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Abstract

The peroxisome proliferator-activated receptors (PPARs) regulate genes involved in lipid and carbohydrate metabolism, and
are targets of drugs approved for human use. Whereas the crystallographic structure of the complex of full length PPARy
and RXRa is known, structural alterations induced by heterodimer formation and DNA contacts are not well understood.
Herein, we report a small-angle X-ray scattering analysis of the oligomeric state of hPPARy alone and in the presence of
retinoid X receptor (RXR). The results reveal that, in contrast with other studied nuclear receptors, which predominantly
form dimers in solution, hPPARy remains in the monomeric form by itself but forms heterodimers with hRXRa.. The low-
resolution models of hPPARY/RXRa. complexes predict significant changes in opening angle between heterodimerization
partners (LBD) and extended and asymmetric shape of the dimer (LBD-DBD) as compared with X-ray structure of the full-
length receptor bound to DNA. These differences between our SAXS models and the high-resolution crystallographic
structure might suggest that there are different conformations of functional heterodimer complex in solution. Accordingly,
hydrogen/deuterium exchange experiments reveal that the heterodimer binding to DNA promotes more compact and less

solvent-accessible conformation of the receptor complex.
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Introduction

Peroxisome proliferators activated receptors (PPARs) are
members of the nuclear receptor (NR) family, acting as ligand-
dependent transcription factors and modulating the activation of
cognate genes. There are three different PPAR isotypes: PPARaL,
PPARPB/S and PPARY, which exhibit considerable amino acid
sequence conservation. PPARYy plays a central role in the glucose
regulation, lipid homeostasis and in the control of the energy
balance. Because of this, it has been extensively studied as a
molecular target in type II diabetes treatment [1]. PPARY also
stimulates adipose tissue differentiation and functional mainte-
nance [2] and has considerable anti-inflammatory activity [3].

PPARs, like other nuclear receptors, are modular proteins
composed of several separable domains [4]. Their N-terminal
region (A/B) harbors a ligand-independent activation function 1
(AF-1). The conserved C region corresponds to the DNA binding
domain (DBD) and is responsible for sequence-specific DNA
recognition. A highly structured E region, or ligand-binding
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domain (LBD), is responsible for ligand specificity and co-factors
recruitment. Hinge or D region is located between C and E
domains and is the target of functionally relevant post-translational
modifications like phosphorylation and sumoylation [4] (Figure 1).

To understand the function of nuclear receptors at a molecular
level, the structural features that mediate heterodimer formation,
ligand binding, sequence-specific DNA recognition, and the
molecular events underlying the switch from inactive to active
receptors must be understood. PPARs activate target-gene
transcription upon agonist binding. In this process, PPAR DBDs
recognize and bind to specific DNA core motifs known as
responsive elements (PPREs), which are direct repeats of two half-
sites of the consensus sequence AGGTCA, spaced by one
nucleotide. The PPREs are recognized by heterodimers of PPAR
with RXR, whereas PPARs alone are unable to bind these DNA
response elements [5]. Dimerization is a frequent process in DNA
recognition of many eukaryotic transcription factor families [6]
and is common within nuclear receptor superfamily, where
functional DNA interactions frequently involve homodimers or
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Figure 1. Structural organization of nuclear receptors functional domains. A) Bar representation of nuclear receptors domains. B) Cartoon
of crystallographic structure of intact PPARy+RXRo+DR-1 complex (PDB 3DZU). The N-terminal region (A/B) represented by a light gray bar is absent
in the structure because of it high flexibility. The conserved C region, which corresponds to the DBD, is given in black; the LBD, or region E, is shown
in gray; and located between C and E domains, the hinge given here in dark gray.

doi:10.1371/journal.pone.0031852.g001

heterodimers with RXR [7,8]. PPARY/RXR heterodimers
specifically regulate transcription of genes involved in insulin
action, adipocyte differentiation, lipid metabolism and inflamma-
tion [9].

The crystallographic structure of intact PPARy/RXRa hetero-
dimer bound to DNA has recently become available [10]. Overall
architectures of the DBD and LBD receptor domains are very
similar to the crystallographic structures of the separate domains
[11,12]. However, the full-length structure of nuclear receptor
heterodimer bound to DNA PPRE made it possible to study the
interactions between functional domains. The two receptors
(PPARY and RXRo) are asymmetrically positioned, with PPARYy
and RXRa interactions mediated by well-known interfaces formed
by the two LBDs [12] and DBDs. The structures also revealed a
third heterodimerization interface between the PPARy LBD and
the DBD and hinge region of RXRa. This interface seems to be
modulated by the interactions with DNA, through positioning of
both receptors in a unique polarity and spatial arrangement [10].

Although protein crystallography reveals detailed and precise
information about tertiary structure of macromolecules, the
proteins can adopt other functional conformations. For example,
protein conformation is thought to be regulated by DNA contact
and chromatin context. The overall shape of a macromolecule
and/or its more dynamic quaternary structure in solution can be
more reliably accessed by small-angle X-ray scattering (SAXS)
[13]. This technique only provides low-resolution structural
information relative to X-ray diffraction data, but can reveal
overall structure and oligomeric states of native proteins in nearly
physiological aqueous conditions, thus permitting analysis of
structural changes in response to variations in experimental
parameters.

More recently, SAXS and cryo-electron microscopy models of
NRs heterodimers revealed alternative conformations for LBD
and DBD positions in solution, indicating possible conformational
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differences in heterodimer arrangements. In addition, the cognate
DNA sequences and coactivator presence in the heterodimer seem
to result in a more open conformation of the complex. These
different conformational states (more closed X-ray structure and
more open solution models) might originate from the inherent
NRs flexibility [14]. In other words, the NRs crystal structure may
reveal only one of the multiple conformational states explored by
the receptors.

In order to gather more information about NRs conformations
and mobility, here we present systematic analysis of oligomeric
state of hPPARy LBD and LBD-DBD constructs with and without
heterodimerization partner hRXRa in the absence of cognate
DNA. Furthermore, we also conducted analysis of PPAR solvent
accessibility in its monomer and heterodimer forms (with and
without DNA) using hydrogen/deuterium exchange (H/D-Ex)
monitored by mass spectrometry, which provide additional
information about the macromolecular interfaces and the mobility
of the complex.

Results

Characterization of hPPARy Monomers and hPPARy-
hRXRo Heterodimers in Solution

We subjected purified preparations of hPPARy LBD, hRXRa
LBD, hPPARy DBD-LBD and hRXRoa DBD-LBD to size
exclusion chromatography (SEC). The hPPARy (LBD and
DBD-LBD) showed elution profiles with a single predominant
peak (Figures 2A and 2B), corresponding to a hydrodynamic
radius (Ry) of 28.6 A and 35.3 A, respectively, consistent with
hPPARy LBD and DBD-LBD monomers (apparent molecular
weight of approximately 30 kDa and 42 kDa, respectively [15]).
After analytical gel filtration, the proteins were submitted to SDS-
PAGE (Figure S1), native electrophoresis (Figure S2) and dynamic
light scattering experiments (Figure S3) confirming the previous
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values found to R and apparent molecular weight (Table 1). The
experimentally determined hPPARy DBD-LBD Ry, value is close
to that of thyroid hormone receptor (T'R) LBD-DBD monomers
[16]. Aiming to examine the influence of the concentration on the
Ry values to hPPARYy LBD, the protein, at different concentra-
tions, was submitted to native gel electrophoresis and dynamic
light scattering experiments. Both methods of analysis gave the
same result, confirming that hPPARy LBD remains monomeric
over a range of protein concentrations from 1 to 20 mg/mL
(Figure S2B).

Since the active form of hPPARY is a heterodimer with RXR
[17], we performed similar studies with the hPPARy/hRXRa
LBD and DBD-LBD heterodimers. The addition of RXR to
PPAR (DBD-LBD and LBD) changed the SEC profiles to larger
oligomeric forms (Figures 2A and 2B). In this case, complexes were
eluted with Ry of 39.0 A and 47.8 A, respectively, for LBD and
LBD-DBD constructs. The experimentally determined Ry for
heterodimer are consistent with values found for hRXRa LBD
and NGFI-B LBD dimers, which Rys are 36.0 A and 38.5 A,
respectively [18]. The hPPARy/hRXRo DBD-LBD Ry is also in
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Figure 2. Size exclusion chromatography profile showing the
difference in the elution pattern of monomer and heterodimer
proteins. A) hPPARy LBD and hPPARy/hRXRa LBD and B) hPPARy DBD-
LBD and hPPARy/hRXRo. DBD-LBD. The SEC were performed on a
Superdex 75 columm equilibrated with 20 mM Hepes-Na buffer
(pH 8.0), 3 mM dithiothreitol, 200 mM NaCl, and 5% glycerol. Mono-
mers are given in black solid lines and heterodimers in gray lines.
doi:10.1371/journal.pone.0031852.9g002
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Table 1. The hydrodynamic radius (Ry) of the proteins
calculated from DLS, Native gel, SEC and SAXS experiments.

Calculated Ry, (A)

Protein

DLS  Native Gel Gel Filtration — SAXSt
hPPARy LBD monomer 275  N/C* 28.0 27.4
hPPARy-hRXRa. LBD 39.0 390 39.0 36.7
hRXRa LBD dimer 380 380 36.0 e
hRXRat LBD tetramer 430 430 ay 0 =

Ry calculated from Rg (Guinier analysis) using the relation between them:
Ry =Rgx1.3.
doi:10.1371/journal.pone.0031852.t001

agreement with Ry of other NR dimers, such as hTRp DBD-
LBD and hRXRo DBD-LBD that are equal to 42.0 A [16] and
44.0 A [19]. Therefore, experimental Ry values indicate that
hPPARy LBDs and hPPARy DBD-LBDs readily form heterodi-
mers with hRXRo. After analytical gel filtration hPPARY and
hPPARY/hRXRa were submitted to SDS-PAGE and native
electrophoresis to verify complex formation and the stoichiometry
of the complexes (Figure SIA and S2).

Small Angle X-ray Scattering Studies of hPPARy LBD and
Its Heterodimerization with RXR

The X-ray scattering curves obtained for hPPARy LBD and
hPPARy/hRXRo LBD were practically identical at different
concentrations, thus indicating the absence of spatial correlation
effects over the applied concentration range (Table S1). Therefore,
subsequent analysis steps were performed at 3 mg/mL for both
hPPARy LBD and for hPPARY/hRXRo LBD (Figure 3A and
3B). The Guinier plots gave radius of gyration (R,) values, which
were consistent with monomers hPPARy LBD and dimers
hPPARy/hRXRo LBD complex (Figures 3A and 3B, inset).
Furthermore, these R, obtained by Guinier analysis showed a good
correlation with R, obtained by the p(7) analysis (Figures 3C & 3D
and Table 2). 7

SAXS data are consistent with the results of SEC, native gel
electrophoresis  and dynamic light scattering analysis. The
obtained structural parameters are also similar to the SAXS
studies of NGFI-B LBD dimers (R,=28.9 A and a D,,,,=90.0 A)
[20].

The three SAXS-based methodologies used to calculate the
molecular weights, which included absolute scattering intensity
using water and BSA as standards [21,22] and SAXS MoW web
tool [23], consistently reveal monomers of hPPARy and
heterodimers of hPPARY/hRXRa in solution (Table 2). It is
interesting to note, that the molecular weights predicted by SAXS
MoW for the hPPARy/hRXRoa LBD and hPPARy/hRXRa
LBD-DBD heterodimers are somewhat overestimated. Since
SAXS MoW algorithm is based on the assumption of the fixed
protein density per volume occupied by the molecular envelope
[23], this might be a consequence of conformational mobility of
the heterodimers (see Discussion sections).

Ten independent ab nitio simulations were performed with
Gasbor package [24] without any symmetry restrictions and of
those 252 dummy atoms were attributed to the final model of the
monomer and 611 dummy atoms for the heterodimer (Figure 4).
The dummy atoms models, PPARy LBD monomer and hPPARYy/
hRXRo LBD heterodimer have a maximum diameter (D,,,,) of
65.0 A 85.0 A, respectively. The models generated for the protein
monomer showed globular shape, as expected according to the
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Figure 3. Small-angle X-ray scattering curves for LBD proteins construction. A) hPPARy LBDs 3.0 mg/mL and B) hPPARy/hRXRa LBD
heterodimers at 3.0 mg/mL. Experimental data (open black circles with errors bars), simulated curves corresponding to the high-resolution model
obtained by the use of the PDB id 1FM6 (black solid line) and the rigid body model (gray line). Inset: Guinier plot. The distance distribution function
from C) the hPPARy LBD and D) the hPPARYy/hRXRa LBD. Experimental data (open black circles with errors bars), the high-resolution model (black

solid line) and the rigid body model (gray line).
doi:10.1371/journal.pone.0031852.9003

crystallographic structure for this domain, while the generated
heterodimer model showed a more elongated shape, quite
different from the former models. Overall, the computed
scattering and p(r) curve based on the crystallographic structure
of monomeric hPPARy LBD exhibited reasonable fit to the
experimental scattering curve (Figure 3 and Table 2). Our low-
resolution hPPARy LBD DAM is also in a good agreement with
the crystallographic structure of a single ligand-binding domain of
hPPARY (Table 2 and Figure 4A).

Conversely, SAXS scattering data for hPPARy/hRXRa LBD
complex are not fully compatible with the simulated scattering
data computed from the hPPARy/hRXRo LBD heterodimer
crystallographic structure (PDB id 1FM6) [12] (Table 2). Essen-
tially, the heterodimer model needs to be more open than the
crystallographic structure to fit experimental SAXS data. Selecting
and keeping the fundamental contacts to maintain the known
heterodimer interface [12], we performed the rigid body
adjustments of the crystallographic model based on our SAXS
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curves (Table 2). The resulting rigid body model shows a more
open heterodimer, with an opening angle between LBDs of about
47 degrees, whereas the opening angle of the crystallographic
structure is close to 30 degrees (Figure 4C). This means that the
solution dimer interface is likely to be considerably smaller than
that observed in the crystal structure (PDB id 1FM6). Numerically,
the crystal structure heterodimer interface has an area of
1054.9 A, while the interface of body rigid model generated has
an arca of 480 A, according to ““Prolein inlerfaces, surfaces and
assemblies service” (PISA) at European Biowmformatics Institute (http://
www.ebt.ac.uk/pdbe/ prot_int/ pistart.html) [25]. The rigid body adjust-
ments of the hPPARY/hRXRa LBD resulted in a considerably
better fit to SAXS experimental data (Table 2).

The superposition of the high-resolution structure monomer
hPPARy LBD with the ab witio DAM, performed with
the program Supcomb, is shown in Figure 4A. The same
approach was taken for the superposition of the heterodimer
hPPARYy/hRXRo LBD rigid body model with its ab mitio
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Table 2. Structural Parameters Derived from SAXS for hPPARy LBD (monomer) and hPPARy/hRXRa. LBD (heterodimer).

Monomer Heterodimer Heterodimer
Monomer high-resolution = Monomer Heterodimer high-resolution = Heterodimer Rigid body model
Parameters expt model DAM € expt model} DAM € 3
Dinax (A) 65.0+5.0 64.2 62 85.0+5.0 85.4 85.7 89.1
Ry (A) 21.0=0.1 20.2 20.1 28.2*0.1 255 279 26.4
(Gnom) (Gnom)
21.1 (Crysol) (Crysol) 29.1 (Crysol) (Crysol) (Crysol)
Guinier (Guinier)
Resolution (A) 254 R e 25.6 e
MWsaxs (kDa)® X e
MWps, (kDa)® 309 e 57.9 —— e
MWsaxs mow (kDA)* 330 e e 739 e e e
MW heoreticar (kDa) 313 s 57.8 T ——

TCalculated from the experimental data.

€parameters of the Dummy Atom Models.
©gParameters of Rigid Body Model. Resolution: 21t/qmax-

EMW computed from the scattering data using BSA [22] as a secondary standard.
#Estimate of the MW using SAXS MoW [23].
doi:10.1371/journal.pone.0031852.t002

DAM (Figure 4B). Both models fit known tertiary structural
organization well.

The presence of DBD does not influence hPPARYy

oligomeric state

SAXS studies of a PPARY construct consisting of both DBD
and LBD (hPPARy DBD-LBD) were conducted to study how the
DBD influences hPPARY oligomeric state. The X-ray scattering
curves obtained for protein solutions at the different concentra-
tions did not show any spatial correlation effects (Table S1).
Typical scattering curves obtained for hPPARy DBD-LBD
monomer and hPPARY/hRXRa DBD-LBD heterodimer are
shown, respectively in Figures 5A and 5B. The structural
parameters derived from these curves are given in Table 3. The
R, values are approximately 30.0 A and 35.0 A for hPPARY
DBD-LBD monomer and hPPARy/hRXRao DBD-LBD hetero-
dimer, respectively. These values are compatible with the
estimates obtained from the Guinier analysis (Table 3;
Figures 5A and 5B, inset), and they are consistent with expected
for respective monomers for hPPARy and heterodimers for their
complexes with hRXRa.. Moreover, they can be confirmed by the
curve obtained on the basis of distances distributions (p(7))
(Figure 5C and 5D).

The particle shapes (DAMs), computed using Dammin package
[26], reveals that one of the molecular envelopes is consistent with
monomeric protein (this is the case for hPPARYy DBD-LBD) and
another one with the heterodimer (hPPARy DBD-LBD in the
presence of hRXRoa DBD-LBD). The molecular DAM for
hPPARy DBD-LBD monomer has a packing radius of about
r,=2.8 A, with a maximum diameter D,,.=110.6 A, whereas
molecular envelope for the hPPARy-hRXRo DBD-LBD hetero-
dimers has a packing radius r,= 3.3 A, with a maximum diameter
Dy =129.1 A, respectively (Figure 6). The experimental SAXS
curves and scattering curves computed from the DAMs show
good agreement (Table 3). Molecular weights computations using
three different methods based on SAXS analysis also confirmed
the oligomeric states of hPPARy DBD-LBD and hPPARYy/
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Values of hPPARy LBD monomer and hPPARy/hRXRu LBD heterodimer from the crystallographic model data (PDB id 1FM6).

SExperimental estimate of the Molecular Weight (MW) using the forward scattering I(0)/c at the absolute scale using water as a standard [21].

hRXRa DBD-LBD as being monomer and dimer, respectively
(Table 3).

Dummy Atom Model Reveals More Open Conformation
of hPPARY/hRXRa. in Solution as Compared to High
Resolution X-ray Structure of the Complex

DAM generated by Dammin package for hPPARy/hRXRa
DBD-LBD is prolate, elongated and has an asymmetric form. This
asymmetry was partly expected based on the arrangement of the
domains in the crystallographic heterodimer formed by hPPARY
and hRXRa, which is non-symmetric, allowing several contacts of
hPPARY LBD with other domains of both proteins of the complex
with LBD and DBD of hPPARY closely positioned, and hRXRo
LBD and DBD far apart with the space between them filled by the
hPPARYy LBD [10].

To compare our low resolution SAXS data with the crystal
structure, we computed the theoretical SAXS curves and the pair-
distance distribution function for the crystal structures of hPPARYy
DBD-LBD monomer and hPPARy/hRXRa DBD-LBD hetero-
dimer (Figure 5). The crystallographic models do not fit well to the
DAMs derived from our SAXS experiments. The profiles of the
distance distribution functions p(7) corresponding to DAMs and
generated for crystallography structures are typical for elongated
particles. Nevertheless, the D,,,, of the DAMs are larger than the
crystallographic structure, which indicates that the protein in
solution is more elongated than in the crystal.

Rigid body models were generated to minimize discrepancy
between crystallographic and experimental models. For the PPAR
LBD-DBD monomer rigid body model, the hinge was maintained
and the protein domains were separated into two rigid bodies.

Discrepancy between our SAXS data and crystallographic
model for the heterodimer could stem from the absence of DNA in
our samples and/or from the fact that the SAXS measurements
were performed in solution, conditions under which the protein
did not have restrictions imposed by the crystalline environment.
Thus, the rigid body model generated with the Sasref package [27]
was introduced to improve the quality of the fits of experimental
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Figure 4. SAXS models for LBD proteins construction. Three orthogonal views of the SAXS ab initio models for A) hPPARy LBD, obtained by
Gasbor (shaded spheres), superposed to the hPPARy LBD monomeric part of the high-resolution model PDB id 1FM6 (cartoon) and B) hPPARy/hRXRo.
LBD heterodimer, obtained by Gasbor (shaded spheres), superposed to the rigid body model from PDB id 1FM6 (cartoon). C) Superposition of the
rigid body model with the crystallographic structure (PDB id TFM6) showing the opening angle imposed on the rigid body model being larger than
the crystallographic structure. hPPARy LBD (pink), hRXRa LBD (yellow), crystallographic structure of heterodimer (black) and DAM (blue).

doi:10.1371/journal.pone.0031852.g004

SAXS curves to the generated model. This was done by separating
their relative domain positions and orientations determined to
minimize the differences between the experimental data and the
model predictions. The hinge was excluded from computations
since the resolution of the SAXS model is not sufficient to define
its position and conformations. As mentioned in the Introduction,
there was an unexpected intramolecular interface in the
crystallographic structure of intact hPPARy/hRXRa complex
[10], which allows interaction of the DBD of hPPARY with the
hinge of hRXRa. In our rigid body model, this interaction could
not be observed. This interaction was also not observed in the
SAXS experiments performed by another group that studied the
envelopes of this complex in the presence of DNA (hPPARYy/
hRXRa DBD-LBD+DR-1) [14]. The rigid body model obtained
in these studies reflects distant and dissociated positions of DNA
and ligand binding domains. This contrasts with the crystal
structure [10] which shows a compact conformation of full-length
nuclear receptors complex, but it is very consistent with our SAXS

@ PLoS ONE | www.plosone.org

measurements, providing envelopes of the same complex but in
the absence of DNA.

Our solution SAXS measurements performed with the complex
at the absence of DNA reveals that: 1) hPPARy DBD-LBD forms
heterodimers with hRXRo DBD-LBD; 2) the heterodimer is
asymmetric; and 3) it has a more extended and elongated shape
induced by further separation of hPPARy/hRXRo LBD and
DBD. These structural differences can be observed in the p(r)
function (Figure 5D), for which the value of D, for the SAXS
model exceeds the value of the crystallographic structure, ensuring
a less globular form of the sample in solution. As a result of the
rigid body modeling, the two LBDs were positioned in the most
bulky part of envelope and the DBDs were positioned in an
asymmetric way along the envelope (Figure 6C). This model
predicts that the third dimerization interface created by LBD of
PPAR and DBD of RXR will not be maintained. Additionally,
there are marked differences in the spacing of DBDs and LBDs in
the crystallographic structure and the generated rigid body model,

February 2012 | Volume 7 | Issue 2 | 31852
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Figure 5. Small-angle X-ray scattering curves for DBD-LBD proteins construction. A) hPPARy DBD-LBD and B) hPPARy/hRXRa. DBD-LBD,
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resolution model (black solid line) and the rigid body model (gray line).
doi:10.1371/journal.pone.0031852.9005

which reveals the widely separated domains (Figure 6C). To
comply with the SAXS data, the DBD of the PPAR and RXR
were translated from initial model (PDB id 3DZU), respectively,
on 46.9 A and 47.6 A. Our rigid body model describes the small-
angle X-ray scattering curves well, and has highly improved the
fitting as compared to the X-ray crystallographic structure of the
complex (Figure 5 and Table 3).

Structural Dynamics and Molecular Interfaces of PPAR,
PPAR/RXR and PPAR/RXR+DR-1 as Analyzed by Mass
Spectrometry

The dynamic behavior and the interface-protected regions of
PPAR/RXR heterodimer in solution were analyzed by hydrogen-
deuterium exchange experiments analyzed by mass-spectrometry
(H/D-Ex MS). In H/D-Ex MS of hPPARy/hRXRa complex, we
identified 51 peptides for hPPARY, covering 92% of its amino acid
sequence (Figure S4A). The deuterium uptake rate was higher for
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hPPARY alone, intermediate for the hPPARY/hRXRa heterodi-
mer and very low for hPPARy/hRXRo+DNA complex (Figure
S4B). Specifically, the uptake rates were 30%, 22% and 10% of
D50 incorporation, respectively. The differences in deuterium
uptake between the preparations reflect increased compactness
and lower flexibility of the more structured complexes with
cognate DNA and/or heterodimerization partner, in comparison
to the hPPARY alone. In addition, through measures of different
deuterium incubation times, the kinetics of deuterium incorpora-
tion seems to be fast, since 15 and 30 minutes of incubation
experienced no expressive variation (Figure S4B).

The differences in the DyO uptake behavior of hPPARY,
hPPARYy/hRXRo and hPPARy/hRXRa with cognate DNA
response element (DR-1) were observed, and as expected, the
deuterium incorporation profiles for hPPARy monomer show that
it is more flexible and solvent-expose than the other complexes
(Figure 7). The DBD are subject to a high degree of H/D
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Table 3. Structural Parameters Derived from SAXS for hPPARy DBD-LBD (monomer) and hPPARy/hRXRa. DBD-LBD (heterodimer).

Heterodimer

Monomer Monomer high- Heterodimer
Monomer high-resolution Monomer Rigid body Heterodimer resolution Heterodimer Rigid body
Parameters expt model } DAM € model 27? expt model } DAM € model <3
Dimax (A) 100.0+5.0 83.1 110.6 101.1 130.0%5.0 92.1 129.1 121.7
Rg (A) 31.1£0.1 25.8 31.1 29.5 35.0+0.2 28.2 349 344
(Gnom) (Gnom)
29.6 (Crysol) (Crysol) (Crysol) 33.8 (Crysol) (Crysol) (Crysol)
(Guinier) (Guinier)
Resolution (A) 26.0 26.0
MWsaxs (kDa)® 54.9 77.0
MWps, (kDa)* 54.6 S e 76.6
MWsaxs mow (kDa)* 550 e e 93.9
MW,heoreticar (kDa) 42,0 ——— e e 80.2

fCalculated from the experimental data.

€parameters of the Dummy Atom Models.
wsParameters of Rigid Body Model. Resolution: 21t/ pmax.

&Experimental estimate MW using BSA [22] as a secondary standard.
#Estimate of the MW using SAXS MoW [23].
doi:10.1371/journal.pone.0031852.t003

exchange, mainly in the region comprising the first helix (amino
acids 123-143). Surprisingly, the hinge domain appears more
protected than expected. Perhaps, it might be because of its
position close to the receptor’s body, as revealed by our SAXS
model (Figure 8A). The LBD is by far the most structured and
rigid domain, showing low overall H/D exchange (deuterium
incorporation below 40%) and the main core (H1, H3, H5, H6
and H9) very well protected.

Overall, the hPPARYy/hRXRa heterodimer is more protected
than hPPARY alone (Figure 8B). The DBD protections show the
footprint of DBD dimerization interface (between H9 and H11),
which is in accordance with direct repeat array. The hinge is more
flexible, disordered or exposed to the solvent, when compared to
the hPPARY alone, suggestive of local protein unfolding, which
could be necessary for interaction between the domains of the
complexes. The main differences between the hPPARy/hRXRa
heterodimer and hPPARY monomer are located in the LBD. The
LBD core (H1, H3, H5, H6) becomes more structured and
compact, with many protected areas. The dimerization interface
has a medium level of deuterium incorporation (31% to 50%), H7
is strongly protected and HIl is more accessible, indicating
asymmetry of this interface, in compliance with our hPPARYy/
hRXRa LBD SAXS model (Figure 7 and 8). Coupled with SAXS
analysis which suggests that hARXRo DBD and hPPARy LBD are
far apart and unable to form the interface, this finding represents
further evidence that the third interface does not form in solution
and in the absence of DNA, and the hPPARYy/hRXRa
heterodimer adopts an intermediate state, more compact than
that found in the separate proteins, but less packed together than
the crystallographic complex (hPPARY/hRXRo+DR-1 DNA
clement).

The presence of DNA induces an even more solvent protected
conformation in the heterodimer hPPARy/hRXRa (Figure 8C),
which is more consistent with the crystallographic structure (PDB
id 3DZU). The DBDs and hinges of both subunits of the
heterodimers become more protected. Further example is the

@ PLoS ONE | www.plosone.org

*Values of hPPARy DBD-LBD monomer and hPPARy/hRXRx. DBD-LBD heterodimer from the crystallographic model data (PDB id 3DZU).

§Experimental estimate of the Molecular Weight (MW) using the forward scattering 1(0)/c at the absolute scale using water as a standard [21].

hinge region (residues 154-195), which display lower mobility,
presumably because of its possible interactions with DNA.

The LBD protein core is also significantly more protected from
solvent. Significantly lower dynamic exchange as compared to
other samples (less than 10% of DO incorporation) was observed
for the H9 and HI1 (mainly responsible for dimerization
interface). This might indicate that the interface becomes larger
and more symmetric. Consequently, the hPPARy/hRXRo
heterodimer bound to DNA seems to be more compact and
further stabilized by the DNA addition.

In addition to the protected regions belonging to the domains
core, the region comprising loops formed by residues 110-120 of
DBD and the 376-385 and 422-431 of LBD showed higher
protection to H/D exchange. Analyses of the crystallographic
structure the hPPARy/hRXRa complex reveals that these parts of
the structure become more internalized in the presence of DNA.
This does not happen in the absence of DNA, because of the
extended conformation of the heterodimer. These observations are
in agreement with the hypothesis that the presence of the DNA
will trigger the rearrangements of the hPPARy/hRXRo dimer
conformation toward a more compact state.

The third heterodimerization interface also displays stronger
protection as compared to a complex without DNA, as can be seen
for H7, for example, as well as some parts of the LBD surrounding
this interface (H6 and H3). Together, these findings suggest that
there is an increase in overall compactness and reorganization in
the protein complex when the DNA is added. Furthermore, the
dimerization interfaces of hPPARy/hRXRa heterodimer in
solution, is different from the interfaces of hPPARy/
hRXRa+DR-1 complex in the crystalline state.

Discussion

PPARY has a central role in the regulation of glucose and lipid
homeostasis and is involved in inflammatory processes and is an
important drug target for treatment of Type 2 Diabetes and
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Figure 6. SAXS Models for LBD proteins construction. Three orthogonal views of the SAXS ab initio envelope for A) hPPARy DBD-LBD,
obtained by Dammin package, superposed to the monomer rigid body model from PDB id 3DZU and B) hPPARy/hRXRa DBD-LBD heterodimer,
obtained by Dammin package, superposed to the heterodimer rigid body model from PDB id 3DZU. C) Superposition of the rigid body model with
the crystallographic structure (PDB id 3DZU) showing the differences between the DBDs positions of the rigid body model and the crystallographic
structure. The DBDs was translated and the distance between the initial and final position of them is represented by red dotted line for DBDs hPPARy
and blue dotted line for DBDs of hRXRa. In pink is hPPARy LBD and yellow is hRXRo LBD of rigid body model; heterodimer crystallographic structure
(dark pink and dark yellow) (PDB id 3DZU) and DAM (blue).

doi:10.1371/journal.pone.0031852.g006

inflammation [28,29]. While the crystallographic structure of the in solution are not well understood. In order to expand knowledge
complex of full length PPARYy and RXRa is known, structural about the molecular shape, oligomeric state and protein-protein
alterations induced by heterodimer formation and DNA contacts interaction of hPPARY in solution alone and in the presence of its
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doi:10.1371/journal.pone.0031852.g007

heterodimerization partner, hRXRa, we performed SAXS
analysis and H/D exchange studies.

Although PPARSs associate with RXR in the presence of ligand
in living cells [30-32], its oligomeric state in solution had not been
explored. Our SAXS-derived structural parameters, supported by
SEC, native electrophoresis and DLS are consistent with the
monomeric form of both, hPPARy LBD and DBD-LBD,
constructs in solution, even at high protein concentrations
required for SAXS experiments. This is highly unusual since
other nuclear receptors, studied to date in solution by SAXS and
other techniques, form dimers and higher oligomeric forms [18—
20,33]. Nevertheless, our SAXS experiments reveal that in the
presence of hRXRa, both hPPARy LBD and DBD-LBD protein
constructs readily form heterodimers. This suggests that our
hPPARY preparations are comprised of functional protein, which
retains the capacity to heterodimerize with RXR and to bind to
DNA, essential steps in eliciting its functional activity, and
confirms that hPPARY is a constitutive monomer with a high
capacity for heterodimerization.

Fitting of high-resolution X-ray structural models into our low-
resolution SAXS models revealed unexpected differences between
organization of the heterodimer in the crystal and in solution. The
SAXS-based rigid body model constructed for LBDs render the
hPPARY/hRXRa heterodimer considerably about 17 degree
more open relative to high-resolution hPPARy/hRXRa LBD
crystallographic structure [12]. In addition, our SAXS experi-
ments performed on hPPARy/hRXRa DBD-LBD complex
reveals that this heterodimer becomes asymmetric and adopts a
more extended and elongated shape as compared to the

@ PLoS ONE | www.plosone.org

conformation found in the crystal structure [10], which are in
agreement with SAXS envelopes of these proteins in complex with
DNA [14]. This elongated form of the hPPARy/hRXRo DBD-
LBD heterodimer in solution is induced by further separation of
hPPARy LBD and DBD with respect to one another.

Our H/D-Ex experiments also revealed differences in hPPARY,
hPPARy/hRXRo and hPPARy/hRXRa+DR-1 species in terms
of solvent accessibility. Our results indicate that hPPARy/hRXRa
heterodimer alone, in the absence of DNA, is an intermediately
condensed form, which is stabilized by the cognate DNA binding.
Essentially, the asymmetric dimerization interface between
hPPARy/hRXRo LBDs, became more protected after DRI
binding. Finally, our data predicts that the third dimerization
interface, between DBD of hRXRa and LBD of hPPARY, could
be formed only in the presence of DR1 DNA, as predicted from
analysis hPPARY/hRXRo+DR1 tridimensional structure [10],
but the open and close conformation of the complex remain in a
dynamic equilibrium.

Our results shed more light on the functionally relevant
heterodimer hPPARY/hRXRa formation and the hPPARY
behavior in solution. Based on our studies, we purpose a following
model of PPAR activation (Figure 9). According to this model,
ligand-bound PPAR recruits RXR and forms an intermediary
heterodimer, more stable then the PPAR alone, but with LBD
heterodimer surfaces relatively open as compared to the
crystallographic model. The DBDs show extended conformations,
separated from the LBDs, as revealed by our SAXS model. After
DNA binding, this intermediary heterodimer undergoes additional
conformational changes, caused by the interactions between the
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Figure 8. PPAR DBD-LBD models colored according to H/D Ex-data. Protections and solvent exposure are colored according deuteration
level, from blue (0-10% D,0 incorporation), green (11-30% D,0 incorporation), yellow (31-50% D,0O incorporation) to red (more that 50% of D,0
incorporation). A) hPPARy monomer; B) hPPARy/hRXRa. heterodimer. The box shows in details the dimerization interface, with H10-11 being not very
strongly protected (yellow - 11 to 49% D0 incorporation). C) hPPARY/hRXRa+DR1 complex, the boxes show dimerization interface (top box, framed
in black), which presents H10-11 and H7 more protected than that in hPPARy/hRXRa heterodimer alone; and the third heterodimerization interface

(bottom box - orange) indicating higher degree of protection.
doi:10.1371/journal.pone.0031852.g008

receptors and DNA, and becomes more compact, able to adopt
the conformation similar to the one revealed by the crystallo-
graphic structure [10]. Thus, our data confirms that DNA could
induce significant changes in the interactions of DBDs, LBDs and
hinge organization of the PPARY/RXRa complex, consistent with
predictions that DNA acts as an allosteric ligand, inducing
widespread reorganizations in receptor conformation [34,35].
Furthermore, the mass experiments showed changes in the
deuterium incorporation pattern, after the DNA addition. It will
be interesting to understand how these structural alterations may
affect PPARYy function on DNA elements versus their actions at
alternate elements where direct DNA interaction is not required

[36].

Materials and Methods

Materials

The bacterial expression vector pET28a(+) was purchased from
NOVAGEN. Isopropyl-B-d-thiogalactopyranoside (IPTG) was
obtained from Invitrogen, Inc. Talon Superflow Metal Affinity
Resin was from BD Biosciences Clontech. Phenylmethylsulfonyl
fluoride (PMSF), lysozyme, protein standards used as sodium
dodecyl sulfate—polyacrylamide gel electrophoresis (SDS-PAGE)
markers and DyO (Deuterium oxide) were purchased from Sigma
Aldrich. Bradford dye was from Bio-Rad. Hil.oad Superdex 75
26/60, HiLoad Superdex 200 16/60 and Superdex 75 HR 10/30
gel filtration columns were purchased from GE Healthcare. All
other chemicals were of analytical grade.

Expression and purification

The human PPARYy LBD (amino acids 204-477), RXRa LBD
(amino acids 225-462), PPARy DBD-LBD (amino acids 101-468),
and RXRa DBD-LBD (amino acids 135-462) were inserted into
the pE'T28a(+) (Novagen) and expressed in the Escherichia coli strain
BL21(DE3).

The same protocol of protein expression and purification was
used for all protein studied in this work. Protein expressions were
conducted in LB culture and were induced with 1 mM IPTG
(isopropyl B-D-1-thiogalactopyranoside), under incubation at
20°C for 3 h. 5 uM of zinc sulfate was added to the culture
during expression of the constructs with DBD domains. Cells were
collected by centrifugation and the pellets were resuspended in
50 mM sodium phosphate, pH 7.5, 300 mM NaCl, 10% glycerol,
2 mM 2-mercaptoethanol, and 10 mM imidazole (buffer A).
Phenylmethylsulfonyl fluoride (PMSF) and lysozyme were present
at 10 mM and 250 pg/mL, respectively. The lysate was sonicated,
clarified by centrifugation and the supernatant loaded onto a
Talon Superflow Metal Affinity Resin (BD Biosciences Clontech,
Palo Alto, CA) pre-equilibrated in Buffer A. The bound hPPARYy
was eluted with 50 mM sodium phosphate, pH 8.0, 300 mM
NaCl, 10% glycerol, 2 mM B-mercaptoethanol, and 300 mM
imidazole (buffer B), in a single step. The eluted pool was collected,
and the His-tag was subsequently removed (except to hRXRa) by
incubation with thrombin at 10 U/mg for 12 h at 18°C. After, as
an additional purification step, hPPARY LBD was loaded into the
gel filtration HL. Superdex 75 26/60 column and hRXRa LBD
and DBD-LBD, and hPPARy DBD-LBD, into HL. Superdex 200
16/60 column (GE Healthcare) equilibrated with 20 mM Hepes-
Na buffer (pH 8.0), 3 mM dithiothreitol, 200 mM NaCl, and 5%
glycerol.

Protein content and purity were confirmed by coomassie blue-
stained sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE). Protein concentrations were determined using the
Bradford dye assay (Bio-Rad, Hercules, CA).

Heterodimer Preparation

The purified protein pairs: hPPARy DBD-LBD and hRXRa
DBD-LBD, or hPPARYy LLBD and hRXRa LBD at a concentra-
tion of 20 mg/mL each, were incubated in a molar proportion of
1:1 for 1 h at 4°C. After, each complex was purified by loading

Figure 9. Cartoon schematically representing the mechanism of heterodimerization and binding to the DNA. When the PPAR is
activated, it recruits RXR, forming an intermediary heterodimer, which has the LBDs and DBDs domains in extended and open conformation.
Following to DNA binding, the PPAR/RXR heterodimers suffer additional conformational changes, becoming more condensed and less solvent-

exposed.
doi:10.1371/journal.pone.0031852.9g009
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onto a Superdex 75 HR 10/30 (GE Healthcare) for LBD
constructions, and Superdex 200 HR 10/30 (GE Healthcare) for
DBD-LBD constructs. The size exclusion chromatography (SEC)
was also used to evaluate the oligomeric species present in solution
(Text S1). The column was standardized with the gel filtration
calibration kit (GE Healthcare), thyroglobulin, ferritin, catalase,
aldolase, albumin, ovoalbumin, chymotrypsinogen, and ribonu-
clease A (hydrodynamic radii (Rp) of 85.0, 61.0, 52.2, 48.1, 35.5,
30.5, 20.9, and 16.4 A, respectively), utilized as calibration
standards. The elution volumes of these proteins were used to
calculate the A, values according to columns calibration as
described [16]. All the eluted samples were checked by SDS-
PAGE 15%. Other methodologies were applied to assist in the
oligomeric states evaluation (Text S2 and S3).

Small-Angle X-ray Scattering

SAXS experiments. SAXS data for hPPARy LBD and
hPPARy/hRXRo LBD complex at 1, 3 and 6 mg/mlL, as well as,
hPPARy DBD-LBD and hPPARy/hRXRo DBD-LBD at 1, 3
and 6 mg/mL, were performed at the DO2A-SAXS2 beamline of
the Synchrotron Light National Laboratory (Campinas, Brazil)
(Text S4). Measurements were done with a monochromatic X-ray
beam with a wavelength of 4=1.488 A and the X-ray patterns
were recorded using a two-dimensional CCD  detector
(MarResearch, USA). The sample-to-detector distance was set at
955.3 mm, resulting in a scattering vector range of 0.015 to
0.35 A™!, where ¢ is the magnitude of the ¢-vector defined by
¢=4msin0/X (20 is the scattering angle). The samples diluted in a
gel filtration buffer were centrifuged at 23,500 g for 30 minutes, at
4°C to remove any aggregates or particles and then placed on ice.
For SAXS measurements, protein samples were introduced into a
1 mm path length cell with mica windows at 20°C. Two successive
frames of 300 s each were recorded for each sample to monitor
radiation damage and beam stability. Buffer scattering was
recorded before the sample scattering. The SAXS patterns were
individually corrected for the detector response and scaled by the
incident beam intensity and the sample absorption. The buffer
scattering (parasitic scattering from windows, narrows, etc.) was
subtracted from the corresponding sample scattering. The
integration of SAXS patterns were performed using Fit2D
software [37], and the scaled by protein
concentration.

SAXS data analysis. The radius of gyration, R, is a global
measure of the size and shape of the molecular complex which is
related to hydrodynamic radius (Rz) by Ry = R,x1.3 [38] and was
approximated using two independent procedures, by Guinier
equation [39] and by indirect Fourier transform method using
Gnom package [40]. The distance distribution functions p(7) also
was evaluated by Gnom and the maximum diameter, D,,, was
obtained. Molecular weights (MW) were estimated by three
methods: (1) by determining the absolute scattering intensity using
water scattering (primary standard) (Text S5) [21], (2) by
comparison of the forward-scattered intensity with the secondary
protein standard, bovine serum albumin (BSA) (Text S6) [22] and
(3) using a novel procedure implemented as a web tool SAXS
MoW  (www.ifsc.usp.br/~saxs/saxsmow.html) [23]. The later
procedure does not require the measurement of SAXS intensity
on an absolute scale and does not involve a comparison with
another SAXS curve determined from a known standard protein.
To calculate the forward scattering 1(0) in the absolute scale, the
known scattering of water equal to 1.632x1072 cm ™' at 288 K
was used [21].

SAXS ab initio modeling. Dummy atom models (DAMs)
were calculated from the experimental SAXS data using ab nitio

curves were
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procedure implemented in either Dammin [26] and Gasbor
packages [24]. Several runs of ab initio shape determination with
different starting conditions led to consistent results as judged by
the structural similarity of the output models, yielding nearly
identical scattering patterns and fitting statistics in a stable and self-
consistent process. Crysol package was used to generate the
simulated scattering curves from DAMs [40]. The evaluation of R,
and D,,,, were performed with the same package. 7

Fitting of DAMs with crystallographic structures. The
crystallographic structures of hPPARy LBD monomer (PPAR
monomer part from the PDB id 1FM6) [12], hPPARy/hRXRo
LBD complex (PDB id 1FM6), hPPARy DBD-LBD monomer
(PPAR monomer part from the PDB id 3DZU) and hPPARY/
hRXRo DBD-LBD complex (PDB id 3DZU) [10] were used to
generate the simulated scattering curves by Crysol package [40]
and to determine the R, and D,,.. Some of the simulated curves
based on the crystallographic structures had good agreement with
the experimental SAXS data. The correspondent three-
dimensional structures were superimposed with ab mitio DAMs
using the Supcomb package [24]. Figures of the superpositions
were generated by the program PyMOL [41].

Rigid body modeling. Rigid body modeling was performed
for the hPPARY/hRXRo LBD complex using Sasref package
[27]. The two monomers from the crystallographic structure (PDB
id 1FM6) were separated and their relative position and
orientation were minimized. Based on the known classic
dimerization interface between hPPARy LBD and hRXRa
LBD, the intermolecular contacts RXR F415-A433 PPAR and
RXR 1[.420-1436 PPAR [12] were maintained during the
minimization procedure. In order to improve the quality of fits,
the protein domains were allowed to separate and thus their
relative positions and orientations were determined by rigid body
modeling. For the PPAR LBD-DBD monomer rigid body model,
the hinge was maintained and the protein was separated into two
rigid bodies maintaining the primary sequence of amino acid
residues P206-E207. The rigid body refinement allowed better
adjustment of the structure inside the DAM. To perform rigid
body modeling with the heterodimer DBD-LBD, we separated the
complex into two rigid bodies, one containing the LBDs and the
other with the DBDs, since limited structural information of SAXS
data did not allowed us to use too many independent domains and
more degrees of freedom. The hinge domains (for PPAR, a
fragment between A172-P206 and for RXR, the fragment
between E203-N227) have been excised from the structural
templates. The dimerization interface of LBD was maintained,
as it had been described previously for structure with separate
LDB domains [12] and also observed in the structure of the full-
length receptor [10]. For position of DBDs, we used the
dimerization interface described for the DBDs of the estrogen
receptor (ER) (PDB 1HCQ), which shows a complementarity of
shape as well as a number of direct contacts between domains
[42]. Crysol package was used to generate the simulated scattering
curves.

Mass-spectrometry of hPPARy-hRXRo. DBD-LBD
Hydrogen/deuterium exchange coupled with chromatography-
mass spectrometry analysis has been extensively used in analysis of
proteins and their interactions, including protein:protein or
protein:ligands interactions and protein dynamics [43-47].
Mass-spectrometry experiments were conducted using hPPARYy
DBD-LBD alone and the heterodimer hPPARy/hRXRo DBD-
LBD complex in the presence and absence of DNA PPRE (5'-
AGCTAAAGGTCAGAGGTCAGTAGGA-3").
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The H/D exchange mass spectrometry experiments started by
diluting hPPARy/hRXRa complexes at high concentration
(26 mg/mL) 10 times in DyO buffer (final buffer: 2 mM Hepes,
15 mM NaCl, 0.5% Glycerol, 0.3 mM DTT and 60% v/v DyO).
These mixtures (100 pL) were incubated for 3, 10 and 30 minutes
at a room temperature, in order to have mild conditions of
hydrogens exchange by deuteriums at the protein surfaces. The
kinetics of deuterium incorporation is fast and after 30 minutes of
incubation, the H/D exchange becomes stabilized (T'ext S7). After
incubation, the proteins were immediately submitted to pepsin
cleavage at a ratio of 1:50 enzime to protein by mass, for
10 minutes, with addition of 60 ul. of 100 mM of sodium
phosphate buffer pH 2.5, on ice to avoid H/D back-exchange.
After addition of 30% acetonitrile, the samples contained the
peptic fragments was immediately applied, to avoid back-exchange
with solvent hydrogen, by direct injection onto a Quattro II triple-
quadrupole mass spectrometer (Micromass, UK), equipped with a
standard ESI source. By the analysis of the displacement in peptide
peaks, the fragments of the protein undergoing H/D exchange
were identified. The software MS-Digest (The Regents of the
University of California) was used to identify the sequence of the
peptic peptide ions, generated by pepsin cleavage. The deuterium
incorporation level for each peptide was determined from
differences in mass centroids between the deuterated and non-
deuterated fragments using Masslinx software (Micromass, UK).

Supporting Information

Figure S1 SDS-Page of protein purification. A) hPPARYy
LBD, hRXRa LBD and hPPARyY/hRXRo LBD heterodimer
purification 15% SDS-Page. Lane 1 molecular weight markers (66,
45, 36, 29 e 12 kDa); Lane 2 hPPARYy LBD elution after the
affinity column; Lane 3 hRXRo LBD elution after the gel
filtration column; Lane 4 hPPARy/hRXRa LBD heterodimer
elution after the gel filtration column B) hPPARy DBD-LBD, and
hPPARy/hRXRo DBD-LBD heterodimer purification 15% SDS-
Page. Lane 1 molecular weight markers (66, 45, 29 e 12 kDa);
Lane 2 hPPARy DBD-LBD elution after the affinity column; Lane
3 hPPARy/hRXRo DBD-LBD heterodimer elution after the gel
filtration column.

(TIFF)

Figure S2 Native gel electrophoresis. A) Lanes 1 and 4
molecular weight markers (440, 232, 140, 66 kDa); Lane 2
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