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HOMOTOPICALLY UNBOUNDED DISKS FOR GENERIC

SURFACE DIFFEOMORPHISMS

SALVADOR ADDAS-ZANATA AND ANDRES KOROPECKI

Abstract. In this paper we consider closed orientable surfaces S of positive
genus and Cr-diffeomorphisms f : S → S isotopic to the identity (r ≥ 1). The
main objective is to study periodic open topological disks which are homotopi-
cally unbounded (i.e. which lift to unbounded connected sets in the universal
covering). We show that these disks are not uncommon, and are related to
important dynamical phenomena. We also study the dynamics on these disks
under certain generic conditions. Our first main result implies that for the
torus (or for arbitrary surfaces, with an additional condition) if the rotation
set of a map has nonempty interior and is not locally constant, then the map
is Cr-accumulated by diffeomorphisms exhibiting periodic homotopically un-
bounded disks. Our second result shows that Cr-generically, if the rotation
set has nonempty interior (plus an additional hypothesis if the genus of S is
greater than 1) a maximal periodic disk which is unbounded and has a ratio-
nal prime ends rotation number must be the basin of some compact attractor
or repeller contained in the disk. As a byproduct we obtain results describ-
ing certain periodic components of the complement of the closure of stable or

unstable manifolds of a periodic orbit in the Cr-generic setting.

1. Introduction

Periodic open disks are important objects for homeomorphisms of closed ori-
entable surfaces. In the positive genus and area preserving case, under some natural
conditions, their existence implies non ergodicity with respect to Lebesgue measure
[15]. Several results have been proved in this direction, see [14], [15], [2], [3] and
[4]. In the Cr-generic area-preserving setting, with r large enough, the existence
of elliptic periodic points gives rise to periodic disks (thus called “elliptic islands”)
due to the KAM phenomenon [20].

When the surface is the torus, there is a relationship between the instability of
rotation sets and the existence of such disks: Recall from [19] that for a homeo-
morphism f : T2 → T2 in the isotopy class of the identity, the rotation set of a lift
f̃ : R2 → R2 of f is the (compact, convex) set ρ(f̃) consisting of all possible limits
of the form

lim
k→∞

f̃nk(zk)− zk
nk

,
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where zk ∈ R2 and nk → ∞. In [4] it is proved that for a C∞-generic area-preserving
one-parameter family ft of diffeomorphisms of the torus, with t belonging to some

interval of the form [t∗−1, t∗+1], if the rotation set ρ(f̃t) always has interior (where

f̃t is a lifted family) and there is a rational vector ρ ∈ Q2 in the boundary of ρ(ft∗)
such that ρ is in the interior of ρ(ft) for arbitrarily small values of t− t∗ > 0, then
t∗ is accumulated by parameters ti for which fti has generic elliptic periodic points.
So every time a rational vector enters the interior of the rotation set of a family as
above, the critical parameter t∗ is accumulated by parameters where elliptic islands
are present. In this setting, the elliptic islands are always “homotopically bounded”,
in the sense that their lifts to the universal covering are bounded (see below). This is
relevant because, despite the usefulness of the rotation set in studying the dynamics
of toral homeomorphisms, the dependence of the rotation set on the map, and the
mechanisms by which this set varies are poorly understood.

The main motivations for the present paper are to show that for general (non-
conservative) generic one-parameter families of surface diffeomorphisms, unbounded
periodic open disks often play the role of elliptic islands, and to understand the
dynamics on such unbounded disks.

To be more precise, let S be a closed surface of positive genus, endowed with

a Riemannian metric, and π : S̃ → S the universal covering map. We say that an
open topological disk D ∈ S is homotopically bounded (or unbounded) if some
(hence any) connected component of π−1(D) is bounded (resp. unbounded) in the
lifted metric. Given r ≥ 0, denote by Diffr

0(S) the space of Cr diffeomorphisms
from S to S which are isotopic to the identity, endowed with the Cr topology.
Any such f lifts to a Cr diffeomorphism f̃ : S̃ → S̃ which commutes with all deck
transformations (unique if the genus of S is greater than 1) called natural lift of f .

Our first result is somewhat analogous to the one stated for area-preserving maps
of the torus, but in the non-conservative setting (with homotopically unbounded
disks instead of elliptic islands). Recall that having a rotation set with nonempty
interior is a C0-open condition.

Theorem A. Given r ≥ 2, let (ft)t∈I be a Cr-generic one-parameter family in

Diffr
0(T

2) with a lift (f̃t)t∈I such that the rotation set ρ(f̃t) has nonempty interior
for each t ∈ I. Suppose that t0 < t1 are such that a rational vector ρ ∈ Q2 lies
outside of ρ(f̃t0) but in the interior of ρ(f̃t1). Then there exists an open interval I ′ ⊂
[t0, t1] such that for all t ∈ I ′, the map ft has a periodic homotopically unbounded
open topological disk with rotation vector ρ which is the basin of an attracting or
repelling periodic point.

An immediate consequence is that if the rotation set (as a subset of R2 mod-
ulo integer translations) has nonempty interior and is not locally constant at f ∈
Diffr

0(T
2), then f is Cr-accumulated by diffeomorphisms exhibiting homotopically

unbounded periodic disks (which are basins).
A similar result can be stated in a surface S of higher genus. In order to be

precise, let us introduce a definition: we say that a periodic point Q of f ∈ Diffr
0(S)

has a full mesh if Q is a hyperbolic periodic saddle with a stable branch αs (i.e.
a connected component of W s(Q) \ {Q}) and an unstable branch αu such that
every lift of αs has a topologically transverse intersection with every lift of αu (see
Section 2.4 for more details). When S = T2 and r ≥ 2, it is known from [2] that
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the rotation set of a lift of f has nonempty interior if and only if there exists a
periodic point with a full mesh.

Let us denote by FMr
0(S) ⊂ Diffr

0(S) the space of diffeomorphisms for which
there exists a contractible hyperbolic periodic saddle Q with a full mesh. By con-
tractible we mean that it lifts to a periodic point of some natural lift of f (see
Section 2). It is not difficult to see that this set is open in Diffr

0(S). Moreover, if
r ≥ 2, we know from [2] that FMr

0(T
2) coincides with the diffeomorphisms which

have a lift for which the origin belongs to the interior of the rotation set, and for
surfaces of higher genus a topological characterization (in terms of the existence of
certain types of periodic orbits) is given in [3] (see Section 2.4).

The rotation set of f ∈ Diff0
0(S) can be defined when S is a surface of higher genus

g > 1, and in this case it is a subset of the first homology group H1(S,R) � R2g,
which depends only on f and not on the choice of a particular isotopy from the
identity to f (see Section 2). The same conclusion of Theorem A holds in this
setting for generic one-parameter families in the space FMr

0(S):

Theorem A′. Suppose the genus of S is g > 1. Given r ≥ 2, let (ft)t∈I be a
Cr-generic one-parameter family in FMr

0(S). Suppose that t0 < t1 are such that
a rational vector ρ ∈ H1(S,Q) � Q2g lies outside of ρ(ft0) but in the interior of
ρ(ft1). Then there exists an open interval I ′ ⊂ [t0, t1] such that for all t ∈ I ′, the
map ft has a periodic homotopically unbounded open topological disk with rotation
vector ρ, which is the basin of an attracting or repelling periodic point.

Recall that a topological attractor of f is a compact set K which has a neigh-
borhood U such that f(U) ⊂ U and K =

⋂
n≥0 f

n(U). The basin (of attraction)

of K is the set
⋃

n∈Z
fn(U). A topological repeller is defined similarly using f−1

instead of f . Finally, a periodic open topological disk is maximally periodic if it
is not properly contained in any other periodic open topological disk. Note that
every homotopically unbounded periodic disk is contained in a maximally periodic
homotopically unbounded disk.

Our second main result describes the dynamics of (maximal) homotopically un-
bounded periodic disks when the rotation set has nonempty interior.

Theorem B. Given r ≥ 1, let f be a Cr-generic element of Diffr
0(T

2), such that the
rotation set of a lift of f has nonempty interior. If D = fn(D) is a homotopically
unbounded maximally periodic open topological disk and its prime ends rotation
number1 is rational, then D is a basin (of attraction or repulsion) for fn.

Thus, the “unbounded” part of D actually converges under forward or backward
iteration towards a compact connected (hence bounded) attracting or repelling set.

The topology of connected components of the lift to the universal covering of
homotopically unbounded maximally periodic open disks can be very complicated.
In the torus case, for instance, assume D ⊂ T2 is such a disk. Then, fn(D) =

D for some integer n ≥ 1. Fixed some lift of f to the plane, denoted f̃ , there

exists an integer pair (a, b) such that for any connected component D̃ of π−1(D),

f̃n(D̃) = D̃+(a, b). From Proposition 24, for any periodic point z ∈ T2 with a full

mesh, either D ∩W s(z) 	= ∅, and in this case ∂D = Wu(z) from the maximallity

of D, or D ∩ Wu(z) 	= ∅ and ∂D = W s(z). So, if (a/n, b/n), the rotation vector

of D, belongs to the interior of ρ(f̃), we could choose the point z which has a full

1See Section 2.2
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mesh with rotation vector equal to (a/n, b/n), see Theorem 2. And considering

the lift of fn to the plane, given by h̃ = f̃n(•) − (a, b), we get that both D̃ and

any z̃ ∈ π−1(z) are h̃-periodic. Thus, as D̃ either intersects W s(z̃) or Wu(z̃), the

λ-lemma [21] implies that ∂D̃ is equal to either W s(z̃) or Wu(z̃), which are closed
connected equivariant subsets (invariant under integer translations) of the plane.

In particular, D̃ is an open disk which intersects all fundamental domains of the

torus and clearly, as D = π(D̃) is a disk, D̃ ∩ (D̃ + (t, s)) = ∅ for all integer pairs
(t, s) 	= (0, 0). So, all connected components of π−1(D) have the same common
boundary!

The other possibility is when the rotation vector of D belongs to the boundary
of the rotation set. In this case, from the bounded displacement condition satisfied
with respect to vectors in the boundary of the rotation set (see [10], [1] and [17]),
D cannot be as above. It has to be bounded in at least some direction.

About the hypotheses of the above Theorem (and of Theorem B′), we do not
know whether the condition on the prime ends rotation number is necessary:

Question. Is there a homeomorphism f of a closed surface with an f -invariant
homotopically unbounded open topological disk D having an irrational prime ends
rotation number?

Even if we assume that f is smooth, the surface is T2, and the rotation set of f
has nonempty interior, we do not know the answer to this question.

A version of Theorem B holds in higher genus surfaces if one considers elements
of FMr

0(S):

Theorem B′. Let S be a closed orientable surface of positive genus, and given r ≥ 1
let f be a Cr-generic element of FMr

0(S). Then any homotopically unbounded
maximally periodic open topological disk D = fn(D) with a rational prime ends
rotation number is a basin (of attraction or repulsion) for fn.

Theorems B and B′ are a consequence of the following more general fact:

Theorem C. For any r ≥ 1, if f ∈ Diffr
0(S) is a Cr-generic diffeomorphism of

a closed surface S of positive genus, z is a contractible periodic point with a full
mesh, D = fn(D) is a periodic connected component of the complement of W s(z)
and the prime ends rotation number of fn in D is rational, then D is a basin of
attraction.

Of course, the analogous result holds replacing W s(z) with Wu(z), in which case
D is a basin of repulsion. In addition, under the hypotheses of Theorem C we are
able to give a rather detailed description of the prime ends dynamics: there are
finitely many periodic prime ends, some of which are accessible hyperbolic saddles
and the remaining are sources. For the saddles, one branch of the unstable manifold
is contained in D and the whole stable manifold belongs to ∂D and consists of
accessible points. See Theorem 1.

Note that in Theorem C above it is irrelevant whether D is homotopically un-
bounded or not. To prove Theorems B and B′ from this result, one shows that a
maximally periodic homotopically unbounded open topological disk must always
be a connected component of S \W s(z) or of S \Wu(z) for a contractible periodic
point z with a full mesh.

A final observation about Theorems B, B′ and C is the following: In order to
prove that diffeomorphisms of the torus isotopic to the identity whose rotation
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sets have nonempty interior, have periodic points with a full mesh, Theorem 2
needs C1+ε differentiability for some ε > 0. The same is true for Theorem 3, in
the higher genus case, where for C1+ε diffeomorphisms isotopic to the identity, the
presence of a fully essential system of curves (see Definition 2.4) implies existence of
a contractible periodic point with a full mesh. But in the statements of Theorems
B, B′ and C, the generic C1 case is also considered. Nevertheless, it is easy to
deal with it, because the subset of C2 diffeomorphisms is dense in the set of C1

diffeomorphisms. So, in the torus case, from Theorem 2, a C2 diffeomorphism whose
rotation set has non empty interior (remember that this is a C0 open condition)
will have a periodic point with a full mesh, as we said, a C1 open condition. So,
the C1-genericity in Theorem B is understood.

In the higher genus case, Theorems B′ and C already assume the existence of
contractible periodic points with a full mesh, so there is nothing to add. But one
could ask, if instead of assuming the existence of contractible points with full mesh,
a C1-generic f with a fully essential system of curves were considered. What would
happen? It turns out that the existence of a fully essential system of curves means
that the map f has a finite number of periodic orbits with certain special topological
properties. In the C1-generic case, these orbits are non-degenerate and thus persist
under small perturbations (the above mentioned topological properties of these
orbits persist as well, again see Definition 2.4). Thus if f∗ is a C2 diffeomorphism
sufficiently close to f , then it also has a fully essential system of curves and so,
Theorem 3 applies to f∗, assuring the existence of a contractible periodic point with
a full mesh. As we said above, this is a C1 open condition. So, if instead of assuming
the existence of saddles with full mesh in Theorems B′ and C, we considered generic
Cr (for any r ≥ 1) diffeomorphisms having fully essential systems of curves, the
same conclusions would hold. For r ≥ 2, this would be a trivial consequence of
Theorem 3 and for r = 1, it would follow from the above discussion.

Using the same ideas from Theorem C, one can show a general result in the
contractible case:

Theorem D. Let M be a closed orientable surface and fix any r ≥ 1. For any Cr-
generic diffeomorphism f ∈ Diffr

0(M), which we assume to have a periodic point
with a full mesh if M has positive genus, let z be a hyperbolic n-periodic saddle
point such that W s(z) is contractible. If D is a periodic connected component of

the complement of ∪n−1
i=0 f

i(W s(z)) which has rational prime ends rotation number
at one of its boundary components (therefore, at all of them), then D is a basin
of attraction ( if instead of stable manifold of z, we considered unstable manifold,
then D would be the basin of a repeller).

A nice corollary of the above Theorem is the following:

Corollary of Theorem D. Fixed any r ≥ 1 and any Cr-generic diffeomorphism
f of the sphere without homoclinic points, for any hyperbolic periodic saddle z of
f , each branch at z does not accumulate, neither on itself nor on any of the other
three branches at z (neither on the whole orbit of all the branches). Moreover,
the unstable branches accumulate on connected attractors and the stable ones,
accumulate on connected repellers.

This result appears in [9] under other hypotheses for planar diffeomorphisms and
it is a first step in showing that zero entropy mildly dissipative diffeomorphisms of
the plane are either infinitely renormalizable or Morse-Smale.
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This paper is organized as follows. In Section 2 we present some results we use
and definitions. In Section 3, the results proved by Pixton for planar surfaces in [23]
are generalized to other surfaces with some additional hypotheses. In Section 4 we
prove the main technical result of the paper, in Section 5 we extend some generic
type results that hold in the space of diffeomorphisms to the parameter space of
generic families, and in Section 6 proofs of Theorems A, A′, B, B′, C and D appear.

2. Preliminaries and additional results

2.1. Notation and some definitions. Let S be a closed orientable surface. We
denote by π : S̃ → S the universal covering map of S, and by Deck(π) the group
of deck transformations of π.

We assume that surfaces are endowed with a Riemannian metric, and their uni-
versal coverings with the lifted metrics. For any open topological disk D ⊂ S we
define D(D) as the diameter of any connected component of π−1(D) (this does not
depend on the choice of the component). We say D is homotopically unbounded
when D(D) = ∞, otherwise we say it is homotopically bounded.

As we already defined, for any r ≥ 0, Diffr
0(S) is the set of Cr diffeomorphisms

of S isotopic to the identity (clearly, when r = 0, we mean homeomorphisms).
A compact subset K of S is said to be contractible if there exists a closed

topological disk D ⊂ S such that K ⊂ int(D). We will make frequent use of
the following observation: if K is connected and contractible, then the connected
components of π−1(K) are bounded and homeomorphic to K.

2.2. Prime ends compactification of open disks. If D is an open topological
disk of an oriented surface such that ∂D is a Jordan curve and f is an orientation
preserving homeomorphism of that surface which satisfies f(D) = D, it is easy to
see that f : ∂D → ∂D is conjugate to a homeomorphism of the circle, and so a
real number ρ(D) = rotation number of f |∂D can be associated to this problem.
Clearly, if ρ(D) is rational, then there exists a periodic point in ∂D and if it is not,
then there are no such points. This is known since Poincaré. The difficulties arise
when we do not assume ∂D to be a Jordan curve.

The prime ends compactification is a way to attach to D a circle called the
circle of prime ends of D, obtaining a space D � S1 with a topology that makes it
homeomorphic to the closed unit disk. If, as above, we assume the existence of an
orientation preserving homeomorphism f such that f(D) = D, then f |D extends
to D � S1. The prime ends rotation number of f in D, still denoted ρ(D), is the
usual rotation number of the orientation preserving homeomorphism induced on
S1 by the extension of f |D. But things may be quite different in this setting. In
full generality, it is not true that when ρ(D) is rational, there are periodic points
in ∂D and for some examples, ρ(D) is irrational and ∂D is not periodic point free.
Here we refer to [18] and [13] for definitions of prime ends, prime chains, end-cuts,
cross-cuts, cross-sections, principal points, as well as some important theorems.

Let us state an addendum to Theorem C describing the prime ends dynamics,
which is part of our proof:

Theorem 1. Under the hypotheses of Theorem C, if D is a connected component of

(W s(z))c and D̂ is the prime ends compactification of D, then D̂ is a closed disk in
whose boundary there are only finitely many periodic prime ends. Necessarily, some
are accessible hyperbolic saddles and the remaining are sources. For the saddles,
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one branch of the unstable manifold is contained in D and the whole stable manifold
belongs to ∂D and is made of accessible points.

2.3. Rotation sets.
The torus. Let T2 = R2/Z2 be the flat torus and let π : R2 −→ T2 be the
associated covering map. Coordinates are denoted as x̃ ∈ R2 and x ∈ T2. Note
that the deck transformations of π in this case are the integer translations on the
plane.

We denote by Diffr
0(R

2) the set of lifts of elements from Diffr
0(T

2) to the plane.

Maps from Diffr
0(T

2) are denoted f and their lifts to the plane are denoted f̃ . Any
such lift commutes with the deck transformations (i.e. with integer translations).

Given f ∈ Diff0
0(T

2) and a lift f̃ ∈ Diff0
0(R

2), the Misiurewicz-Ziemian rotation

set of f̃ , ρ(f̃), can be defined as follows (see [19]):

(1) ρ(f̃) =
⋂
i ≥ 1

⋃
n ≥ i

{
f̃n(z̃)− z̃

n
: z̃ ∈ R2

}
.

This set is a compact convex subset of R2 (see [19]), and it was proved in [11] and
[19] that all points in its interior are realized by compact f -invariant subsets of T2,
which can be chosen as periodic orbits in the rational case. By saying that some

vector ρ ∈ ρ(f̃) is realized by a compact f -invariant set, we mean that there exists
a compact f -invariant subset K ⊂ T2 such that for all z ∈ K and any z̃ ∈ π−1(z)

(2) limn→∞
f̃n(z̃)− z̃

n
= ρ.

Moreover, the above limit, whenever it exists, is called the rotation vector of the
point z, denoted ρ(f, z).
Surfaces of genus larger than one. When S is a closed orientable surface of

genus g > 1, we may identify the universal covering S̃ with the Poincaré disk D.
As before, we denote by Diffr

0(D) the set of lifts of elements from Diffr
0(S) to the

Poincaré disk. However here we only consider lifts which commute with all deck
transformations. It is well known that, given f ∈ Diffr

0(S), there exists only one

f̃ : D → D lifting f and having this property. It is called the natural lift of f . One
way to find it, is to consider an isotopy I from Id : S → S to f : S → S. The

natural lift f̃ is given by the endpoint of the lift of the isotopy I which starts at
Id : D → D. As in the torus case, maps from Diffr

0(S) are denoted f and their lifts

to D are denoted f̃ .
The notion of Misiurewicz-Ziemian rotation set introduced for the torus can be

generalized to a surface S of genus larger than one. In order to avoid unnecessary
details, we refer to [15] for a precise definition. Here we limit ourselves to stating
that the rotation set of f ∈ Diff0

0(S) is a subset ρmz(f) of the first homology group
H1(S,R) � R2g (where g is the genus of S), and that periodic orbits of f have
a corresponding rotation vector which is a rational element of the rotation set, as
follows: given an isotopy from the identity to f and a periodic point p of least period
n, the rotation vector of p is α/n ∈ H1(S,Q), where α ∈ H1(S,Z) represents the
homology class of the loop obtained by following the isotopy from p to f(p), then
from f(p) to f2(p), and so on until fn(p) = p.

The set ρmz(f) does not need to be convex for surfaces of higher genus, nor it
is generally true that every rational element of its interior is realized by a periodic
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point. However, following [3], one has that these properties are true if f ∈ FMr
0(S).

Recall that this means that f has a contractible hyperbolic periodic saddle (i.e. one
that lifts to a periodic point of the natural lift of f) with a full mesh, and for smooth
enough maps this is guaranteed by certain topological conditions, explained in the
next section.

2.4. Existence of full mesh. Recall from the introduction that a hyperbolic peri-
odic saddle point Q of f ∈ Diff1

0(S) is said to have a full mesh if there exist branches
αu of Wu(Q) and αs of W s(Q) such that every lift of αu to the universal covering

S̃ has a topologically transverse intersection with every lift of αs. In other words, if
α̃u and α̃s are any two lifts of αu and αs, respectively, then α̃u has a topologically
transverse intersection with g(α̃s) for every deck transformation g of the universal
covering. For instance, in the case S = T2, this means that α̃s intersects every
integer translation of α̃u.

For a precise definition of topologically transverse intersections, see definition 9,
page 4 of [2]. In the present paper, however, we almost will not need it, because most
of the time we consider generic maps, and for a Cr-generic diffeomorphism (r ≥ 1)
all intersections between stable and unstable manifolds of periodic points are C1-
transverse. We remark that the existence of a topologically transverse intersection
between the stable and unstable manifolds of two hyperbolic saddles is a Cr-open
condition for any r ≥ 1.

It is not difficult to see that if f ∈ Diff1
0(T

2) has a periodic point with a full
mesh, then the rotation set of a lift of f has nonempty interior. In [2], the following
result was proved, which implies the converse of the previous claim in the C1+ε

case.

Theorem 2. Suppose f belongs to Diff1+ε
0 (T2) for some ε > 0 and (p/q, r/q) ∈

int(ρ(f̃)). Then, for some integer n ≥ 1, f has a nq-periodic hyperbolic saddle
point Q of rotation vector (p/q, r/q) which has a full mesh.

For surfaces of higher genus, a generalization of the previous result appeared in
[3]. In order to state it, first we remember what an inessential subset of a closed
orientable surface S is: K ⊂ S is inessential, if and only if, it is contained in an
homotopically bounded open topological disk of S.

And now, we introduce a definition from [3].

Definition 2.4 (Fully essential system of curves). We say that f ∈ Diff0
0(S)

is a homeomorphism with a fully essential system of curves C = ∪k
i=1γi, if the

following conditions are satisfied (I is some fixed isotopy from Id to f):

(1) each γi is a closed geodesic in S and the complement of ∪k
i=1γi only has

inessential connected components (k ≥ 1);
(2) for each i ∈ {1, . . . , k}, there is a f -periodic point pi such that its trajectory

under the isotopy I is a closed curve freely homotopic to γi with the correct
orientation (the γi′s are oriented);

(3) for every open intervals B,F ⊂ ∂D, there exists an oriented simple arc
α̃ ⊂ π−1(C ) formed by the concatenation of a finite number of oriented
subarcs of extended lifts of geodesics in C and such that the initial point
of α̃ is contained in B and the final point belongs to F .

Remark. See [3] for some comments on this definition. In particular, instead of the
third condition, we could assume that for each γi, there are two f -periodic points
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p+i and p−i such that their trajectories under the isotopy are closed curves freely
homotopic to γi and to −γi. It is not hard to see that this assumption implies the
existence of a fully essential system of curves as stated above, see [3, Propositions
6 and 7].

Theorem 3. Suppose f belongs to Diff1+ε
0 (S) for some ε > 0 and it has a fully

essential system of curves C . Then, f has a contractible hyperbolic periodic saddle
point Q ∈ S with a full mesh.

The following discussion can be made assuming only topologically transverse
intersections. But as in most of this paper we are assuming generic conditions, we
will consider until the end of this subsection, that all intersections between stable
and unstable manifolds of periodic points are C1-transverse. This simplifies several
arguments.

In both cases, the torus and higher genus, it is possible to find finitely many
oriented closed curves in the surface, such that each curve is given by the union of
an arc in Wu(Q), starting at Q and ending at a point z in Wu(Q) ∩W s(Q), and
another arc contained in W s(Q), starting at z and ending at Q, with the property
that the union of these closed curves generates the homotopy group of the surface
as a semi-group (the orientation of each curve is given by the direction of the arrows
in the unstable and stable manifolds).

In particular, either for the torus or for higher genus surfaces, we get the follow-
ing:

Proposition 4. Suppose M is a closed surface of positive genus and f ∈ Diff1
0(M)

has a contractible hyperbolic periodic saddle point with a full mesh. Then there is
another (possibly the same) hyperbolic periodic saddle Q and compact arcs λu ⊂
Wu(Q) and λs ⊂ W s(Q) such that Q ∈ λs ∩ λu and M \ (λs ∪ λu) is a union of
open topological disks whose covering diameters are uniformly bounded from above
by some constant Max(f) > 0. Furthermore, Q can be chosen with infinitely many

different rotation vectors. In particular, given a bounded continuum K̃ ⊂ M̃ and

an integer n ≥ 1 such that, f̃n(K̃) = g(K̃) for some deck transformation g, then

the fn-periodic continuum K ⊂ M given by π(K̃) is actually contractible.

Proof. First, we need to prove the assertion about infinitely many different rotation
vectors for surfaces of genus larger than 1. For the torus, we know that for each
rational vector in the interior of the rotation set, there exists a saddle with a full
mesh with that rotation vector.

But in the higher genus context, it is unknown and maybe not even true that
for all rational vectors in the interior of the rotation set, there exists a saddle
with a full mesh with that rotation vector. Nevertheless, we can consider the
following construction (for more details, see Lemma 18 and the proof of [3, Theorem
1]): Let Q0 be the contractible saddle which has a full mesh. Picking some deck
transformation h whose homology class [h] is non-trivial, we can build a rotational
horseshoe at Q0 so that symbol “0” corresponds to the vertical rectangle that
contains Q0 and symbol “1” corresponds to the vertical rectangle that moves in the
direction of h in the universal covering, under some adequate iterate of f . So, it
is straightforward that we can find periodic saddles zα in this horseshoe, such that
varying α in an infinite set, the zα′s have infinitely many different rotation vectors
(infinitely many rational multiples of [h]). And moreover, the stable (unstable)
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manifold of Q0 intersects the unstable (resp. stable) manifold of zα (transversely).

So, Wu(Q0) = Wu(zα) and W s(Q0) = W s(zα), which imply that for all α′s, there
are compact arcs λα

u ⊂ Wu(zα) and λα
s ⊂ W s(zα) such that zα ∈ λα

s ∩ λα
u and

M \ (λα
s ∪ λα

u) is a union of open topological disks.

Now, it is easy to prove the second part of the proposition: Assume K̃ is a
continuum as in the statement. So, there exist n > 0 and a deck transformation

g such that f̃n(K̃) = g(K̃). This implies that all points in K have the same well-
defined rotation vector [g]/n for f (and −[g]/n for f−1). So, if we pick the saddle
Q equal to some zα∗ so that its rotation vector is different from the rotation vector
of K, then as

(
λα∗

u ∪ λα∗

s

)
cannot intersect K, the proof is over. �

3. Some extensions of Pixton’s Theorems

Throughout this section, M denotes a surface, and some integer r ≥ 1 is fixed.
We say that the surface M is planar if each connected component of M is home-
omorphic to a subset of the sphere. If M is any surface, we say that a com-
pact subset K ⊂ M is planar if K has a neighborhood in M which is a pla-
nar surface. If f ∈ Diffr(M) is given, the orbit of a subset Z ⊂ M is denoted
Of (Z) = {fn(z) : z ∈ Z, n ∈ Z}.

If p is a hyperbolic periodic saddle point of f ∈ Diffr(M), a stable (or unstable)
branch of f at p is a connected component of W s(p) \ {p} (resp. Wu(p) \ {p}).
A periodic branch of f is a stable or unstable branch of some hyperbolic periodic
saddle point of f .

Also as a consequence of the local linearization of hyperbolic periodic saddles,
one may find an arbitrarily small neighborhood U of p such that the local stable
and unstable manifolds of p in U split U into four “local quadrants”. By the local
stable (or unstable) manifold of f in U we mean the connected component W s

loc(p)
(resp. Wu

loc(p)) of W
s(p)∩U (resp. Wu(p)∩U) containing p. We say that a set Z

accumulates on p through a local quadrant Q if Z ∩Q accumulates on p. The local
stable and unstable branches at p adjacent to Q are the connected components Yloc

of W s
loc(p) \ {p} and Xloc of Wu

loc(p) \ {p} which lie in the boundary of Q in U ;
the stable and unstable branches adjacent to Q are the sets Y =

⋃
n≥0 f

−kn(Yloc)

and X =
⋃

n≥0 f
kn(Xloc), where k > 0 is an integer such that fk(Yloc) ⊂ Yloc and

f−k(Xloc) ⊂ Xloc.
If Y is a stable branch and X is an unstable branch of p, we say that a set Z

accumulates on a point x ∈ X locally from the Y -side if the following holds: given
any compact arc γu ofWu(p) containing both p and x in its relative interior, and any
tubular neighborhood U of γu, the connected component UY of U\γu containing the
initial local stable branch Yloc corresponding to Y is such that UY ∩Z accumulates
on x.

For future reference, we state the following fact, which is a straightforward con-
sequence of the linearization of hyperbolic periodic saddles and the existence of
horseshoes:

Proposition 5. Let Y and X be a stable and an unstable branch (respectively) of
a hyperbolic periodic saddle of f ∈ Diffr(M), and suppose X meets Y transversely.
If Z is a periodic arcwise connected set, then Z intersects X ∪ Y provided that one
of the following holds:

(1) One of the branches X or Y is contained in Z, or
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(2) Z accumulates on X from the Y side, or
(3) Z accumulates on Y from the X side.

In particular, if Z is an unstable (or stable) branch of a periodic saddle and one of
the above cases holds, then Z must intersect Y (resp. X).

Proposition 6. Suppose f ∈ Diffr(M) and K ⊂ M is an f -periodic continuum
not reduced to a point.

(1) If p ∈ K is a hyperbolic periodic saddle, then at least one of the four
branches at p is contained in K;

(2) If, moreover, there exists a sequence pn ∈ K accumulating on p through a
local quadrant Q at p, then at least one of the two branches adjacent to Q
is contained in K.

Proof. Without loss of generality, considering an iterate of f if necessary, assume
K is invariant, p is fixed, and all four branches at p are f -invariant. Also, by the
Hartman-Grobman Theorem, considering a appropriate (C0) local chart at p we
may assume that f is linear in a neighborhood of p : the restriction of f to this
neighborhood is given by the restriction of a linear map to a neighborhood of the
origin, where the stable/unstable manifolds are the vertical/horizontal axes.

Item 1. First, suppose K avoids Wu(p) \ {p}. Then, if Wu
loc(p) denotes a local

unstable manifold at p, we have thatK is disjoint from Γu = Wu
loc(p)\f−1(Wu

loc(p)),
and therefore there is a neighborhood Uu of the compact set Γu that is disjoint from
K. From the local linearization one easily verifies that

⋃
k≥0 f

−k(Uu) contains a

set of the form B \W s(p) where B is a ball around p, which we can choose small
enough so that K intersects the complement of B. From the invariance of K, it
follows that K ∩B ⊂ W s(p), and since it must contain p and a point outside of B,
we deduce that K contains a local stable branch at p, as desired.

Suppose now that K contains some point z ∈ Wu(p) \ {p}. We may assume
that z lies in the local unstable manifold Wu

loc(p), in particular, in the positive x
axis. Assume also that K avoids some point of the unstable branch at p containing
z (otherwise there is nothing to be done). Then K avoids the whole orbit of this
point, so we may assume there exists a point x0 in Wu

loc(p) \K such that the arc
Γu of Wu(p) joining x0 to f(x0) contains z and the endpoints of Γu are disjoint
from K. In local coordinates, one has Γu = Iu × {0} where Iu is an arc in R+.
From the fact that K is compact, if δ > 0 is sufficiently small, the left and right
edges of Rδ = Iu × [−δ, δ] are disjoint from K. This, together with the fact that
if we fix δ small enough K intersects both Iu × {0} and the complement of Rδ,
implies that K contains a continuum Kδ ⊂ Rδ intersecting both Iu × {0} and one
of the horizontal edges of Rδ. From this we also deduce that if R−

δ = Iu × [−δ, 0]

and R+
δ = Iu × [0, δ], either K ∩R+

δ contains a continuum which intersects the two

horizontal edges of R+
δ , or a similar property holds for R−

δ . In the first case, by
a straightforward λ-lemma type argument we deduce that K accumulates in the
local stable branch at p corresponding to the positive y axis; and in the second
case K accumulates in the opposite stable branch. In either case we deduce that
K contains a stable branch.

Item 2. Suppose pn ∈ K converges to p through the first quadrant. Inside the
linearizing neighborhood of p ≡ (0, 0), consider a square of the form Q1 = [0, δ]2

(clearly contained in the first quadrant) for some sufficiently small δ > 0 such that
K ∩ (Q1)

c 	= ∅. From our hypothesis, we may assume pn ∈ K ∩ interior(Q1). Let
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Kn be the connected component of K ∩ Q1 that contains pn. As K intersects the
complement of Q1, Kn intersects ∂Q1 for all integers n > 0. As {0} × [0, δ] and
[0, δ]×{0} are local stable and unstable branches at p, if Kn intersects {0}× [0, δ]∪
[0, δ] × {0} for some n > 0, then a straightforward λ-lemma type argument (as in
item 1) implies that K contains the unstable branch that contains [0, δ] × {0} or
the stable branch that contains {0} × [0, δ]. As they are both adjacent to the first
quadrant, the proof is over in this case.

Assume now that all Kn′s avoid {0} × [0, δ] ∪ [0, δ]× {0}. So, for all n > 0, Kn

intersects {δ}× [0, δ]∪ [0, δ]×{δ}. As pn converges to p, there exists a subsequence
ni → ∞ such that Kni

→ Θ ⊂ Q1 in the Hausdorff topology, as i → ∞. It
is straightforward to show that Θ is a subcontinuum of K that contains p and
intersects {δ} × [0, δ] ∪ [0, δ] × {δ}. If Θ does not intersect interior(Q1), then it
contains {0} × [0, δ] or [0, δ] × {0} and we are done (from the f -invariance of K).
If Θ intersects interior(Q1), then fn(Θ) accumulates on some branch adjacent to
the first quadrant for n → ∞ or for n → −∞ (maybe both, for instance when
Θ ∩ ({0} × [0, δ] ∪ [0, δ]× {0}) = {(0, 0)}. As Θ is contained in the f -invariant
continuum K, the proof is over. �

From the previous result and the local linearization of periodic saddles, one easily
obtains the following

Corollary 7. If X,Y are adjacent branches of a hyperbolic periodic saddle of f ∈
Diffr(M) and K is a periodic continuum which accumulates on a point of X locally
from the Y -side, then K contains one of the branches X or Y .

A hyperbolic periodic saddle p = fn(p) always has a continuation, i.e. there are
neighborhoods U of p and U of f in Diffr(M), and a continuous map U → U which
maps g ∈ U to the unique fixed point pg of gn in U (and pg is a hyperbolic saddle).
Moreover, if X is a stable (or unstable) branch of f at p, then its corresponding local
branch in U also has a continuation, and as a consequence Xg has a continuation,
which is the corresponding stable (or unstable) branch of g at pg. Along this section
we will use the above notation for continuations of branches and periodic saddles.
Let us recall the following result from [23]:

Theorem 8. If M is a closed surface, there exists a residual subset χr(M) ⊂
Diffr(M) such that if f ∈ χr(M) then all periodic points of f are hyperbolic, the
stable and unstable manifolds of any pair of periodic points are transverse (that is, f
is Kupka-Smale), and in addition if X,Y are periodic unstable and stable branches,
respectively, the maps

g �→ Xg, g �→ Yg, and g �→ Xg ∩ Yg

are continuous at f .

We also recall a basic perturbation result (see Lemma 1.6 of [23]):

Lemma 9 (Perturbation Lemma). Suppose p1, p2 ∈ M are saddle points of f ∈
Diffr(M); Y1 is a stable branch at p1 and X2 is an unstable branch at p2. Given
x ∈ X2, a neighborhood V of x and a neighborhood U of f , one has:

(a) If x ∈ Y1 ∩X2, then there is g ∈ U with g = f off V such that Y1g meets
X2g transversely at x.
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(b) If y is sufficiently close to x there is g ∈ U with g = f off V such that
g(y) = f(x). If fk(x) /∈ V for all k < 0, then y ∈ X2g; if y ∈ Y1 and
fk(y) /∈ V for all k > 0 then y ∈ Y1g.

The next result is essentially [23, Theorem 1.7]:

Theorem 10. Let M be a surface and let p be a hyperbolic periodic saddle of f ∈
Diffr(M). Also let X and Y be an unstable and a stable branch at p, respectively,

such that Of (X) is planar. Suppose that there exists y such that either y ∈ Of (X)∩
Y , or Of (X) ∩ Y = ∅ and y ∈ Of (X) ∩ Y . Then, given a Cr-neighborhood U of f
and a neighborhood V of y, there exists g ∈ U such the continuations Xg and Yg of
X and Y intersect transversely in V .

Proof. This is a direct consequence of [23, Theorem 1.7], which has the same state-
ment with the additional assumption that M is planar. We are only assuming that
Of (X) is planar, but the proof in [23] relies only on local perturbations in small
neighborhoods of points of Of (X), and therefore it applies to our setting (indeed,
modifying M outside a neighborhood of Of (X), we may assume that M is planar
for the purposes of this proof). �

As a consequence, we have (similar to [23, Corollary 2.3]):

Corollary 11. Let X and Y be an unstable and a stable branch of a periodic
saddle p of f ∈ χr(M). If Of (X) is planar and intersects Y , then X intersects Y
transversely.

Proof. We may modify the surface outside a neighborhood of Of (X) and assume
thatM is planar itself. In this case Y changes, but a small local branch Y0 ⊂ Y does
not. From Theorem 10, after a small perturbation supported in a neighborhood
of Of (X) one finds a transverse intersection between the continuations of X and
Y (which implies a transverse intersection between the continuation of X and Y0).

Since this perturbation is localized in a neighborhood of Of (X), it can be translated
to a perturbation in the original surface, with the same consequence. But since
f ∈ χr(M), this implies that there already existed a transverse intersection between
X and Y . �

The proof of Lemma 12 is essentially contained (with minor variations) in the
proof of Lemma 2.4 of [23]. Note that we do not assume that the surface is planar,
so the conclusion is weaker.

Lemma 12. Let X and Y be an unstable and a stable branch of a periodic saddle
p for some f ∈ χr(M). Suppose there are sequences (yk)k≥0 of points and (nk)k≥0

of positive integers such that yk → y ∈ Y and xk = f−nk(yk) → x ∈ X as k → ∞.

Under these assumptions, Of (Y ) intersects at least one of the unstable branches at
p. In addition:

(a) If Of (Y ) does not intersect X, then there exists a sequence (�k)k≥0 with 0 <
�k < nk such that both (f−�k(yk))k≥0 and Of (Y ) accumulate on a point x∗ ∈ X∗,
the other unstable branch at p, locally from the Y -side.

(b) If xk → x locally from the Y -side, then there exists an unstable branch at p,
a point x0 in that branch (the branch might be X or not) and a sequence (�k)k≥0

with 0 < �k ≤ nk such that both (f−�k(yk))k≥0 and Of (Y ) accumulate on x0, locally
from the Y -side.
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Proof. Let N > 0 be the smallest common period of X,Y and of course p. Consider
an arbitrarily small ball Bε(y). If ε > 0 is sufficiently small, then f i(Bε(y))∩Bε(y) =
∅ for all 1 ≤ i ≤ N and f j(y) /∈ Bε(y) for all j > 0. Now following Lemma 9, perturb
f−1 inside Bε(y) so that the resulting diffeomorphism, g−1, is ε-C1-close to f−1 and
it satisfies g−1(y) = f−1(yk), for some arbitrarily large k. We have two possibilities:

(1) f−i(yk) /∈ Bε(y) for all 1 ≤ i < nk. In this case, g−nk(y) = f−nk(yk) which
is ε-close to x ∈ X, if k is large enough.

(2) the above does not happen. In this case, let i0 be the smallest 1 < i < nk

such that g−i(y) = f−i(yk) ∈ Bε(y). There exists a constant T > 0 which
depends only on f (obtained from the linearization of f near p) such that
for some integer s > 0, Og(Yg) � g−i0+sN (y) = f−i0+sN (yk) is T.ε-close
to a fixed fudamental domain Iu of the unstable manifold of p, from the
Y -side.

If possibility (1) above happens for all arbitrarily small ε > 0 and arbitrarilly
large values of k, then as f ∈ χr(M), Of (Y ) accumulates on x ∈ X. And moreover,
if xk → x locally from the Y -side (the hypothesis in item b of the lemma), then
as f ∈ χr(M), Of (Y ) also accumulates on x locally from the Y -side (because this
happens for g).

And if possibility (2) above happens for all ε > 0 and all arbitrarily large values
of k, then Of (Y ) and f−i0(k)+s(k)N(yk) both accumulate on some point x ∈ Iu

from the Y -side as k → ∞ (i0(k) and s(k) are sequences which satisfy 1 ≤ �k =
i0(k) − s(k)N < nk and �k → ∞ as k → ∞). Clearly x could belong to X. This
easily concludes the proof of the lemma. We just have to note that if the hypothesis
in item a holds, then for all ε > 0 and all arbitrarily large integers k, we always fall
into possibility (2) above. A final remark is that if the hypothesis in item b holds,
then it is possible that either possibilities (1) or (2) occur. �

Corollary 13. Let X and Y be an unstable and a stable branch of a periodic saddle
p of f ∈ χr(M), such that Of (Y ) intersects X. If one of the sets Of (Y ) or Of (X)
is planar, then Y intersects X transversely.

Proof. Corollary 11 (applied to f−1) deals with the case where Of (Y ) is planar.

Now assume that Of (X) is planar.
There is a sequence (xk)x≥0 of points of Of (Y ) converging to a point x ∈ X.

From the fact that Y is a stable branch of p, after taking a subsequence we may
assume that fnk(xk) → y ∈ Y for some sequence (nk)k≥0 of positive integers. From

Lemma 12 applied to f−1 we see that Of (X) intersects Y or there is a sequence
(�k)k≥0 with 0 < �k < nk such that f �k(xk) converges to y∗ ∈ Y∗ (Y∗ is the other
stable branch at p) and Of (X) accumulates on y∗, both from the X-side. In the
first possibility, Corollary 11 implies that X intersects Y transversely and the proof
is over. And in the second, it implies that X intersects Y∗ transversely. Since
f �k(xk) ∈ Of (Y ) converges to y∗ from the X-side, it follows from Proposition 5
that Of (Y ) intersects X. Thus there is i ≥ 0 such that f i(Y ) intersects X. As
this intersection is transverse and since X and Y are branches of the same periodic
saddle, by a repeated application of the λ-lemma we conclude that fki(Y ) intersects
X transversely, for each k ≥ 1. In particular since Y is a branch of a periodic
saddle, there exists n such that fn(Y ) = Y , and choosing k = n we conclude that
Y intersects X transversely. �
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Theorem 14. Let p, q be periodic saddles of f ∈ χr(M), and suppose there is an

unstable branch Z of q and a stable branch Y of p such that Of (Z) intersects Y . If

one of the sets Of (Z) or Of (Y ) is planar, then Of (Z) intersects Y transversely.

Proof. Suppose by contradiction that Of (Z) ∩ Y = ∅, and let y ∈ Of (Z) ∩ Y , so
there exists a sequence (zk)k≥0 of points of Of (Z) such that zk → y as k → ∞.

Suppose first that there exists a neighborhood of y which is avoided by the
preorbit of zk for arbitrarily large values of k. Then, the Perturbation Lemma
allows us to find g arbitrarily close to f such that the continuations of Of (Z)
and Y for g intersect transversely. The fact that f ∈ χr(M) then implies that
Of (Z) already intersected Y transversely prior to the perturbation, contradicting
our assumption.

In the remaining case, we can assume that there exists a sequence (mk)k>0 of
positive integers such that f−mk(zk) → y. Since zk → y, and y lies in a stable
branch of p, using the linearization of f at p one easily verifies that, after replacing
(zk) by a subsequence, there are numbers 0 < nk < mk and an unstable branch X
of p such that f−nk(zk) converges to some point x ∈ X from the Y -side. Lemma 12
allows us to conclude that there is an unstable branch X∗ of p (X∗ could be equal to
X) such that both Of (Z) and Of (Y ) accumulate on a point x∗ ∈ X∗ locally from
the Y -side. Thus there exist i, j ∈ Z such that both f i(Y ) and f j(Z) accumulate
on x∗ locally from the Y -side.

Let us prove that Y meets X∗ transversely. Recall that one of the sets Of (Y )

or Of (Z) is planar. Suppose first that Of (Y ) is planar. Then since it accumulates
on a point of the unstable branch X∗ of the same saddle, Corollary 13 implies
that X∗ intersects Y transversely. Now suppose that Of (Z) is planar. As f j(Z)

accumulates on x∗ locally from the Y -side, Corollary 7 implies that f j(Z) contains

either Y or X∗, and therefore Of (Z) contains either Of (Y ) or Of (X∗). Thus one
of the last two sets is planar, hence again Corollary 13 implies that X∗ meets Y
transversely.

Since X∗ meets Y transversely and Of (Z) accumulates on x∗ ∈ X∗ locally
from the Y -side, Proposition 5 implies that Of (Z) intersects Y transversely. This
contradicts the assumption at the beginning of the proof. �

Recall from the introduction that when M is a closed surface of positive genus,
FMr

0(M) denotes the elements of Diffr
0(M) which have a contractible periodic

saddle with a full mesh. If the genus of M is 0 we simply let FMr
0(M) = Diffr

0(M).

Theorem 15. Suppose M is a closed orientable surface and f ∈ χFM = χr(M) ∩
FMr

0(M). If Y is a stable branch of a hyperbolic periodic saddle p and X is an

unstable branch of a hyperbolic periodic saddle q, such that Of (X) intersects Y ,
then there exists i ∈ Z such that Y intersects f i(X) transversely. Moreover, if p
and q are in the same orbit, then one may choose i = 0.

Proof. If M is a sphere, [23, Theorem B] concludes the proof. So assume that

M has positive genus. If one of the sets Of (Y ) or Of (X) is contractible, the
proof follows from Theorem 14. So suppose neither of those sets is contractible.
Following Proposition 4 we can choose some periodic saddle z′ whose rotation vector
is different from the rotation vectors of p and q, and compact arcs λs ⊂ W s(z′) and
λu ⊂ Wu(z′) such that z′ ∈ λs∩λu and M \ (λs∪λu) is a union of open topological
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disks, whose covering diameters are bounded from above by some constant M(f) >

0. Let N > 0 be a common period of X,Y, z′ and all four branches at z′. And let Ỹ

be a connected component of π−1(Y ). Assume it is bounded. Then closure(Ỹ ) is a

bounded continuum which satisfies f̃N (closure(Ỹ )) = g(closure(Ỹ )), where f̃ is the
lift of f to the universal covering used to compute the rotation set, and g is a Deck
transformation. As the rotation vector of p (which is equal to [g]/N) is different from

the rotation vector of z′, closure(Ỹ ) avoids π−1(λs∪λu). So Y avoids λs∪λu. The

same happens for f i(Y ) for all 0 ≤ i ≤ N−1. As Of (Y ) = Y ∪f(Y )∪· · ·∪fN−1(Y ),

we get that Of (Y ) is contractible, a contradiction with our initial assumption. So

Ỹ is unbounded, therefore it intersects π−1(λs∪λu) and finally, we get that Y must
have a transversal intersection with λu.

Analogously, X must have a transversal intersection with λs. As λs and λu are
adjacent branches of the same saddle, the λ-lemma implies that Y intersects X
transversely, concluding the proof. �
Remark. Under the notation of the previous Theorem, a simple and useful conse-
quence is the following: if q has a full mesh and p is a hyperbolic periodic saddle
point contained in Wu(q), then Wu(q) has a transversal intersection with W s(p).
If p = q, this is trivial because q has homoclinic intersections (it has a full mesh!).

And if q 	= p, then as p ∈ Wu(q), some unstable branch at q accumulates on some
point of a stable branch at p, so the Theorem can be applied in order to obtain the
intersection. We just have to note that Wu(q) = Wu(f i(q)), for all integers i (see
observation 1 below).

4. Main technical result

In this section we prove a result which contains the proofs of Theorem 1 and
Theorem D. Recall that the set χFM ⊂ Diffr

0(M) was defined in the statement of
Theorem 15 and for any given subset K ⊂ M , Filled(K) is the union of K with
all the inessential connected components of the complement of K. Before stating
the theorem, we make two observations:

Observations. Let M be a closed orientable surface of genus g and z ∈ M be a
hyperbolic n-periodic saddle point for some f ∈ χFM ⊂ Diffr

0(M).

(1) If g > 0 and z has a full mesh, then for all 0 ≤ i ≤ n − 1 as W s (or u)(z)

has transversal intersections with Wu (or s)(f i(z)), we get that W s(z) =

W s(f i(z)) and Wu(z) = Wu(f i(z));

(2) For any g ≥ 0, if W s(z) is contractible, then the complement of

Filled(∪n−1
i=0 f

i(W s(z))) is an f -invariant fully essential open set D ⊂ M
(this follows from Proposition 4). So, ∂D has finitely many (contractible)

connected components K0,K1, . . . ,Kl−1 ⊂ ∪n−1
i=0 f

i(W s(z)) for some 1 ≤
l ≤ n, such that f(Ki) = Ki+1 (for i = 0, 1, . . . , l − 2) and f(Kl−1) = K0.
As fn(Ki) = Ki, the prime ends rotation number of fn |Ki

is the same
for all 0 ≤ i ≤ l − 1. So it makes sense to say that the prime ends com-
pactification of D has rational (or irrational) rotation number: the rotation
number is well-defined at each boundary component of D and it assumes
the same value at all of them (see [13] for precise definitions of prime ends in
this kind of situation). Clearly, analogous properties hold for any periodic

inessential connected component of the complement of ∪n−1
i=0 f

i(W s(z)).
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Theorem 16. Let M be a closed orientable surface, f ∈ χFM ⊂ Diffr
0(M), for any

r ≥ 1, and z ∈ M be a hyperbolic n-periodic saddle point which satisfies:

(1) Either, the genus of M is positive and z has a full mesh, or W s(z) is
contractible (for any genus ≥ 0);

(2) When z has a full mesh, there exists a f -periodic connected component D

of the complement of W s(z) ⊂ M which has rational prime ends rotation
number and in the second case, as explained in observation (2) above, D

is a k-periodic connected component of (∪n−1
i=0 f

i(W s(z))c (maybe fully es-
sential) for which the prime ends rotation number of fn.k at each boundary
component of D is the same rational number;

Under the above hypotheses, assuming that some integer N ≥ 1 is a common
period of z, D and each connected component of ∂D, as well as all 4 branches at z,
and also assuming that the prime ends rotation number of each boundary component
of D is equal to p/q (a rational number), the following conclusions hold:

(A) If V is a cross-section in D which satisfies closureD(fN.q(V )) ⊂ V , then
fN.q has a fixed point in V .

(B) Each connected component of the boundary of D̂, the prime ends compactifi-
cation of D, has finitely many periodic prime ends, which can only be of two types:
sources and accessible hyperbolic saddles. Moreover, for each saddle in the later
case, its stable manifold avoids D, one unstable branch is contained in D and thus
the whole stable manifold is accessible from D.

Proof. In both cases above (either when z has a full mesh or when W s(z) is con-
tractible) we denote by g = fN the homeomorphism acting on each connected
component of ∂D.

First, let us show that the map ĝ : D̂ → D̂ induced by g, does not have intervals

of q-periodic points in each circle in ∂D̂. Indeed, if it had, then there would be
a crosscut α in D such that all points in ∂D that belong to the boundary of a
cross-section associated to α would be gq-fixed (because accessible points had to
be gq-fixed and they are dense in ∂D), a contradiction with the fact that f is
Kupka-Smale.

Proof of Item (A). Assume C is a crosscut in D such that gq(C) ∩ C = ∅
and V is a cross-section associated to C that satisfies gq(V ) ⊂ V . Consider an
arc γ contained in the region between C and gq(C), whose endpoints are, some
a ∈ C and gq(a) ∈ gq(C). Clearly, gq.n(γ) ∩ γ = ∅ for all n /∈ {−1, 0, 1}. Let us
look at ∪m≥0g

q.m(γ) and the set of accumulation points of gq.m(γ) as m → ∞,
which we call the ω-limit set of ∪m≥0g

q.m(γ). It clearly is a gq-invariant continuum
K ⊂ (V ∪ ∂V )\C. From the hypothesis on C, we get that K ∩ (∪m≥0g

q.m(γ)) = ∅.
Even when D is homotopically unbounded, Proposition 24 together with Propo-

sition 4 imply that K is contractible. Thus the main theorem of [16] states that
K is a rotational attractor, or a rotational repeller, or it contains a gq-fixed point.
When K is a rotational attractor (or repeller), we mean that it is a contractible
continuum in M which may, or may not, separate M , and it attracts (or repells) all
nearby points that belong to at least one connected component of its complement.
In case K separates M , one of the connected components of Kc is fully essential
and the others are open disks. Clearly, by the Cartright-Littlewood Theorem [8],
Filled(K) always contains gq-fixed points, but when K separates M , the gq-fixed
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points may not belong to K. Note that this definition is slightly different from the
one which appears in [16].

So, when K ⊂ V , as V is a topological open disk, if K is a rotational attractor
or repeller, then there is a gq-fixed point in Filled(K) ⊂ V . Thus, from the three
possibilities given by the main theorem of [16], when K ⊂ V , V always contains a
gq-fixed point (as a matter of fact, in our case K cannot be a repeller because it
attracts positive iterates of γ).

Thus, let us assume that K intersects ∂D.
First, we deal with the case when K is a rotational attractor. It implies that

z ∈ K. When z has a full mesh, as Wu(z) is unbounded, this is not possible. And

when W s(z) is contractible, it would imply that the whole Wu(z) is contained in

K, therefore Wu(z) is also contractible. Let us keep this information for a while.
As K cannot be a rotational repeller, the remaining possibility given by the main

result of [16] is that K must have gq-fixed points. If at least one of these points
belongs to V , then we are done.

So, assume all of them belong to ∂D. As f only has hyperbolic periodic points
and positive iterates of γ accumulate on K, the gq-fixed points in K cannot be
sources. They cannot be sinks either, because

(3) ∂D ⊆ ∪n−1
i=0 f

i(W s(z)).

So the gq-fixed points in K are all saddles. More precisely:

Proposition 17. K contains a hyperbolic gq-fixed saddle point of index −1.

Proof. If K is a rotational attractor, z belongs to K and we are done. So, we can
assume that K is not a rotational attractor.

By contradiction, suppose that all gq-fixed points in K are orientation-reversing
saddles, denoted {w1, w2, . . . , wm}, that is, they all have index 1. As there are
finitely many such points in K (because f is Kupka-Smale), we can blow up each
zi into a circle Ci, such that the induced dynamics (by gq) on Ci is that of a semi-
rotation. In the disk Di bounded by Ci, we define a dynamics in the natural way:
the extended map fixes the center of eachDi and semi-rotates each concentric circle.
In this new space obtained after blowing up all gq-fixed points in K and adding
disks, positive iterates of γ still accumulate on an invariant continuum, which can
not be a rotational attractor, because prior to the blow-ups we assumed it was not.
The problem is that this continuum has no gq-fixed points. This contradicts the
main result of [16] and proves the proposition. �

So K ∩ ∂D contains at least one hyperbolic gq-fixed saddle point w of index −1
(note that w can be equal to z, for instance when K is a rotational attractor). From
expression (3), if w is not equal to z, for some 0 ≤ i ≤ n−1, f i(W s(z)) = W s(f i(z))
accumulates on w and therefore, by Theorem 15, W s(f j(z)) has a C1-transverse
intersection with Wu(w) for some 0 ≤ j ≤ n− 1. As D is a connected component

of the complement of ∪n−1
i=0 f

i(W s(z)), we finally get that W s(w) ∩D = ∅. Clearly,
the last intersection is also empty when w = z, by the choice of D.

Whether K is a rotational attractor or not, as K is a gq-invariant continuum
that contains w, it contains at least one of the four branches at w, see item 1 of
Proposition 6. Let λ be a branch at w, either stable or unstable, contained inK. We
know that ∪m≥0g

q.m(γ) accumulates on the whole λ. In the following we will show
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that this accumulation implies that ∪m≥0g
q.m(γ) has a topologically transverse

intersection with W s(w′), for some saddle w′ ∈ ∂D. As we explained above, for

any such a saddle w′, W s(w′) ∩ D = ∅, a contradiction because ∪m≥0g
q.m(γ) is

contained in D.
The fact that λ⊂ K, implies that λ is contractible, so again from the main

theorem of [16] we get that Θ, the accumulation set of λ (Θ is given by the ω or
α-limit set of λ, depending on whether λ is an unstable or stable branch), is a
rotational attractor or it contains a gq-fixed point (it cannot be a repeller because
it is accumulated by positive iterates of γ). If Θ is a rotational attractor, then it
either belongs to V and we are done (because in this case, Filled(Θ) ⊂ V and it

contains gq-fixed points), or it intersects W s(z). In this last case, z must belong
to Θ. So, either part A of the theorem is proved or all gq-fixed points in Θ belong
to ∂D. In particular, some point w1 ∈ Θ ∩ ∂D (w1 may be equal to z) is a gq-
fixed hyperbolic saddle of index −1 (again, this follows from Proposition 17 and
the fact that a gq-fixed point in Θ ∩ ∂D cannot be a source or a sink since it is
accumulated by positive iterates of γ and by W s(z)). As Θ ⊂ K is a gq-invariant
continuum, item 1 of Proposition 6 implies that Θ contains some branch at w1. This
branch has a contractible closure and as before, it accumulates on a continuum Θ2.
Exactly as we did above, if Θ2 is a rotational attractor, then z belongs Θ2. So,
in any case (see Proposition 17), there is a gq-fixed hyperbolic saddle of index −1,

denoted w2 ∈ Θ2 ∩ ∂D. Clearly, Θ2 contains a branch at w2 and so, λ
def
= λ0

accumulates on a whole branch λ1 at w1 and this branch at w1 accumulates on
a whole branch λ2 at w2 and so on. Now the proof goes as follows: As K is
compact and gq is Kupka-Smale, some point wN (for some N ≥ 0) in the sequence

w
def
= w0 → w1 → w2 → · · · → wN → wN+1 → · · · → wN must appear twice. Note

that each wi is a gq-fixed hyperbolic saddle of index −1 contained in K ∩ ∂D and
wi → wi+1 means that the branch λi ⊂ K at wi accumulates on the whole branch
λi+1 at wi+1.

As some contractible branch λN at wN accumulates on wN , Theorem 15 im-
plies that λN has a transversal homoclinic point. As λN ⊂ K and ∪m≥0g

q.m(γ)
accumulates on the whole λN , Proposition 5 implies that ∪m≥0g

q.m(γ) must have
a topologically transverse intersection with W s(wN ) (because it has to enter the
horseshoe rectangle). To see this, assume, by contradiction, that positive iterates
of γ under gq only intersect Wu(wN ). This would imply that for infinitely many
large integers m > 0, gq.m(γ) intersects the boundary of a fixed horseshoe rectangle
at wN , only at points belonging to Wu(wN ). So, wN ∈ γ, a contradiction because
γ ⊂ D and wN ∈ ∂D.

At last, as W s(wN ) ⊂ W s(f j(z)), for some 0 ≤ j ≤ N−1, we get that W s(wN )∩
D = ∅. As ∪m≥0g

q.m(γ) is contained in D, this is the final contradiction that proves
Item (A) (see Figure 1).

Proof of Item (B). Now we show that there are only finitely many periodic prime

ends in each of the (finite) connected components of ∂D̂. Suppose not. Then, the

complement of the ĝq -fixed point set in some component of ∂D̂ has infinitely many
connected components, which are disjoint open intervals. In each of these intervals,
orbits under ĝq move in one direction, so for each interval, one of its boundary
points is ĝq-fixed and attracts orbits from at least one side.
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Figure 1. Diagram showing iterates of γ entering a rectangle of a horseshoe

The important conclusion is that the existence of infinitely many ĝq-fixed prime
ends implies the existence of infinitely many ĝq-fixed prime ends that attract from

at least one side. Let p̂∗ ∈ ∂D̂ be a ĝq-fixed prime end that attracts from at least
one side. If (C∗

n)n≥0 is a prime chain that represents p̂∗, by choosing diameter
of C∗

0 sufficiently small, we can assume that there are no gq-fixed points in the
cross-section V ∗

0 . This follows from the fact that f : M → M has finitely many
n-periodic points for each integer n ≥ 1.

As p̂∗ attracts from at least one side, part A above implies that for all n ≥ 0,
gq(C∗

n) ∩ C∗
n 	= ∅. So, all principal points associated to p̂∗ are gq-fixed. As the

principal set is connected, there is only one such point, denoted p∗ ∈ ∂D and
p̂∗ is an accessible prime end. The gq-fixed point p∗ cannot be a sink because it
belongs to the closure of stable manifolds. Neither a source, because p̂∗ is accessible
and attracts from at least one side, see Lemma 6.3 of [5]. So it is a saddle. As

p∗ ∈ ∂D ⊆ ∪n−1
i=0 f

i(W s(z)), as we did in part A above, if p∗ /∈ Orb(z), then at
least one branch of Wu(p∗) has a transverse intersection with W s(f i(z)) for some

0 ≤ i ≤ n − 1. So, W s(p∗) ⊂ W s(f i(z)) which implies that W s(p∗) ∩ D = ∅.
Nevertheless, even when p∗ ∈ Orb(z), W s(p∗) ⊂ ∪n−1

i=0 f
i(W s(z)).

As p∗ is accessible, there exists an end-cut η : [0, 1] → D such that η([0, 1[) ⊂ D
and η(1) = p∗. Clearly, considering small neighborhoods of p∗, we can assume that

η is as in figure 2, essentially because D avoids W s(p∗).

p*

η

Figure 2. Diagram showing the end-cut η
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Let λu
p∗ be the branch of Wu(p∗) which does not have an (transverse, as f ∈

χr(M)) intersection with ∪n−1
i=0 f

i(W s(z)). There must exist such a branch, other-
wise p∗ would not be accessible. In case p∗ /∈ Orb(z), we know that one unstable
branch at p∗ intersects ∪n−1

i=0 f
i(W s(z)) and the other not. So, each of them is gq-

invariant and therefore the index of p∗ under gq is −1. Clearly, as z and all four
branches at z are g-invariant, the index of z under gq is also −1.

From Proposition 18, the endcut η can be deformed into one that does not
intersect λu

p∗ (in other words, η is homotopic in D to an endcut which avoids all
branches at p∗). So, we can assume that η is contained in one of the local quadrants
adjacent to λu

p∗ and thus, some branch of W s(p∗) is made of accessible points in
∂D, see Proposition 19. These two results appear in [5] and below we present proofs
of both.

Proposition 18. The arc η associated to p̂∗ can be chosen so that η ∩ λu
p∗ = ∅.

Proof. By contradiction, assume the proposition does not hold. Then, there must
be a prime chain (C∗

n)n≥0 representing p̂∗, such that each crosscut C∗
n is contained

in λu
p∗ . So, gq(C∗

n) ∩ C∗
n = ∅ for all n ≥ 0 and if diameter of C∗

0 is sufficiently
small, then by part A of this theorem, p̂∗ does not attract from any side. This
contradiction proves the proposition. �

Proposition 19. There exists a branch of W s(p∗) made of accessible points in ∂D.

Proof. This proof appears in [12] in detail and originally in Mather’s paper [18].
We shortly present it here.

By the Hartman-Grobman Theorem, assume we are inside an open ball centered
at p∗ where the dynamics of gq is that of (x, y) → (x/2, 2y) (clearly p∗ is identified
with (0, 0)). Also assume that η belongs to the first quadrant, so λu

p∗ contains the
local positive y-axis. For each t ∈ η, let Vt be a vertical segment starting at t and
going downwards, until it touches ∂D. As W s(p∗) ∩D = ∅, Vt does not cross the
x-axis. Analogously, let Ht be an horizontal segment starting at t and going to the
left, until it touches ∂D.

• If for some t ∈ η, Ht intersects the y-axis, then there exists a simple closed
curve β which is made of a vertical arc in λu

p∗ from p∗ to a point in Ht, an horizontal
arc from that point to some point in η and a sub-arc of η, going back to p∗. Let
B be the interior of β. If, by contradiction, ∪n−1

i=0 f
i(W s(z)) accumulates on p∗

through the first quadrant, then for some 0 ≤ i∗ ≤ n − 1, f i∗(W s(z)) intersects

B. From the choices of η and Ht, and the fact that f i∗(W s(z)) is connected and
accumulates on the whole W s(f j(p∗)) for some integer j, and this stable manifold
is not contained in B, f i∗(W s(z)) must have a transversal intersection with λu

p∗ .

As we already said, this implies that p∗ is not accessible. So ∪n−1
i=0 f

i(W s(z)) does
not accumulate on any point of the stable branch at p∗ which locally coincides with
the positive x-axis, through the first quadrant. In other words, the whole local first
quadrant is contained in D.

• Now assume that for all t ∈ η, Ht is contained in the first quadrant. Clearly,
Vt ∪Ht is a crosscut associated to p̂∗. As t gets closer to p∗, diameter(Vt ∪Ht) be-
comes arbitrarily small. So, as p̂∗ attracts from at least one side, for all t sufficiently
close to p∗, part A above implies that,

gq(Vt ∪Ht) ∩ (Vt ∪Ht) 	= ∅.
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But the dynamics near p∗ is that of (x, y) → (x/2, 2y), so gq(Vt) is a vertical
segment and gq(Ht) is an horizontal one. This implies that gq(Vt) ∩ (Ht) 	= ∅.
In other words, there are points s ∈ int(Vt) and gq(s) ∈ int(Ht) such that the
arc ζs ⊂ Vt ∪ Ht whose end points are s and gq(s), satisfies gq(ζs) ∩ ζs = gq(s).
if we perform this construction for all t ∈ η sufficiently close to p∗, we obtain a
fundamental domain of the first quadrant entirely contained in D. So the whole
local first quadrant is contained in D and thus the stable branch at p∗ which locally
coincides with the positive x-axis is made of accessible points through the local first
quadrant. �

Let us show now that λu
p∗ is contained in D. As all its points are accessible from

D, if it is not contained in D, then

λu
p∗ ∩ (∪n−1

i=0 f
i(W s(z))) 	= ∅.

So, Theorem 15 implies that λu
p∗ would have a transversal intersection with

f i(W s(z)), for some integer i, a contradiction with the accessibility of p∗. And
finally, as a local quadrant adjacent to λu

p∗ belongs to D, the whole λu
p∗ is contained

in D, so W s(p∗) is contained in ∂D and is made of accessible points.

If p̂∗1, p̂
∗
2 ∈ ∂D̂ are ĝq-fixed prime ends that attract from at least one side, then

they correspond to accessible saddles in ∂D. Assume they both correspond to the
same saddle p∗ ∈ ∂D.

If p∗ ∈ Orb(z) and W s(z) ∩ Wu(z) = ∅ (this is only possible when W s(z) is
contractible), then there might be two different ĝq-fixed prime ends p̂∗1, p̂

∗
2 which

correspond to p∗; p̂∗1 is associated to one unstable branch at p∗ and p̂∗2 is associ-
ated to the other. Clearly, in general, no more than two different prime ends are
associated to a point in Orb(z).

Now, assume p∗ /∈ Orb(z). We know that W s(p∗) ⊂ ∪n−1
i=0 f

i(W s(z)) and there

are two end-cuts η1, η2 : [0, 1] → D such that η1,2([0, 1[) ⊂ D and η1,2(1) = p∗.
As p∗ /∈ Orb(z), by Proposition 18 we can assume that each of these endcuts is
contained in one of the local quadrants adjacent to λu

p∗ , the unstable branch at
p∗ which is contained in D. This happens because, from Theorem 15, the other
unstable branch at p∗ intersects ∪n−1

i=0 f
i(W s(z)).

If η1 and η2 belong to the same quadrant adjacent to λu
p∗ , then they are ho-

motopic in D and thus p̂∗1 = p̂∗2. If they belong to different adjacent quadrants,
then as λu

p∗ is an endcut at p∗ and η1 and η2 are both homotopic in D to λu
p∗ ,

they are homotopic to each other. So, in this case we also have p̂∗1 = p̂∗2. As
f : M → M has finitely many periodic points for each period, in the first case
(when z has a full mesh), W s(z) has finitely many gq-fixed points and in the sec-

ond case ∪n−1
i=0 f

i(W s(z)) also has finitely many gq-fixed points. So, there must be
finitely many periodic prime ends that attract from at least one side, thus finitely

many periodic prime ends in ∂D̂.
Summarizing, if such a periodic prime end attracts from at least one side, then

it attracts from both sides, it is accessible and it corresponds to a saddle in ∂D, for
which one unstable branch is contained in D.

Suppose now that p̂ ∈ ∂D̂ is an isolated ĝq-fixed prime end which repels from
both sides and let (Cn)n≥0 be any prime chain that represents p̂. Denote by (Vn)n≥0

the cross-sections associated to the Cn′s. As before, by choosing C0 with a suffi-
ciently small diameter, we can assume that there is no gq-fixed point in V0.
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Either one of the following possibilities hold:

(1) For all (Cn)n≥0 as above, there is an infinite sequence Cni
such that Cni

∩
gq(Cni

) 	= ∅;
(2) the above does not hold;

In the first possibility, all principal points associated to p̂ are gq-fixed, therefore,
from our genericity condition, there is only one such point p ∈ ∂D, which is an
accessible gq-fixed point.

It cannot be a sink. If it were a source, then by Lemma 6.3 of [5], we could
choose some prime chain (Cn)n≥0 representing p̂ for which Cn ∩ gq(Cn) = ∅ for all
n ≥ 0, a contradiction with our hypotheses. So p is a saddle. And as we explained
above, the stable manifold of p is made of accessible points in ∂D. Therefore p̂
attracts from both sides, a contradiction with the assumption on p̂.

So the first possibility cannot happen, and in the second, there is a prime chain
(Cn)n≥0 representing p̂ such that Cn ∩ gq(Cn) = ∅ for all n ≥ 0. Again, there are
two sub-cases to consider:

• For some i0, ĝ
−q.m(Ĉi0) → p̂ as m → ∞.

• The above does not happen.

In the first case above, p̂ ∈ D̂ is a source. And in the second case, there exist Ci0

and Ci1 , i0 < i1 arbitrarily large, Ci1 ⊂ Vi0 such that g−q(Ci0) ⊂ Vi0 , g
−q(Ci0) ∩

Vi1 = ∅ and g−q.n(Vi0) ∩ Ci1 	= ∅ for all n ≥ 0. So, ∩n≥0ĝ
−q.n(V̂i0) is a closed

connected ĝq-invariant subset of D̂ that intersects Ĉi1 and(
∩n≥0ĝ

−q.n(V̂i0)
)
∩ ∂D̂ = p̂.

As g−q(Ci0) ∩ Vi1 = ∅, it follows that gq(Ci1) ⊂ Vi0 . So,

(4) ∩i≥0g
q.i

[(
∩n≥0g

−q.n(Vi0)
)
∩ (Vi1)

c
]

is a nonempty, compact gq-invariant subset of D, contained in

TransDomain = ∪n≥0g
q.n(Vi0), an open set homeomorphic to the plane.

But gq is fixed point free in Vi0 and TransDomain is gq-invariant, so

gq |TransDomain is a Brouwer homeomorphism.

And this is a contradiction with the existence of the compact gq-invariant set in (4).
So the second case does not happen and periodic prime ends are either accessible
saddles or sources. �

5. On Cr
-generic families of diffeomorphisms

Here we present results that characterize certain behaviors of Cr-generic one-
parameter families of diffeomorphisms of surfaces. In particular, one result is anal-
ogous to Theorem 15, but now it holds for residual subsets in the parameter space
of Cr-generic one-parameter families of diffeomorphisms.

Theorem 20 (Brunovski). For any r ∈ {2, . . . ,∞}, if (ft)t∈I is a Cr-generic
one-parameter family of diffeomorphisms of a closed Riemannian manifold, then
periodic points are born from only two different types of bifurcations: saddle-nodes
and period doubling. In case of saddle-nodes, if the parameter changes, then the
saddle-node unfolds into a saddle and a sink or source in one direction and the
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periodic point disappears in the other direction. Moreover, at each fixed parameter,
only one saddle-node can happen.

Remark. This statement appears in [6]. The exception is the last part, which follows
from the fact that the local Banach submanifold in the space of Cr-diffeomorphisms,
of maps which have a saddle-node periodic orbit has codimension one. Therefore, a
generic one-parameter family of diffeomorphisms does pass through the intersection
of two or more such Banach manifolds. More parameters are necessary for that.
See [24].

Theorem 21. For any r ∈ {1, 2, . . . ,∞}, if (ft)t∈I is a Cr-generic one-parameter
family of diffeomorphisms of a closed orientable surface, then there exists a residual
subset R ⊂ I, such that if t ∈ R, then ft is a Kupka-Smale diffeomorphism.

Remark. This theorem is folklore, but can be proved in the same way as the next
one, which is a version of Theorem 15 for families.

Theorem 22. For any r ∈ {1, 2, . . . ,∞}, given a Cr-generic one-parameter family
(ft)t∈I of diffeomorphisms of any closed orientable surface, there exists a residual
subset R′ ⊂ R ⊂ I (R is the residual subset given by the previous theorem), such
that for t ∈ R′, if zt is a hyperbolic ft-periodic saddle point with a full mesh, in
case wt ∈ Wu(zt), where wt is another hyperbolic periodic saddle point for ft, then
Wu(zt) actually has a C1-transverse intersection with W s(wt).

The proofs of Theorems 21 and 22 follow from the Kupka-Smale Theorem, The-
orem 15 and the remark after it, and the following general result:

Lemma 23. If r ≥ 1 and R(M) is a Cr-residual subset of Diffr(M) (where M is a
compact manifold without boundary), then for a Cr-generic one-parameter family
of diffeomorphisms (ft)t∈I , the set of parameters t ∈ I for which ft ∈ R(M) is
residual in I.

Proof. Since R(M) is residual, it contains some set of the form

R∗(M) =
∞⋂
i=1

Wn,

where each Wn is open and dense in Diffr(M).

Claim. For any fixed s ∈ I and m ∈ N, the set of one-parameter families (ft)t∈I

such that fs ∈ Wm is Cr-open and dense.

Proof. The openness is trivial. To prove the density, first recall that the space of
Cr-diffeomorphisms of a compact manifold M is a Banach manifold modeled on
the space of Cr vector fields Xr(M). In fact, if exp x : TxM → M denotes the
exponential map for any (smooth) complete Riemannian metric on M , a chart on a
small enough neighborhood U of f is given by the map φ : U �→ Xr(M) where φ(g)
is the map x �→ exp−1

x (g(f−1(x))). Assuming f = fs, there exists δ > 0 such that
ft ∈ U whenever |s − t| < δ. Let η : R → R be a C∞ function such that η(t) = 0
if |s− t| ≥ δ and η(s) = 1. We may choose a sequence (gn)n∈N of elements of Wm

such that gn → f in the Cr topology. We further assume that φ(U) is convex (by
reducing it if necessary), so we may define new maps by convex combination

fn,t = φ−1((1− η(t)) · φ(ft) + η(t) · φ(gn))
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when |s − t| < δ and by fn,t = ft otherwise. Note that (x, t) �→ fn,t(x) is of class
Cr and it is straightforward to verify that (fn,t)t∈I → (ft)t∈I in the Cr-topology
as n → ∞. This proves the claim. �

The lemma follows easily from the claim: letting {sn : n ∈ N} be a dense subset
of I and applying the claim to s = sn and a given m we obtain a Cr-open and
dense set Λm,n of 1-parameter families (ft)t∈I such that fsn ∈ Wm, and thus

Λ =
⋂

n,m∈N

Λm,n

is a residual set of families (ft)t∈I such that fsn ∈ Wm for all n,m ∈ N. Note
that this implies that the set W ′

m := {t ∈ I : ft ∈ Wm} is open and dense in
I, thus R′ =

⋂
m∈N

W ′
m is a residual subset of I such that every t ∈ R′ satisfies

ft ∈ R∗(M) ⊂ R(M), completing the proof of the lemma. �

6. Proofs of the main results

In the first subsection, we prove an auxiliary result.

6.1. A general result.

Proposition 24. Assume f ∈ Diff1+ε
0 (T2) and its rotation set has interior or

f ∈ Diff1+ε
0 (S), where S is a closed orientable surface of genus larger than 1, and it

has a fully essential system of curves C . If D is a f -periodic open disk, then either
D(D) < Max(f) (see Proposition 4) or D is homotopically unbounded. In case D
is homotopically unbounded, using the notation from Theorems 2, 3 and Proposition
4, either D avoids W s(Q) and intersects Wu(Q) (in this case ∂D ⊇ W s(Q)) or

D avoids Wu(Q) and intersects W s(Q) (in this case ∂D ⊇ Wu(Q)). Moreover,
(λu ∪ λs)

c ∩D = ∪∞
i=1Ai, a disjoint union of open bounded disks, properly labeled.

If n > 0 is a common period of D, the point Q and its stable and unstable branches,
and moreover, ∂D ⊇ W s(Q), then fn(A1) ⊂ A1. All other Ai′s are wandering
and for each integer i > 1, there exists m(i) such that fn.m(i)(Ai) ⊂ A1. If ∂D ⊇
Wu(Q), then fn(A1) ⊃ A1. All other Ai′s are wandering and for each integer
i > 1, there exists m(i) such that fn.m(i)(A1) ⊃ Ai.

Proof. Without loss of generality, assume D is f -invariant and Q from Proposition
4 is fixed, as are all four branches at Q. If not, consider some power of f . Also, for
simplicity of writing, we consider the torus case.

If we lift λu ∪ λs to the plane (see Proposition 4), we get that its complement
is made of disks whose diameters are smaller than Max(f). Therefore if some

connected component D̃ of π−1(D) intersects π−1(λu∪λs), then D̃ contains an arc

α transversal to Wu(Q̃) or W s(Q̃). Choose some (p, r) such that f̃(D̃)−(p, r) = D̃.

The λ-lemma then implies that the orbit of this arc under f̃(•)−(p, r) is unbounded

and so D̃ is unbounded.
If D intersects Wu(Q) and W s(Q), as it is open, D contain arcs γu and γs,

C1-transversal, respectively, to W s(Q) and Wu(Q). So, as n > 0 goes to infinity,
fn(γu) C1-accumulates on Wu(Q), the same for f−n(γs) with respect to W s(Q).
As Wu(Q)∩W s(Q) contains a topologically transverse point z, for which the arc in
Wu(Q) whose endpoints are Q and z, union with the arc in W s(Q) whose endpoints
are Q and z form a homotopically non-trivial closed curve, fn(γu) ∪ f−n(γs) also
contains a homotopically non-trivial closed curve for all sufficiently large n > 0
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(this follows from the topological transversality between W s(Q) and Wu(Q) at z).
But as fn(γu) ∪ f−n(γs) ⊂ D for all n > 0, this is a contradiction with the fact
that D is a disk.

Clearly, if D is unbounded and avoids W s(Q), then it intersects Wu(Q). So,
it contains an arc whose negative iterates C1-accumulate on W s(Q). Therefore,

∂D ⊇ W s(Q).
Finally, let us look at the connected components of (λu ∪ λs)

c ∩ D, assuming

that ∂D ⊇ W s(Q). Each one is an open disk, whose diameter is bounded by
Max(f) > 0 (see Proposition 4). Choose any point z∗ ∈ D. Let β be an arc in
D whose endpoints are z∗ and f(z∗). As f−1(λu) ⊂ λu and Q /∈ D, there exists
m(β) > 0 such that for all i ≥ m(β), f i(β) avoids λu ∪ λs. Therefore, for all
i ≥ m(β), f i(z∗) belongs to the same connected component of (λu ∪ λs)

c ∩D. Call
it A1.

Consider any other point z in D. Fix an arc α ⊂ D, connecting z∗ to z. As for
β, there exists m(α) > m(β) > 0 such that for all i ≥ m(α), f i(α) avoids λu ∪ λs.
Therefore, for all i ≥ m(α), f i(α) is contained in A1. So the positive orbit of any
z ∈ D, at some point enters A1 and stays there forever.

Moreover, if an arc γ ⊂ D avoids λu, then f i(γ) avoids λu for all i > 0. This
implies that the image under f of any connected component of (λu ∪ λs)

c ∩ D
is always contained in another connected component. So immediately, f(A1) ⊂
A1. And for the others? Fix some i > 1 and look at Ai. If for some m > 0,
fm(Ai) ∩ Ai 	= ∅, then fm(Ai) ⊂ Ai ⇒ f j.m(Ai) ⊂ Ai for all integers j > 0. And
this is a contradiction with the fact that all points in D enter A1 after a certain
positive iterate and do not leave it anymore.

So for all i > 1, each Ai is wandering and for a certain m(i) > 0, fm(i)(Ai) is
contained in A1.

The case when D is unbounded and intersects W s(Q) is analogous. �

6.2. Proof of Theorem 1. The proof of this theorem follows entirely from Theo-

rem 16. If D is a f -periodic open disk which is a connected component of
(
W s(z)

)c

for some saddle z with a full mesh, and the prime ends rotation number of D is

rational, then Theorem 16 implies that D̂ is a closed disk in whose boundary there
are only finitely many periodic prime ends. Necessarily, some are accessible hyper-
bolic saddles and the remaining are sources. For such an accessible saddle w ∈ ∂D,
the whole stable manifold of w is contained in ∂D, some unstable branch at w has
a transversal intersection with W s(z) and one unstable branch at w is contained

in D. So, W s(w) is accessible from D. Clearly, sources in ∂D̂ might correspond
to accessible hyperbolic periodic sources in ∂D, but, necessarily, in case D is ho-
motopically unbounded, in any given neighborhood of some of these sources is
“hidden the unboundedness of D”. By this, we mean that for some sources in

∂D̂, and any crosscut around one of them, the corresponding cross-section in D
is an homotopically unbounded disk. Moreover, D minus the union of these par-
ticular homotopically unbounded cross-sections is always a homotopically bounded
disk. �

6.3. Proof of Theorem C. This is immediate from the dynamics of f̂n |∂ ̂D, see
figure 3. �
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Figure 3. Diagram showing the dynamics of f̂n restricted to D̂

6.4. Proof of Theorems B and B′. Any homotopically unbounded, maximally
periodic open disk D must be a connected component of the complement of W s(z)

(or of Wu(z)), where z is a contractible hyperbolic periodic saddle with a full mesh.
This follows from the following: as D is unbounded, it intersects stable or unstable
manifolds of z. From Proposition 24, D cannot intersect both. �

6.5. Proof of Theorem D. Without loss of generality, assume D is a fN -periodic
(for some integer N > 0 which is a multiple of 2.n) connected component of(
∪n−1
i=0 W

s(f i(z))
)c

. The choice of N implies that fN leaves each boundary com-

ponent of D invariant. Also, the prime ends rotation number of fN restricted to
each component of ∂D is assumed to be rational. From observation (2) before the
statement of Theorem 16, the prime ends rotation number of fN is the same at all
components of ∂D.

If instead of stable manifold at the orbit of z, it were unstable manifold, we just
would have to work with f−1.

From part (B) of Theorem 16, each connected component of the boundary of D̂,
the prime ends compactification of D, is a circle with only finitely many periodic
prime ends. Necessarily, some are accessible hyperbolic saddles and the remaining
are sources. For such an accessible saddle w ∈ ∂D, W s(w) is contained in ∂D
and one unstable branch, denoted λu

w, is contained in D. So, a result analogous
to Theorem 1 holds for each connected component Γ of ∂D. The rest of the proof

follows from the dynamics of f̂N |
̂Γ, again see figure 3. �

6.6. Proof of Theorems A and A′. From both theorem’s hypotheses, there
exists t0 < t∗ < t1 such that ft∗ only has one q-periodic orbit (for some integer
q > 0) of rotation vector ρ, which is a saddle-node (see Theorem 20). And for some
ε > 0, for all t ∈]t∗, t∗+ ε[, ft has exactly two q-periodic orbits of rotation vector ρ,
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a saddle and a sink (or a source), one branch of the saddle connected to the sink
(or source). Moreover, if t < t∗, then ft has no q-periodic points of rotation vector
ρ, see [22] page 38-39 and [7]. This is a point where we need C2 differentiability.

Assume without loss of generality that q = 1 and the saddle-node unfolds for
t > t∗ into a saddle pt and a sink st. Let Fixρ(ft) = {z ∈ Fix(ft) : z has rotation
vector ρ} and let αu

t be the unstable branch of pt that connects it to st. If Dt is
the basin of attraction of st, we are going to show that for t in an open subset of
]t∗, t∗ + ε[, Dt is an homotopically unbounded ft-invariant disk. Clearly, the prime
ends compactification of Dt has zero rotation number, because pt is a saddle in
∂Dt, accessible through αu

t , which is ft-invariant. This means that W s(pt) ⊂ ∂Dt.
Either when the surface is the torus or has higher genus, our assumptions imply

that for all t ∈ I, ft has contractible periodic saddles with a full mesh. So in
both cases, ft has a periodic saddle Rt with a full mesh for all t ∈ [t∗, t∗ + ε],
(this is clearly true if ε > 0 is sufficiently small because transverse intersections
persist under perturbations and the existence of certain finitely many transverse
intersections imply the existence of a full mesh). The complement of Wu(Rt) is a
union of open topological disks. From Theorem 22, there exists a residual subset
R′ ⊂]t∗, t∗ + ε[ such that for any t ∈ R′ :

(1) If pt ∈ Wu(Rt), thenWu(Rt) has a C
1-transverse intersection withW s(pt).

But then, W s(Rt) ⊂ W s(pt) and so ∂Dt ⊃ W s(pt) ⊃ W s(Rt), which
implies that Dt is unbounded.

(2) If pt /∈ Wu(Rt), then there exists a ft-invariant connected component Mt

of
(
Wu(Rt)

)c

which contains pt. As we said before, it is an open disk. As

pt ∈ Mt, it is easy to see that αu
t is also contained in Mt. There are two

cases:
• st ∈ ∂Mt. This implies that Dt intersects Wu(Rt), and so, negative
iterates of Dt converge to W s(Rt), thus Dt is unbounded.

• {pt ∪ αu
t ∪ st} ⊂ Mt. When this happens, deform ft inside a small

neighborhood V of pt ∪ αu
t ∪ st, closure(V ) ⊂ Mt in order to get a

diffeomorphism g which coincides with ft outside V , with the property
that in the whole surface, g has no fixed points of rotation vector ρ.
As closure(V ) avoids Wu(Rt), it also avoids a local stable manifold at
Rt for ft. So, although the stable manifold of Rt for the map g may
be different from the stable manifold of Rt for ft, Rt still has a full
mesh for g, g(Mt) = Mt and ∂Mt ⊆ Wu(Rt). As Mt is a g-invariant
open disk of rotation vector ρ, if it is bounded, then Mt contains a
fixed point of rotation vector ρ. If Mt is unbounded, Proposition 24
implies the existence of a bounded closed disk A1 ⊂ Mt which satisfies
g−1(A1) ⊆ A1, so A1 must also have fixed points (of rotation vector ρ).
This contradiction shows that it is not possible that {pt∪αu

t ∪st} ⊂ Mt.

So, either Dt intersects W
u(Rt), which is an open condition; or ∂Dt ⊃ W s(pt) ⊃

W s(Rt). As the last relation comes from the fact that W s(pt) has C1-transverse
intersections with Wu(Rt), also an open condition, the proof is over. �
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