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ARTICLE INFO ABSTRACT

Keywords: This paper introduces a comprehensive methodology for determining the effective piezo-electromechanical
Piezoelectricity properties considering viscoelastic effects in the composite material. The methodology uses finite element (FE)
Viscoelasticity analysis and homogenisation. By formulating the FE solution as a dynamic equilibrium problem, the proposed

Finite element method
Representative volume elements
Asymptotic homogenisation method

approach effectively couples linear elastic piezoelectric fibres within a linear viscoelastic matrix. This couples
both complex constitutive behaviours into a single representative cell for time-dependent quasi-static load
cases. A virtual stress relaxation test is conducted on a Representative Volume Element (RVE) with periodic
boundary conditions. The methodology disregards inertial effects to represent quasi-static loading conditions.
It assumes a polymeric matrix phase with only mechanical degrees of freedom. The computed effective time-
dependent constitutive coefficients are compared with analytical solutions derived from effective field and
asymptotic homogenisation methods for a circular piezoelectric fibre in a viscoelastic polymeric matrix. Despite
the simplifying assumption for the polymer matrix, the usage of a time-independent Halpin-Tsai model for
effective electric permittivity, coupled with the proposed FE approach, accurately predicts time-dependent
behaviour of elastic, piezoelectric and dielectric effective coefficients for different fibre volume ratios. Thus,
the proposed approach provides a robust and versatile framework for characterising effective piezoviscoelastic
properties. This makes a contribution to the field of micromechanical piezoelectric simulation, paving the way
for future research into dynamic effects, more complex material constitutive models, and intricate geometric
features.

1. Introduction design of structural smart systems. Experimental constitutive charac-
terisation of these piezoelectric components requires not only multiple
tests due to the anisotropy introduced by the composite material, but
also testing under different strain rates. Thus, testing campaigns often

lead to time-consuming and expensive activities. Therefore, analytical

The usage of smart structures with embedded sensors, actuators,
and energy harvesting capabilities has been a topic of interest for
structural designers, particularly those involved in designs that ac-
count for damage tolerance, instability attenuation, and self-powered
electrical components. Most commonly, piezoelectric crystals such as
lead zirconate titanate (PZT) are embedded on polymeric thermoset
or thermoplastic matrices, constituting a composite component [1-3].

and numerical methods are commonly employed to describe the effec-
tive homogenised constitutive response of piezoelectric materials at a
microscopic scale.

Alternatively, cellular polymeric films act as piezoelectric sensors upon
deformation of charged voids, being called as piezoelectret [4]. Ow-
ing to the viscoelastic constitutive behaviour of polymeric matrices,
the effective mechanical, electrical, and piezoelectric characteristics
of these sensors are time-dependent, being relevant for the optimal

Researchers have extensively investigated the time-dependent char-
acteristics of composite materials. Li et al. [5] studied the creep re-
sponse of carbon nanotube-reinforced polymer composites, using lin-
ear viscoelasticity coupled with the Laplace-Carson transform and the
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Mori-Tanaka method. Extending that approach, Muliana [6] devel-
oped a micromechanical model for the time dependency of piezo-
composites, incorporating matrix viscoelasticity using a Prony series,
where a decreasing trend for the time-dependent piezoelectric constant
was achieved as fibre volume ratio increased. Similarly, Li and Zhang
[7] applied a Prony series model to fibre-reinforced composites, focus-
ing on matrix viscoelasticity and comparing a semi-analytical model to
finite element analysis using Representative Volume Elements (RVEs)
and numerical homogenisation results. Zhai et al. [8] developed a
time-domain asymptotic homogenisation method to directly compute
effective viscoelastic properties, without Laplace transforms, using an
integral form of the Kelvin-Voigt model and a single characteristic
displacement tensor. The proposed methodology was compared with
finite element analysis, showing accurate results for unidirectional and
woven composites.

Recent works on viscoelastic composites frequently use unit cell
models and homogenisation. Berger et al. [9] and Cruz-Gonzélez et al.
[10] developed unit cell models to compute the effective properties and
understand the microscale response of fibrous and three-dimensional
viscoelastic composites, respectively. Otero et al. [11] and Rodriguez-
Ramos et al. [12] further explored this, applying asymptotic and nu-
merical homogenisation, to determine effective constitutive properties
under stress relaxation. In addition, Azrar et al. [13] provided analyti-
cal solutions for the frequency and time-dependent electro-mechanical
properties of piezoelectric composites. Vogel et al. [14] and Li et al.
[15] contributed to understanding viscous electro-active polymers and
the viscoelastic effects on soft piezoelectric nanocomposites through
both simulation and experimental studies. Otero et al. [16] explored
homogenisation for fractional visco-piezoelectric fibrous composites,
highlighting ongoing research into complex material laws. These stud-
ies collectively provide a solid basis for analytical homogenisation
procedures that account for viscoelasticity and piezoelectricity. Within
the analytical homogenisation methods, the Halpin-Tsai [17] predic-
tion of the elastic moduli of composite materials [18,19] allows for
broader applications on electric and thermal properties characterisa-
tion. For instance, McCullough [20] showed how similar rules can
predict transport properties such as electrical conductivity, thermal
conductivity, dielectric constants, and diffusion coefficients in hetero-
geneous media. Additionally, studies on porous piezoelectric materi-
als by Martinez-Ayuso et al. [21] and functionally graded graphene-
reinforced piezoelectric composites by Adhikari et al. [22] show ap-
plications in characterising complex electromechanical behaviour and
determining effective properties. These examples highlight the Halpin—
Tsai method’s robust theoretical basis, making it adaptable for various
physical phenomena beyond just elastic behaviour.

Finite Element (FE) homogenisation procedures are widely used to
analyse the microscale response of complex piezoelectric and viscoelas-
tic materials based on their microstructural properties. For piezoelectric
materials, these methods enable the accurate determination of ef-
fective elastic, piezoelectric, and dielectric constants, even for cases
with complex geometric features [23]. Malakooti and Sodano [24]
demonstrated, via FE homogenisation the effective electric properties
of composites containing multiple inclusion phases. Longo et al. [25]
recently introduced a combined numerical and analytical methodology
for analysing hybrid laminates with multi-oriented piezoelectric and
structural layers. Aratijo et al. [26] addressed the computation of
piezoelectric and viscoelastic properties in thin laminates subjected
to free vibration using gradient-based optimisation techniques. Naik
et al. [27] applied micromechanical approaches to characterise the
viscoelastic behaviour of fibrous composites with various RVE config-
urations. Bouhala et al. [28] integrated numerical and experimental
methods to predict the mechanical properties of carbon fibre woven
composite. Multi-scale finite element models, ranging from micro to
macro scales, were developed using TexGen software for textile RVE
generation and Abaqus/Standard, accounting for resin voids. Three-
point bending tests confirmed strong agreement between simulation
and experimental results.
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As discussed by Tian et al. [29], the evaluation of effective mechan-
ical properties of composites with complex microstructures requires
appropriate periodic boundary conditions to be enforced. Furthermore,
the viscoelastic behaviour of components, such as in dielectric elas-
tomers, can be effectively captured through continuum mechanical for-
mulations and their FE implementation, as demonstrated by Bueschel
et al. [30]. However, the coupling of linear viscoelasticity and linear
piezoelectric material behaviour is usually not enabled within com-
mercial finite element codes. Furthermore, a time-dependent solution
scheme is required for the viscoelastic response, thus preventing the
usage of conventional linear static numerical solvers. Therefore, the
accurate simulation of time-dependent piezoelectricity for smart ma-
terials leads to complex, non-linear equilibrium analysis within a FE
framework.

This paper proposes a comprehensive methodology for determining
the effective piezo-electromechanical properties considering viscoelas-
tic effects in the composite material. The novelty of the work lies in
the dynamic equilibrium enforced over the RVE so that both viscoelas-
tic and piezoelectric elements are implemented in a time-dependent
solution scheme. Inertial effects were disregarded, and a virtual stress
relaxation test was performed, ensuring that viscoelasticity is the only
time-dependent behaviour introduced. Periodic boundary conditions
were enforced using the node-to-node method [25,29], followed by the
post-processing of volume-averaged stress and strains. Effective time-
dependent constitutive coefficients were computed throughout time
and compared to asymptotic homogenisation analytical methods for a
circular piezoelectric fibre in a viscoelastic matrix. The proposed FE-
based homogenisation procedure was able to predict time-dependent
behaviour for elastic, piezoelectric and dielectric effective coefficients
for different fibre volume ratios. This methodology provides a ver-
satile and accurate modelling approach for FE-based homogenisation
procedures, while using commercial finite element codes.

2. Methodology

This study addresses the formulation of a finite element framework
for modelling a polymer matrix phase with a piezoelectric embed-
ded fibre, as shown in Fig. 1. Therefore, the piezoelectric material
microstructure consists of a periodic RVE throughout the domain.
This work focuses on such RVE, representative of a square/circular
fibre packing, as squares and circles describe the cross-section of the
geometry. Commonly used as matrix constituents, epoxy resins display
viscoelastic behaviour and small dielectric constants without piezoelec-
tricity effects. Therefore, the proposed model assumes the matrix as a
domain with mechanical Degrees of Freedom (DOF) only, coupled with
a piezoelectric fibre.

Within a displacement-based FE framework, dynamic equilibrium
is evaluated according to the system of equations in Eq. (1) for a
piezoelectric domain, as implemented by Aratjo et al. [26],

M 0O f{u}® (IO} _ [ {PD}
[0 0]{¢<r>}+{q<r>}‘{g<r>}’ =

where ii(1), ¢, I(1), q(t), P(f) and Q(¢) represent the generalised accel-
erations, electric potential second time derivative, internal mechanical
load, internal electric charge, external mechanical load and external
electric charge, respectively, as functions of time 7. In Eq. (1), the
electric potential ¢ represents a scalar nodal field. Using displacement
interpolation functions [N], evaluated for each position X, the finite
element mass matrix is computed from Eq. (2), as,

[M] = / pINTT[N1dV. )
14

where p represents the density of the material in the volume dV'.
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Fig. 1. Square/circular RVE.

2.1. Viscoelasticity modelling

Under linear viscoelasticity, stresses can be evaluated by the as-
sumption of infinitesimal increases in the strain rate ¢, integrated over
a constitutive tensor of relaxation R;;;, as in Eq. (3). In the equation,
time ¢ represents the current instant while 7 is the instant of each
infinitesimal strain increment,
deu® ;. ©)

dt

'
0',-1-(1)=/0 Rij(t—1)

For linear viscoelastic, isotropic materials, the relaxation constitutive
tensor R;;, is often described in terms of shear and bulk moduli, so
that,

de (1)

1 1
a(t)=/ 2G(I—T)—df+l/ K(t—r)
0 dr 0

dA (1)
T

dr, “4)

where G and K are the shear and bulk relaxation moduli, while e
and A are the deviatoric and volumetric strains, respectively and I
represents the second-order identity tensor. As the relaxation modulus
R;jy, is a function of time, the corresponding constitutive behaviour
can be analysed using an exponential function applied over the time-
independent elasticity tensor R?j - A Prony series expansion is shown
in Eq. (5) for the shear elastic modulus G(¢) and is usually employed
for mechanical viscoelastic constitutive behaviour, where g, are the
relaxation coefficients corresponding to time 7,. Similarly, Eq. (6)
shows a Prony series expansion for the Bulk modulus K(7),

G(1) =G, [I—ng<l—e_”k>], 5)

k=1

n _L
K@) =K, [I—Zkk<l—e k>] (6)
k=1

Therefore, the internal load vector at any given instant ¢ for a

viscoelastic material is computed from both the initial response at the
initial time u(0) as well as the time-dependent displacement history
u(t), as displayed in Eq. (7) and implemented in Wang et al. [31]. In
the equation, [B] represents the spatial derivative of the interpolation
functions N while R(z) is the time-dependent relaxation modulus.

{10} = [/ [BJTlR(t)JlBJdV] {M(O)}+
14

t
/ /[B]T[R(t—r)][B]dVi{u(t)}dr.
o Jv dr

Equivalent external nodal loads are calculated using Eq. (8) from body
loads P, and traction Py, distributed over volume V' and surfaces S, in
addition to concentrated loads P,,

7

{P(1)} =/[N]T{PU}dV+/[N]T{PS}dV+Pc. €)
14 S

For the proposed FE model, the viscoelastic constituent displays only
mechanical degrees of freedom, so that, for the piezoelectric fibres:

{a} = {0}. ©)

Therefore, Egs. (7), (8) and (9) represent the finite element vector
contributions for the viscoelastic matrix on the discrete equilibrium,
which will be shown by Eq. (17).

2.2. Piezoelectric modelling

Piezoelectric materials usually display linear elastic mechanical
behaviour associated with an electric coupling. Therefore, the piezo-
electric modelling used in this work assumes linear piezo-electricity, as
represented by Eq. (10) where stress tensor o;; is a function of both
the strains ¢;; as well as the electric field E,, with indices i, j, k and
[ varying from 1 to 3. Similarly, the charge density D; in Eq. (11)
is a function of strains as well as the electric field. In Egs. (10)
and (11), C;; is a fourth-order elasticity tensor, e;, is a third-order
piezoelectricity tensor representing the electric/mechanical coupling,
and p;; is a second-order dielectric tensor,

6ij = Cijri€r — exijEx (10)

D; = eje + i E an

'z
However, the microscopic arrangement of piezoelectric crystals shows
some influence on the effective constitutive behaviour. In this analysis,
an orthotropic piezoelectric material is assumed for the piezoelec-
tric fibre, as discussed in Berger et al. [9], Rodriguez-Ramos et al.
[12], Otero et al. [11] and Otero et al. [16]. For the FE framework,
with displacement and electric potential interpolation functions, the
generalised internal load vector yields

{{;8}}= [llzq) 'l;i] {{;((g}} a2)
where:

[kuu]=/y[B]T[C][B]dV, (13)
[ku¢]=/V[B]T[e][B]dV, 14
and

[k¢¢]=/V[B]T[11][B]dV- (15)

External loads are also obtained from the consistent generalised nodal
load vector from Eq. (16), with Q,, O¢ and Q, representing body,
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surface and concentrated external charges,

{{P(t)}} _ JyINIT{P,}dV +fS[N]T{Ps}dV +{F.}
o) JyINTTQ,dV + [(INTTQgdV + O,

Therefore, Egs. (12) and (16) represent the FE load vector contri-
butions for the piezoelectric fibre, on the discrete equilibrium, which
will be shown by Eq. (17). Different from the matrix, the piezoelectric
fibres show contributions on both mechanical and electric degrees of
freedom.

(16)

2.3. Equilibrium equations

Finite element solutions over time can be achieved through an
incremental approach over the simulation time span. Therefore, an
implicit time-integration scheme is employed as

AMI{iag A+ A+ @) ({Tpacd + {Puad) —a (L} +{P}) =0, 17)

where « is a dynamic relaxation parameter to improve convergence
within a time increment and 4 is an inertial load reduction parameter,
that can either eliminate or attenuate the inertial effects, as 0 < A < 1.
In Eq. (17), {i}, {I;} and {P;} represent the generalised acceleration,
internal and external load vectors, evaluated at time ¢, while A[M] is the
generalised mass Matrix. In Eq. (17), the inertial, internal, and external
loads are displayed as the generalised load vectors accounting for
electric and mechanical time-dependent nodal loads. To represent the
time-dependent effects of viscoelasticity only, FE models were imple-
mented using Abaqus/Standard, without inertial effects (4 = 0). Under
these conditions, the solution scheme implemented is a backward Euler
method applied to the implicit discrete equilibrium equations.

2.4. Finite element homogenisation

The coupling of piezoelectric and viscoelastic materials results in
time-dependent piezoelectric and dielectric components. Therefore, a
virtual stress relaxation test is introduced, where a uniaxial strain field
history is prescribed for each analysis, as represented by the Heaviside
function H(¢)

gy () =g}, HQ), (18)

where e?j represents the prescribed strain tensor component and
stresses o;; can be computed as

0;;(1) = Cijpy (e (1). (19)

Each load case was applied using prescribed displacements and electric
potential fields using a time-dependent amplitude that represents the
Heaviside function. However, it is essential to note that the Heaviside
function is only applicable when a static solution is required, as it leads
to unbound accelerations for the initial increment. Therefore, in the
presence of inertial effects (1 # 0), the step function might result in
additional oscillations in stress magnitudes.

Considering finite element analysis, stress and strain values are
computed for each m,, element at the corresponding n,, integration
point ranging from 1 to n, for the number of elements, and 1 to n,,
for the number of integration points. Therefore, the average stresses
(c; j), strains (; j), electric potentials (E,-) and electric charge densities
(D,), are computed for each integration point and averaged over the
representative volume element (V) as

5= 2 Dol 20)
By = X DAV, @

> Y EMav (22)
m
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and

e

n, MNip
D, = % 3> prav. 23)
m n

Therefore, under stress relaxation, the effective instantaneous con-
stitutive relation of the homogenised RVE is also time-dependent.
Assuming a circular piezoelectric fibre embedded in a cube matrix
region, the symmetry of the RVE results in the following effective time-
dependent relation (see the Eq. (24) in Box I) where an orthotropic
combined with a transversely isotropic effective behaviour is assumed.
In Eq. (24) fifteen effective constitutive parameters are required for the
characterisation of the homogenised medium.

2.5. Halpin-Tsai formulation

As the proposed methodology neglects electric potential and charge
DOFs for the matrix constituent, external faces of the RVE do not allow
for electric boundary conditions to be prescribed. Therefore, the 7th
and 8th lines in Eq. (24) would be eliminated for the effective piezo-
viscoelastic homogenised material. However, constant e;5 represents a
piezoelectric coupling between electric flux D, and shear strains 7,; as
well as D, and 7,5. Therefore, for the load cases with these scenarios
(non-zero 7,3 and 7,3), the electric potential gradients E, and E, are
assumed arbitrary so that

D0 = el 0713 + 1T OE ), (25)
and
Dy (1) = 2 (7 + 177 (VE (1), (26)

Therefore, piezoelectric coefficient can be extracted from either Eq.
(25) or (26), given that the effective dielectric constant nflf 4 (1) is
known. To overcome the limitation in the proposed methodology, the
dielectric constant is assumed as constant over time and calculated
using the Halpin-Tsai analytical formulation for square/circular fibre
packing,

I
:2(-). 27
@ P 27)
TR
p=— 28)
Lo

as a function of the dielectric constants 7}, and '1{ | for the fibre and the
matrix, respectively. For the computation of the effective permittivity,
the microstructure form factor ¢ is computed from the length / to
diameter ratio d in Eq. (27), yielding a value of ¢ = 2 for the
square/circular geometry. The ratio between dielectric properties is
evaluated from Eq. (28) so that the effective parameter for a given fibre
volume ratio V is
eff _ L+ xoVs (29)
1 L=V,
Finally, with the known effective dielectric constant, the effective
piezoelectric coupling coefficient ei? 1 t) is calculated from Eq. (25) and

elastic shear modulus Ci{ 4 (1) is obtained from Eq. (30).

Ts(1) = C (0753 — €15 E,(0). (30)

2.6. Geometry and finite element model

The FE implementation was conducted using Abaqus/Standard FE
code, using the dynamic equilibrium with implicit time integration
solver (Dynamic/ Implicit). Second-order three-dimensional continuum
elements (C3D20) were used for the viscoelastic matrix, while second-
order three-dimensional piezoelectric elements (C3D20E) were used for
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Fig. 2. Square/circular RVE.

the piezoelectric fibre. Compatibility between fibre and matrix was nat-
urally enforced through the generation of a single mesh using geometry
partitions, therefore not requiring complex interaction constraints at
the interfaces (see Fig. 2).

To better represent the constraints acting on the RVE, Periodic
Boundary Conditions (PBCs) were enforced over external surfaces. A
node-by-node PBC algorithm was employed using the methodology
proposed by [29] and further explored by [25]. Displacement of nodes
on opposite faces of the RVE is related to each other, thus satisfying
the boundary conditions. Assuming displacement component i between
opposite faces k+ and k—, displacements are
u:‘*' — uf.‘_ =g (x}”' - xj?_) R (3D
where &;; is the prescribed strain while x** and x*~ are the j,, com-
ponent of the position vector of each nodes. Within the FE framework,
PBCs are enforced only over the displacement field as traction continu-
ity is naturally satisfied. However, for a piezoelectric element, electric
potentials ¢ are represented as part of the generalised displacement
vector. Therefore, the distinction between displacements and potentials
is made here, so that PBCs for the electric degrees of freedom become

Pt — = Ei(xj.“' - xf_). (32)

In addition to the PBCs, displacements were prescribed in the
model, producing uniaxial strain fields required for the numerical
homogenisation procedure employed. The prescribed displacement and
corresponding strains were enforced as a step function and maintained
constant during the analysis. For the simulated scenarios, a total time

t =200 s was chosen. Similar to the methodology presented in Berger
et al. [9], multiple load cases were prescribed and effective constitutive
coefficients computed throughout time. In total, five load cases were
implemented to produce the following uniaxial fields: ,;, €33, 723, Y12,
and Ej;.

2.7. Asymptotic homogenisation method considering viscoelastic effects

The asymptotic homogenisation method is a powerful analytical-
numerical technique used to determine the effective properties of
heterogeneous materials with periodic or quasi-periodic microstruc-
tures [32]. This method enables the derivation of averaged, or ho-
mogenised, physical properties such as elastic moduli, thermal con-
ductivities, or diffusivities from the detailed behaviour of the material
at the micro-scale. By leveraging multi-scale expansion based on a
small parameter that characterises the scale separation between the
microstructure and the material behaviour, the method provides an ac-
curate approximation of the effective behaviour of media with rapidly
oscillating material coefficients. The homogenised properties are ob-
tained from the knowledge of the local constitutive laws, the intrinsic
properties of the constituent phases, their volume fractions, and the
geometric configuration of the microstructural inclusions or reinforce-
ments [33,34]. This approach is especially useful in engineering and
materials science, where it offers significant computational advantages
over direct numerical simulations of the full heterogeneous domain,
while still capturing essential features of the microstructure in the
macroscopic response.

The expressions for the effective coefficients previously reported
in Guinovart-Diaz et al. [35], Guinovart-Diaz et al. [36], and Bravo-
Castillero et al. [37], derived using the asymptotic homogenisation
method, were extended to the case presented previously, where a
piezoelectric fibre is embedded in a viscoelastic matrix. These effective
properties are calculated for a two-phase composite material consisting
of cylindrical fibres aligned along the x;-axis and embedded within a
continuous matrix. The spatial arrangement of the fibres allows the con-
sideration of both square and hexagonal periodic unit cells, reflecting
typical microstructural configurations found in engineering composites.
In this extended framework, the matrix is assumed to be an isotropic
viscoelastic material, while reinforcements may exhibit piezoelectric
behaviour. The asymptotic homogenisation technique enables the sys-
tematic substitution of the local material properties into the cell prob-
lems, leading to closed-form expressions or numerically explicit formu-
las for the effective (homogenised) coefficients. Specifically, appropri-
ate constitutive relationships and time-dependent material parameters
are incorporated into the homogenisation scheme, and the correspond-
ing viscoelastic and piezoelectric contributions are accounted for. To
implement this extension, material tensors and field variables corre-
sponding to the piezoviscoelastic behaviour are introduced into the
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Table 1
Constituents’ mechanical, piezoelectric and dielectric properties for static
analysis [9].

Composites Part C: Open Access 18 (2025) 100663

Table 2
Constituents’ elastic, piezoelectric and dielectric properties for time-dependent
analysis.

Fibre Matrix Fibre Matrix
Ci, (GPa) 121 3.86 Cy, (GPa) 150.4 7.73
Cy, (GPa) 75.4 2.57 Cy, (GPa) 65.63 5.15
Cy3 (GPa) 75.2 2.57 Cy3 (GPa) 65.94 5.15
C;; (GPa) 111.1 3.86 Cy3 (GPa) 145.5 7.73
Cy (GPa) 21.1 0.64 Cy (GPa) 43.86 1.29
Cys (GPa) 22.8 0.64 Cys (GPa) 42.385 1.29
eys (C/m?) 12.3 - €5 (C/m?) 11.4 -
€3 (C/m?) -5.4 - €3 (C/m?) -4.32 -
ey (C/m?) 15.8 - ey (C/m?) 17.4 -
fyy (nF/m) 8.11 0.007965 my; (0F/m) 12.8 0.0443
f133 (nF/m) 7.35 0.007965 #133 (nF/m) 12.8 0.0443
Table 3
existing formulations. These modified expressions are then substituted Prony series coefficients for viscoelastic matrix.
into the homogenisation framework developed in the [35-37], thereby t [s] 9.6 372 9887
enabling the evaluation of the macroscopic response of the composite ik [[‘]] 8'03807 8'0458 8'0668
e

material under coupled mechanical and electrical loading conditions. It
is assumed that the matrix is an isotropic viscoelastic material, and the
following expressions are substituted into the corresponding formulas
reported in the above references,

4
Cii = C33 = Ko+ 340(p).
2
Cy = CPy = Ko = S (o). (33)
Cyy = Cgg = mo(p);
where K, and y represent the instantaneous bulk and shear moduli of

the matrix material, evaluated at the initial instant. Also, it is possible
to define:

Ho(p) = o 1+ (34)

o)
p+pi=e /)

If the matrix is isotropic, it is possible denotes the bulk K, and shear
Uy elastic moduli. Moreover,

P = A= p (1) = By 35)
T Ho

where 0 < a < 1, 7 is relaxation time, yu,, is the shear modulus at
T — o0, } is instantaneous shear modulus, and ¢, is maximal shear
strain. Thus, viscoelastic shear behaviour of a material is described by
four parameters: g, a, p (or 7), and A. Further details are provided
in Otero et al. [16].

Finally, the inverse Laplace-Carson transform is applied to the ex-
pressions of the effective coefficients in the Laplace-Carson space de-
noted by the variable p, and the time behaviour of the effective coeffi-

cients is obtained [11,12].
2.8. Application of the methodology

The application of the proposed methodology was carried out in
two scenarios. First, the static response of linear piezoelectric composite
materials with different fibre volume ratios was compared to the analyt-
ical and finite element results extracted from Berger et al. [9], using a
square/circular fibre packing configuration. However, the methodology
proposed here, disregards electric degrees of freedom for the matrix,
uses a node-to-node PBC scheme, and computes effective constitutive
properties at the first increment of the dynamic equilibrium solution.
The constituent properties used in this validation are displayed in Table
1.

Following the validation of the proposed procedure on a static
load case, viscoelastic effective properties were computed using the
finite element homogenisation procedure, over time, and compared to
effective field results. Table 2 displays the elastic, piezoelectric and
dielectric properties of the materials for each constituent.

In addition, Prony series coefficients for the viscoelastic matrix are
displayed in Table 3, so that only the deviatoric part of the strain tensor
contributes to the viscoelastic behaviour. This is representative of an
epoxy matrix, commonly used in Macro Fibre Composite (MFC) and
smart sensors [3].

3. Results and discussion

In this section, results obtained through the proposed FE-based ho-
mogenisation are compared to analytical solutions using effective field
and asymptotic homogenisation methods (AHM) for piezoviscoelastic
composite materials. In this work, the validations are performed using
the AHM reported in Otero et al. [11], for the elastic case (+ = 0), and
a comparison is also made with the effective field presented in Otero
et al. [16].

3.1. Linear elastic results

For a uniaxial strain field £33, obtained through displacements pre-
scribed along the fibre direction, different stress values are expected for
each constituent. Fig. 3(a) shows the predicted stress field under this
condition, at a given instant for a fibre volume ratio V, = 0.4, assuming
zero electric potential at all faces of the RVE.

As expected, due to the constitutive stiffness mismatch between the
constituents, the fibre exhibits greater stresses compared to the matrix.
Additionally, due to the constraint on electric potential, electric flux 33
develops, as shown in Fig. 3(b). From the image, it becomes clear that
the proposed approach assumes an insulating matrix without electric
degrees of freedom.

Similarly, under a non-zero shear strain field y,;, different stress
magnitudes are predicted for each material, as displayed in Fig. 4(a).
However, a strong piezoelectric coupling is expected under such condi-
tions. As the proposed methodology does not allow for electric potential
gradients to be prescribed for either E, and E,, such fields were
assumed as arbitrary and taken into account for the post-processing of
effective constitutive properties. Fig. 4(b) displays the non-zero electric
potential gradient field E, for the shear load case, at the same instant
from Fig. 4(a).

Correlation between the effective constitutive coefficients obtained
by the proposed model and analytical results is displayed in Fig. 5, for
elastic and piezoelectric parameters C;;, C},, Ci3, C33, Cys» Ces» €155 €135
and es;. The predictions are also compared to Finite Element Method
(FEM) results reported in [9], considering linear elastic piezoelectric
elements in a linear static analysis, disregarding viscoelastic effects.
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Fig. 4. Stress and electric potential gradient fields for non-zero y,; - V, = 0.4.

Different from the conventional methodology, the proposed method
prescribed PBC’s using a node-to-node formulation and yielded results
in accordance with AHM analytical solutions. Therefore, the proposed
methodology can capture static results even with a time-dependent
solution methodology coupled with an insulating matrix behaviour.
Moreover, even for static responses, evaluated at + = 0, there are
differences between FE based and analytical homogenisation results,
as seen for grater fibre volume ratios ¥, for components C,;, Cy5, Cyu,
Cgs and e;s, where the viscoelastic effects can influence not only the
mechanical coefficients, but also the piezoelectric coefficient related to
shear strains.

3.2. Viscoelastic results

At any given instant, effective constitutive coefficients were com-
puted for the time-dependent matrix material behaviour. As the strain
and electric potential gradient fields were prescribed over time, stress
and electric flux fields also showed time-dependent behaviour. Fig. 6
shows stresses ¢}, (a) for uniaxial field €,,, o33 (b) and D; (e) for &35,
0,3 (¢) and E, (e) for 7,3 and o6,, (d) for non-zero 7,, at the final time
t =200 s.

A mesh independence analysis was performed to ensure that the
viscoelastic response is not affected by the finite element mesh density
throughout the simulation time. Therefore, five different global element
size values were evaluated, yielding discretisations with 40, 80, 224,
1360, and 2490 elements, respectively. Fig. 7 shows the effective
coefficients C,4 and e;5 computed for the volume fraction of 20%,
where the viscoelastic effect is higher. The analysis showed that for

models with N,, > 1360, convergence was achieved for the piezoelectric
coupling constant e;s. Therefore, all the following results are displayed
for meshes with 1360 elements, as they provided accurate results at a
lower computational cost.

When analysing the FE predictions at the first increment at 7 = 0,
static solutions are obtained, similarly to solutions discussed in Sec-
tion 3. Fig. 8 shows the comparison between analytical results obtained
through effective field homogenisation and the proposed methodology
as a function of fibre volume ratio V. Results showed a similar depen-
dency on fibre volume ratio, with small differences for higher values of
V, only.

The effect of different fibre volume ratios on the constitutive com-
ponent Cj; is shown in Fig. 9 throughout time, where dots represent
the FE results and lines represent the AHM analytical response. From
the image, it is clear that approximately no time-dependent behaviour
occurs under these conditions, as the deviatoric strain components are
negligible, thus inhibiting stress relaxation. Similarly, Fig. 10 shows
that the effective piezoelectric constant es; is also not time-dependent
for normal strain fields.

Piezoelectric coupling for extension along direction 3, e; also
showed negligible time-dependency, as displayed in Fig. 11. A small
viscoelastic effect is observable for small vy values, as the matrix is
the only viscoelastic constituent for the composite RVE. This behaviour
is observed as the Prony series parameters for time-dependent bulk
modulus k, are all prescribed as zero. Therefore, time-dependency is
higher for components related to shear stresses and deviatoric strain
components.
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Fig. 6. Mechanical and electric fields at a given instant.

When analysing the effective constitutive properties under shear
strains, time dependency is observed, as displayed in Fig. 12 for the
case with non-zero y,,. As shown in the plot (Fig. 12), the proposed
methodology was able to accurately represent viscoelastic behaviour
when compared to the analytical methodology. This load case leads to
a mechanical-only response, as piezoelectric coupling coefficient does
not play a significant role.

Differently, Figs. 13 and 14 show the effective constitutive coeffi-
cients C,, and e;5, which are computed from the same self-interacting
electric/mechanical load case. Shear stiffness coefficient C,, predicted
by the proposed FE methodology showed results in agreement with
AHM procedure for smaller fibre volume fractions. As V, increases, a
larger discrepancy is observed between the methods, similar to linear
elastic piezoelectric results presented in Section 3.1.
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Despite the assumption of an insulating matrix without electric
degrees of freedom along the external faces of the RVE, post-processing
of piezoelectric coupling e;5 resulted in similar results when compared
to the effective field predictions. This coefficient showed a noticeable
viscoelastic response, even for higher fibre volume ratios. The proposed
methodology, using the Halpin-Tsai model to compute a constant nf{ s,
resulted in a valid approximation for the piezoelectric constant with
an over-prediction at lower ¥, and an under-prediction at greater V,
values. This indicates that different analytical methods for estimating
nf{ I as time-dependent dielectric properties enable the improvement
of the accuracy in the proposed FE homogenisation procedure.

4. Conclusions

This work successfully introduced and evaluated a novel FE-based
homogenisation methodology for determining the effective constitutive
and piezoelectric properties of viscoelastic composite materials. By for-
mulating the finite element solution as a dynamic equilibrium problem,
the methodology consistently captured the coupled response of linear
elastic piezoelectric fibres embedded in a viscoelastic matrix, thereby
accounting for the inherent time-dependent behaviour of such systems.

The proposed approach demonstrated strong agreement with ana-
lytical predictions from effective field and asymptotic homogenisation

11

methods, even under the simplifying assumption of an insulating ma-
trix with purely mechanical degrees of freedom. Moreover, by inte-
grating the Halpin-Tsai model for effective dielectric behaviour, the
methodology provided accurate estimations of complex piezoelectric
coupling coefficients, particularly es, across a wide range of fibre
volume fractions.

Beyond validating its predictive capability, this study highlights
the robustness and versatility of the framework for addressing multi-
scale piezo-electromechanical problems in smart materials and adap-
tive structures. The formulation is compatible with commercial FE
codes, which broadens its applicability for engineering practice and
accelerates its potential transfer to industrial contexts.

Nevertheless, some limitations remain, particularly the restriction
to linear viscoelasticity and the assumption of a non-polarisable poly-
meric matrix. Future work should address these aspects by extend-
ing the methodology to nonlinear viscoelastic behaviour, temperature-
dependent properties, and multi-fibre configurations, as well as explor-
ing experimental validation for real composite systems.

In summary, this contribution establishes a solid foundation for
FE-based micromechanical simulations of piezoviscoelastic composites
and opens new avenues for the design and optimisation of advanced
multifunctional materials and devices.
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