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Abstract

Obtaining large sample sizes for genetic studies can be challenging, time-consuming, and
expensive, and small sample sizes may generate biased or imprecise results. Many studies
have suggested the minimum sample size necessary to obtain robust and reliable results,
but it is not possible to define one ideal minimum sample size that fits all studies. Here, we
present SaSii (Sample Size Impact), an R script to help researchers define the minimum
sample size. Based on empirical and simulated data analysis using SaSii, we present pat-
terns and suggest minimum sample sizes for experiment design. The patterns were
obtained by analyzing previously published genotype datasets with SaSiiand can be used
as a starting point for the sample design of population genetics and genomic studies. Our
results showed that it is possible to estimate an adequate sample size that accurately repre-
sents the real population without requiring the scientist to write any program code, extract
and sequence samples, or use population genetics programs, thus simplifying the process.
We also confirmed that the minimum sample sizes for SNP (single-nucleotide polymor-
phism) analysis are usually smaller than for SSR (simple sequence repeat) analysis and dis-
cussed other patterns observed from empirical plant and animal datasets.

Introduction

The study of genetic patterns at the population level interconnects ecology and evolution, thus
providing a framework to understand the impact of selection, genetic drift, gene flow on
demography, and phenotypic frequencies [1]. Spatial-temporal assessments, such as those
applied in landscape genetics or using historic samples, can also be used to infer past
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population dynamics, human impacts in natural populations, and the effect of future environ-
mental changes in populations [2]. In addition to the contributions of population genetics,
genomic information is becoming increasingly available and accessible. Advances in genomic
technologies have reduced the price per data point, expanding their impact on the develop-
ment of basic and applied research with both model and non-model organisms [3].

All these applications and innovations require the development of methods to acquire and
analyze data, and implementing all these technologies still requires a well-planned experimen-
tal design. Many publications over the last years have focused on describing molecular marker
choice [3], protocol refinement [4, 5], overall process decisions [6-8], and sample sizes [9-11].
Poorly planned sample design and small sample sizes may prevent researchers from achieving
robust results and conclusions and lead to biased parameter estimates [10, 11]. However, large
sample sizes are often unfeasible due to time and budget reasons or limitations associated with
the species or population characteristics, especially for endangered species. Thus, sample size
is an aspect that has been debated by the scientific community and is frequently questioned by
journal reviewers.

Although some studies have evaluated the effect of different sample sizes on data analysis
and proposed sampling guidelines, there is no consensus on an ideal number that fits all stud-
ies. For microsatellite markers (SSR—Simple Sequence Repeats), the recommended minimum
sample size ranged from 20 to over 40 individuals [9, 10]. For SNP (Single Nucleotide Poly-
morphism) data, the recommended minimum sample size ranged from eight to over 50 indi-
viduals [5, 11]. The variation results from differences in the hypothesis tested, the objectives of
the studies, and the taxa evaluated. Therefore it is not possible to define a single ideal mini-
mum sample size that fits all studies [12]. When empirical data is unavailable before the study
begins, simulation studies and extrapolation from similar taxa may be helpful in decision-mak-
ing. All sampling guidelines cited above were defined by data simulation and rarefaction
curves. These methods are already well known by statisticians, but writing the scripts to per-
form the analyses may take time and effort, which can be very discouraging to some
researchers.

We present SaSii (Sample Size Impact), a simulation program to help researchers define
and indicate minimum sample size patterns for taxa groups. The patterns discussed here were
obtained by analyzing simulated data and published datasets with SaSii and can be used as a
starting point for the sample design of population genetics and genomic studies.

Materials and methods
About SaSii

We introduce an R [13] script designed to assess whether the sample size is sufficient to esti-
mate robust genetic parameters from SSR and SNP data. The minimum sample size is inter-
preted here as the number of individuals above which there is no more relevant gain in
information for different genetic parameter estimates. This allows the user to define which
parameters are relevant for each study. The program reads the input dataset that contains
individuals genotyped at a certain number of markers, estimates genetic parameters from
subsamples of different sizes defined by the user, and plots rarefaction curves (Fig 1). These
estimates can be used to evaluate if the sample size is large enough to adequately represent
the genetic diversity observed in the original full dataset, i.e. the rarefaction curve reaches a
plateau or there is a small variance in the results from the subsample size. The script, tuto-
rials, and other documentation are available at https://sasii.readthedocs.io/en/latest/index.
html and in S1 File.
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Fig 1. Script decision tree.

https://doi.org/10.1371/journal.pone.0316634.9001

Data input and config file

The program can read both SSR and SNP markers from multi-locus and diploid individuals’
data, formatted as a Structure [14] data file, accepting minor variations of the original format,
and saved as a comma-separated values file (.csv). The individuals’ data are organized in rows
and loci in columns. Alleles must be represented as numbers, with missing data coded as 0
(zero) or -9. The user may choose any of the two types of data organization adopted in Struc-
ture [14], one in which each individual is in one row and genotypes in two consecutive col-
umns (the two alleles of the same locus are in two consecutive columns), and another in which
each individual is in two consecutive rows and each locus in one column (the two alleles of the
same locus are in two consecutive rows).

The user needs to fill a configuration file (hereafter config file) with parameters used to
describe the data and the file structure. These parameters include the file name, input file orga-
nization, missing data code, and line number with the first individual of the population. The
user also must define in this config file the following analysis settings: size of the smallest
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subsample, number of resamples of each subsample size and minimal frequency of allele to be
preserved.

Random subsampling of the dataset

The program makes random subsamples of the input dataset without replacement according
to the settings defined by the user in the config file. For example, with a simulated dataset con-
sisting of 50 individuals, with the smallest subsample size of five, the program will create new
datasets with the following subsample sizes: 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50. The smallest
subsample size also defines the intervals between successive subsamples.

For each subsample, the program estimates genetic parameters and compares them to the
original input dataset. It also calculates averages and standard deviations from the resamples of
each subsample size and compares its estimates with the original dataset estimates to create the
output tables and plots. The parameters estimated are: allele frequencies, observed heterozy-
gosity (Hop), expected heterozygosity under Hardy-Weinberg Equilibrium (Hg), and genetic
distances between the original dataset and the subsample (Wrigth’s Fsr, Nei’s Distance, and
Rogers’ distance). Parameters and equations are described in the S1 File.

Data output and sample size impact analysis

The program outputs 14 pairs of files, each consisting of one numerical file and one plot with
the results of the genetic parameter estimates, which are described briefly below. The
researcher can use different parameters and, consequently different results from SaSii to define
the minimum sample size, depending on the research question.

Fraction of common alleles detected (output 1). For some analyses, common alleles
(frequency > 0.95) are more informative [10]. SaSii identifies the most common alleles in the
input dataset and calculates their percentages in each subsample. Output 1 has a boxplot of the
fraction of common alleles that are represented in the subsamples of each size (Fig 2A-2E).
The red line in the plot indicates the threshold above which 95% of the common alleles are
present in the subsamples. The red line in the plot indicates the threshold above which 95% of
the common alleles are present in the subsamples. If detection of common alleles is important
for the study, the subsample size that captures most or all common alleles may be interpreted
as the minimum sample size. The rarefaction curve must reach a plateau close to the 0.95 line
so we know that an increase in sample size will not have a large impact in the common allele
number. If the curve does not reach a plateau, a larger sample size is necessary.

Outputs 2 and 3 have the same kind of results, but for the total number of alleles and only
the rare alleles, respectively.

Mean difference from original allele frequency (output 4). The program calculates the differ-
ence between the allele frequencies of the original dataset and the subsamples. The output
table has the average difference for each allele for every subsample size. The output plot has a
boxplot of these differences for each subsample size (Fig 2B and 2F). The red line indicates the
threshold below which there is a 0.01 mean difference in allele frequencies from the original
dataset and the subsample.

Frequencies of the most and least common alleles (output 5). SaSii identifies the most and the
least common alleles overall loci in the original dataset and estimates their frequencies in each
subsample. The output table contains the mean allele frequencies, the standard deviations, and
the minimum and maximum allele frequencies over subsamples. In addition, these results are
also plotted in a boxplot, which contains a vertical line with the minimum and maximum val-
ues, a bold central line with the mean value, and a box with the standard deviations. The loss
of rare alleles is usually one of the first indicators of bottlenecks [15], so small sample sizes
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Fig 2. Results of SaSii analyses for SSR (top) and SNP (bottom) simulated data. Only the smallest subsample sizes are shown. A, E: Amount of
individuals with more than 95% of alleles detected; B, F: mean difference of allele frequencies between the sampled populations and the original dataset;
C, G: mean pairwise Fsr between the original and the simulated datasets; D, H: mean of expected heterozygosity of populations within a same class
(same population and sample size).

https://doi.org/10.1371/journal.pone.0316634.9002

should also show a deficit in rare alleles. Observing the frequency distribution of the least fre-
quent alleles over different sample sizes may indicate the effect of sample reduction in allele
detection.

Expected heterozygosity (outputs 6 and 7). Genetic diversity analyses often require an accu-
rate estimation of Hg in the population. So, for each sample size, SaSii calculates Hg (per locus
in output 6 and averaged over all loci in output 7) of the simulated subsample and compares it
to the estimate from the full dataset. In the tables of outputs 6 and 7, the user can find the
mean Hp, for each subsample size, the standard deviation over subsamples, and the minimum
and maximum estimates over the subsamples. The output 6 plot is a boxplot of estimates for
each subsample size. The output 7 plot contains a vertical line with the minimum and maxi-
mum Hp, values, a bold central line with the mean value, and a box with the standard
deviations.

Observed heterozygosity (outputs 8 and 9). Outputs 8 and 9 are equivalent to outputs 6 and 7
but contain H, estimates.

Mean difference from the original heterozygosities (outputs 10 and 11): Outputs 10 and 11
show the differences between Hp and Hp, (respectively) from the original dataset and the sub-
samples. The output tables contain the mean difference over subsamples for each locus and
subsample size. The output plots contain boxplots of the mean differences in heterozygosities
over loci and subsamples for each subsample size. Fig 2D and 2H show the plots for HE. The
red line in the plots indicates greater deviances than 0.05.

Mean pairwise Fsr and genetic distances (outputs 12, 13, and 14). SaSii calculates the genetic
differentiation (Fsr [16]), Nei’s distance [17], and Rogers’ distance [18] between subsamples
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and the original dataset to check if the subsamples are giving accurate and consistent results
which may be indicated by small genetic distances [10]. Mean values over loci and standard
deviation are estimated and presented in the output tables. The output plots show the average
values over subsamples for each subsample size. The Fgr plot has a red line with the 0.05
threshold, which indicates low population genetic differentiation (Fig 2C-2G).

Sample size impact analysis

To estimate the minimum sample size, we suggest that the users analyze the predefined thresh-
old for each plot. All sample sizes that pass these thresholds can be considered large enough
for that parameter. When different parameters indicate different minimum sample sizes, we
suggest a conservative approach, selecting the largest size as the overall minimum. For a better
analysis, we suggest at least four graphs: outputs 1, 4, 12, and 12, that summarize most of the
genetics parameters for the species.

Script validation

To evaluate SaSii’s predictive accuracy, we constructed two datasets using EasyPop 2.0.1, a for-
ward simulator, to generate similar data to those found in nature [19]. These populations were
intended to simulate SSR and SNP markers, using the following parameters: ploidy (2), sex
number (2), mating system (Random), number of populations (1), population size (600), male
and female ratio (1:1), free recombination (yes), same mutation scheme (yes), mutation model
(mixed model of SSM—stepwise model—with a proportion of KAM—K-allele model—muta-
tion events), proportion of KAM events (0.5), variability of initial population (maximal) and
number of generations (10). The number of loci, mutation rate, and number of possible allelic
states were different for SSR and SNP markers, respectively: 10 and 2,500 loci, 1 x 10™* and

1 x 1077 for mutation rates, and 20 and two allelic states.

Then, we configured SaSii’s input setting the default value for all common parameters (resam-
pling number, sample size, minimum frequency, and max sample size) for both simulated data-
sets. SaSii generated fifty subsamples from the amount of each population’s size, with a sample
size equal to five, selecting allele frequency with at least 0.05. The remaining parameters were
defined depending on the data file of each species. All datasets were analyzed in a workstation
with the following configuration: AMD Ryzen 7 5700X, 32GB RAM. The script was also tested on
personal computers with different operating systems (Linux, MacOS, Windows).

Patterns to predict the minimum sample size

We investigated if any characteristics of the species or the type of molecular marker could be
used as a predictor for generalizations about the minimum sample size necessary for genetic
estimates. We used empirical datasets from population genetic studies: one insect, one reptile,
and 15 plant species (16 populations), of which seven were SSR and eight were SNP data as
shown in Table 1. The results found here for each species may apply to other studies and
improve the decision-making process in population genetic studies. SaSii runs for all species
followed the same settings as the validation analyses.

Here, the minimum sample size was defined based on the proportion of common alleles
detected, the mean difference of allele frequencies, the mean pairwise Fgr, and the mean differ-
ence in Hg. We tested the null hypothesis of no differences in minimum sample size for data-
sets of SNP and SSR markers using all plant and animal datasets. We also tested the null
hypothesis of no difference in minimum sample size for mating systems in allogamous and
mixed mating plant datasets. We used a two-sided Wilcoxon rank sum test in R [13] to per-
form the statistical test.
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Table 1. Characteristics of the datasets used to estimate minimum sample size.

Category Species Mating system Sample size Number of loci Reference
Plant SNP Acrocomia aculeata Mixed 25 3,269 [20]
Casearia sylvestris Allogamy 23 1,257 [21]
Chloropyron maritimum Allogamy 15 111 [22]
Euterpe precatoria Allogamy 12 3,803 Francisconi et al. (work is in progress)
Manihot dulcis Allogamy 46 1,985 [23]
Manihot esculenta Allogamy 53 1,985 [23]
Plant SSR Bertholletia excelsa Allogamy 91 12 [24]
Caryocar villosum Allogamy 38 7 [25]
Copaifera langsdorffii Mixed 357 8 [26]
Erythrophleum suaveolens (pop 1) Mixed 177 9 [26]
Erythrophleum suaveolens (pop 2) Mixed 88 9 [27]
Eugenia dysenterica Allogamy 28 7 [28]
Metrosideros polymorpha Allogamy 319 9 [29]
Mpyroxylon peruiferum Mixed 50 9 [30]
Shorea macrophylla Mixed 88 14 [31]
Solanum lycocarpum Allogamy 178 5 [32]
Animal SNP Tetragonisca angustula 32 3,573 [33]
Animal SSR Caiman crocodilus 25 11 (34]
https://doi.org/10.1371/journal.pone.0316634.t001
Results
Script validation

The main results from the analyses performed with SaSii with the simulated dataset are shown
in Fig 2. For the SSR data, the minimum sample size ranged from 10 to 45, depending on the
parameter analyzed (Fig 2A-2D). In Fig 2A and 2C, for subsamples with a minimum of 10
individuals, at least 95% of common alleles were detected, and the mean Fg was smaller than
0.05. However, in the plots that presented the differences between subsamples and the full
dataset in allele frequencies and Hg (Fig 2B and 2D), the minimum sample size was 15 and 45
individuals, respectively. For larger subsamples, there was no relevant increase in precision, so
the results are not shown.

Using the same strategy for the SNP data, the plots suggested that five individuals were nec-
essary to have a minimum of 95% of alleles detected (Fig 2E), and a low mean difference in Hg
(Fig 2H). Meanwhile, 10 and 15 individuals were sufficient for a Fgr smaller than 0.05 (Fig
2G), and a low mean difference allele frequency (Fig 2F).

Patterns to predict the minimum sample size

We analyzed data from species of plants and animals and observed a minimum sample size
ranging from five to 45 (Table 2). All results files can be found at https://sasii.readthedocs.io/
en/latest/index.html. We observed that the minimum sample size could differ for each species
depending on the parameter analyzed. For example, we identified that for Bertholletia excelsa,
a species evaluated with SSR markers (91 samples, 12 loci), 15 individuals were sufficient to
detect at least 95% of the common alleles and small mean differences from the original Hg

(< 0.05; Fig 3A and 3B). Subsamples of 10 or more individuals presented Fsr values smaller
than 0.05 when compared with the full dataset (Fig 3C), however, when considering the allele
frequencies only 10 individuals were sufficient to achieve a small difference from the original
data (Fig 3D).

PLOS ONE | https://doi.org/10.1371/journal.pone.0316634  February 13, 2025 7/14


https://sasii.readthedocs.io/en/latest/index.html
https://sasii.readthedocs.io/en/latest/index.html
https://doi.org/10.1371/journal.pone.0316634.t001
https://doi.org/10.1371/journal.pone.0316634

PLOS ONE

Sample size impact (SaSii)

Table 2. Minimum sample sizes detected with SaSii.

Category Species Common alleles Allele freq. Fgr Hg Overall
Plant SNP Acrocomia aculeata 10 5 5 10 10
Casearia sylvestris 10 10 10 20 20
Chloropyron maritimum 5 5 10 5 10
Euterpe precatoria 10 10 15 10 15
Manihot dulcis 5 10 10 15 15
Manihot esculenta 10 10 10 20 20
Plant SSR Bertholletia excelsa 15 10 10 15 15
Caryocar villosum 15 5 10 15 15
Casearia sylvestris 40 5 10 10 40
Copaifera langsdorffii 20 5 10 10 20
Erythrophleum suaveolens (pop 1) 20 10 10 25 25
Erythrophleum suaveolens (pop 3) 20 5 10 15 20
Eugenia dysenterica 15 10 10 10 15
Metrosideros polymorpha 25 5 10 20 25
Mpyroxylon peruiferum 20 15 10 25 25
Shorea macrophylla 20 5 10 15 20
Solanum lycocarpum 15 5 10 20 20
Animal SNP Tetragonisca angustula 5 10 10 10 10
Animal SSR Caiman crocodilus 15 10 10 15 15

Sample sizes selected considering different parameters. Fraction of common alleles detected (Common alleles), mean difference from the complete dataset allele

frequency (Allele freq.), mean pairwise Fsr between each subsample and the full dataset (Fsr), mean difference from the full dataset Hg, and the largest value from all
parameters (Overall).

https://doi.org/10.1371/journal.pone.0316634.t002
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For SNP data, the minimum sample size was smaller than SSR. We show the analysis of
Casearia sylvestris (23 samples, 1,257 loci) as an example (Fig 3E-3H). For this species, with
only five individuals we obtained a good representation of the original data, as shown by the
fraction of common alleles detected and the mean difference of allele frequencies (Fig 3E and
3F). However, subsamples with less than 10 individuals showed higher Fsrand larger mean Hg
differences from the original dataset (Fig 3G and 3H), suggesting the need for additional indi-
viduals for more robust results. Considering this, the minimum sample size may range
between five and 15 individuals, depending on the criterion adopted and the objectives of the
study.

The most conservative minimum sample size found for SSR markers was between 15 and
40 individuals. For SNP datasets, the majority overall minimum sample size ranged from 10 to
20 individuals, being influenced by the Fgr estimated between the complete dataset and each
subsample. In most cases, we observed that minimum sample sizes were smaller for SNP than
for the SSR dataset (W = 16, p = 0.026) (Fig 4 left). This pattern was also observed for C. sysl-
vestris for which we analyzed samples from the same area genotyped with both markers (Fig
4). When we compared minimum sample sizes for plants with different mating systems, there
was no significant difference (W = 23, p = 0.464) (Fig 4 right).

Discussion

SaSii script was efficient in analyzing both SSR and SNP datasets, using computers with stan-
dard configurations, and different operating systems (Linux, MacOS, Windows). Our results
showed that the minimum sample sizes varied between analyzed species and depended on the
parameters evaluated. Overall, for SNP data, a smaller sample size was necessary to obtain
robust results when compared to SSR data results. The script presented here can be used both

PLOS ONE | https://doi.org/10.1371/journal.pone.0316634  February 13, 2025 9/14


https://doi.org/10.1371/journal.pone.0316634.g004
https://doi.org/10.1371/journal.pone.0316634

PLOS ONE

Sample size impact (SaSii)

to help develop sample strategies and to evaluate if the samples collected are sufficient for the
analyses.

The analysis of simulated data indicated that SaSii can provide precise estimations of Hp
and Hg. Larger subsamples show values for these parameters similar to the total dataset and
smaller subsamples show higher variance in estimates. For SSR simulated data, 25 individuals
were enough to represent the full dataset. For SNP data, the minimum sample size was 10 indi-
viduals. It is well known that the sample size for SSR and SNP data are around 25 to 40 and
eight to 50, respectively [5, 9-11]. This number may vary depending on the species, location,
and study focus. Our simulation results confirm these recommendations.

As for our empirical SSR datasets, we found that, for some populations and species, the
minimum sample size was smaller than the suggested in the literature, for others, SaSii results
indicated the same as the literature [9, 10]. For empirical SNP data, our results were similar to
the literature suggestions [5, 11]. This highlights the importance of taking the particularities of
each species into account. Using information on similar species can be useful for initial experi-
mental design, but checking if the sample was large enough increases the chance of having
robust results. Also, it is important to consider sampling design, because random population-
wide sampling has the potential to include a broader genetic diversity than sampling individu-
als in clusters or a limited portion of the population distribution. In these cases, the results
shown by the program may be biased.

Our results suggest that most SSR and SNP data usually presented similar sample size
requirements, within the marker’s type. Patterns for C. crocodilus and T. angustula differ from
the other datasets probably because they are both animal species, which can have different
characteristics that can impact the minimum sample size. Besides that, in plants, factors such
as pollination syndrome, seed dispersal, and population characteristics (for example, density,
genetic structure, allelic richness, and effective population size) can influence the minimum
sampling size [11]. For C. langsdorffii, high levels of inbreeding, which resulted in small esti-
mates of observed heterozygosity, were reported in different genetic studies of natural popula-
tions [35, 36]. The empirical dataset for this species may reflect this condition, which resulted
in a larger sample size than for the other species that used the same type of marker. It is impor-
tant to understand that the minimum sample size estimated here represents the smallest num-
ber of individuals that can be used to precisely estimate genetic parameters. So, SaSii should be
used as a study design tool to define the sample size necessary to obtain robust population
genetic estimates and to evaluate if the obtained sample size was large enough. Other studies
discuss and propose methodologies to estimate the minimum sample size and sampling strate-
gies for collecting germplasms and ex-situ conservation [37-41], and ecological restoration
[42].

After getting SaSii outputs, we evaluated if the marker type and the mating system could
influence the minimum sample size. This turned out to be true for marker type: as suggested
by previous studies, when using SNP markers lower sampling sizes than SSR markers would
be required to represent the species’ genetic diversity. However, we did not find a significant
difference between minimum sample size in plants with different mating systems. We believe
that SaSii can aid future genetic researchers providing tools for simulating populations and
plotting graphics that summarize the most important parameters for population genetics stud-
ies. From our simulated and empirical data output, we propose that it is possible to reduce
even more the sample sizes from SSR and SNP data, reducing genetics studies costs and put-
ting less pressure on endangered species.

SaSii requires a dataset with genotyped samples to run. If the user wants to verify whether
their sample is large enough, the dataset is already available. However, if SaSii is used as a sam-
ple design tool, this data is probably not yet available. To overcome this limitation, the input
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data may be a dataset from a similar taxon (e.g. another population from the same species, spe-
cies with similar population size, demographic history, and other parameters that may influ-
ence the variance in genetic diversity). Another option is to create a simulated dataset, as
performed here for the program validation, setting simulation parameters to match the target
species’ characteristics. The current script was designed to analyze only diploid data. There-
fore, the script should not be used for haploid or polyploid species, unless the user makes the
necessary changes to the script. Our tests also showed a limitation on memory usage for R in
datasets with large numbers of markers or individuals. We recommend that SaSii should be
used in personal computers to analyze genomic data with up to 15,000 SNPs and with at most
300 individuals. To analyze larger datasets, the user should have access to a better workstation.

Conclusion

We presented SaSii an R script that takes SNP and SSR data to calculate estimates of genetic
diversity and provide plots as outputs to help researchers decide a reasonable sampling effort
for their genetic studies. Our results showed that it is possible to estimate an adequate sample
size that represents populations and does not require that the scientist take time to write any
program code, extract and sequence samples, or use genetics population programs, making it
easier to gather this information. Our results showed that a sample size per population of five
to 25 for SNP and 15 to 30 for SSR could be used for most plant species, giving a better direc-
tion for new studies.

Data accessibility

The script, tutorials, other documentation, and simulated data are available at https://sasii.
readthedocs.io/en/latest/index.html. Each empirical dataset availability is described in its cor-
responding article.
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S1 File. Zipped file containing: (A) A file containing more detailed information on the param-
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describe the dataset and analysis settings.
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