second highest peak of the 
histogram.

The characteristic vectors {vi} referred before have been calcu- 
lated to every instantaneo us image Ii of a training set with 214 
deinterlaced flame images correspondi ng to nine different VFR val-
ues (0.17,0.21,0.23,0.26,0.29,0.36,0.43,0.50,0.57) associated to
nebulizati on patterns of increasing qualities; at the same time,
their respective fuzzy classifications to the fuzzy set ‘Flames with 
high nebulization quality ’ have been made by an expert in combus- 
tion processes (Fig. 6).

After calculating the average histograms and the respective 
average characteristic vectors f�v igði ¼ 1; . . . ;10Þ for each of these 
nine image subsets, it has been established a straightforwar d
method to determine the membership degree vector {xi} of a train- 
ing set image Ii to the fuzzy set U = ‘Flames with high nebulization 
quality’:

Let vi,j be an element of the matrix of 214 characteristic 
vectors {vj}wherej 2 f1; . . . ;10g. Then 
for every vector vi, i = 1, . . .,214,

for every component vi,j, j = 1, . . .,10
calculate dj ¼minfjv i;j � �vk;jjg; k ¼ 1; . . . ;10
determine kmin|dj ¼ minfjv i;j � �vk;jjg; k ¼ 1; . . . ;9
determine xi;j ¼ lðU; kminÞ

Applying the above fuzzy measurement algorithm, vector {x}
has been calculated for all the 214 images of the training set.
Table 1, shows a collection of such measurements for five images 
of low nebulization quality, grabbed at VFR = 0.21.

4. Estimation problem 

The literature (Balbi, Santoni, & Dupuy, 1999 , and Mandel et al.,
2008) reports some attempts to model the dynamics of flame prop- 
agation through discretiza tion of reaction–diffusion partial differ- 
ential equation s in one or two dimensions by finite differenc es
and to estimate the state, the temperature distribution and the 
remaining amount of fuel, using the Kalman filter. Mandel et al.
(2008), for example, generate synthetic ensemble s for the Kalman 
filter from the numerical solution of the reaction–diffusion equa- 
tion. Combustion parameters of the model result from monitoring 
real woodland fire; as a result, the uncertainties are restricted to
the PDE discretization. Likewise, in Hong, Uang, and Ray (2000),
the truncated solution of the wave equation incorporating effects 
of acoustic waves and combustion dynamics is the basis for a
state-space model that intends to describe the dynamics of flames
in a generic gas-turbine engine combustion chamber. Both Mandel
et al. (2008) and Hong et al. (2000) admit the difficulty in describ- 
ing combustion behavior based on theoretical models. This brief 
discussion is meant to introduce and justify the state-estimation 
approach for determini ng the quality of oil flames here adopted.



Fig. 4. Image flames with: (a) VFR = 0.17; (b) VFR = 0.57.

Fig. 5. Histograms of the images of Fig. 5: (a) VFR = 0.17; (b) VFR = 0.57.

Fig. 6. Fuzzy set associated to the ‘High nebulization quality’ concept.
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In order to tailor the problem to suit the proposed framework,
the state to be estimated is defined as a vector containing ten im- 
age parameters obtained as described on the previous section. A
Kalman filter including a generalized Tikhonov regularization is
impleme nted to observe the state. The rationale for such inclusion 
is as follows: during the solution of the inverse problem in a
previous work (Fleury et al., 2010 ), it was observed that, due to
the ill-posed nature of the problem, several estimates of the state 
variables lied beyond the solution space, the closed real interval 
[0.0;1.0], thus impairing convergence behavior of the filtering
algorithm as a whole. The Tikhonov regularization is a map that 
converts an ill-posed problem into a well-posed mathemati cally 
equivalent one; as a conseque nce, estimate s are expected to be less 
susceptibl e to truncation errors.

A thorough discussion on stochastic estimation and on Kalman 
filtering is out of the current scope; nevertheless, the authors con- 
sider necessary to briefly present the basic concepts involved in the 
derivation of the filter equations, especially when the Tikhonov 
regularization is to be included. References such as Gelb (1974)
and Jazwinski (2007) address the subject in detail.

A necessary condition is that both system and observati on mod- 
els must be in state-space form. The state, in this case, is defined as
the ten-parame ter vector containing geometri cal statistical prop- 
erties of the grey level histogram of grabbed images. The difficulty
in obtaining the system model (a state equation that describes the 
evolution of the state) arises when one realizes that there is no
straightfo rward physical relationship between the state variables 
and the grabbed images themselves. A model that can be used 



Table 1
Membership degree vector {x} to fuzzy set U = ‘Flames with high nebuliza tion quality’. Calculated for images of low nebulization quality (b = 0.21).

Images fxg

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 0.00 0.00 0.00 0.40 0.00 0.00 1.00 0.00 0.10 0.00 
2 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 
3 0.30 0.30 0.40 1.00 0.30 0.30 1.00 0.40 0.30 0.00 
4 0.00 0.00 0.00 0.00 0.00 0.30 1.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.40 0.00 0.00 1.00 0.00 0.00 0.00 
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when there is little knowledge on the process is the random walk 
model, whose state-equation shows that system dynamics is gov- 
erned by a noise vector, as given by the discrete- time equation,
Eq. (1)

xðtkÞ ¼ Uðtk; tk�1Þxðtk�1Þ þxðtkÞ; ð1Þ

where x(tk) e Rn is the state at the kth time step kDt, [U(tk, tk�1)] is
the transition matrix, in this case the identity matrix of order n, and 
x(tk) � N(0,Q(x(tk))) e Rn is a white zero-mean Gaussian noise vec- 
tor with symmetri cal positive semi-definite covarian ce matrix 
QðxðtkÞÞ 2 Rnxn, a necessary conditio n for Kalman filter
implement ation.

The observation model is built assuming the hypothesis that 
each state-vector computed by the fuzzy classification algorithm 
carries an inherent uncertainty, which can be modeled as a mea- 
surement noise that corrupts the state-vector. Mathematically ,
then, measureme nts are given by Eq. (2),

yðtkÞ ¼ HxðtkÞ þ vðtkÞ; ð2Þ

where y(tk) e Rn represe nts the measureme nt at tk, H is an identity 
matrix of order n, and v(tk) � N(0,R(y(tk))) e Rn is a white zero-mea n
Gaussian noise vector with symmetrica l positive definite covaria nce 
matrix R(y(tk)) e Rnxn. The white sequences w(tk) and v(tk) are as- 
sumed mutually indepen dent; therefore, they are also uncorrela ted,
since they are Gaussian.

One of the approaches used to derive the Kalman filter equa- 
tions consists in minimizing a functional such as
JðxðtkÞÞ ¼
1
2
½xðtkÞ � x̂ðtkÞ�T P�1

k

h i
½xðtkÞ � x̂ðtkÞ� þ ½yðtkÞ � HxðtkÞ�T ½R�1ðyðtkÞÞ�½yðtkÞ � HxðtkÞ�

þxTðtkÞ½Q�1ðxðtkÞÞ�xðtkÞ

8<
:

9=
; ð3Þ
in relation to the independen t vector (Jazwinski, 2007 ). When a
regularizatio n term like

RT ¼ 1
2
a2½xðtkÞ � x�ðtkÞ�T ½xðtkÞ � x�ðtkÞ� ð4Þ

is included in the functiona l of Eq. (3), one obtain s an augmented 
functiona l
JðxðtkÞÞ ¼
1
2

½xðtkÞ � x̂ðtkÞ�T P�1
k

h i
½xðtkÞ � x̂ðtkÞ� þ ½yðtkÞ � HxðtkÞ�T ½R�1ðyðtkÞÞ�½yðtkÞ � HxðtkÞ�

þxTðtkÞ½Q�1ðxðtkÞÞ�xðtkÞ þ 1
2 a2½xðtkÞ � x�ðtkÞ�T ½xðtkÞ � x�ðtkÞ�

8<
:

9=
;; ð5Þ
in which a > 0 is a regularization paramete r and x⁄(tk) is any initial 
estimate for x(tk). Defining augmented observation matrices 

y}ðtkÞ ¼
yðtkÞ
aInx�ðtkÞ

� �
2 R2n ð6Þ
and

H} ¼
H

aIn

� �
2 R2nxn ð7Þ

the functiona l of Eq. (4) may be written as

JðxðtkÞÞ¼
1
2

xðtkÞ� x̂ðtkÞ½ �T ½P�1
k � xðtkÞ� x̂ðtkÞ½ �

þ½y}ðtkÞ�H}xðtkÞ�T
RðyðtkÞÞ 0

0 In

� �ð�1Þ

y}ðtkÞ�H}xðtkÞ
h i

þxTðtkÞ½Q�1ðxðtkÞÞ�xðtkÞ

8>>>><
>>>>:

9>>>>=
>>>>;
ð8Þ

A functiona l such as that in Eq. (8), when minimize d in relation to
x(tk), will provide a regularized Tikhonov solution . Given the simil- 
itude between Eqs. (3) and (8), it is possible to conclude that the 
minimiza tion problem falls into the classical pattern, as stated by
Jazwin ski (2007). Therefore, the optimal solution will minimize , in
a least squares sense, the trace of the error covaria nce matrix, Pk.
The resulting equations constitut e a set of forecast-u pdate stage s,
as follows: For the model given by Eqs. (1) and (2), there is a prop- 
agation stage that attempts to provi de the best estima tes by extrap- 
olating the previou s estimated state based on the process model 
and its known (or admitted) statistics before new information is
availab le. This way, Eq. (9)
x̂ðf ÞðtkÞ ¼ Uðtk; tk�1Þx̂ðuÞðtk�1Þ ð9Þ

accounts for the state estimation forecast at instant (tk) (the (f) and 
(u) superscrip ts stand respective ly for ‘before the arrival of new 
data’ and ‘after the arrival of new data’), whereas Eq. (10)
P x̂ðf ÞðtkÞ
� �

¼ Uðtk; tk�1ÞP x̂ðuÞðtk�1Þ
� �

UTðtk; tk�1Þ þ Q x̂ðuÞðtk�1Þ
� �

ð10Þ

gives the estimation error covariance matrix forecast. An update 
stage provides proper correcti on, through the Kalman gain matrix,
to the forecasted estima tes of the state and error covariance upon 
the arrival of new measureme nt data. It must be emphas ized that,
due to the Tikhonov regulariz ed formulation , althou gh the aug- 
mented state is updated, only the n-dimension al upper partition 
of the augmented state vector is considered for the next forecast 
stage.

The Kalman gain matrix is computed accordin g to Eq. (11),



Table 2
Summary of previous results.

Vapor flow rate 
(VFR, %)

Fuel flow rate 
(kg/h)

Nebulization 
quality 

Mean state,

E[x⁄]

0.17 12 Low 0.17 
0.29 20 Medium 0.45 
0.57 35 High 0.76 
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K}k ¼ P x̂ðf ÞðtkÞ
� 	

Pðx̂ðf ÞðtkÞÞ þ R}ðtkÞ
h ið�1Þ

; ð11Þ

where

R}ðtkÞ ¼
RðyðtkÞÞ 0

0 In

� �
ð12Þ

The updated state and error covariance matrix are obtained from 

x̂ðuÞðtkÞ ¼ x̂ðf ÞðtkÞ þ K}k y}ðtkÞ � H}x̂ðf ÞðtkÞ
� �

ð13Þ

P x̂ðuÞðtkÞ
� �

¼ In � K}k H}
� �

P x̂ð�ÞðtkÞ
� �

ð14Þ

thus completing the prediction -correction steps necessary for the 
next iteration.

5. Nebulization quality estimation 

It is common, for simplicit y, when there is a lack of knowled ge
on uncertainty of process and observation models, to admit both 
noise covariance matrices diagonal. In this work, however , noise 
covariance matrices shall not be assumed diagonal, once it is pos- 
sible to compute them from the available data.

The process covariance matrix Q used in Eq. (10) is obtained in the 
following manner: According to the dynamical model from Eqs. (1)
and (2), state and measure ment are the same for each training set 
(data set). It is admitted that the state, on each case, is corrupted 
by a white zero-mean Gaussian noise sequence that represents the 
uncertainty generated by the fuzzy measureme nt algorithm. In or- 
der to quantify this uncertainty, the complete history of state vector 
evolution, which is known for all sets, is assembled in a matrix 
K(x(tk)) e Rnxm, with n = 10 (the dimension of the state vector) and 
m = 214 (the complete history of state evolution); afterward s, the 
covariance of the state considering the complete set of measure- 
ments, matrix C e Rnxn, can be calculated through Eq. (15)

C ¼ E ½K� EðKÞ�:½K� EðKÞ�T
n o

ð15Þ

Matrix C states the uncert ainties of an actual proces s whose nebu- 
lization quality is unknow n a priori , since its computation involved 
data in the range from ‘‘high’’ to ‘‘low’’ nebulization quality charac- 
teristic experiments; on that ground , although the actual state 
covariance for a particula r set is not available, matrix C can be con- 
sidered an estimator of matrix Q for each individua l process, thus 
complet ing the random walk model for the state evolution.

As to the observati on model, measureme nts are synthetically 
generated for each set by adding to the state a white zero-mean 
Gaussian noise sequence with standard-devia tion that amounts 
to 10% of the maximum value assumed by the state variables 
throughout the process. This choice of the state noise level takes 
into account the uncertainties due to luminance saturation, elec- 
tronic noise, and quantization errors added when the images are 
transferred to the computer. The noise sequence is calculated using 
a routine from Press, Vetterlin g, Teukolsky , and Flannery (1992),
operating within a driver develope d by the authors.

The estimation procedure was evaluated by running the Kalman 
filter algorithm with the model from Eqs. (2) and (3), state covari- 
ance matrix Q and measurement noise covariance matrix R com-
puted by Eq. (15) using vector y for each set of measurements ,
instead of matrix K, and using three training sets, namely 
VFR = 0.17, 0.29 and 0.57, respectively reproducing ‘‘low’’, ‘‘med- 
ium’’ and ‘‘high’’ quality nebulizati on patterns. The initial state vec- 
tor assumes a ‘‘high’’ quality nebulization pattern, i.e., the state 
variables are given the minimum admitted value, 0.0. Initial error 
covariance matrix, P(x(t0)) is assumed diagonal with variances 
0.3 for all experiments.
According to what was mentioned in the introduction , the pro- 
cedure for validating the method consists in applying the Tikhonov 
regularized Kalman filter to sets whose nebulization pattern qual- 
ity is considered unknown a priori and, upon the results obtained 
from the filtering process, infer this condition. In a previous work 
(Fleury et al., 2010 ), the present authors showed that the mean va- 
lue of the state variables could be used to evaluate the nebulization 
condition of measureme nt training sets by assuring statistical con- 
vergence of the estimates from a linear Kalman filter.

Tikhonov regularization is a key feature on the approach here 
adopted, since it imposes to the state-vector an ad hoc convergence
for a desired point in the n-dimensio nal solution space while, at
the same time, keeps the minimum least-squar e features of the fil-
tered estimate s. Thus, once the unknown nebulization pattern 
quality of a set is ‘forced’ by the Tikhonov-regul arized solution to
an arbitrary point in the solution space, statistical convergence cri- 
teria shall be able to assert actual divergence of the estimates; con- 
sequently , for each set, one tests convergence of the estimate s for 
‘low’, ‘medium’ and ‘high’ quality points in the solution space. The 
rejection of two of the previous conditions must imply in the 
acceptan ce of the remaining, as will be shown in the next section 
of the paper.

6. Results and discussion 

Since the benchma rk for the validation of the method proposed 
here is Fleury et al. (2010), it is convenient to recall the main re- 
sults there presented, as summari zed on Table 2 in which the 
fourth column is the point E[x⁄] in the solution space to be sought 
by the Tikhonov-regul arized Kalman filter algorithm (forced
solution).

Actual convergence of the estimation process was asserted by
the inspection of the observati on residuals (Fleury, 1985 , and Jaz-
winski, 2007 ), the difference between the effective measurement 
and its value as calculated by the filter using the last available state 
estimate . An estimation process is considered convergent once the 
normalized observation residuals, given by Eq. (16),

rm ¼
1
‘rm

X‘
j¼1

yjðtkÞ � x̂ðf Þj ðtkÞ
� �

; ð16Þ

where ‘ represe nts measureme nt vector dimens ion and rm is the 
standard -deviatio n of measureme nt noise, are zero-mean Gaussian 
with standard deviation betwee n �3rm and 3rm. The same criterio n
is used in this work to ensure statistical converg ence (or diver- 
gence) of the estima tes.

The estimation procedure with the proposed approach was con- 
ducted using data from four distinct fuel flow rates, namely, 15, 25,
30 and 40 kg/h; the Tikhonov regularization paramete r a was as- 
signed the value 1.0 to all conditions. The results obtained with 
the four conditions above are depicted in Figs. 7–10, which graph- 
ically present the evolution of the state variables mean value in
each iteration ,

E x̂ðf ÞðtkÞ
h i

¼ 1
n

Xn

j¼1

x̂ðf Þj ðtkÞ ð17Þ



Fig. 7. Quality membership degree estimates for fuel flow rate = 15 kg/h.

Fig. 8. Quality membership degree estimates for fuel flow rate = 25 kg/h.

Fig. 9. Quality membership degree estimates for fuel flow rate = 30 kg/h.
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Fig. 10. Quality membership degree estimates for fuel flow rate = 40 kg/h.

Table 3
Application of convergence criterion to test data.

Fuel flow rate (kg/h) E[x⁄] E½rv �;rrv Convergence (Y/N) Estimated nebulization quality 

15 0.17 0.059,0.482 Y Low 
0.45 �0.210,0.486 N
0.76 �0.505,0.496 N

25 0.17 0.299,0.462 N High 
0.45 0.138,0.478 N
0.76 �0.038,0.497 Y

30 0.17 0.230,0.356 N High 
0.45 0.164,0.364 N
0.76 0.091,0.375 Y

40 0.17 0.658,0.923 N High 
0.45 0.327,0.962 N
0.76 0.038,1.012 Y
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Fig. 11. Sensitivity analysis on the influence of the parameter a: (a) mean value of the state vector; (b) mean value of the normalized residual.
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as well as the normaliz ed observat ion residuals as functions of the 
time step throughout the process. Results of application of conver- 
gence criterion, Eq. (16), are listed on Table 3. The reason for distinct 
end of scales of the abscissas is the available number of measure- 
ments in each case.
From the ‘a’ subfigures 7 to 10, it is possible to notice that the 
overall behavior of the estimate s, regardles s of fuel flow rate, pre- 
sents a constant shift in the ordinate axis direction among points 
on the same time step, which can be explained by the ‘forcing’ ac- 
tion of the Tikhonov regularization parameter to a constant E[x⁄]



Table 4
Application of convergence criterion to test data with corrected Tikhonov parameter.

Fuel flow
rate (kg/h)

E[x⁄] E½rv �;rrv Convergence 
using 
a = 0.19 (Y/N)

Estimated 
nebulization quality 

25 0.17 1.0e �2, 0.497 N Medium 
0.45 1.0e �3, 0.498 Y
0.76 �9.1e�3, 0.499 N
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value. Further evidence of the previous assertion is provided by the 
evolution of normalized observati on residuals in the ‘b’ subfigures
7 to 10. This is consistent with the fact that, since the process mod- 
el adopted is the random walk with constant process noise covari- 
ance matrix for all testing sets, it is to be expected that the updates 
of the state be more influenced by uncertainties in the measure -
ments (matrix R}) used to compute the Kalman gain, which is con- 
ditioned to a constrained regularized least-squares solution of an
optimization problem.

Regarding the application of the convergence criterion to the 
tested sets one realizes, from Table 3, that the leading parameter 
to ensure effective convergence is the residual mean value, once 
the twelve tested conditions exhibited similar standard-devia tions 
which, moreover, remained within established limits. It must be
emphasized that for the testing data sets corresponding to fuel 
flow rates of 15, 30 and 40 kg/h, the estimated nebulization quality 
levels confirmed what was expected when the tests were devised 
in Fleury et al., 2010 . Neverthel ess, for the 25 kg/h flow rate, a test 
designed to fulfil the medium quality requirements, the result ob- 
tained suggests a classification error, whose possible causes re- 
quire further investigatio n.

Classification errors are typical in processes based on training 
sets (Theodoridis & Koutrombas, 2009 ). Attention must be paid 
to the fact that data randomly selected as a training set is generally 
composed of a small number of elements, (which is the case in this 
work), and small samples are more prone to present some bias.
Therefore, the selection of the testing set may not match exactly 
the classification ranges based on the training set. Besides that,
from the human specialist point of view, the classification thresh- 
old between flames exhibiting patterns of low/medium and med- 
ium/high quality is slight, thus becoming another source of
uncertainties .

Instead, one might argue whether the source of the classifica-
tion error arises from under or overweighi ng the estimates of the 
state through a poor choice of the Tikhonov parameter, a. Aiming 
at investigatin g such a possibility, a sensitivity analysis on the 
influence of this parameter on the mean estimate d state vector 
and on the mean normalized residual was performed using data 
from the 15, 25, 30 and 40 kg/h fuel flow rate testing sets, with 
the forcing condition E[x⁄] respectively to 0.17, 0.45, 0.76 and 
0.75. Graphical results are given in Fig. 11, from which special 
interest must be drawn to the point (0,0) of the mean normalized 
residual curve, plot (b), because, as previously stated, the conver- 
gence criterion concerning the zero-mean prevailed over the stan- 
dard-deviat ion requirement. The optimal computed a, i.e., the one 
that provides the best stochastic least-squares mean constrain ed
fitting of this testing set to the desired point obtained on each of
the training sets, although not clear in the plot, equals correspond- 
ingly 0.62, 0.19, 1, and 1.66; hence, using a = 1. In the mentioned 
simulation of the low quality nebulizati on condition overestimates 
the mean state vector, possibly leading to the obtained 
misclassification.

In order to corroborate this statement, the estimation process 
was repeated for the 25 kg/h data, yet this time setting a = 0.19 
and testing for the three nebulization quality conditions. Results 
are presented in Table 4, from which it is worthwhile noticing 
the orders of magnitud e reduction in the mean normalized residu- 
als, despite the amplitude of the forcing term. This occurrence was 
expected , by the intrinsic nature of constraint imposed by the reg- 
ularization paramete r. However, one must realize that the mean 
value of the converge nt condition is, still, one order of magnitude 
lower than the other two.
7. Conclusion 

In this work, a method for the determination of nebulization 
quality for oil flames in industria l processes was improved and val- 
idated. The approach consisted in using images grabbed from CCD 
cameras to build a fuzzy classification set of rules, and in employ- 
ing the resulting characteri stic vector in a state-space model of
flame dynamics .

A non-linear Tikhonov regularized Kalman filter was able to
provide estimate s of the state from data of training sets whose 
nebulizati on pattern quality was unknown a priori , and to assign 
them a quality classification. Correctness of the decision making 
process was corroborated by the adherence of the statistics of
the normalized observation residuals to their expected values. Pos- 
sible sources of discrepan cy were analysed and discussed.

Overall, the results suggest that the method might be applied to
real-time monitoring the nebulization pattern quality of an oil 
refinery furnace, since the data acquisition is based on a single 
CCD camera and the computational processin g of those data takes 
the order of milliseconds on a conventi onal personal computer .
The current research by the authors of this paper intends to further 
improve the quality of the estimate s by attempting to incorporate 
flame dynamics on the state-space model through an operation al
analysis framework.
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