Expert Systems with Applications 40 (2013) 4760-4769

Contents lists available at SciVerse ScienceDirect -

Systems
with
Applications §
An International
Journal

Expert Systems with Applications

journal homepage: www.elsevier.com/locate/eswa

A new approach based on computer vision and non-linear Kalman filtering to
monitor the nebulization quality of oil flames

A.T. Fleury?, F.C. Trigo®*, F.P.R. Martins "

2 Centro Universitdrio da FEI, Av. Humberto de Alencar Castelo Branco, 3972, 09850-901 Sdo Bernardo do Campo, SP, Brazil
b Escola Politécnica da Universidade de Sdo Paulo, Av. Prof. Mello Moraes 2231, 05508-930 Sdo Paulo, SP, Brazil

ARTICLE INFO ABSTRACT

The nebulization quality of oil flames, an important characteristic exhibited by combustion processes of
petroleum refinery furnaces, is mostly affected by variations on the values of the vapor flow rate (VFR).
Expressive visual changes in the flame patterns and decay of the combustion efficiency are observed
when the process is tuned by diminishing the VFR. Such behavior is supported by experimental evidence
showing that too low values of VFR and solid particulate material rate increase are strongly correlated.
Given the economical importance of keeping this parameter under control, a laboratorial vertical furnace
was devised with the purpose of carrying out experiments to prototype a computer vision system capable
of estimating VFR values through the examination of test characteristic vectors based on geometric prop-
erties of the grey level histogram of instantaneous flame images. Firstly, a training set composed of fea-
ture vectors from all the images collected during experiments with a priori known VFR values are
properly organized and an algorithm is applied to this data in order to generate a fuzzy measurement
vector whose components represent membership degrees to the ‘high nebulization quality’ fuzzy set.
Fuzzy classification vectors from images with unknown a priori VFR values are, then, assumed to be
state-vectors in a random-walk model, and a non-linear Tikhonov regularized Kalman filter is applied
to estimate the state and the corresponding nebulization quality. The successful validation of the output
data, even based on small training data sets, indicates that the proposed approach could be applied to
synthesize a real-time algorithm for evaluating the nebulization quality of combustion processes in
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petroleum refinery furnaces that use oil flames as the heating source.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Automatic diagnosis of technical defects in industrial plants has
been a long date desire of the maintenance engineering commu-
nity. Such an aim, however, can not be achieved unless the knowl-
edge to detect an anomalous behaviour and to infer its most likely
causes be properly represented and coded in order to emulate the
ability of the expert responsible for the maintenance task. Various
architectures of expert systems to deal with that class of problems
have been proposed so far, encompassing rule-based (Qian, Li,
Jiang, & Wen, 2003), Bayesian networks (Heo, Changa, Choib, Choic,
& Jee, 2005), fuzzy rule-based (Azadeh, Ebrahimipour, & Bavar,
2010), neural networks (Calisto, Martins, & Afgan, 2008) and neu-
ral-fuzzy networks (Sahu, Padhee, & Mahapatra, 2011).

Automatically identifying faults in petroleum plants, however,
imposes to the expert system developer some very strict demands.
The project of a control system capable of optimizing the energetic
efficiency of petroleum refinery furnaces in order to reduce the
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emission rates of pollutants such as CO, NO, and particulate mate-
rial, requires the setting up of a large network of heterogeneous
sensors (thermocouples, flow meters, air-fuel ratio gauges, opacity
meters, pressure sensors etc.) dedicated to measure the main vari-
ables of the process and to give feedback to the controller. In the
last two decades, however, video CCD (Charged Coupled Device)
cameras and frame grabbers have been incorporated to this mea-
surement apparatus, since image sequences of flames captured
by a near infra-red sensitive CCD and properly analyzed by suitable
computer vision methods may provide a large quantity of useful
information to the controller.

Correlations between the brightness, spectral and geometric
properties of flame images and the corresponding variables of
the combustion process have been reported by several authors,
who developed different methods to build characteristic vectors
and use them to estimate a subset of the state variables that char-
acterize a combustion point of operation. Among those methods, it
is worthwhile citing neural networks (Santos-Victor, Costeira,
Tomé, & Sencieiro, 1993), fuzzy rules based on triangular member-
ship functions (Tuntrakoon & Kuntanapreda, 2003), hot spots iden-
tification through the application of thresholding and logical
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operators to a collection of sequentially grabbed images of flames
(Bertucco, Fichera, Nunnari, & Pagano, 2000), spectral analysis of
the hottest zones of flames obtained from images selected through
a segmentation process (Baldini, Campadelli, & Lanzarotti, 2000),
investigation of correlations between flame image measured
parameters (area and centroid of the luminous region, ignition
point position and spread angle) and physical data (particle size
of the pulverized coals tested and mass flow rate of the primary
air) and used them to build a characteristic vector of the combus-
tion process (Yan, Lu, & Colechin, 2002; Yan, Lu, & Colechin, 2004,
and Lu, Gilabert, & Yan, 2005), and self-organizing feature maps
associated to cepstral analysis (Hernandez & Ballester, 2008).

Particularly, a combustion diagnosis system developed by
Wojcik and Kotyra (2009), based on the analysis of image flames
captured at a frequency of 25 frames/s by an ordinary monochro-
matic video camera equipped with a fiberscope, uses a computer
vision algorithm that generates, for each image of the temporal
series, a characteristic vector whose components are shape param-
eters of the image flames, like area, perimeter, centroid coordinates
and Fourier descriptors of their contours. Analyzing the temporal
values of the shape parameters associated to oil flames exhibiting
previously air-fuel ratios and different instability characteristics,
the authors stress that there is a clear correlation among the
parameters calculated and the phenomena examined, but do not
present a method to automatically discriminate the flames accord-
ing to the physical properties concerning the focused events. Sim-
ilarly, using a set of four spatial luminous parameters (mean value,
standard deviation, kurtosis and skewness of the spatio-temporal
brightness image distribution) and one temporal spectral parame-
ter (flicker frequency) extracted from flame images grabbed by a
high-speed CCD video camera, the researchers in (Gonzilez-
Cencerrado, Pefia, & Gil, 2012) investigated the relative influence
of the above-mentioned parameters on combustion processes with
different a priori known air-to-fuel ratios and combustion camera
mean temperatures. Aided by multivariate regression methods,
important correlations between the temporal evolution of both
the image features and the respective combustion process vari-
ables could be identified; however, as admitted by the authors,
an image feature based method to automatically characterize the
combustion process should require a more thorough investigation.

In a research project developed at Sdo Paulo State Institute of
Technology (IPT) (Fleury, 2006), the authors of the present article
proposed various computer vision algorithms to extract features
of instantaneous and average flame images, in order to generate
crisp decision rules that could be used to diagnose several kinds
of abnormalities of the combustion process, encompassing: flame
extinction, lack of symmetry, instability, high or low excess air
and low nebulization quality. Despite the good agreement between
the decisions issued by the application of those rules to image test
sets and the known a priori physical conditions concerning the cap-
ture of such images, three drawbacks of this diagnostic system
must be pointed out: firstly, it required the calculation of average
images and the application of heterogeneous computer vision
methods to generate the parameters used by the majority of the
diagnostic decision rules, what imposed a limitation to the compu-
tational performance; secondly, only two states - either strict nor-
mality or abnormality of the process - could be diagnosed,
although the decisions that can be made by a human expert on
the combustion process are not so strict; finally, history of mea-
surements were completely ignored, for the diagnostics were pro-
posed on the basis of present measured values only.

In a further work (Fleury, Trigo, & Martins, 2010), the same
authors focused the particular problem of identifying flames exhib-
iting nebulization patterns of low quality. As the experimental evi-
dence indicate, such flames emerge from combustion mixtures
with low values of vapor flow rate (i.e., the quotient between the

nebulization vapor flow and the fuel oil flow). After capturing
images of flames from combustion processes with varied levels
of VFRs, a dedicated diagnostic system was developed to classify
them according to the nebulization patterns observed. Compared
with the results reported in Fleury (2006), the performance of this
new diagnostic system was much improved, due to the following
changes: (i) feature vectors are based only on few properties of
instantaneous images, which permit to apply simpler computer vi-
sion algorithms; (ii) fuzzy linguistic variables are used in the clas-
sification process, making the diagnostics more realistic; (iii)
predictions are obtained through a stochastic minimum variance
least squares estimator, giving rise to more reliable classifications.

The present research intends to validate the nebulization qual-
ity classification method described in Fleury et al. (2010) by apply-
ing it to sequences of images of flames whose values of VFRs are not
known a priori, thus asserting the approach as an effective tool for
combustion diagnostic. A Tikhonov-regularized version of the Kal-
man filter is used to estimate the state, a vector of properties from
grabbed images. It must be emphasized that Sections 2 and 3 of
this paper, which describe the currently used experimental set-
up and the procedure for obtaining the image feature vectors,
contain extended versions of the material previously presented
by Fleury et al. (2010).

2. Experimental apparatus and data collection

As illustrated in Fig. 1, the furnace used in the experiments at
IPT is a vertical one, with the burner settled at the bottom and
the gases exhaustion at the top. Having a total height of 4.0 m, it
is subdivided in 12 independent water cooled blocks and can pro-
cess number 1 fuel oil (number 1 fuel oils are distilled oils, i.e., they
have low viscosity and are free of sediments and inorganic ash) at a
maximum flow rate of 80 kg/h. The burner has two (primary and
secondary) air entrances for natural air suction with manual flow
regulation valves (Fig. 2).

In order to produce flame images of combustion processes
exhibiting previously defined characteristics, it was necessary to
monitor several significant variables, for which a data acquisition
system connected to a heterogeneous network of measurement
instruments had to be set up. Concerning the fuel, pressure was
measured by a membrane-type manometer, mass flow by an oval
gear meter equipped with a pulse generator, temperature by a
type-T thermocouple. Monitoring of nebulization vapor variables
required a membrane-type manometer, an orifice plate connected
to a differential pressure sensor through seal pots and a type-T
thermocouple, respectively for pressure, flow and temperature
measurements. Regarding the emitted gases, a type-K

Fig. 1. Partial view of the vertical furnace used in the experiments.
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thermocouple was used for temperature measurement, infra red
gas analyzers for measurement of CO, CO, and SO, contents, a
paramagnetic analyzer for O, concentration and a chemilumines-
cent gas analyzer for NO, content measurement.

Flame images were captured by a standard monochromatic RS-
170 CCD camera (Marshall Model 1070) using an objective lens
(6 mm, f1.2) supplied with a narrow band-pass (+10 nm) interfer-
ometric filter at the 900 nm reference wave length, near to the sen-
sitivity luminance peak (750 nm) of the CCD sensor and in the
range of radiation of the soot, that corresponds to the major part
of the radiation emitted by a typical fuel oil flame. All these optical
components lie inside an air-water cooled housing (Fig. 3) with a
double glass window, which is inserted into the furnace through
a proper orifice. The CCD camera output composed-video signals
are sampled at 25 Hz by a frame grabber (Sensoray Model 611)
as a series of interlaced 640 x 480 pixels images that are finally
transferred to the computer memory through specific frame grab-
ber driver functions.

Using the equipments and instruments referred above, a series
of experiments to produce combustion processes with controlled
vapor flow rates gave rise to a collection of flame images that were
further off-line processed by the image-based diagnostic system
whose main tasks are described in the next topics.

3. Image flame analysis

Although combustion process characterization could be made
on the basis of a large number of image feature properties, encom-

passing geometry, luminance and spectral aspects of the flame im-
age, it was established that, to attend real-time performance
requirements, only the simplest and fastest algorithms should be
applied. Considering that the shape of image grey-level histograms
changed for flames with different vapor flow rates (Figs. 4(a) and
(b), 5(a) and (b)), ten geometric properties of these histograms
have been selected to compose the characteristic vector {#;} of a
particular image flame I;: v;; =x-coordinate of the centroid;
Uy = y-coordinate of the centroid; ;3 = x-projection of the radius
of gyration; vy, = y-projection of the radius of gyration; v;5 = coordi-
nate x corresponding to 33% of the accumulated area of the histo-
gram; v, = coordinate x corresponding to 66% of the accumulated
area of the histogram; u; = coordinate x of the highest peak of
the histogram; ;g = coordinate y of the highest peak of the histo-
gram; v, = coordinate x of the second highest peak of the histo-
gram; ;o =coordinate y of the second highest peak of the
histogram.

The characteristic vectors {#;} referred before have been calcu-
lated to every instantaneous image [; of a training set with 214
deinterlaced flame images corresponding to nine different VFR val-
ues (0.17,0.21,0.23,0.26,0.29,0.36,0.43,0.50,0.57) associated to
nebulization patterns of increasing qualities; at the same time,
their respective fuzzy classifications to the fuzzy set ‘Flames with
high nebulization quality’ have been made by an expert in combus-
tion processes (Fig. 6).

After calculating the average histograms and the respective
average characteristic vectors {7;}(i=1,...,10) for each of these
nine image subsets, it has been established a straightforward
method to determine the membership degree vector {x;} of a train-
ing set image [; to the fuzzy set U = ‘Flames with high nebulization
quality’:

Let v;; be an element of the matrix of 214 characteristic

vectors {y;}wherej € {1,...,10}. Then
for every vector v, i=1,...,214,
for every component z;;,j=1,...,10
calculate d; = min{|v;; — vyj|},k=1,...,10
determine Kmin|d; = min{|v;; — vy}, k=1,...,9
determine x;; = u(U, kmin)

Applying the above fuzzy measurement algorithm, vector {x}
has been calculated for all the 214 images of the training set.
Table 1, shows a collection of such measurements for five images
of low nebulization quality, grabbed at VFR = 0.21.

4. Estimation problem

The literature (Balbi, Santoni, & Dupuy, 1999, and Mandel et al.,
2008) reports some attempts to model the dynamics of flame prop-
agation through discretization of reaction-diffusion partial differ-
ential equations in one or two dimensions by finite differences
and to estimate the state, the temperature distribution and the
remaining amount of fuel, using the Kalman filter. Mandel et al.
(2008), for example, generate synthetic ensembles for the Kalman
filter from the numerical solution of the reaction-diffusion equa-
tion. Combustion parameters of the model result from monitoring
real woodland fire; as a result, the uncertainties are restricted to
the PDE discretization. Likewise, in Hong, Uang, and Ray (2000),
the truncated solution of the wave equation incorporating effects
of acoustic waves and combustion dynamics is the basis for a
state-space model that intends to describe the dynamics of flames
in a generic gas-turbine engine combustion chamber. Both Mandel
et al. (2008) and Hong et al. (2000) admit the difficulty in describ-
ing combustion behavior based on theoretical models. This brief
discussion is meant to introduce and justify the state-estimation
approach for determining the quality of oil flames here adopted.
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Fig. 4. Image flames with: (a) VFR=0.17; (b) VFR = 0.57.
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Fig. 5. Histograms of the images of Fig. 5: (a) VFR=0.17; (b) VFR=0.57.

In order to tailor the problem to suit the proposed framework,
the state to be estimated is defined as a vector containing ten im-
age parameters obtained as described on the previous section. A
Kalman filter including a generalized Tikhonov regularization is

MEMBERSHIP DEGREE

0 H i i i i i i i i
02 0.25 03 0.35 04 0.45 05 0.55 06 0.65
VFR

Fig. 6. Fuzzy set associated to the ‘High nebulization quality’ concept.

implemented to observe the state. The rationale for such inclusion
is as follows: during the solution of the inverse problem in a
previous work (Fleury et al., 2010), it was observed that, due to
the ill-posed nature of the problem, several estimates of the state
variables lied beyond the solution space, the closed real interval
[0.0;1.0], thus impairing convergence behavior of the filtering
algorithm as a whole. The Tikhonov regularization is a map that
converts an ill-posed problem into a well-posed mathematically
equivalent one; as a consequence, estimates are expected to be less
susceptible to truncation errors.

A thorough discussion on stochastic estimation and on Kalman
filtering is out of the current scope; nevertheless, the authors con-
sider necessary to briefly present the basic concepts involved in the
derivation of the filter equations, especially when the Tikhonov
regularization is to be included. References such as Gelb (1974)
and Jazwinski (2007) address the subject in detail.

A necessary condition is that both system and observation mod-
els must be in state-space form. The state, in this case, is defined as
the ten-parameter vector containing geometrical statistical prop-
erties of the grey level histogram of grabbed images. The difficulty
in obtaining the system model (a state equation that describes the
evolution of the state) arises when one realizes that there is no
straightforward physical relationship between the state variables
and the grabbed images themselves. A model that can be used
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Table 1

Membership degree vector {x} to fuzzy set U = ‘Flames with high nebulization quality’. Calculated for images of low nebulization quality (= 0.21).
Images {x}

X1 X2 X3 X4 X5 X6 X7 Xs X9 X10

1 0.00 0.00 0.00 0.40 0.00 0.00 1.00 0.00 0.10 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
3 030 0.30 0.40 1.00 0.30 0.30 1.00 0.40 0.30 0.00
4 0.00 0.00 0.00 0.00 0.00 0.30 1.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.40 0.00 0.00 1.00 0.00 0.00 0.00

when there is little knowledge on the process is the random walk and

model, whose state-equation shows that system dynamics is gov- H

erned by a noise vector, as given by the discrete-time equation, H® = ( ] ) € R (7)

Oy

Eq. (1)

X(tx) = O(ty, ty—1)X(tx-1) + @(tx), (1)

where x(t;) € R" is the state at the kth time step kAt, [D(t, tx_1)] is
the transition matrix, in this case the identity matrix of order n, and
(te) ~ N(0,Q(x(t,))) € R" is a white zero-mean Gaussian noise vec-
tor with symmetrical positive semi-definite covariance matrix
Q(x(t)) € R™, a necessary condition for Kalman filter
implementation.

The observation model is built assuming the hypothesis that
each state-vector computed by the fuzzy classification algorithm
carries an inherent uncertainty, which can be modeled as a mea-
surement noise that corrupts the state-vector. Mathematically,
then, measurements are given by Eq. (2),

Y(te) = Hx(ty) + v(ty), (2)

where y(t;) € R" represents the measurement at t;, H is an identity
matrix of order n, and v(t;) ~ N(0,R(¥(tx))) € R" is a white zero-mean
Gaussian noise vector with symmetrical positive definite covariance
matrix R(y(ty)) € R™". The white sequences w(t,) and v(t;) are as-
sumed mutually independent; therefore, they are also uncorrelated,
since they are Gaussian.

One of the approaches used to derive the Kalman filter equa-
tions consists in minimizing a functional such as

J&x(t)) = .
+" (t:)[Q ™ (x(tr))]e2(te)

in relation to the independent vector (Jazwinski, 2007). When a
regularization term like

RT = 2 fx(t) — X (00 [x(00) - (1) @

is included in the functional of Eq. (3), one obtains an augmented
functional

J&(6)) =5

+0 (60)[Q T (X(t)2(t) + 502 [x(t) — X (t)] [X(t)

in which o > 0 is a regularization parameter and x*(t;) is any initial
estimate for x(t;). Defining augmented observation matrices

& _ y(tk) 21

ol x*

1) x(t) —X(tk)]T[PE]] X(tx) — X(t)] + [y (te) — Hx(t)]" [R™" (y(t)]ly(te) — Hx(ty)]

1 () = X(6) [P () = 2(60] + y(8) — Hx(0)) R ((60)]Iy(t) — Hx(6)]
—X_*(tk)]

the functional of Eq. (4) may be written as
x(t) — X(t)] [P [ (t) X(tk)]

1 +[Rly R
Jox(t) =5 +1y° 60) - ] [y (60 - Hox(t)]
+o' (t)[Q ((fk))]Q(tk)

(8)
A functional such as that in Eq. (8), when minimized in relation to
x(tr), will provide a regularized Tikhonov solution. Given the simil-
itude between Eqgs. (3) and (8), it is possible to conclude that the
minimization problem falls into the classical pattern, as stated by
Jazwinski (2007). Therefore, the optimal solution will minimize, in
a least squares sense, the trace of the error covariance matrix, Py.
The resulting equations constitute a set of forecast-update stages,
as follows: For the model given by Eqgs. (1) and (2), there is a prop-
agation stage that attempts to provide the best estimates by extrap-
olating the previous estimated state based on the process model
and its known (or admitted) statistics before new information is
available. This way, Eq 9)

2 (ty) = Ot t1)X™ (1) 9)

accounts for the state estimation forecast at instant (ty) (the (f) and
(u) superscripts stand respectively for ‘before the arrival of new
data’ and ‘after the arrival of new data’), whereas Eq. (10)

P(R7(t) = (st 1)P(X" (t1) ) (brs tir) + QX" (01)

(10)
gives the estimation error covariance matrix forecast. An update
stage provides proper correction, through the Kalman gain matrix,

to the forecasted estimates of the state and error covariance upon
the arrival of new measurement data. It must be emphasized that,

(5)

due to the Tikhonov regularized formulation, although the aug-
mented state is updated, only the n-dimensional upper partition
of the augmented state vector is considered for the next forecast
stage.

The Kalman gain matrix is computed according to Eq. (11),
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. N (=1)
K¢ = P(R7(t0) [PRY (6) + RO (0] (11)
where
R(y(t)) 0}

RO t — = 12

=g ) (12
The updated state and error covariance matrix are obtained from
X (0 =27 (00 + K (y° (60 - H'X (1) (13)
P(x"(t) = (I — K{H)P(X (1) (14)

thus completing the prediction-correction steps necessary for the
next iteration.

5. Nebulization quality estimation

It is common, for simplicity, when there is a lack of knowledge
on uncertainty of process and observation models, to admit both
noise covariance matrices diagonal. In this work, however, noise
covariance matrices shall not be assumed diagonal, once it is pos-
sible to compute them from the available data.

The process covariance matrix Qused in Eq. (10)is obtained in the
following manner: According to the dynamical model from Egs. (1)
and (2), state and measurement are the same for each training set
(data set). It is admitted that the state, on each case, is corrupted
by a white zero-mean Gaussian noise sequence that represents the
uncertainty generated by the fuzzy measurement algorithm. In or-
der to quantify this uncertainty, the complete history of state vector
evolution, which is known for all sets, is assembled in a matrix
A(x(ty)) € R™™, with n =10 (the dimension of the state vector) and
m =214 (the complete history of state evolution); afterwards, the
covariance of the state considering the complete set of measure-
ments, matrix I" € R™", can be calculated through Eq. (15)

T = E{[A - E(A)LIA - E(A)} (15)

Matrix I' states the uncertainties of an actual process whose nebu-
lization quality is unknown a priori, since its computation involved
data in the range from “high” to “low” nebulization quality charac-
teristic experiments; on that ground, although the actual state
covariance for a particular set is not available, matrix I" can be con-
sidered an estimator of matrix Q for each individual process, thus
completing the random walk model for the state evolution.

As to the observation model, measurements are synthetically
generated for each set by adding to the state a white zero-mean
Gaussian noise sequence with standard-deviation that amounts
to 10% of the maximum value assumed by the state variables
throughout the process. This choice of the state noise level takes
into account the uncertainties due to luminance saturation, elec-
tronic noise, and quantization errors added when the images are
transferred to the computer. The noise sequence is calculated using
a routine from Press, Vetterling, Teukolsky, and Flannery (1992),
operating within a driver developed by the authors.

The estimation procedure was evaluated by running the Kalman
filter algorithm with the model from Egs. (2) and (3), state covari-
ance matrix Q and measurement noise covariance matrix R com-
puted by Eq. (15) using vector y for each set of measurements,
instead of matrix A, and using three training sets, namely
VFR=0.17, 0.29 and 0.57, respectively reproducing “low”, “med-
ium” and “high” quality nebulization patterns. The initial state vec-
tor assumes a “high” quality nebulization pattern, i.e., the state
variables are given the minimum admitted value, 0.0. Initial error
covariance matrix, P(x(to)) is assumed diagonal with variances
0.3 for all experiments.

Table 2
Summary of previous results.
Vapor flow rate Fuel flow rate Nebulization Mean state,
(VFR, %) (kg/h) quality Elx*]
0.17 12 Low 0.17
0.29 20 Medium 0.45
0.57 35 High 0.76

According to what was mentioned in the introduction, the pro-
cedure for validating the method consists in applying the Tikhonov
regularized Kalman filter to sets whose nebulization pattern qual-
ity is considered unknown a priori and, upon the results obtained
from the filtering process, infer this condition. In a previous work
(Fleury et al., 2010), the present authors showed that the mean va-
lue of the state variables could be used to evaluate the nebulization
condition of measurement training sets by assuring statistical con-
vergence of the estimates from a linear Kalman filter.

Tikhonov regularization is a key feature on the approach here
adopted, since it imposes to the state-vector an ad hoc convergence
for a desired point in the n-dimensional solution space while, at
the same time, keeps the minimum least-square features of the fil-
tered estimates. Thus, once the unknown nebulization pattern
quality of a set is ‘forced’ by the Tikhonov-regularized solution to
an arbitrary point in the solution space, statistical convergence cri-
teria shall be able to assert actual divergence of the estimates; con-
sequently, for each set, one tests convergence of the estimates for
‘low’, ‘medium’ and ‘high’ quality points in the solution space. The
rejection of two of the previous conditions must imply in the
acceptance of the remaining, as will be shown in the next section
of the paper.

6. Results and discussion

Since the benchmark for the validation of the method proposed
here is Fleury et al. (2010), it is convenient to recall the main re-
sults there presented, as summarized on Table 2 in which the
fourth column is the point E[x*] in the solution space to be sought
by the Tikhonov-regularized Kalman filter algorithm (forced
solution).

Actual convergence of the estimation process was asserted by
the inspection of the observation residuals (Fleury, 1985, and Jaz-
winski, 2007), the difference between the effective measurement
and its value as calculated by the filter using the last available state
estimate. An estimation process is considered convergent once the
normalized observation residuals, given by Eq. (16),

ro= 3 (00 - 2 (1) (16)

06,4

where ¢ represents measurement vector dimension and ¢, is the
standard-deviation of measurement noise, are zero-mean Gaussian
with standard deviation between —3¢, and 30,. The same criterion
is used in this work to ensure statistical convergence (or diver-
gence) of the estimates.

The estimation procedure with the proposed approach was con-
ducted using data from four distinct fuel flow rates, namely, 15, 25,
30 and 40 kg/h; the Tikhonov regularization parameter o was as-
signed the value 1.0 to all conditions. The results obtained with
the four conditions above are depicted in Figs. 7-10, which graph-
ically present the evolution of the state variables mean value in
each iteration,

E[00] = 2> %00 a7)
=
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Fig. 7. Quality membership degree estimates for fuel flow rate = 15 kg/h.
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Fig. 8. Quality membership degree estimates for fuel flow rate = 25 kg/h.
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Fig. 9. Quality membership degree estimates for fuel flow rate = 30 kg/h.
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(a) Mean-value state evolution
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Fig. 10. Quality membership degree estimates for fuel flow rate = 40 kg/h.

Table 3
Application of convergence criterion to test data.
Fuel flow rate (kg/h) Elx*] Elr,], ov, Convergence (Y/N) Estimated nebulization quality
15 0.17 0.059,0.482 Y Low
0.45 —0.210,0.486 N
0.76 —0.505,0.496 N
25 0.17 0.299,0.462 N High
0.45 0.138,0.478 N
0.76 —0.038,0.497 Y
30 0.17 0.230,0.356 N High
0.45 0.164,0.364 N
0.76 0.091,0.375 Y
40 0.17 0.658,0.923 N High
0.45 0.327,0.962 N
0.76 0.038,1.012 Y
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Fig. 11. Sensitivity analysis on the influence of the parameter o: (a) mean value of the state vector; (b) mean value of the normalized residual.

as well as the normalized observation residuals as functions of the From the ‘a’ subfigures 7 to 10, it is possible to notice that the
time step throughout the process. Results of application of conver- overall behavior of the estimates, regardless of fuel flow rate, pre-
gence criterion, Eq. (16), are listed on Table 3. The reason for distinct sents a constant shift in the ordinate axis direction among points
end of scales of the abscissas is the available number of measure- on the same time step, which can be explained by the ‘forcing’ ac-

ments in each case. tion of the Tikhonov regularization parameter to a constant E[x*]
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Table 4
Application of convergence criterion to test data with corrected Tikhonov parameter.
Fuel flow Elx1] Elro,or, Convergence  Estimated
rate (kg/h) using nebulization quality
o=0.19 (Y/N)

25 0.17  1.0e-2, 0.497 N
045 1.0e-3, 0.498 Y
0.76  -9.1e-3,0.499 N

Medium

value. Further evidence of the previous assertion is provided by the
evolution of normalized observation residuals in the ‘b’ subfigures
7 to 10. This is consistent with the fact that, since the process mod-
el adopted is the random walk with constant process noise covari-
ance matrix for all testing sets, it is to be expected that the updates
of the state be more influenced by uncertainties in the measure-
ments (matrix R®) used to compute the Kalman gain, which is con-
ditioned to a constrained regularized least-squares solution of an
optimization problem.

Regarding the application of the convergence criterion to the
tested sets one realizes, from Table 3, that the leading parameter
to ensure effective convergence is the residual mean value, once
the twelve tested conditions exhibited similar standard-deviations
which, moreover, remained within established limits. It must be
emphasized that for the testing data sets corresponding to fuel
flow rates of 15, 30 and 40 kg/h, the estimated nebulization quality
levels confirmed what was expected when the tests were devised
in Fleury et al., 2010. Nevertheless, for the 25 kg/h flow rate, a test
designed to fulfil the medium quality requirements, the result ob-
tained suggests a classification error, whose possible causes re-
quire further investigation.

Classification errors are typical in processes based on training
sets (Theodoridis & Koutrombas, 2009). Attention must be paid
to the fact that data randomly selected as a training set is generally
composed of a small number of elements, (which is the case in this
work), and small samples are more prone to present some bias.
Therefore, the selection of the testing set may not match exactly
the classification ranges based on the training set. Besides that,
from the human specialist point of view, the classification thresh-
old between flames exhibiting patterns of low/medium and med-
ium/high quality is slight, thus becoming another source of
uncertainties.

Instead, one might argue whether the source of the classifica-
tion error arises from under or overweighing the estimates of the
state through a poor choice of the Tikhonov parameter, ¢.. Aiming
at investigating such a possibility, a sensitivity analysis on the
influence of this parameter on the mean estimated state vector
and on the mean normalized residual was performed using data
from the 15, 25, 30 and 40 kg/h fuel flow rate testing sets, with
the forcing condition E[x*] respectively to 0.17, 0.45, 0.76 and
0.75. Graphical results are given in Fig. 11, from which special
interest must be drawn to the point (0,0) of the mean normalized
residual curve, plot (b), because, as previously stated, the conver-
gence criterion concerning the zero-mean prevailed over the stan-
dard-deviation requirement. The optimal computed ¢, i.e., the one
that provides the best stochastic least-squares mean constrained
fitting of this testing set to the desired point obtained on each of
the training sets, although not clear in the plot, equals correspond-
ingly 0.62, 0.19, oo, and 1.66; hence, using « = 1. In the mentioned
simulation of the low quality nebulization condition overestimates
the mean state vector, possibly leading to the obtained
misclassification.

In order to corroborate this statement, the estimation process
was repeated for the 25 kg/h data, yet this time setting o =0.19
and testing for the three nebulization quality conditions. Results
are presented in Table 4, from which it is worthwhile noticing

the orders of magnitude reduction in the mean normalized residu-
als, despite the amplitude of the forcing term. This occurrence was
expected, by the intrinsic nature of constraint imposed by the reg-
ularization parameter. However, one must realize that the mean
value of the convergent condition is, still, one order of magnitude
lower than the other two.

7. Conclusion

In this work, a method for the determination of nebulization
quality for oil flames in industrial processes was improved and val-
idated. The approach consisted in using images grabbed from CCD
cameras to build a fuzzy classification set of rules, and in employ-
ing the resulting characteristic vector in a state-space model of
flame dynamics.

A non-linear Tikhonov regularized Kalman filter was able to
provide estimates of the state from data of training sets whose
nebulization pattern quality was unknown a priori, and to assign
them a quality classification. Correctness of the decision making
process was corroborated by the adherence of the statistics of
the normalized observation residuals to their expected values. Pos-
sible sources of discrepancy were analysed and discussed.

Overall, the results suggest that the method might be applied to
real-time monitoring the nebulization pattern quality of an oil
refinery furnace, since the data acquisition is based on a single
CCD camera and the computational processing of those data takes
the order of milliseconds on a conventional personal computer.
The current research by the authors of this paper intends to further
improve the quality of the estimates by attempting to incorporate
flame dynamics on the state-space model through an operational
analysis framework.
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