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HOMOTOPICALLY UNBOUNDED DISKS FOR GENERIC
SURFACE DIFFEOMORPHISMS

SALVADOR ADDAS-ZANATA AND ANDRES KOROPECKI

ABSTRACT. In this paper we consider closed orientable surfaces S of positive
genus and C"-diffeomorphisms f : S — S isotopic to the identity (r > 1). The
main objective is to study periodic open topological disks which are homotopi-
cally unbounded (i.e. which lift to unbounded connected sets in the universal
covering). We show that these disks are not uncommon, and are related to
important dynamical phenomena. We also study the dynamics on these disks
under certain generic conditions. Our first main result implies that for the
torus (or for arbitrary surfaces, with an additional condition) if the rotation
set of a map has nonempty interior and is not locally constant, then the map
is C"-accumulated by diffeomorphisms exhibiting periodic homotopically un-
bounded disks. Our second result shows that C"-generically, if the rotation
set has nonempty interior (plus an additional hypothesis if the genus of S is
greater than 1) a maximal periodic disk which is unbounded and has a ratio-
nal prime ends rotation number must be the basin of some compact attractor
or repeller contained in the disk. As a byproduct we obtain results describ-
ing certain periodic components of the complement of the closure of stable or
unstable manifolds of a periodic orbit in the C”"-generic setting.

1. INTRODUCTION

Periodic open disks are important objects for homeomorphisms of closed ori-
entable surfaces. In the positive genus and area preserving case, under some natural
conditions, their existence implies non ergodicity with respect to Lebesgue measure
[15]. Several results have been proved in this direction, see [14], [I5], [2], [3] and
[]. In the C"-generic area-preserving setting, with r large enough, the existence
of elliptic periodic points gives rise to periodic disks (thus called “elliptic islands”)
due to the KAM phenomenon [20)].

When the surface is the torus, there is a relationship between the instability of
rotation sets and the existence of such disks: Recall from [I9] that for a homeo-
morphism f: T? — T? in the isotopy class of the identity, the rotation set of a lift
f:R2 5 R2 of f is the (compact, convex) set p( f) consisting of all possible limits
of the form

lim 7]07% (zk) = Zka
k—r o0 nk
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where 2, € R? and ny — oo. In [4] it is proved that for a C*°-generic area-preserving
one-parameter family f; of diffeomorphisms of the torus, with ¢ belonging to some
interval of the form [t* —1, t* +1], if the rotation set p(f;) always has interior (where
ft is a lifted family) and there is a rational vector p € Q2 in the boundary of p(fi-)
such that p is in the interior of p(f;) for arbitrarily small values of ¢ — ¢t* > 0, then
t* is accumulated by parameters ¢; for which f;, has generic elliptic periodic points.
So every time a rational vector enters the interior of the rotation set of a family as
above, the critical parameter ¢* is accumulated by parameters where elliptic islands
are present. In this setting, the elliptic islands are always “homotopically bounded”,
in the sense that their lifts to the universal covering are bounded (see below). This is
relevant because, despite the usefulness of the rotation set in studying the dynamics
of toral homeomorphisms, the dependence of the rotation set on the map, and the
mechanisms by which this set varies are poorly understood.

The main motivations for the present paper are to show that for general (non-
conservative) generic one-parameter families of surface diffeomorphisms, unbounded
periodic open disks often play the role of elliptic islands, and to understand the
dynamics on such unbounded disks.

To be more precise, let S be a closed surface of positive genus, endowed with
a Riemannian metric, and 7: S — S the universal covering map. We say that an
open topological disk D € S is homotopically bounded (or unbounded) if some
(hence any) connected component of 771(D) is bounded (resp. unbounded) in the
lifted metric. Given r > 0, denote by Diff((.S) the space of C" diffeomorphisms
from S to S which are isotopic to the identity, endowed with the C" topology.
Any such f lifts to a C" diffeomorphism f: S — S which commutes with all deck
transformations (unique if the genus of S is greater than 1) called natural lift of f.

Our first result is somewhat analogous to the one stated for area-preserving maps
of the torus, but in the non-conservative setting (with homotopically unbounded
disks instead of elliptic islands). Recall that having a rotation set with nonempty
interior is a C°-open condition.

Theorem A. Given r > 2, let (fi)ter be a C"-generic one-parameter family in
Diff}y(T2) with a lift (fi)ier such that the rotation set p(f,) has nonempty interior
for each t € I. Suppose that to < t1 are such that a rational vector p € Q2 lies
outside of p(fy,) but in the interior of p(fi,). Then there exists an open interval I' C
[to, t1] such that for all t € I', the map fi has a periodic homotopically unbounded
open topological disk with rotation vector p which is the basin of an attracting or
repelling periodic point.

An immediate consequence is that if the rotation set (as a subset of R? mod-
ulo integer translations) has nonempty interior and is not locally constant at f €
Diffy(T?), then f is C"-accumulated by diffeomorphisms exhibiting homotopically
unbounded periodic disks (which are basins).

A similar result can be stated in a surface S of higher genus. In order to be
precise, let us introduce a definition: we say that a periodic point @ of f € Diff((5)
has a full mesh if @ is a hyperbolic periodic saddle with a stable branch «o® (i.e.
a connected component of W*(Q) \ {®}) and an unstable branch a* such that
every lift of o® has a topologically transverse intersection with every lift of a* (see
Section [Z4] for more details). When S = T? and r > 2, it is known from [2] that
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the rotation set of a lift of f has nonempty interior if and only if there exists a
periodic point with a full mesh.

Let us denote by FM(S) C Diff((S) the space of diffeomorphisms for which
there exists a contractible hyperbolic periodic saddle Q with a full mesh. By con-
tractible we mean that it lifts to a periodic point of some natural lift of f (see
Section ). It is not difficult to see that this set is open in Diff(;(S). Moreover, if
r > 2, we know from [2] that FM{g(T?) coincides with the diffeomorphisms which
have a lift for which the origin belongs to the interior of the rotation set, and for
surfaces of higher genus a topological characterization (in terms of the existence of
certain types of periodic orbits) is given in [3] (see Section 24]).

The rotation set of f € Diff 8 (S) can be defined when S is a surface of higher genus
g > 1, and in this case it is a subset of the first homology group H;(S,R) ~ R?9,
which depends only on f and not on the choice of a particular isotopy from the
identity to f (see Section ). The same conclusion of Theorem [A] holds in this
setting for generic one-parameter families in the space F Mg (S):

Theorem A’. Suppose the genus of S is g > 1. Given r > 2, let (f)ter be a
C"-generic one-parameter family in FM{(S). Suppose that to < t1 are such that
a rational vector p € Hy(S,Q) ~ Q% lies outside of p(fi,) but in the interior of
p(fi,). Then there exists an open interval I' C [to,t1] such that for allt € I, the
map fr has a periodic homotopically unbounded open topological disk with rotation
vector p, which is the basin of an attracting or repelling periodic point.

Recall that a topological attractor of f is a compact set K which has a neigh-
borhood U such that f(U) C U and K = (1,5, f™(U). The basin (of attraction)
of K is the set [, o, f"(U). A topological repeller is defined similarly using ft
instead of f. Finally, a periodic open topological disk is maximally periodic if it
is not properly contained in any other periodic open topological disk. Note that
every homotopically unbounded periodic disk is contained in a maximally periodic
homotopically unbounded disk.

Our second main result describes the dynamics of (maximal) homotopically un-
bounded periodic disks when the rotation set has nonempty interior.

Theorem B. Givenr > 1, let f be a C"-generic element of Diff|(T?), such that the
rotation set of a lift of f has nonempty interior. If D = f™(D) is a homotopically
unbounded mazximally periodic open topological disk and its prime ends rotation
numben] is rational, then D is a basin (of attraction or repulsion) for f™.

Thus, the “unbounded” part of D actually converges under forward or backward
iteration towards a compact connected (hence bounded) attracting or repelling set.

The topology of connected components of the lift to the universal covering of
homotopically unbounded maximally periodic open disks can be very complicated.
In the torus case, for instance, assume D C T? is such a disk. Then, f*(D) =
D for some integer n > 1. Fixed some lift of f to the plane, denoted f: there
exists an integer pair (a,b) such that for any connected component D of 7~ YD),
f” (5) =D+ (a,b). From Proposition B4l for any periodic point z € T? with a full
mesh, either D N W*#(z) # 0, and in this case 0D = W¥(z) from the maximallity
of D, or DNW"(z) # () and D = W=(z). So, if (a/n,b/n), the rotation vector
of D, belongs to the interior of p(f), we could choose the point z which has a full

1See Section
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mesh with rotation vector equal to (a/n,b/n), see Theorem And considering
the lift of f to the plane, given by h = f”(O) — (a,b), we get that both D and
any Z € 7 1(2) are h-periodic. Thus, as D either intersects W*(%) or W*(Z), the
Alemma [21] implies that dD is equal to either W#(Z) or W*(Z), which are closed
connected equivariant subsets (invariant under integer translations) of the plane.
In particular, D is an open disk which intersects all fundamental domains of the
torus and clearly, as D = W(B) is a disk, DN (15 + (t,5)) = 0 for all integer pairs
(t,s) # (0,0). So, all connected components of 7~1(D) have the same common
boundary!

The other possibility is when the rotation vector of D belongs to the boundary
of the rotation set. In this case, from the bounded displacement condition satisfied
with respect to vectors in the boundary of the rotation set (see [10], [I] and [I7]),
D cannot be as above. It has to be bounded in at least some direction.

About the hypotheses of the above Theorem (and of Theorem [B'), we do not
know whether the condition on the prime ends rotation number is necessary:

Question. Is there a homeomorphism f of a closed surface with an f-invariant
homotopically unbounded open topological disk D having an irrational prime ends
rotation number?

Even if we assume that f is smooth, the surface is T2, and the rotation set of f
has nonempty interior, we do not know the answer to this question.
A version of Theorem [B] holds in higher genus surfaces if one considers elements

of FMG(S):

Theorem B’. Let S be a closed orientable surface of positive genus, and givenr > 1
let f be a C"-generic element of FMy(S). Then any homotopically unbounded
mazimally periodic open topological disk D = f™(D) with a rational prime ends
rotation number is a basin (of attraction or repulsion) for f™.

Theorems Bl and [B7] are a consequence of the following more general fact:

Theorem C. For any r > 1, if f € Diff((S) is a C"-generic diffeomorphism of
a closed surface S of positive genus, z is a contractible periodic point with a full
mesh, D = f™(D) is a periodic connected component of the complement of W*(z)
and the prime ends rotation number of f™ in D is rational, then D is a basin of
attraction.

Of course, the analogous result holds replacing W*(z) with W*(z), in which case
D is a basin of repulsion. In addition, under the hypotheses of Theorem [C] we are
able to give a rather detailed description of the prime ends dynamics: there are
finitely many periodic prime ends, some of which are accessible hyperbolic saddles
and the remaining are sources. For the saddles, one branch of the unstable manifold
is contained in D and the whole stable manifold belongs to 0D and consists of
accessible points. See Theorem [Tl

Note that in Theorem [C] above it is irrelevant whether D is homotopically un-
bounded or not. To prove Theorems [Bl and [B/] from this result, one shows that a
maximally periodic homotopically unbounded open topological disk must always
be a connected component of S\ W#(z) or of S\ W4(z) for a contractible periodic
point z with a full mesh.

A final observation about Theorems [Bl B and [ is the following: In order to
prove that diffeomorphisms of the torus isotopic to the identity whose rotation
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sets have nonempty interior, have periodic points with a full mesh, Theorem
needs C'*¢ differentiability for some ¢ > 0. The same is true for Theorem [ in
the higher genus case, where for C1*¢ diffeomorphisms isotopic to the identity, the
presence of a fully essential system of curves (see Definition 2] implies existence of
a contractible periodic point with a full mesh. But in the statements of Theorems
Bl B] and [C the generic C! case is also considered. Nevertheless, it is easy to
deal with it, because the subset of C? diffeomorphisms is dense in the set of C*
diffeomorphisms. So, in the torus case, from Theorem[Z] a C? diffeomorphism whose
rotation set has non empty interior (remember that this is a C° open condition)
will have a periodic point with a full mesh, as we said, a C! open condition. So,
the Cl-genericity in Theorem [Blis understood.

In the higher genus case, Theorems [B] and [(] already assume the existence of
contractible periodic points with a full mesh, so there is nothing to add. But one
could ask, if instead of assuming the existence of contractible points with full mesh,
a Cl-generic f with a fully essential system of curves were considered. What would
happen? It turns out that the existence of a fully essential system of curves means
that the map f has a finite number of periodic orbits with certain special topological
properties. In the C'-generic case, these orbits are non-degenerate and thus persist
under small perturbations (the above mentioned topological properties of these
orbits persist as well, again see Definition Z4)). Thus if f* is a C? diffeomorphism
sufficiently close to f, then it also has a fully essential system of curves and so,
Theorem [3 applies to f*, assuring the existence of a contractible periodic point with
a full mesh. As we said above, this is a C! open condition. So, if instead of assuming
the existence of saddles with full mesh in Theorems[Bland [C] we considered generic
C" (for any r > 1) diffeomorphisms having fully essential systems of curves, the
same conclusions would hold. For r > 2, this would be a trivial consequence of
Theorem [3 and for r = 1, it would follow from the above discussion.

Using the same ideas from Theorem [C] one can show a general result in the
contractible case:

Theorem D. Let M be a closed orientable surface and fix any r > 1. For any C"-
generic diffeomorphism f € Diffg(M), which we assume to have a periodic point
with a full mesh if M has positive genus, let z be a hyperbolic n-periodic saddle
point such that W#(z) is contractible. If D is a periodic connected component of
the complement of Ul f{(W*(2)) which has rational prime ends rotation number
at one of its boundary components (therefore, at all of them), then D is a basin
of attraction ( if instead of stable manifold of z, we considered unstable manifold,
then D would be the basin of a repeller).

A nice corollary of the above Theorem is the following:

Corollary of Theorem D. Fixed any r > 1 and any C"-generic diffeomorphism
f of the sphere without homoclinic points, for any hyperbolic periodic saddle z of
f, each branch at z does not accumulate, neither on itself nor on any of the other
three branches at z (neither on the whole orbit of all the branches). Moreover,
the unstable branches accumulate on connected attractors and the stable ones,
accumulate on connected repellers.

This result appears in [9] under other hypotheses for planar diffeomorphisms and
it is a first step in showing that zero entropy mildly dissipative diffeomorphisms of
the plane are either infinitely renormalizable or Morse-Smale.
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This paper is organized as follows. In Section 2] we present some results we use
and definitions. In Section[3] the results proved by Pixton for planar surfaces in [23]
are generalized to other surfaces with some additional hypotheses. In Section [ we
prove the main technical result of the paper, in Section Bl we extend some generic
type results that hold in the space of diffeomorphisms to the parameter space of
generic families, and in Section [ proofs of Theorems [A] [A7] Bl B/ [C] and [ appear.

2. PRELIMINARIES AND ADDITIONAL RESULTS

2.1. Notation and some definitions. Let S be a closed orientable surface. We
denote by 7 : S — S the universal covering map of S, and by Deck(n) the group
of deck transformations of .

We assume that surfaces are endowed with a Riemannian metric, and their uni-
versal coverings with the lifted metrics. For any open topological disk D C S we
define D(D) as the diameter of any connected component of #~1(D) (this does not
depend on the choice of the component). We say D is homotopically unbounded
when D(D) = oo, otherwise we say it is homotopically bounded.

As we already defined, for any r > 0, Diff((.S) is the set of C" diffeomorphisms
of S isotopic to the identity (clearly, when r = 0, we mean homeomorphisms).

A compact subset K of S is said to be contractible if there exists a closed
topological disk D C S such that K C int(D). We will make frequent use of
the following observation: if K is connected and contractible, then the connected
components of 771 (K) are bounded and homeomorphic to K.

2.2. Prime ends compactification of open disks. If D is an open topological
disk of an oriented surface such that 0D is a Jordan curve and f is an orientation
preserving homeomorphism of that surface which satisfies f(D) = D, it is easy to
see that f : 9D — 0D is conjugate to a homeomorphism of the circle, and so a
real number p(D) = rotation number of f |sp can be associated to this problem.
Clearly, if p(D) is rational, then there exists a periodic point in 9D and if it is not,
then there are no such points. This is known since Poincaré. The difficulties arise
when we do not assume 9D to be a Jordan curve.

The prime ends compactification is a way to attach to D a circle called the
circle of prime ends of D, obtaining a space D LI S' with a topology that makes it
homeomorphic to the closed unit disk. If, as above, we assume the existence of an
orientation preserving homeomorphism f such that f(D) = D, then f |p extends
to DU S*. The prime ends rotation number of f in D, still denoted p(D), is the
usual rotation number of the orientation preserving homeomorphism induced on
S1 by the extension of f |p. But things may be quite different in this setting. In
full generality, it is not true that when p(D) is rational, there are periodic points
in D and for some examples, p(D) is irrational and 9D is not periodic point free.
Here we refer to [I8] and [I3] for definitions of prime ends, prime chains, end-cuts,
cross-cuts, cross-sections, principal points, as well as some important theorems.

Let us state an addendum to Theorem [C] describing the prime ends dynamics,
which is part of our proof:

Theorem 1. Under the hypotheses of Theorem|[C, if D is a connected component of
(W=(2))¢ and D is the prime ends compactification of D, then D is a closed disk in
whose boundary there are only finitely many periodic prime ends. Necessarily, some
are accessible hyperbolic saddles and the remaining are sources. For the saddles,
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one branch of the unstable manifold is contained in D and the whole stable manifold
belongs to 0D and is made of accessible points.

2.3. Rotation sets.

The torus. Let T? = R2?/Z? be the flat torus and let 7 : R? — T? be the
associated covering map. Coordinates are denoted as # € R? and = € T2. Note
that the deck transformations of 7 in this case are the integer translations on the

plane.
We denote by Diff((R?) the set of lifts of elements from Diffy(T?) to the plane.

Maps from Diff(;(T?) are denoted f and their lifts to the plane are denoted f. Any
such lift commutes with the deck transformations (i.e. with integer translations).

Given f € DiffS(T?) and a lift f € Diff)(R2), the Misiurewicz-Ziemian rotation
set of f, p(f), can be defined as follows (see [19]):

W oH= N U {%’%m}

121 n>1

This set is a compact convex subset of R? (see [19]), and it was proved in [I1] and
[19] that all points in its interior are realized by compact f-invariant subsets of T2,
which can be chosen as periodic orbits in the rational case. By saying that some
vector p € p(f) is realized by a compact f-invariant set, we mean that there exists
a compact f-invariant subset K C T2 such that for all z € K and any z € 7~ 1(2)

A ~

Moreover, the above limit, whenever it exists, is called the rotation vector of the
point z, denoted p(f, 2).

Surfaces of genus larger than one. When S is a closed orientable surface of
genus ¢ > 1, we may identify the universal covering S with the Poincaré disk D.
As before, we denote by Diff(;(ID) the set of lifts of elements from Diff(S) to the
Poincaré disk. However here we only consider lifts which commute with all deck
transformations. It is well known that, given f € Diff(j(.S), there exists only one
]?: D — D lifting f and having this property. It is called the natural lift of f. One
way to find it, is to consider an isotopy I from Id : S — S to f: S — 5. The
natural lift f is given by the endpoint of the lift of the isotopy I which starts at
Id: D — D. As in the torus case, maps from Diff(;(.S) are denoted f and their lifts
to D are denoted f

The notion of Misiurewicz-Ziemian rotation set introduced for the torus can be
generalized to a surface S of genus larger than one. In order to avoid unnecessary
details, we refer to [I5] for a precise definition. Here we limit ourselves to stating
that the rotation set of f € Diff)(S) is a subset p,,.(f) of the first homology group
Hi(S,R) ~ R?9 (where g is the genus of S), and that periodic orbits of f have
a corresponding rotation vector which is a rational element of the rotation set, as
follows: given an isotopy from the identity to f and a periodic point p of least period
n, the rotation vector of p is a/n € H1(S,Q), where oo € Hy(S,7Z) represents the
homology class of the loop obtained by following the isotopy from p to f(p), then
from f(p) to f2(p), and so on until f(p) = p.

The set pp,.(f) does not need to be convex for surfaces of higher genus, nor it
is generally true that every rational element of its interior is realized by a periodic
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point. However, following [3], one has that these properties are true if f € FMG(S).
Recall that this means that f has a contractible hyperbolic periodic saddle (i.e. one
that lifts to a periodic point of the natural lift of f) with a full mesh, and for smooth
enough maps this is guaranteed by certain topological conditions, explained in the
next section.

2.4. Existence of full mesh. Recall from the introduction that a hyperbolic peri-
odic saddle point Q of f € Diff§(S) is said to have a full mesh if there exist branches
o of W*(Q) and a® of W*(Q) such that every lift of a to the universal covering
S has a topologically transverse intersection with every lift of a*. In other words, if
a" and &° are any two lifts of a* and a®, respectively, then a* has a topologically
transverse intersection with g(a®) for every deck transformation g of the universal
covering. For instance, in the case S = T2, this means that &° intersects every
integer translation of a*.

For a precise definition of topologically transverse intersections, see definition 9,
page 4 of [2]. In the present paper, however, we almost will not need it, because most
of the time we consider generic maps, and for a C"-generic diffeomorphism (r > 1)
all intersections between stable and unstable manifolds of periodic points are C*-
transverse. We remark that the existence of a topologically transverse intersection
between the stable and unstable manifolds of two hyperbolic saddles is a C"-open
condition for any r > 1.

It is not difficult to see that if f € Diff§(T?) has a periodic point with a full
mesh, then the rotation set of a lift of f has nonempty interior. In [2], the following
result was proved, which implies the converse of the previous claim in the C1*¢
case.

Theorem 2. Suppose f belongs to Diff(l)+€(T2) for some € > 0 and (p/q,7/q) €

int(p(f)). Then, for some integer n > 1, f has a ng-periodic hyperbolic saddle
point Q of rotation vector (p/q,r/q) which has a full mesh.

For surfaces of higher genus, a generalization of the previous result appeared in
[B]. In order to state it, first we remember what an inessential subset of a closed
orientable surface S is: K C S is inessential, if and only if, it is contained in an
homotopically bounded open topological disk of S.

And now, we introduce a definition from [3].

Definition 24 (Fully essential system of curves). We say that f € Diff3(S)
is a homeomorphism with a fully essential system of curves ¢ = UF_ v;, if the
following conditions are satisfied (I is some fixed isotopy from Id to f):

(1) each 7; is a closed geodesic in S and the complement of U¥_,7; only has
inessential connected components (k > 1);

(2) foreachi € {1,...,k}, thereis a f-periodic point p; such that its trajectory
under the isotopy [ is a closed curve freely homotopic to «y; with the correct
orientation (the 7,5 are oriented);

(3) for every open intervals B, F C JD, there exists an oriented simple arc
a C 7 }(%) formed by the concatenation of a finite number of oriented
subarcs of extended lifts of geodesics in 4" and such that the initial point
of & is contained in B and the final point belongs to F.

Remark. See [3] for some comments on this definition. In particular, instead of the
third condition, we could assume that for each ~;, there are two f-periodic points
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pj and p; such that their trajectories under the isotopy are closed curves freely
homotopic to «; and to —v;. It is not hard to see that this assumption implies the

existence of a fully essential system of curves as stated above, see [3, Propositions
6 and 7).

Theorem 3. Suppose f belongs to Diff;T(S) for some € > 0 and it has a fully

essential system of curves €. Then, f has a contractible hyperbolic periodic saddle
point QQ € S with a full mesh.

The following discussion can be made assuming only topologically transverse
intersections. But as in most of this paper we are assuming generic conditions, we
will consider until the end of this subsection, that all intersections between stable
and unstable manifolds of periodic points are C'-transverse. This simplifies several
arguments.

In both cases, the torus and higher genus, it is possible to find finitely many
oriented closed curves in the surface, such that each curve is given by the union of
an arc in W*(Q), starting at @) and ending at a point z in W*(Q) N W*(Q), and
another arc contained in W*(Q), starting at z and ending at @, with the property
that the union of these closed curves generates the homotopy group of the surface
as a semi-group (the orientation of each curve is given by the direction of the arrows
in the unstable and stable manifolds).

In particular, either for the torus or for higher genus surfaces, we get the follow-
ing:

Proposition 4. Suppose M is a closed surface of positive genus and f € Diﬁ(l) (M)
has a contractible hyperbolic periodic saddle point with a full mesh. Then there is
another (possibly the same) hyperbolic periodic saddle @ and compact arcs A\, C
WH(Q) and As C W*(Q) such that Q € As N Ay, and M \ (As U Ay) is a union of
open topological disks whose covering diameters are uniformly bounded from above
by some constant Max(f) > 0. Furthermore, Q can be chosen with infinitely many
different rotation vectors. In particular, gien a bounded continuum K c M and
an integer n > 1 such that, f"(f() = g(f() for some deck transformation g, then
the f™-periodic continuum K C M given by W(IN() is actually contractible.

Proof. First, we need to prove the assertion about infinitely many different rotation
vectors for surfaces of genus larger than 1. For the torus, we know that for each
rational vector in the interior of the rotation set, there exists a saddle with a full
mesh with that rotation vector.

But in the higher genus context, it is unknown and maybe not even true that
for all rational vectors in the interior of the rotation set, there exists a saddle
with a full mesh with that rotation vector. Nevertheless, we can consider the
following construction (for more details, see Lemma 18 and the proof of [3, Theorem
1]): Let Qo be the contractible saddle which has a full mesh. Picking some deck
transformation h whose homology class [h] is non-trivial, we can build a rotational
horseshoe at @@y so that symbol “0” corresponds to the vertical rectangle that
contains (g and symbol “1” corresponds to the vertical rectangle that moves in the
direction of h in the universal covering, under some adequate iterate of f. So, it
is straightforward that we can find periodic saddles z, in this horseshoe, such that
varying « in an infinite set, the z,/s have infinitely many different rotation vectors
(infinitely many rational multiples of [h]). And moreover, the stable (unstable)
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manifold of Q) intersects the unstable (resp. stable) manifold of z, (transversely).
So, W*(Qo) = W¥(z4) and W*(Qo) = W#(24), which imply that for all o’s, there
are compact arcs A& C W"(z,) and A\ C W*(z,) such that z, € A2 N A% and
M\ (A2 U)?) is a union of open topological disks.

Now, it is easy to prove the second part of the proposition: Assume K is a
continuum as in the statement. So, there exist n > 0 and a deck transformation
g such that f"(K) = g(K). This implies that all points in K have the same well-
defined rotation vector [g]/n for f (and —[g]/n for f=1). So, if we pick the saddle
Q@ equal to some z,+ so that its rotation vector is different from the rotation vector
of K, then as ()\3 U /\2‘*) cannot intersect K, the proof is over. O

3. SOME EXTENSIONS OF PIXTON’S THEOREMS

Throughout this section, M denotes a surface, and some integer r > 1 is fixed.
We say that the surface M is planar if each connected component of M is home-
omorphic to a subset of the sphere. If M is any surface, we say that a com-
pact subset K C M is planar if K has a neighborhood in M which is a pla-
nar surface. If f € Dift"(M) is given, the orbit of a subset Z C M is denoted
O4(Z)={f"(2) : 2 € Z, n € Z}.

If p is a hyperbolic periodic saddle point of f € Diff" (M), a stable (or unstable)
branch of f at p is a connected component of W*(p) \ {p} (resp. W*(p) \ {p}).
A periodic branch of f is a stable or unstable branch of some hyperbolic periodic
saddle point of f.

Also as a consequence of the local linearization of hyperbolic periodic saddles,
one may find an arbitrarily small neighborhood U of p such that the local stable
and unstable manifolds of p in U split U into four “local quadrants”. By the local
stable (or unstable) manifold of f in U we mean the connected component W} (p)
(resp. Wt (p)) of W5(p)NU (resp. W*(p) NU) containing p. We say that a set Z
accumulates on p through a local quadrant @ if ZN @ accumulates on p. The local
stable and unstable branches at p adjacent to ) are the connected components Y,
of Wi .(p)\ {p} and X5 of W .(p) \ {p} which lie in the boundary of @ in U;
the stable and unstable branches adjacent to @ are the sets Y = J, <o /7" (Yioc)
and X =J,>¢ FF"(Xi0¢), where k > 0 is an integer such that f*(Y,.) C Yo and
f_k(Xloc) C Xloc-

If Y is a stable branch and X is an unstable branch of p, we say that a set Z
accumulates on a point x© € X locally from the Y -side if the following holds: given
any compact arc v* of W*(p) containing both p and z in its relative interior, and any
tubular neighborhood U of 4%, the connected component Uy of U\~v* containing the
initial local stable branch Yj,. corresponding to Y is such that Uy N Z accumulates
on x.

For future reference, we state the following fact, which is a straightforward con-
sequence of the linearization of hyperbolic periodic saddles and the existence of
horseshoes:

Proposition 5. Let Y and X be a stable and an unstable branch (respectively) of
a hyperbolic periodic saddle of f € Diff" (M), and suppose X meets Y transversely.
If Z is a periodic arcwise connected set, then Z intersects X UY provided that one
of the following holds:

(1) One of the branches X orY is contained in Z, or
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(2) Z accumulates on X from the Y side, or
(3) Z accumulates on'Y from the X side.

In particular, if Z is an unstable (or stable) branch of a periodic saddle and one of
the above cases holds, then Z must intersect Y (resp. X ).

Proposition 6. Suppose f € Diff" (M) and K C M is an f-periodic continuum
not reduced to a point.

(1) If p € K is a hyperbolic periodic saddle, then at least one of the four
branches at p is contained in K;

(2) If, moreover, there exists a sequence p, € K accumulating on p through a
local quadrant @ at p, then at least one of the two branches adjacent to Q
is contained in K.

Proof. Without loss of generality, considering an iterate of f if necessary, assume
K is invariant, p is fixed, and all four branches at p are f-invariant. Also, by the
Hartman-Grobman Theorem, considering a appropriate (CY) local chart at p we
may assume that f is linear in a neighborhood of p : the restriction of f to this
neighborhood is given by the restriction of a linear map to a neighborhood of the
origin, where the stable/unstable manifolds are the vertical/horizontal axes.

Item 1. First, suppose K avoids W*(p) \ {p}. Then, if W}%_(p) denotes a local

unstable manifold at p, we have that K is disjoint from I'* = W _(p)\ f~H(W2.(p)),
and therefore there is a neighborhood U, of the compact set I'* that is disjoint from
K. From the local linearization one easily verifies that J,~, f~*(U") contains a
set of the form B\ W*(p) where B is a ball around p, which we can choose small
enough so that K intersects the complement of B. From the invariance of K, it
follows that K N B C W*(p), and since it must contain p and a point outside of B,
we deduce that K contains a local stable branch at p, as desired.

Suppose now that K contains some point z € W¥(p) \ {p}. We may assume
that z lies in the local unstable manifold W} _(p), in particular, in the positive
axis. Assume also that K avoids some point of the unstable branch at p containing
z (otherwise there is nothing to be done). Then K avoids the whole orbit of this
point, so we may assume there exists a point o in W (p) \ K such that the arc
' of W*(p) joining xo to f(z) contains z and the endpoints of I'* are disjoint
from K. In local coordinates, one has T'“ = % x {0} where I* is an arc in RY.
From the fact that K is compact, if § > 0 is sufficiently small, the left and right
edges of Rs = I" x [—4,d] are disjoint from K. This, together with the fact that
if we fix § small enough K intersects both I x {0} and the complement of Rs,
implies that K contains a continuum Ks C Rj intersecting both I* x {0} and one
of the horizontal edges of Rs. From this we also deduce that if Ry = I* x [—0,0]
and Rgr = I" x [0, 4], either KN R; contains a continuum which intersects the two
horizontal edges of R(J{, or a similar property holds for Ry . In the first case, by
a straightforward A-lemma type argument we deduce that K accumulates in the
local stable branch at p corresponding to the positive y axis; and in the second
case K accumulates in the opposite stable branch. In either case we deduce that
K contains a stable branch.

Item 2. Suppose p, € K converges to p through the first quadrant. Inside the
linearizing neighborhood of p = (0,0), consider a square of the form @Q; = [0,d]?
(clearly contained in the first quadrant) for some sufficiently small 6 > 0 such that
KN (Q1)¢ # (. From our hypothesis, we may assume p,, € K Ninterior(Q). Let
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K, be the connected component of K N Q7 that contains p,. As K intersects the
complement of @1, K, intersects 0Q; for all integers n > 0. As {0} x [0,d] and
[0, 6] x {0} are local stable and unstable branches at p, if K, intersects {0} x [0, ] U
[0,6] x {0} for some n > 0, then a straightforward A-lemma type argument (as in
item 1) implies that K contains the unstable branch that contains [0, d] x {0} or
the stable branch that contains {0} x [0, ]. As they are both adjacent to the first
quadrant, the proof is over in this case.

Assume now that all K5 avoid {0} x [0,6] U [0, 4] x {0}. So, for all n > 0, K,
intersects {d} x [0,8]U[0,d] x {d}. As p,, converges to p, there exists a subsequence
n; — oo such that K,, — © C @; in the Hausdorff topology, as i — oco. It
is straightforward to show that © is a subcontinuum of K that contains p and
intersects {0} x [0,0] U [0,d] x {6}. If © does not intersect interior(Q1), then it
contains {0} x [0,4] or [0,6] x {0} and we are done (from the f-invariance of K).
If © intersects interior(Q1), then f™(©) accumulates on some branch adjacent to
the first quadrant for n — oo or for n — —oo (maybe both, for instance when
O N ({0} x[0,5]U0,6] x {0}) = {(0,0)}. As O is contained in the f-invariant
continuum K, the proof is over. O

From the previous result and the local linearization of periodic saddles, one easily
obtains the following

Corollary 7. If X, Y are adjacent branches of a hyperbolic periodic saddle of f €
Diff" (M) and K is a periodic continuum which accumulates on a point of X locally
from the Y -side, then K contains one of the branches X orY.

A hyperbolic periodic saddle p = f™(p) always has a continuation, i.e. there are
neighborhoods U of p and U of f in Diff" (M), and a continuous map U — U which
maps g € U to the unique fixed point p, of g in U (and py is a hyperbolic saddle).
Moreover, if X is a stable (or unstable) branch of f at p, then its corresponding local
branch in U also has a continuation, and as a consequence X, has a continuation,
which is the corresponding stable (or unstable) branch of g at p,. Along this section
we will use the above notation for continuations of branches and periodic saddles.
Let us recall the following result from [23]:

Theorem 8. If M is a closed surface, there exists a residual subset x"(M) C
Diff" (M) such that if f € x"(M) then all periodic points of f are hyperbolic, the
stable and unstable manifolds of any pair of periodic points are transverse (that is, f
is Kupka-Smale), and in addition if X,Y are periodic unstable and stable branches,
respectively, the maps

g Xy g Y, and g— X,NY,
are continuous at f.
We also recall a basic perturbation result (see Lemma 1.6 of [23]):

Lemma 9 (Perturbation Lemma). Suppose pi,ps € M are saddle points of [ €
Diff"(M); Y7 is a stable branch at p1 and X3 is an unstable branch at ps. Given
x € Xa, a neighborhood V' of x and a neighborhood U of f, one has:

(a) If x € Y1 N Xg, then there is g € U with g = f off V such that Y1, meets
Xog transversely at x.
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(b) If y is sufficiently close to x there is g € U with g = [ off V' such that
g(y) = f(x). If f¥(x) ¢ V for all k < 0, then y € Xaoy; if y € Y1 and
fE(y) ¢ V for allk > 0 theny € Y1,.

The next result is essentially [23, Theorem 1.7]:

Theorem 10. Let M be a surface and let p be a hyperbolic periodic saddle of f €
Diff"(M). Also let X and Y be an unstable and a stable branch at p, respectively,
such that O;(X) is planar. Suppose that there exists y such that either y € Op(X)N

Y, or Of(X)NY =0 and y € Op(X)NY. Then, given a C"-neighborhood U of f
and a neighborhood V' of y, there exists g € U such the continuations Xy and Yy of
X and'Y intersect transversely in V.

Proof. This is a direct consequence of [23] Theorem 1.7], which has the same state-
ment with the additional assumption that M is planar. We are only assuming that
Of(X) is planar, but the proof in [23] relies only on local perturbations in small
neighborhoods of points of Of(X), and therefore it applies to our setting (indeed,
modifying M outside a neighborhood of O;(X), we may assume that M is planar
for the purposes of this proof). O

As a consequence, we have (similar to [23] Corollary 2.3]):

Corollary 11. Let X and Y be an unstable and a stable branch of a periodic
saddle p of f € x"(M). If Of(X) is planar and intersects Y, then X intersects Y
transversely.

Proof. We may modify the surface outside a neighborhood of O;(X) and assume
that M is planar itself. In this case Y changes, but a small local branch Yy C Y does
not. From Theorem [0 after a small perturbation supported in a neighborhood
of O¢(X) one finds a transverse intersection between the continuations of X and
Y (which implies a transverse intersection between the continuation of X and Yp).
Since this perturbation is localized in a neighborhood of O;(X), it can be translated
to a perturbation in the original surface, with the same consequence. But since
f € x" (M), this implies that there already existed a transverse intersection between

X and Y. O

The proof of Lemma [I2] is essentially contained (with minor variations) in the
proof of Lemma 2.4 of [23]. Note that we do not assume that the surface is planar,
so the conclusion is weaker.

Lemma 12. Let X and Y be an unstable and a stable branch of a periodic saddle
p for some f € x"(M). Suppose there are sequences (yx)x>0 of points and (ng)g>o0
of positive integers such that yp =y €Y and x, = f~™ (yr) > € X as k — oo.
Under these assumptions, Of(Y") intersects at least one of the unstable branches at
p. In addition:

(a) If Of(Y) does not intersect X, then there exists a sequence (€y)k>0 with 0 <
U < ny such that both (f~%(yx))k>0 and Of(Y) accumulate on a point x. € X,
the other unstable branch at p, locally from the Y -side.

(b) If xx — x locally from the Y -side, then there exists an unstable branch at p,
a point xy in that branch (the branch might be X or not) and a sequence ({x)r>0
with 0 <l < ny, such that both (f =% (yi)) k>0 and O (Y) accumulate on x, locally
from the Y -side.
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Proof. Let N > 0 be the smallest common period of X, Y and of course p. Consider
an arbitrarily small ball B.(y). If € > 0 is sufficiently small, then fi(B.(y))NB.(y) =
Pforalll <i< N and f/(y) ¢ Bc(y) for all j > 0. Now following Lemma 9, perturb
f~!inside B.(y) so that the resulting diffeomorphism, g1, is e-C*-close to f~! and
it satisfies g1 (y) = f~!(yx), for some arbitrarily large k. We have two possibilities:

(1) f~%(yx) ¢ Be(y) for all 1 < i < ny. In this case, g7 (y) = f~"*(yx) which
is e-close to x € X, if k is large enough.

(2) the above does not happen. In this case, let iy be the smallest 1 < i < ng
such that ¢g=*(y) = f~%(yx) € Be(y). There exists a constant 7' > 0 which
depends only on f (obtained from the linearization of f near p) such that
for some integer s > 0, O,(Y,) > g~ 0TsN(y) = fo+sN(y,) is T.e-close
to a fixed fudamental domain I* of the unstable manifold of p, from the
Y -side.

If possibility (1) above happens for all arbitrarily small ¢ > 0 and arbitrarilly
large values of k, then as f € x" (M), Of(Y) accumulates on « € X. And moreover,
if z; — x locally from the Y-side (the hypothesis in item b of the lemma), then
as f € x"(M), O;(Y) also accumulates on x locally from the Y-side (because this
happens for g).

And if possibility (2) above happens for all ¢ > 0 and all arbitrarily large values
of k, then O;(Y) and f~o®)+s®N(y,) both accumulate on some point T € I“
from the Y-side as k — oo (io(k) and s(k) are sequences which satisfy 1 < ¢, =
io(k) — s(k)N < ny and £, — oo as k — 00). Clearly T could belong to X. This
easily concludes the proof of the lemma. We just have to note that if the hypothesis
in item a holds, then for all € > 0 and all arbitrarily large integers k, we always fall
into possibility (2) above. A final remark is that if the hypothesis in item b holds,
then it is possible that either possibilities (1) or (2) occur. O

Corollary 13. Let X andY be an unstable and a stable branch of a periodic saddle
p of f € X" (M), such that O;(Y) intersects X. If one of the sets O;(Y) or Of(X)
is planar, then Y intersects X transversely.

Proof. Corollary [l (applied to f~!) deals with the case where Of(Y) is planar.
Now assume that O¢(X) is planar.

There is a sequence (zj)z>0 of points of O(Y) converging to a point z € X.
From the fact that Y is a stable branch of p, after taking a subsequence we may
assume that [ (z,) — y € Y for some sequence (ny)x>o of positive integers. From

Lemma [[2] applied to f~! we see that O¢(X) intersects Y or there is a sequence
(0) k>0 With 0 < £ < ny, such that f% (x;) converges to y. € Yi (Y. is the other
stable branch at p) and Of(X) accumulates on y,, both from the X-side. In the
first possibility, Corollary [Tlimplies that X intersects Y transversely and the proof
is over. And in the second, it implies that X intersects Y, transversely. Since
f(z) € Op(Y) converges to y. from the X-side, it follows from Proposition
that O¢(Y) intersects X. Thus there is ¢ > 0 such that f*(Y) intersects X. As
this intersection is transverse and since X and Y are branches of the same periodic
saddle, by a repeated application of the A-lemma we conclude that f*!(Y') intersects
X transversely, for each & > 1. In particular since Y is a branch of a periodic
saddle, there exists n such that f™(Y) =Y, and choosing k = n we conclude that
Y intersects X transversely. ([
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Theorem 14. Let p,q be periodic saddles of f € x" (M), and suppose there is an
unstable branch Z of q and a stable branch 'Y of p such that Of(Z) intersects Y. If
one of the sets Op(Z) or Of(Y) is planar, then O;(Z) intersects Y transversely.

Proof. Suppose by contradiction that Of(Z)NY =0, and let y € Of(Z) NY, so
there exists a sequence (zx)r>0 of points of O;(Z) such that z; — y as k — oc.

Suppose first that there exists a neighborhood of y which is avoided by the
preorbit of zp for arbitrarily large values of k. Then, the Perturbation Lemma
allows us to find g arbitrarily close to f such that the continuations of O(Z)
and Y for g intersect transversely. The fact that f € x"(M) then implies that
O4(Z) already intersected Y transversely prior to the perturbation, contradicting
our assumption.

In the remaining case, we can assume that there exists a sequence (my)r>o of
positive integers such that f~™*(z;) — y. Since zp — y, and y lies in a stable
branch of p, using the linearization of f at p one easily verifies that, after replacing
(zx) by a subsequence, there are numbers 0 < nj < my and an unstable branch X
of p such that f~"*(z;) converges to some point € X from the Y-side. Lemmal[I2]
allows us to conclude that there is an unstable branch X, of p (X, could be equal to
X) such that both Of(Z) and Of(Y’) accumulate on a point z, € X, locally from
the Y-side. Thus there exist i, € Z such that both f(Y) and f’(Z) accumulate
on x, locally from the Y-side.

Let us prove that Y meets X, transversely. Recall that one of the sets Of(Y)
or Of(Z) is planar. Suppose first that Of(Y’) is planar. Then since it accumulates
on a point of the unstable branch X, of the same saddle, Corollary I3 implies
that X, intersects Y transversely. Now suppose that O¢(Z) is planar. As f7(Z2)

accumulates on z, locally from the Y-side, Corollary [7limplies that f7(Z) contains
either Y or X, and therefore O;(Z) contains either Of(Y) or Of(X,). Thus one
of the last two sets is planar, hence again Corollary [[3] implies that X, meets Y
transversely.

Since X, meets Y transversely and O;(Z) accumulates on z, € X, locally
from the Y-side, Proposition [ implies that O;(Z) intersects Y transversely. This

contradicts the assumption at the beginning of the proof. |

Recall from the introduction that when M is a closed surface of positive genus,
FMG(M) denotes the elements of Diff((M) which have a contractible periodic
saddle with a full mesh. If the genus of M is 0 we simply let FM( (M) = Diffg(M).

Theorem 15. Suppose M is a closed orientable surface and f € xpp = X" (M) N
FMGM). If Y is a stable branch of a hyperbolic periodic saddle p and X is an
unstable branch of a hyperbolic periodic saddle g, such that Of(X) intersects Y,
then there exists i € 7 such that Y intersects f'(X) transversely. Moreover, if p

and q are in the same orbit, then one may choose i = 0.

Proof. If M is a sphere, [23] Theorem B| concludes the proof. So assume that
M has positive genus. If one of the sets O;(Y) or Of(X) is contractible, the
proof follows from Theorem [[4l So suppose neither of those sets is contractible.
Following Proposition @lwe can choose some periodic saddle 2z’ whose rotation vector
is different from the rotation vectors of p and ¢, and compact arcs As C W*(z') and
Ay C WH(2') such that 2/ € A,N A, and M\ (A;U),) is a union of open topological
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disks, whose covering diameters are bounded from above by some constant M (f) >
0. Let N > 0 be a common period of X, Y, 2’ and all four branches at z’. And let Y
be a connected component of 7~(Y). Assume it is bounded. Then closure(}N/) is a
bounded continuum which satisfies f~ (closure(Y)) = g(closure(Y)), where f is the
lift of f to the universal covering used to compute the rotation set, and g is a Deck
transformation. As the rotation vector of p (which is equal to [g]/N) is different from
the rotation vector of 2, closure(Y) avoids 7 *(A;UXy). So Y avoids A; UA,. The
same happens for f(Y) forall 0 <i < N—1. As O;(Y) = YUF(Y)U---UfN-L(Y),

we get that Of(Y) is contractible, a contradiction with our initial assumption. So

Y is unbounded, therefore it intersects 7=1(A\; U\, ) and finally, we get that Y must
have a transversal intersection with A,.

Analogously, X must have a transversal intersection with A\s. As Ay and A, are
adjacent branches of the same saddle, the A-lemma implies that Y intersects X
transversely, concluding the proof. O

Remark. Under the notation of the previous Theorem, a simple and useful conse-
quence is the following: if ¢ has a full mesh and p is a hyperbolic periodic saddle
point contained in W*(q), then W*(q) has a transversal intersection with W?(p).
If p = g, this is trivial because ¢ has homoclinic intersections (it has a full mesh!).
And if g # p, then as p € W¥(q), some unstable branch at g accumulates on some
point of a stable branch at p, so the Theorem can be applied in order to obtain the
intersection. We just have to note that Wu(q) = W (fi(q)), for all integers i (see
observation [I] below).

4. MAIN TECHNICAL RESULT

In this section we prove a result which contains the proofs of Theorem [I] and
Theorem [Dl Recall that the set xppr C Diff((M) was defined in the statement of
Theorem [[H] and for any given subset K C M, Filled(K) is the union of K with
all the inessential connected components of the complement of K. Before stating
the theorem, we make two observations:

Observations. Let M be a closed orientable surface of genus g and z € M be a
hyperbolic n-periodic saddle point for some f € xppr C Diffg(M).

(1) If g > 0 and z has a full mesh, then for all 0 < i < n — 1 as W* (o7 W)(z)
has transversal intersections with W (o7 $)(f%(2)), we get that Ws(z) =
We(f4(2)) and W (z) = We(fi(2));

(2) For any g > 0, if W#(z) is contractible, then the complement of
Filled(U}—) f/(W*(2))) is an f-invariant fully essential open set D C M
(this follows from Proposition ). So, 9D has finitely many (contractible)
connected components Ko, K1, ..., K;_1 C U f{(Ws(z)) for some 1 <
[ <mn, such that f(K;) = K;41 (fori =0,1,...,1 —2) and f(K;—1) = Ko.
As f"(K;) = K;, the prime ends rotation number of f" |k, is the same
for all 0 < ¢ <[ —1. So it makes sense to say that the prime ends com-
pactification of D has rational (or irrational) rotation number: the rotation
number is well-defined at each boundary component of D and it assumes
the same value at all of them (see [13] for precise definitions of prime ends in
this kind of situation). Clearly, analogous properties hold for any periodic

inessential connected component of the complement of U f*(W*(2)).
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Theorem 16. Let M be a closed orientable surface, f € xpp C Diff(M), for any
r>1, and z € M be a hyperbolic n-periodic saddle point which satisfies:

(1) Either, the genus of M is positive and z has a full mesh, or W*(z) is
contractible (for any genus > 0);

(2) When z has a full mesh, there exists a f-periodic connected component D
of the complement of W$(z) C M which has rational prime ends rotation
number and in the second case, as explained in observation (2) above, D
is a k-periodic connected component of (U?;Olfi(T/VS(z))C (maybe fully es-
sential) for which the prime ends rotation number of f™* at each boundary
component of D is the same rational number;

Under the above hypotheses, assuming that some integer N > 1 is a common
period of z, D and each connected component of 0D, as well as all 4 branches at z,
and also assuming that the prime ends rotation number of each boundary component
of D is equal to p/q (a rational number), the following conclusions hold:

(A) If V is a cross-section in D which satisfies closurep(fN-9(V)) C V, then
N4 has a fized point in V.

(B) Each connected component of the boundary of ﬁ, the prime ends compactifi-
cation of D, has finitely many periodic prime ends, which can only be of two types:
sources and accessible hyperbolic saddles. Moreover, for each saddle in the later
case, its stable manifold avoids D, one unstable branch is contained in D and thus
the whole stable manifold is accessible from D.

Proof. In both cases above (either when z has a full mesh or when Ws(z) is con-
tractible) we denote by g = fV the homeomorphism acting on each connected
component of 9D.

First, let us show that the map g : D — D induced by g, does not have intervals
of g-periodic points in each circle in aD. Indeed, if it had, then there would be
a crosscut « in D such that all points in dD that belong to the boundary of a
cross-section associated to o would be g9-fixed (because accessible points had to
be g%-fixed and they are dense in dD), a contradiction with the fact that f is
Kupka-Smale.

Proof of Item (A]). Assume C is a crosscut in D such that ¢g?(C)NC = 0
and V is a cross-section associated to C that satisfies g?(V) C V. Consider an
arc v contained in the region between C and ¢%(C), whose endpoints are, some
a € C and g?(a) € g7(C). Clearly, g9™(y) Ny =0 for all n ¢ {—1,0,1}. Let us
look at U,,>0g7™(7y) and the set of accumulation points of g2™(y) as m — oo,
which we call the w-limit set of Uy, >097™ (7). It clearly is a g?-invariant continuum
K C (VUOV)\C. From the hypothesis on C, we get that K N (U;>097™ (7)) = 0.

Even when D is homotopically unbounded, Proposition 24] together with Propo-
sition M imply that K is contractible. Thus the main theorem of [16] states that
K is a rotational attractor, or a rotational repeller, or it contains a g?-fixed point.
When K is a rotational attractor (or repeller), we mean that it is a contractible
continuum in M which may, or may not, separate M, and it attracts (or repells) all
nearby points that belong to at least one connected component of its complement.
In case K separates M, one of the connected components of K¢ is fully essential
and the others are open disks. Clearly, by the Cartright-Littlewood Theorem [g],
Filled(K) always contains g?-fixed points, but when K separates M, the g?-fixed

Licensed to Universidade de Sao Paulo. Prepared on Wed Oct 15 19:08:09 EDT 2025 for download from IP 143.107.45.1.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5876 SALVADOR ADDAS-ZANATA AND ANDRES KOROPECKI

points may not belong to K. Note that this definition is slightly different from the
one which appears in [16].

So, when K C V, as V is a topological open disk, if K is a rotational attractor
or repeller, then there is a g%-fixed point in Filled(K) C V. Thus, from the three
possibilities given by the main theorem of [16], when K C V, V always contains a
g%-fixed point (as a matter of fact, in our case K cannot be a repeller because it
attracts positive iterates of 7).

Thus, let us assume that K intersects 9D.

First, we deal with the case when K is a rotational attractor. It implies that
z € K. When z has a full mesh, as W*(z) is unbounded, this is not possible. And

when Ws(z) is contractible, it would imply that the whole W*(z) is contained in
K, therefore W¥(z) is also contractible. Let us keep this information for a while.
As K cannot be a rotational repeller, the remaining possibility given by the main
result of [16] is that K must have g?-fixed points. If at least one of these points
belongs to V', then we are done.
So, assume all of them belong to dD. As f only has hyperbolic periodic points
and positive iterates of v accumulate on K, the g?-fixed points in K cannot be

sources. They cannot be sinks either, because

(3) OD C Uy f1 (W3 (2)).
So the g?-fixed points in K are all saddles. More precisely:
Proposition 17. K contains a hyperbolic g?-fized saddle point of index —1.

Proof. If K is a rotational attractor, z belongs to K and we are done. So, we can
assume that K is not a rotational attractor.

By contradiction, suppose that all g¢-fixed points in K are orientation-reversing
saddles, denoted {wi,ws,...,wy}, that is, they all have index 1. As there are
finitely many such points in K (because f is Kupka-Smale), we can blow up each
z; into a circle C;, such that the induced dynamics (by ¢9) on C; is that of a semi-
rotation. In the disk D; bounded by C;, we define a dynamics in the natural way:
the extended map fixes the center of each D; and semi-rotates each concentric circle.
In this new space obtained after blowing up all g%-fixed points in K and adding
disks, positive iterates of  still accumulate on an invariant continuum, which can
not be a rotational attractor, because prior to the blow-ups we assumed it was not.
The problem is that this continuum has no g?-fixed points. This contradicts the
main result of [I6] and proves the proposition. O

So K N 0D contains at least one hyperbolic g?-fixed saddle point w of index —1
(note that w can be equal to z, for instance when K is a rotational attractor). From
expression (@), if w is not equal to z, for some 0 < i < n—1, f{(W*(2)) = W*(fi(2))
accumulates on w and therefore, by Theorem [[5, W*(f7(z)) has a Cl-transverse
intersection with W*(w) for some 0 < j < n —1. As D is a connected component
of the complement of U}~ f*(W*(z)), we finally get that W=(w) N D = . Clearly,
the last intersection is also empty when w = z, by the choice of D.

Whether K is a rotational attractor or not, as K is a g?-invariant continuum
that contains w, it contains at least one of the four branches at w, see item 1 of
Proposition[fl Let A be a branch at w, either stable or unstable, contained in K. We
know that U, >09? " () accumulates on the whole A. In the following we will show
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that this accumulation implies that U,,>0g?™(y) has a topologically transverse
intersection with W#(w'), for some saddle w’ € dD. As we explained above, for
any such a saddle w’, Ws(w’) N D = (), a contradiction because U,,>0g?™(7) is
contained in D.

The fact that A\C K, implies that X is contractible, so again from the main
theorem of [16] we get that ©, the accumulation set of A (O is given by the w or
a-limit set of A\, depending on whether \ is an unstable or stable branch), is a
rotational attractor or it contains a g9-fixed point (it cannot be a repeller because
it is accumulated by positive iterates of 7). If © is a rotational attractor, then it
either belongs to V' and we are done (because in this case, Filled(©) C V and it
contains g?-fixed points), or it intersects W#4(z). In this last case, z must belong
to ©. So, either part A of the theorem is proved or all g?-fixed points in © belong
to 9D. In particular, some point w; € © N 9D (w; may be equal to z) is a g?-
fixed hyperbolic saddle of index —1 (again, this follows from Proposition [I7] and
the fact that a g%-fixed point in ® N dD cannot be a source or a sink since it is
accumulated by positive iterates of v and by W*(z)). As © C K is a g%invariant
continuum, item 1 of Proposition@limplies that © contains some branch at wy. This
branch has a contractible closure and as before, it accumulates on a continuum 5.
Exactly as we did above, if O is a rotational attractor, then z belongs ©s. So,

in any case (see Proposition [[7)), there is a g?-fixed hyperbolic saddle of index —1,

denoted wy € O3 N AD. Clearly, O, contains a branch at ws and so, A def Ao

accumulates on a whole branch A\; at w; and this branch at w; accumulates on
a whole branch As at ws and so on. Now the proof goes as follows: As K is

compact and g7 is Kupka-Smale, some point wy (for some N > 0) in the sequence

de .
w ef Wy —> W1 —> Wy —> -+ — WN —> WN41 —> -+ - —> wy must appear twice. Note

that each w; is a g?-fixed hyperbolic saddle of index —1 contained in K N 9D and
w; — w;+1 means that the branch \; C K at w; accumulates on the whole branch
Aip1 at wiyr.

As some contractible branch Ay at wy accumulates on wy, Theorem [I5] im-
plies that Ay has a transversal homoclinic point. As Ay C K and U,,>099™(7)
accumulates on the whole Ay, Proposition [l implies that Uy, >099™ () must have
a topologically transverse intersection with W#(wy) (because it has to enter the
horseshoe rectangle). To see this, assume, by contradiction, that positive iterates
of v under ¢4 only intersect W*(wy). This would imply that for infinitely many
large integers m > 0, g™ () intersects the boundary of a fixed horseshoe rectangle
at wy, only at points belonging to W*(wy). So, wy € 7, a contradiction because
v C D and wy € 0D.

At last, as W*(wy) C W$(f7(z)), for some 0 < j < N—1, we get that W#(wy)N
D = 0. AsUp,>097™(7y) is contained in D, this is the final contradiction that proves
Item (A) (see Figure[I).

Proof of Ttem (B]). Now we show that there are only finitely many periodic prime
ends in each of the (finite) connected components of aD. Suppose not. Then, the
complement of the g7 -fixed point set in some component of dD has infinitely many
connected components, which are disjoint open intervals. In each of these intervals,
orbits under g? move in one direction, so for each interval, one of its boundary
points is g-fixed and attracts orbits from at least one side.
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FIGURE 1. Diagram showing iterates of - entering a rectangle of a horseshoe

The important conclusion is that the existence of infinitely many g¢-fixed prime
ends implies the existence of infinitely many g9-fixed prime ends that attract from
at least one side. Let p* € dD be a g?-fixed prime end that attracts from at least
one side. If (CX),>0 is a prime chain that represents p*, by choosing diameter
of Cf sufficiently small, we can assume that there are no g9-fixed points in the
cross-section V. This follows from the fact that f : M — M has finitely many
n-periodic points for each integer n > 1.

As p* attracts from at least one side, part A above implies that for all n > 0,
g4(C¥) N Cx # . So, all principal points associated to p* are g?-fixed. As the
principal set is connected, there is only one such point, denoted p* € 9D and
p* is an accessible prime end. The g?-fixed point p* cannot be a sink because it
belongs to the closure of stable manifolds. Neither a source, because p* is accessible
and attracts from at least one side, see Lemma 6.3 of [5]. So it is a saddle. As
p* € 9D C U, fi(W5(z)), as we did in part A above, if p* ¢ Orb(z), then at

least one branch of W"(p*) has a transverse intersection with W?*(f*(z)) for some
0 <i<n-—1. So, Ws(p*) C W5(f*(z)) which implies that Ws(p*) N D = 0.
Nevertheless, even when p* € Orb(z), Ws(p*) C Ul f{(W*(z)).

As p* is accessible, there exists an end-cut 7 : [0,1] — D such that ([0, 1) C D
and n(1) = p*. Clearly, considering small neighborhoods of p*, we can assume that

7 is as in figure 2] essentially because D avoids W#(p*).

FiGURE 2. Diagram showing the end-cut n
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Let Aj. be the branch of W*(p*) which does not have an (transverse, as f €
X" (M)) intersection with U}~ f(W*(2)). There must exist such a branch, other-
wise p* would not be accessible. In case p. ¢ Orb(z), we know that one unstable
branch at p* intersects U7— f*(W*(z)) and the other not. So, each of them is g-
invariant and therefore the index of p, under g? is —1. Clearly, as z and all four
branches at z are g-invariant, the index of z under ¢? is also —1.

From Proposition [I8 the endcut 1 can be deformed into one that does not
intersect Aj. (in other words, 7 is homotopic in D to an endcut which avoids all
branches at p*). So, we can assume that 7 is contained in one of the local quadrants
adjacent to Aj. and thus, some branch of W#(p*) is made of accessible points in
0D, see Proposition[I9 These two results appear in [5] and below we present proofs
of both.

Proposition 18. The arc n associated to p* can be chosen so that n N Ap. = 0.

Proof. By contradiction, assume the proposition does not hold. Then, there must
be a prime chain (C}), >0 representing p*, such that each crosscut C; is contained
in An.. So, g9(Cy) NCy = 0 for all n > 0 and if diameter of Cf is sufficiently
small, then by part A of this theorem, p* does not attract from any side. This
contradiction proves the proposition. O

Proposition 19. There exists a branch of W*(p*) made of accessible points in 0D.

Proof. This proof appears in [I2] in detail and originally in Mather’s paper [18].
We shortly present it here.

By the Hartman-Grobman Theorem, assume we are inside an open ball centered
at p* where the dynamics of g is that of (z,y) — (x/2,2y) (clearly p* is identified
with (0,0)). Also assume that 7 belongs to the first quadrant, so A}. contains the
local positive y-axis. For each t € n, let V; be a vertical segment starting at ¢ and
going downwards, until it touches 0D. As W3 (p*) N D = (0, V; does not cross the
x-axis. Analogously, let H; be an horizontal segment starting at ¢t and going to the
left, until it touches 90D.

e If for some t € n, H; intersects the y-axis, then there exists a simple closed
curve 8 which is made of a vertical arc in Aj. from p* to a point in Hy, an horizontal
arc from that point to some point in 7 and a sub-arc of 7, going back to p*. Let
B be the interior of . If, by contradiction, U f*(W?(z)) accumulates on p*
through the first quadrant, then for some 0 < i* < n — 1, f*" (W?(z)) intersects
B. From the choices of 7 and Hy, and the fact that f* (W*(z)) is connected and
accumulates on the whole W#*(f7(p*)) for some integer j, and this stable manifold
is not contained in B, f* (W*(z)) must have a transversal intersection with Aps-
As we already said, this implies that p* is not accessible. So U?:_Ol {(W*(z)) does
not accumulate on any point of the stable branch at p* which locally coincides with
the positive z-axis, through the first quadrant. In other words, the whole local first
quadrant is contained in D.

e Now assume that for all ¢ € n, H; is contained in the first quadrant. Clearly,
V2 U H; is a crosscut associated to p*. As t gets closer to p*, diameter(V; U H) be-
comes arbitrarily small. So, as p* attracts from at least one side, for all ¢ sufficiently
close to p*, part A above implies that,

g!(V, U Hy) N (V, U Hy) # 0.
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But the dynamics near p* is that of (z,y) — (2/2,2y), so g4(V;) is a vertical
segment and ¢?(H;) is an horizontal one. This implies that ¢?(V;) N (H;) # 0.
In other words, there are points s € int(V;) and g%(s) € int(H;) such that the
arc (s C V; U H; whose end points are s and g%(s), satisfies g7({s) N ¢s = ¢4(s).
if we perform this construction for all ¢ € n sufficiently close to p*, we obtain a
fundamental domain of the first quadrant entirely contained in D. So the whole
local first quadrant is contained in D and thus the stable branch at p* which locally
coincides with the positive z-axis is made of accessible points through the local first
quadrant. O

Let us show now that Ajl. is contained in D. As all its points are accessible from
D, if it is not contained in D, then

Al O (URS FH (W (2)) # 0.

So, Theorem implies that Aj. would have a transversal intersection with
FH{(W*(2)), for some integer i, a contradiction with the accessibility of p*. And
finally, as a local quadrant adjacent to ;. belongs to D, the whole A, is contained
in D, so W*(p*) is contained in 9D and is made of accessible points.

If p;,p5 € dD are §i-fixed prime ends that attract from at least one side, then
they correspond to accessible saddles in dD. Assume they both correspond to the
same saddle p, € 9D.

If p* € Orb(z) and W#(z) N W*(z) = () (this is only possible when W$(z) is
contractible), then there might be two different g?-fixed prime ends p3,p35 which
correspond to p*; pj is associated to one unstable branch at p* and p} is associ-
ated to the other. Clearly, in general, no more than two different prime ends are
associated to a point in Ord(z).

Now, assume p* ¢ Orb(z). We know that Ws(p*) C U} f/(W*(2)) and there
are two end-cuts 71,72 : [0,1] — D such that 7;2([0,1]) C D and n;2(1) = p*.
As p* ¢ Orb(z), by Proposition [I8 we can assume that each of these endcuts is
contained in one of the local quadrants adjacent to Ap., the unstable branch at
p* which is contained in D. This happens because, from Theorem [I5], the other
unstable branch at p* intersects U= f*(W*(2)).

If 7 and 72 belong to the same quadrant adjacent to Aj., then they are ho-
motopic in D and thus pj = p3. If they belong to different adjacent quadrants,
then as Ap. is an endcut at p, and 71 and 7 are both homotopic in D to Ap.,
they are homotopic to each other. So, in this case we also have pj = p;. As
f : M — M has finitely many periodic points for each period, in the first case
(when z has a full mesh), W#(z) has finitely many g%-fixed points and in the sec-
ond case U'_j f*(W*(z)) also has finitely many g?-fixed points. So, there must be
finitely many periodic prime ends that attract from at least one side, thus finitely
many periodic prime ends in aD.

Summarizing, if such a periodic prime end attracts from at least one side, then
it attracts from both sides, it is accessible and it corresponds to a saddle in 9D, for
which one unstable branch is contained in D.

Suppose now that p € 9D is an isolated g?-fixed prime end which repels from
both sides and let (C},),,>0 be any prime chain that represents p. Denote by (V},)n>0
the cross-sections associated to the C,s. As before, by choosing Cy with a suffi-
ciently small diameter, we can assume that there is no g4-fixed point in Vj.
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Either one of the following possibilities hold:
(1) For all (Cy,)n>0 as above, there is an infinite sequence C,,, such that Cp, N

9%(Cn,) # 0
(2) the above does not hold;

In the first possibility, all principal points associated to p are g?-fixed, therefore,
from our genericity condition, there is only one such point p € 9D, which is an
accessible g?-fixed point.

It cannot be a sink. If it were a source, then by Lemma 6.3 of [5], we could
choose some prime chain (C),), >0 representing p for which C,, N g?(C,,) = 0 for all
n > 0, a contradiction with our hypotheses. So p is a saddle. And as we explained
above, the stable manifold of p is made of accessible points in dD. Therefore p
attracts from both sides, a contradiction with the assumption on p.

So the first possibility cannot happen, and in the second, there is a prime chain
(Cpn)n>0 representing p such that C,, N g?(C,,) = 0 for all n > 0. Again, there are
two sub-cases to consider:

e For some ig, @\*q'm(éi\o) — P as m — o0.
e The above does not happen.

In the first case above, p € D is a source. And in the second case, there exist Cj,
and C;,, ip < 41 arbitrarily large, C;, C V;, such that ¢~ 9(C;,) C Viy, 9~ %U(Cyy) N
Vi, =0 and g~ (V;,) N C;; # 0 for all n > 0. So, ﬂnzoﬁ_q'”(f}i ) is a closed
connected g?-invariant subset of D that intersects @-1 and

(Mnzog~ (%)) N 0D = 7
As g79(C;,) NV;, = 0, it follows that ¢?(Cy,) C Vi, . So,
(4) Niz09™" [(Nnz09"9"(Viy)) N (Vi,)°]
is a nonempty, compact g¢-invariant subset of D, contained in
TransDomain = Uy,>09?"(V;,), an open set homeomorphic to the plane.
But ¢9 is fixed point free in V;, and TransDomain is g¢-invariant, so
9% | TransDomain 1S & Brouwer homeomorphism.

And this is a contradiction with the existence of the compact g%-invariant set in ().
So the second case does not happen and periodic prime ends are either accessible
saddles or sources. O

5. ON C"-GENERIC FAMILIES OF DIFFEOMORPHISMS

Here we present results that characterize certain behaviors of C"-generic one-
parameter families of diffeomorphisms of surfaces. In particular, one result is anal-
ogous to Theorem [[H], but now it holds for residual subsets in the parameter space
of C"-generic one-parameter families of diffeomorphisms.

Theorem 20 (Brunovski). For any r € {2,...,00}, if (fi)ier is a C"-generic
one-parameter family of diffeomorphisms of a closed Riemannian manifold, then
periodic points are born from only two different types of bifurcations: saddle-nodes
and period doubling. In case of saddle-nodes, if the parameter changes, then the
saddle-node unfolds into a saddle and a sink or source in one direction and the
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periodic point disappears in the other direction. Moreover, at each fixed parameter,
only one saddle-node can happen.

Remark. This statement appears in [6]. The exception is the last part, which follows
from the fact that the local Banach submanifold in the space of C"-diffeomorphisms,
of maps which have a saddle-node periodic orbit has codimension one. Therefore, a
generic one-parameter family of diffeomorphisms does pass through the intersection
of two or more such Banach manifolds. More parameters are necessary for that.
See [24].

Theorem 21. For any r € {1,2,...,00}, if (ft)ter is a C"-generic one-parameter
family of diffeomorphisms of a closed orientable surface, then there exists a residual
subset R C I, such that if t € R, then f; is a Kupka-Smale diffeomorphism.

Remark. This theorem is folklore, but can be proved in the same way as the next
one, which is a version of Theorem [I5] for families.

Theorem 22. For anyr € {1,2,...,00}, given a C"-generic one-parameter family
(ft)ter of diffeomorphisms of any closed orientable surface, there exists a residual
subset R C R C I (R is the residual subset given by the previous theorem), such
that for t € R', if 2 is a hyperbolic fi-periodic saddle point with a full mesh, in

case wy € W4(z), where wy is another hyperbolic periodic saddle point for fi, then
W(2;) actually has a C*-transverse intersection with W*(wy).

The proofs of Theorems 2Tl and 22] follow from the Kupka-Smale Theorem, The-
orem [[5] and the remark after it, and the following general result:

Lemma 23. Ifr > 1 and R(M) is a C"-residual subset of Diff" (M) (where M is a
compact manifold without boundary), then for a C"-generic one-parameter family
of diffeomorphisms (fi)ter, the set of parameters t € I for which f; € R(M) is
residual in 1.

Proof. Since R(M) is residual, it contains some set of the form
oo
R*(M) = (| Wa,
i=1

where each W, is open and dense in Diff"(M).

Claim. For any fixed s € I and m € N, the set of one-parameter families (f;)er
such that fs € W, is C"-open and dense.

Proof. The openness is trivial. To prove the density, first recall that the space of
C"-diffeomorphisms of a compact manifold M is a Banach manifold modeled on
the space of C" vector fields X" (M). In fact, if exp, : T,M — M denotes the
exponential map for any (smooth) complete Riemannian metric on M, a chart on a
small enough neighborhood U of f is given by the map ¢ : U — X" (M) where ¢(g)
is the map x — exp; ' (g(f~!(x))). Assuming f = fs, there exists § > 0 such that
fi € U whenever |s —t| < 4. Let n : R — R be a C* function such that n(t) =0
if |s —t| > 6 and n(s) = 1. We may choose a sequence (g, )nen of elements of W,
such that g, — f in the C" topology. We further assume that ¢(U/) is convex (by
reducing it if necessary), so we may define new maps by convex combination

fog =L =n(t)) - o(fr) +n(t) - d(gn))
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when |s —t| < 0 and by f,; = fi otherwise. Note that (x,t) — fn.(z) is of class
C™ and it is straightforward to verify that (fy.)ier — (fi)ter in the C"-topology
as n — o0o. This proves the claim. (Il

The lemma follows easily from the claim: letting {s, : n € N} be a dense subset
of I and applying the claim to s = s,, and a given m we obtain a C"-open and
dense set A, ,, of 1-parameter families (f;)ies such that fs, € Wy, and thus

A= () Amn

n,meN

is a residual set of families (fi):cs such that f, € Wy, for all n,m € N. Note
that this implies that the set W) = {t € I : f; € W,,} is open and dense in
I, thus R' = (1,,cy W), is a residual subset of I such that every t € R’ satisfies
fi € R*(M) C R(M), completing the proof of the lemma. O

6. PROOFS OF THE MAIN RESULTS
In the first subsection, we prove an auxiliary result.
6.1. A general result.

Proposition 24. Assume f € Diffst(T?) and its rotation set has interior or
fe Diffé“(S), where S is a closed orientable surface of genus larger than 1, and it
has a fully essential system of curves €. If D is a f-periodic open disk, then either
D(D) < Max(f) (see Proposition[) or D is homotopically unbounded. In case D
s homotopically unbounded, using the notation from Theorems[2, Bl and Proposition
M, either D avoids W$(Q) and intersects W*(Q) (in this case 0D D W*(Q)) or
D avoids W*(Q) and intersects W*(Q) (in this case 0D D W¥(Q)). Moreover,
(A UXs) N D =U2  A;, a disjoint union of open bounded disks, properly labeled.
If n > 0 is a common period of D, the point Q) and its stable and unstable branches,
and moreover, 0D D W$(Q), then f™(A1) C Ay. All other Ay are wandering
and for each integer i > 1, there exists m(i) such that "™ (A;) C A;. If 0D D

W (Q), then f"(A1) D Ay. All other Ays are wandering and for each integer
i > 1, there exists m(i) such that f*™(A}) D A;.

Proof. Without loss of generality, assume D is f-invariant and @) from Proposition
[ is fixed, as are all four branches at (). If not, consider some power of f. Also, for
simplicity of writing, we consider the torus case.

If we lift A\, U As to the plane (see Proposition M), we get that its complement
is made of disks whose diameters are smaller than Maxz(f). Therefore if some
connected component D of 7~(D) intersects 71 (A, UA), then D contains an arc
o transversal to W*(Q) or W*(Q). Choose some (p, r) such that f(D)— (p,r) = D.
The A-lemma then implies that the orbit of this arc under f(e)— (p,r) is unbounded
and so D is unbounded.

If D intersects W*(Q) and W*(Q), as it is open, D contain arcs -, and ~s,
Cl-transversal, respectively, to W*(Q) and W*(Q). So, as n > 0 goes to infinity,
() Ct-accumulates on W*(Q), the same for f~"(vy,) with respect to W*(Q).
As W*(Q)NW*(Q) contains a topologically transverse point z, for which the arc in
W*(Q) whose endpoints are @ and z, union with the arc in W#(Q) whose endpoints
are ( and z form a homotopically non-trivial closed curve, f™(y,) U f~™(vs) also
contains a homotopically non-trivial closed curve for all sufficiently large n > 0
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(this follows from the topological transversality between W?*(Q) and W*(Q) at z).
But as f™(y,) U f~"(vs) C D for all n > 0, this is a contradiction with the fact
that D is a disk.

Clearly, if D is unbounded and avoids W$(Q), then it intersects W*(@Q). So,
it contains an arc whose negative iterates C''-accumulate on W#(Q). Therefore,

oD > W+(Q).

Finally, let us look at the connected components of (A, UXs)° N D, assuming
that 0D 2 W#(Q). Each one is an open disk, whose diameter is bounded by
Mazx(f) > 0 (see Proposition Ml). Choose any point z* € D. Let 8 be an arc in
D whose endpoints are z* and f(2*). As f~'(\,) C A\, and Q ¢ D, there exists
m(B) > 0 such that for all i > m(8), f/(8) avoids A, U As. Therefore, for all
i >m(B), fi(z*) belongs to the same connected component of (A, U As)“N D. Call
it A;.

Consider any other point z in D. Fix an arc @ C D, connecting z* to z. As for
B, there exists m(a) > m(B) > 0 such that for all i > m(a), f(a) avoids A\, U As.
Therefore, for all i > m(a), f*(«) is contained in A;. So the positive orbit of any
z € D, at some point enters A; and stays there forever.

Moreover, if an arc v C D avoids \,, then fi(y) avoids ), for all i > 0. This
implies that the image under f of any connected component of (A, UMs)° N D
is always contained in another connected component. So immediately, f(A;) C
Aq. And for the others? Fix some i > 1 and look at A;. If for some m > 0,
Fm™(A) N A; # 0, then f™(A;) C A; = fI™(A;) C A; for all integers j > 0. And
this is a contradiction with the fact that all points in D enter A; after a certain
positive iterate and do not leave it anymore.

So for all i > 1, each A; is wandering and for a certain m(i) > 0, f™(®)(4;) is
contained in A;.

The case when D is unbounded and intersects W?*(Q) is analogous. ]

6.2. Proof of Theorem 1. The proof of this theorem follows entirely from Theo-

rem[I6l If D is a f-periodic open disk which is a connected component of (WS (z))

for some saddle z with a full mesh, and the prime ends rotation number of D is
rational, then Theorem [I6] implies that D is a closed disk in whose boundary there
are only finitely many periodic prime ends. Necessarily, some are accessible hyper-
bolic saddles and the remaining are sources. For such an accessible saddle w € 9D,
the whole stable manifold of w is contained in 9D, some unstable branch at w has
a transversal intersection with W*(z) and one unstable branch at w is contained
in D. So, W#(w) is accessible from D. Clearly, sources in oD might correspond
to accessible hyperbolic periodic sources in D, but, necessarily, in case D is ho-
motopically unbounded, in any given neighborhood of some of these sources is
“hidden the unboundedness of D”. By this, we mean that for some sources in
8ﬁ, and any crosscut around one of them, the corresponding cross-section in D
is an homotopically unbounded disk. Moreover, D minus the union of these par-

ticular homotopically unbounded cross-sections is always a homotopically bounded
disk. O

6.3. Proof of Theorem This is immediate from the dynamics of f” lop» see
figure 3.
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accessible saddle

__ source

source <<-- R
B
-7 attractor

accégsible saddle

F1GURE 3. Diagram showing the dynamics of f" restricted to D

6.4. Proof of Theorems [Bl and Bl Any homotopically unbounded, maximally
periodic open disk D must be a connected component of the complement of W$(2)
(or of Wu(z)), where z is a contractible hyperbolic periodic saddle with a full mesh.
This follows from the following: as D is unbounded, it intersects stable or unstable

manifolds of z. From Proposition 24l D cannot intersect both. ([l

6.5. Proof of Theorem Without loss of generality, assume D is a f¥-periodic
(for some integer N > 0 which is a multiple of 2.n) connected component of

(U?;OI Ws( fz(z))) . The choice of N implies that fV leaves each boundary com-

ponent of D invariant. Also, the prime ends rotation number of fV restricted to
each component of 9D is assumed to be rational. From observation (2) before the
statement of Theorem [I6] the prime ends rotation number of f is the same at all
components of 9D.

If instead of stable manifold at the orbit of z, it were unstable manifold, we just
would have to work with f—!.

From part (B) of Theorem [T6] each connected component of the boundary of ZA),
the prime ends compactification of D, is a circle with only finitely many periodic
prime ends. Necessarily, some are accessible hyperbolic saddles and the remaining
are sources. For such an accessible saddle w € 9D, W#(w) is contained in 0D
and one unstable branch, denoted A, is contained in D. So, a result analogous
to Theorem [I] holds for each connected component I' of 0D. The rest of the proof
follows from the dynamics of fN |, again see figure Bl O

6.6. Proof of Theorems [A] and [Al From both theorem’s hypotheses, there
exists top < t* < t; such that f;+ only has one ¢-periodic orbit (for some integer
q > 0) of rotation vector p, which is a saddle-node (see Theorem 20)). And for some
e > 0, for all t €]t*,t* + €[, f; has exactly two g-periodic orbits of rotation vector p,
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a saddle and a sink (or a source), one branch of the saddle connected to the sink
(or source). Moreover, if ¢ < t*, then f; has no g-periodic points of rotation vector
p, see [22] page 38-39 and [7]. This is a point where we need C? differentiability.

Assume without loss of generality that ¢ = 1 and the saddle-node unfolds for
t > t* into a saddle p; and a sink s;. Let Fiz,(f;) = {z € Fiz(f:) : z has rotation
vector p} and let o} be the unstable branch of p; that connects it to s;. If Dy is
the basin of attraction of s;, we are going to show that for ¢ in an open subset of
Jt*,t* + €[, D; is an homotopically unbounded f;-invariant disk. Clearly, the prime
ends compactification of D; has zero rotation number, because p; is a saddle in
0Dy, accessible through o}, which is fi-invariant. This means that W*(p;) C 0D;.

Either when the surface is the torus or has higher genus, our assumptions imply
that for all ¢ € I, f; has contractible periodic saddles with a full mesh. So in
both cases, f; has a periodic saddle R; with a full mesh for all ¢t € [¢*,t* + €],
(this is clearly true if € > 0 is sufficiently small because transverse intersections
persist under perturbations and the existence of certain finitely many transverse
intersections imply the existence of a full mesh). The complement of W4(R;) is a
union of open topological disks. From Theorem 22] there exists a residual subset
R’ C|t*,t* + €[ such that for any ¢t € R’ :

(1) If py € Wu(R;), then W¥(R;) has a C'-transverse intersection with W#(p,).
But then, Ws(R;) C W9(p,) and so 9D, D Ws(py) D W#(R;), which
implies that D; is unbounded.

(2) If pr ¢ WH(Ry), then there exists a fi-invariant connected component M,

c

of (W“(Rt)) which contains p;. As we said before, it is an open disk. As

Pt € My, it is easy to see that of is also contained in M;. There are two
cases:

e s, € OM;. This implies that D, intersects W"(R;), and so, negative
iterates of Dy converge to W*(R;), thus D; is unbounded.

o {p,UalUs} C M;. When this happens, deform f; inside a small
neighborhood V' of p; U} U sy, closure(V) C M, in order to get a
diffeomorphism g which coincides with f; outside V', with the property
that in the whole surface, g has no fixed points of rotation vector p.
As closure(V) avoids W¥(R;), it also avoids a local stable manifold at
R, for f;. So, although the stable manifold of R; for the map g may
be different from the stable manifold of R; for f;, R; still has a full
mesh for g, g(M;) = My and OM; C W4*(R;). As M, is a g-invariant
open disk of rotation vector p, if it is bounded, then M, contains a
fixed point of rotation vector p. If M; is unbounded, Proposition
implies the existence of a bounded closed disk A; C M, which satisfies
g 1(A;) C Ay, s0 Ay must also have fixed points (of rotation vector p).

This contradiction shows that it is not possible that {p;Ua}Us;} C M.

So, either D; intersects W"(R;), which is an open condition; or dD; D W#(p;) D

W#(R;). As the last relation comes from the fact that W*(p;) has C'-transverse
intersections with W*(R;), also an open condition, the proof is over. ]
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