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Abstract
1.	 The global movement for ecosystem restoration has gained momentum in re-

sponse to the Bonn Challenge (2010) and the UN Decade on Ecosystem 
Restoration (UNDER, 2021–2030). While several science-based guidelines exist 
to aid in achieving successful restoration outcomes, significant variation remains 
in the outcomes of restoration projects. Some of this disparity can be attributed 
to unexpected responses of ecosystem components to planned interventions.

2.	 Given the complex nature of ecosystems, we propose that concepts from 
Complex Systems Science (CSS) that are linked to non-linearity, such as regime 
shifts, ecological resilience and ecological feedbacks, should be employed to help 
explain this variation in restoration outcomes from an ecological perspective.

3.	 Our framework, Explore Before You Restore, illustrates how these concepts im-
pact restoration outcomes by influencing degradation and recovery trajectories. 
Additionally, we propose incorporating CSS concepts into the typical restora-
tion project cycle through a CSS assessment phase and suggest that the need 
for such assessment is explicitly included in the guidelines to improve restoration 
outcomes.

4.	 To facilitate this inclusion and make it workable by practitioners, we describe indi-
cators and methods available for restoration teams to answer key questions that 
should make up such CSS assessment. In doing so, we identify key outstanding 
science and policy tasks that are needed to further operationalize CSS assess-
ment in restoration.
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1  |  BACKGROUND

1.1  |  Complex system science concepts in an era of 
restoration

A movement for ecosystem restoration has emerged in response 
to global land and water degradation and associated loss of biodi-
versity and ecosystem services (Nicholson et  al.,  2020; Strassburg 
et al., 2020). Restoration initiatives aimed at moving ecosystems from 
an undesired (i.e. degraded, damaged or destroyed) to a desired re-
gime are booming worldwide (Chazdon et al., 2021; Gann et al., 2019). 
The United Nations (UN) responded to this momentum by launch-
ing the UN Decade on Ecosystem Restoration 2021–2030, which has 
encouraged further initiatives (Abhilash, 2021; FAO et al., 2021). By 
now, many useful guidelines and tools exist to steer the restoration 
community towards scientifically sound restoration, for example the 
UNDER Principles and Standards of Practice for Ecosystem Restoration 
(FAO et  al.,  2021, 2023), the Society for Ecological Restoration's 
Principles and Standards (Gann et al., 2019) and ITTO's Guidelines for 
Forest Landscape Restoration in the Tropics (ITTO, 2020).

Despite these clearly defined targets and guidelines (Di Sacco 
et  al.,  2021), restoration outcomes vary widely, with multiple fail-
ures to establish target ecosystems (Banin et al., 2023; Brancalion & 
Holl, 2020; Brudvig & Catano, 2021; Dudney et al., 2022). Examples 
of ecological failures, that is attributed to biotic and abiotic ecological 
constraints, include poor survival of planted or naturally regenerating 
trees in forest restoration (Banin et al., 2023; Christmann et al., 2023; 
Kodikara et  al.,  2017; Magaju et  al.,  2020), no population growth 
of targeted fish species in lake or coral reef restoration (Boström-
Einarsson et al., 2020; Fox et al., 2019; Graham et al., 2013) and fail-
ure to restore non-turbid water conditions in lake restoration (Gulati 
et al., 2008; Jilbert et al., 2020; Søndergaard et al., 2007).

Undesired ecological outcomes in restoration may occur due to 
unexpected responses of ecosystem components to planned inter-
ventions. We argue that, as well as overly ambitious or unrealistic 
expectations, threshold behaviour due to complex system dynamics 
associated with ecological systems can explain unexpected resto-
ration responses. In other words, ecosystem complexity itself poses 
constraints to restoration success (Munson et  al.,  2018; Van Nes 

et  al.,  2016). Namely, natural ecosystems are Complex Systems, 
which are studied in the discipline of Complex Systems Science (CSS) 
and defined by eight emergent properties: heterogeneity, hierarchy, 
self-organization, openness, adaptation, memory, non-linearity and 
uncertainty (Appendix S1; Anand et al., 2010; Bullock et al., 2021; 
Filotas et al., 2014; Riva et al., 2022). Here, we emphasize three key 
concepts linked to the specific CSS property of non-linearity that we 
believe hold pivotal implications for restoration outcomes from an 
ecological perspective: regime shifts (and potential hysteresis), ecolog-
ical resilience and ecological feedbacks.

Non-linearity implies that ecosystems may show dispropor-
tionately large responses to environmental disturbances over time 
(e.g. drought, herbivory). In grasslands, for instance, herbivory may 
lead to slight declines in biomass in wet years, but the same levels 
of herbivory may also cause major declines in biomass and changes 
in vegetation composition in dry years (Stone & Ezrati,  1996). As a 
result of chronic environmental degradation, non-linearity can cause 
abrupt regime shifts in ecosystems, whereby they shift to an alterna-
tive stable state or regime by crossing a critical (disturbance) thresh-
old (Table  1; Figure  1a; Dantas et  al.,  2016; Scheffer et  al.,  2001). 
An abrupt regime shift is reflected by a sudden, dramatic change 
in ecosystem state variables, for example lake waters shifting from 
clear to turbid due to eutrophication (Scheffer,  2001; Scheffer 
et al., 2001; Seidl & Turner, 2022), coral reefs shifting from coral- to 
algal domination (Graham et al., 2013) or forests shifting to savanna 
systems (or vice versa) due to changes in fire regime or dry season 
length (Figure 1b; Dantas et al., 2016; Fletcher et al., 2014; Oliveras 
& Malhi, 2016; Staver et al., 2011). After such a shift, restoration to 
the pre-degradation regime is likely slow and requires substantial re-
ductions in the environmental pressures, possibly even to a level well 
below the one that led to the shift; a phenomenon called hysteresis 
(Table 1; Figure 1c; Muys, 2013; Selkoe et al., 2015; Staal et al., 2020). 
Thus, regime shifts, driven by non-linear behaviour in ecosystems, 
can influence recovery trajectories (Mayer & Rietkerk, 2004; Suding 
& Hobbs, 2009; Suding & Gross, 2006). Further, restoration trajecto-
ries will depend on whether or not a regime shift has already taken 
place in the ecosystem at the time when restoration interventions are 
applied, and if not, on how close to a critical threshold the ecosystem 
is at that time (Ghazoul et al., 2015; Ghazoul & Chazdon, 2017).

5.	 Synthesis and applications. By illustrating how key Complex Systems Science (CSS) 
concepts linked to non-linear threshold behaviour can impact restoration out-
comes through influencing recovery trajectories, our framework Explore Before 
You Restore demonstrates the need to incorporate Complex Systems thinking in 
ecosystem restoration. We argue that inclusion of CSS assessment into restora-
tion project cycles, and more broadly, into international restoration guidelines, 
may significantly improve restoration outcomes.

K E Y W O R D S
complex systems science, feedbacks, hysteresis, non-linearity, regime shift, resilience, 
restoration project cycle, threshold
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A second concept that is intricately connected to non-linear 
behaviour of complex systems and thus to potential regime shifts, 
is the ecological resilience of degraded ecosystems to disturbances 
(Ghazoul et  al.,  2015; Ghazoul & Chazdon,  2017). Ecological re-
silience is a measure of the ecosystem's ability to absorb change 
and disturbance and still maintain the same regime (Appendix S1, 
Table  S2). A decrease in resilience due to environmental deg-
radation increases the likelihood of a regime shift to occur (i.e. 

lower helpful resilience sensu Standish et al. (2014); Table 1; Folke 
et al., 2004; Rocha et al., 2015). On the other hand, ecosystems 
can be in a highly resilient alternative regime after prolonged 
degradation due to hysteresis, when the presence of ecological 
feedbacks maintain the degraded regime (i.e. higher unhelpful re-
silience sensu Standish et al. (2014); Table 1; Dornelles et al., 2020; 
Dudney et al., 2018; Staal et al., 2020). Both low resilience of the 
desired regime as well as high resilience of the undesired regime 
can hamper restoration performance (Magnuszewski et al., 2015; 
Standish et al., 2014).

A third concept that is tightly linked to non-linearity of com-
plex (eco)systems are ecological feedbacks, that is dampening or 
reinforcing interactions between (a)biotic factors (e.g. vegetation 
composition) and disturbance regimes (e.g. fires) that loop back 
to control ecosystem dynamics (Table  1). These feedbacks can 
both maintain an ecosystem in a specific regime as well as cause 
it to shift to an alternative one and can thereby strongly influ-
ence degradation as well as recovery trajectories, thus influencing 
restoration outcomes (Hobbs et  al.,  2011; Scheffer et  al.,  2009; 
Verbesselt et al., 2016).

Importantly, potential hysteresis or history-dependence, is tightly 
linked to each of the three CSS concepts since this feature (i) can 
occur after a regime shift took place, (ii) reflects the new regime hav-
ing a high unhelpful resilience and (iii) is governed by the presence of 
ecological feedbacks that maintain the new regime.

1.2  |  CSS concepts in restoration guidelines

Most current restoration guidelines produced by international or-
ganizations do not sufficiently incorporate or operationalize CSS 
concepts linked to non-linear threshold behaviour (Appendix S2). 
While some guidelines include concepts of ‘alternative ecosystems’ 
(Gann et al., 2019; Appendix S2, Table S1), most do not. There is lim-
ited to no inclusion of concepts related to regime shifts, contrast-
ing with frequent inclusion of the resilience concept (Appendix S2, 
Table  S1: 298 × ‘resilience’ vs. 0 × ‘regime shift’ across all guide-
lines). Resilience, however, is rarely accompanied by a clear defini-
tion or concrete measurement tools, limiting its operational use in 
restoration practice. Further assessing the meaning of resilience in 
the guidelines, the focus is on restoring ecosystems that are resil-
ient to all kinds of shocks (i.e. building general resilience), rather than 
on which ecosystem components should be resilient to which dis-
turbances, and how to quantify and achieve this (i.e. building spe-
cific resilience; Dudney et al., 2018; Folke et al., 2010; Appendix S2, 
Table S2: 99% ‘general’ vs. 1% ‘specific’). Through this focus on gen-
eral resilience, the guidelines imply that resilience is always ‘good’, 
‘helpful’ or ‘desirable’ in ecosystem restoration. However, this is 
not always the case, as resilience can be an unhelpful ecosystem 
feature, hindering successful restoration by reinforcing undesirable 
regimes, as we discuss above.

We argue that abrupt non-linear regime shifts, unhelpful eco-
logical resilience and ecological feedbacks that maintain undesired 

TA B L E  1  Glossary (see Appendix S2 for extended glossary).

Regime shift: (Carpenter et al., 2011; Dudney et al., 2018; Kéfi 
et al., 2013; Scheffer et al., 2012; Van Meerbeek et al., 2021; 
Van Nes et al., 2016)

An ecosystem regime is an identifiable configuration with 
characteristic structure, functions and feedbacks. A regime shift 
is the change of an ecosystem from one regime or reference 
condition to an alternative regime as a result of non-linear 
(abrupt or smooth) responses of ecosystem state variables (e.g. 
biomass) to environmental pressures (Figure 1a)

Critical threshold (CT; or Critical transition or Tipping point): The point 
at which small disturbances can trigger large, abrupt changes in 
ecosystem state variable(s)

Early-warning signals (EWS): Generic indicators (e.g. critical slowing 
down) that mark loss of ecological resilience in a system, 
indicating that a regime shift is likely to occur

Hysteresis (or History-dependence): A phenomenon whereby the 
ecosystem degradation trajectory differs from the recovery 
trajectory: crossing the critical degradation threshold (CT2 
in Figure 1a) results in a shift in the ecosystem regime from 
1 (green) to 2 (red). To restore an ecosystem to regime 1, the 
environmental degradation pressure(s) (e.g. eutrophication) must 
be reduced to a lower threshold than the one which triggered 
the transformation of the ecosystem to an alternative regime 
(i.e. to CT1 instead of CT2)

Ecological resilience: (Dornelles et al., 2020; Dudney et al., 2018; 
Holling, 1973; Nicholson et al., 2020; Standish et al., 2014)

A measure of the ability of ecosystems to absorb change and 
disturbances and still remain within critical thresholds of the 
same regime, that is maintain the regime

Helpful resilience: Resilience that helps to achieve the defined 
restoration aim. Higher helpful resilience of an ecosystem in 
regime 1 implies that a shift to regime 2 is less likely to occur 
under the same degradation scenario. This is considered 
helpful or desirable if the aim is to avoid regime shifts 
(Figure 1a)

Unhelpful resilience: Resilience that hinders the achievement of 
the defined restoration aim (Dudney et al., 2018; Standish 
et al., 2014). Higher unhelpful resilience of an ecosystem  
in regime 2 after a regime shift occurs implies that a  
shift back to 1 is less likely to occur, which is considered 
unhelpful or undesirable if the aim is to restore regime 1 
(Figure 1a)

Ecological feedbacks: (Van Nes et al., 2016)
Dynamic ecological interactions between (a)biotic factors (e.g. 

vegetation composition) and disturbance regimes (e.g. fire 
regime, grazing level) in an ecosystem that loop back to control 
system dynamics. Feedbacks can either dampen (negative 
or stabilizing feedbacks) or reinforce (positive or amplifying 
feedbacks) system change, thereby maintaining one regime or 
causing it to shift to an alternative one
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ecosystem regimes, can result in divergent, unexpected and unpre-
dictable responses to restoration interventions, ultimately leading 
to undesired or ‘failed’ restoration outcomes (Krievins et al., 2018; 
Mayer & Rietkerk,  2004). Many restoration projects may involve 
degradation scenarios where a regime shift has not (yet) occurred, 
and resilience is still helpful, but we argue that the guidelines should 
be flexible and suitable to all degradation scenarios, including those 
where advanced degradation has already occurred. Hence, op-
erationalizing these CSS concepts into the current guidelines and 
across restoration project cycles, can minimize or even avoid unde-
sired outcomes, as well as potentially speed up the achievement of 
desired outcomes.

Importantly, the desired regime in restoration may not necessar-
ily reflect the historic pre-degradation regime (Bardgett et al., 2021; 
Bullock et al., 2021; Crow, 2014; Gann et al., 2019). While historic 
regimes were traditionally the focus of ‘ecological restoration’, res-
toration stakeholders often now make a decision on whether their 
interventions should aim to ‘Resist’, ‘Accept’ or ‘Direct’ the increas-
ingly unpredictable and unprecedented environmental changes that 
ecosystems are facing (Jackson, 2021; Lynch et al., 2022).

Furthermore, we acknowledge that ecological aspects alone 
are not sufficient to explain failed restoration outcomes (Elias 
et al., 2022; Maniraho et al., 2023). The process of successfully and 
efficiently restoring degraded ecosystems also relies on the trust 
and engagement of relevant stakeholder groups such as local com-
munities and authorities, and on the social-economic and political 
settings such as functionality of the land tenure policies (Ahammad 
et al., 2023; Metcalf et al., 2015; Petursdottir et al., 2013; Walters 
et  al.,  2021). Since we aim to demonstrate here how CS dynam-
ics can explain some of the variation in restoration outcomes from 
an ecological perspective, instead of highlighting the various di-
mensions that may influence restoration outcomes, inclusion of 
social-economic factors are beyond the scope of our manuscript. 
That is, our framework (i) focuses on the ecological dimension of 
CS dynamics, which is nested within a broader social-ecological 
dimension (Nikinmaa, 2020) and (ii) assumes that restoration plan-
ning is being approached from a social-ecological perspective, 
that is the interventions are designed with careful consideration 
of social-economic as well as ecological dimensions (Crow, 2014; 
Elias et al., 2022; Lade et al., 2013; Maniraho et al., 2023; Nayak & 
Armitage, 2018).

In the following sections of our framework Explore Before You 
Restore, we demonstrate how regime shifts, ecological resilience and 
feedbacks influence recovery trajectories with examples from sci-
ence and practice and then suggest how these concepts might be 
included in restoration practice. In doing so, we identify key science 
and policy tasks that are needed to operationalize these concepts 
into useful tools for the restoration community. Our framework fol-
lows a typical 6-step restoration project cycle (Table 3; Appendix S3, 
Table  S1: Assessing, Planning, Implementing, Monitoring & 
Evaluating, Maintaining and Adaptive Management) and is, there-
fore, directly applicable for restoration practitioners, scientists and 
policymakers.

2  |  HOW COM PLE X SYS TEMS SCIENCE 
CONCEPTS C AN HELP E XPL AIN 
RESTOR ATION TR A JEC TORIES

Regime shifts, possibly coupled with high unhelpful resilience of the 
new regime in cases of hysteresis, can strongly influence recovery 
trajectories and thus determine which restoration interventions, rang-
ing from simple to more complex, are needed to achieve desired tar-
gets (Figure 2; Mayer & Rietkerk, 2004; Selkoe et al., 2015; Suding & 
Hobbs, 2009). Namely, in ecosystems that have experienced an abrupt 
regime shift but with no evidence of hysteresis, reversing degradation 
to below the threshold level that led to the shift is likely sufficient to 
restore the system to the pre-threshold regime (i.e. reverse the shift) 
(Figure 2 middle scenario: halt degradation and/or additional interven-
tions, Chazdon et al., 2021). For example, regeneration of native veg-
etation is sometimes constrained by invasive plant species in severely 
degraded tropical forests. Effective control of invasives, in these 
cases, may promote recovery of native species composition associ-
ated with the pre-threshold ecosystem regime (Brancalion et al., 2019; 
Douterlungne et al., 2013; Gratton & Denno, 2005).

By contrast, in ecosystems where hysteresis maintains the de-
graded regime through ecological feedbacks that strengthen un-
helpful resilience (Table  2), restoration efforts need to do more 
than simply establish the environmental condition(s) that were 
prevalent before the shift. Disrupting the high unhelpful resil-
ience of the new regime typically requires multiple, coinciding 
and often expensive, interventions (Figure 2 bottom scenario: halt 
degradation and additional interventions; Chazdon et  al.,  2021; 
Muys, 2013; Selkoe et al., 2015; Van Nes et al., 2014). For instance, 
after several decades of heavy grazing in terrestrial grasslands, 
palatable plants may essentially be absent, with natural recovery 
of these systems taking up to 100 years or longer due to hysteresis 
(Cipriotti et  al.,  2019). In arid ecosystems, increased aridity may 
then lead to desertification, making the possibility for vegetation 
recovery even lower, even where aridity levels subsequently de-
crease (Kéfi et  al.,  2007). Achieving successful restoration then 
requires a combination of interventions, such as reducing grazing, 
combined with measures such as reseeding with desirable well-
adapted species, woody species control, soil erosion prevention 
and protection and soil water management (Table 2).

Furthermore, reduced helpful resilience of a system undergoing 
degradation, but which is still in the desired ecosystem regime, can 
also influence the restoration trajectory (with or without a pending 
regime shift) (Selkoe et al., 2015). Even though halting degradation 
will likely restore the desired regime (Figure 2 top scenario), reduced 
resilience can slow down recovery. For instance, abandonment of 
agricultural systems can create favourable conditions for tree re-
generation to restore forests with generally little need for additional 
interventions (Figure 2; Boulton et al., 2022; Poorter et al., 2016; 
Rolim et al., 2017; Rozendaal et al., 2019). Reduced helpful resilience 
of these post-agricultural systems, however, driven by the intensity 
of the past agricultural land use and environmental changes and re-
flected by, for example a lack of seed sources or resprouting ability 
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F I G U R E  1  Conceptual graph of Complex System dynamics in ecosystems: That is (a) the presence of regime shifts in response to 
environmental pressures, with (b) an example of a regime shift in tropical forest ecosystems and (c) the trajectory to successful restoration 
(c). (a) From left to right: (i) linear response to environmental pressures, (ii–iv) non-linear response to environmental pressures with presence 
of regime shift, where transition to alternative regime is (ii) smooth so no presence of critical thresholds, vs. (iii–iv) presence of critical 
thresholds causing an abrupt regime shift to an alternative regime and (iv) exhibiting hysteresis, which implies that the alternative regime is 
highly resilient (Hu et al., 2022; Selkoe et al., 2015; Suding & Hobbs, 2009). After an abrupt regime shift (iii–iv), the ecosystem collapses ‘C’ 
from regime 1 to 2. Ecosystem Recovery ‘R’ occurs when the system is restored through the reversed abrupt pathway to regime 1. In the 
case of hysteresis ‘H’, the ecosystem collapse pathway differs from the recovery pathway due to high resilience of regime 2. (b) Photographic 
evidence of a regime shift in Amazonian floodplain forests (from Flores & Holmgren, 2021a, 2021b). When these forests are repeatedly 
burnt, tree growth rates slow down due to soil nutrient and seed dispersal limitations. After a first wildfire (2), these forests lose most of 
their seed banks. With time, seed banks are able to recover, that is forest recovery (1). After a second wildfire (3), burned forests persist in 
the open regime with a tree species composition, % sand and % herbaceous cover similar to white-sand savannas. These forests experience 
a regime shift to a white-sand savanna as reported by Flores & Holmgren, 2021b, due to the amplifying feedback of repeated fires on change 
in tree cover and seed availability (bottom right). (c) Forests burnt once in the floodplain landscape (2) need to be protected from wildfires to 
prevent recurring fires, which hinder natural forest recovery (1), while re-burnt forests (3) require additional assisted interventions (beyond 
natural regeneration and fire protection) to fully recover forest structure, diversity and functioning, such as seeding, soil fertility increases 
and soil erosion prevention. Particularly active seeding of well-adapted tree species in repeatedly burnt sites should increase tree cover, 
triggering recovery of the tree cover-seed availability feedback that restores the forest (bottom right).

F I G U R E  2  Incorporating CSS concepts in a restoration project cycle's Assessing and Planning phase. Key questions (green boxes) 
to incorporate in the CSS assessment phase in the restoration project cycle (left: Assessing) and guidance on how to prepare planned 
interventions for CSS assessment (right: Planning). The scheme assumes that degradation leads to a loss of helpful resilience potentially 
leading to an abrupt regime shift and that the aim of restoration is to avoid or reverse such shifts. Left: Assessing: Green boxes represent 
four questions to be answered by restoration teams during CSS assessment. Depending on the replies, three ecosystem regime scenarios 
arise: (i) no regime shift occurred (i.e. low unhelpful resilience in orange) and none expected (i.e. high helpful resilience in grey) (top scenario), 
(ii) pending regime shift (i.e. low helpful resilience), but no evidence of hysteresis (i.e. low unhelpful resilience) (middle scenario) and (iii) 
regime shift has occurred or is pending (i.e. low helpful resilience) and evidence of hysteresis (i.e. high unhelpful resilience) (bottom scenario). 
Lagging resilience indicators (blue) can be assessed to determine whether a regime shift has occurred, while leading indicators (blue) may 
signal a pending regime shift. Right: Planning: Yellow boxes represent suitable restoration interventions ranging from simple to more complex 
(top to bottom), with increasing evidence of regime shifts and hysteresis, that is increasing levels of unhelpful resilience (yellow arrow). The 
range of interventions are categorized according to the intervention continuum framework proposed by Chazdon et al. (2021) (unassisted, 
lightly, moderately and intensively assisted recovery). The interventions should act to strengthen or disrupt ecological feedbacks that 
increase helpful and decrease unhelpful resilience.

 13652664, 2024, 5, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2664.14614 by C

A
PE

S, W
iley O

nline L
ibrary on [04/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



928  |    MAES et al.

TA
B

LE
 2

 
Ex

am
pl

es
 o

f h
ys

te
re

si
s 

(h
is

to
ry

-d
ep

en
de

nc
e)

 in
 e

co
sy

st
em

 d
yn

am
ic

s 
(a

) a
nd

 a
ct

iv
iti

es
 to

 p
ro

m
ot

e 
su

cc
es

sf
ul

 re
st

or
at

io
n 

(b
).

Re
gi

m
e 

sh
ift

D
is

tu
rb

an
ce

(a
) H

ys
te

re
si

s:
 H

ig
h 

un
he

lp
fu

l r
es

ili
en

ce
 o

f t
he

 d
eg

ra
de

d 
re

gi
m

e

(b
) S

uc
ce

ss
fu

l r
es

to
ra

tio
n 

(if
 a

im
 is

 to
 re

ve
rs

e 
th

e 
sh

ift
): 

D
ec

re
as

e 
un

he
lp

fu
l r

es
ili

en
ce

 a
nd

 in
cr

ea
se

 
he

lp
fu

l r
es

ili
en

ce
 th

ro
ug

h 
ha

lti
ng

 d
eg

ra
da

tio
n 

an
d 

ad
di

tio
na

l i
nt

er
ve

nt
io

ns
Re

fe
re

nc
e

G
ra

ss
la

nd
 o

r 
sa

va
nn

a
→ Ra

ng
el

an
d 

or
 

D
es

er
t

O
ve

rg
ra

zi
ng

D
ro

ug
ht

H
ea

vy
 g

ra
zi

ng
 in

 te
rr

es
tr

ia
l g

ra
ss

-d
om

in
at

ed
 e

co
sy

st
em

s 
le

ad
s 

to
 a

 d
ec

re
as

ed
 g

ra
ss

-t
o-

sh
ru

b 
co

ve
r r

at
io

, r
ep

la
ce

m
en

t o
f 

pa
la

ta
bl

e 
by

 n
on

-p
al

at
ab

le
 g

ra
ss

es
 a

nd
 a

lte
re

d 
so

il 
re

so
ur

ce
s 

an
d 

nu
tr

ie
nt

s,
 re

st
ric

tin
g 

re
co

ve
ry

 o
f p

al
at

ab
le

 g
ra

ss
es

 a
nd

 th
e 

gr
as

sy
 s

ys
te

m
 (‘

Ra
ng

el
an

d’
). 

In
cr

ea
se

d 
ar

id
ity

 c
an

 th
en

 le
ad

 
to

 d
es

er
tif

ic
at

io
n 

(‘D
es

er
t’)

, r
es

tr
ic

tin
g 

ev
en

 m
or

e 
th

e 
gr

as
sy

 
ve

ge
ta

tio
n 

re
co

ve
ry

H
al

t d
eg

ra
da

tio
n:

 re
du

ce
 o

r e
lim

in
at

e 
gr

az
in

g
Ad

di
tio

na
l i

nt
er

ve
nt

io
ns

: r
es

ee
di

ng
 w

ith
 d

es
ira

bl
e,

 
w

el
l-a

da
pt

ed
 s

pe
ci

es
, w

oo
dy

 s
pe

ci
es

 c
on

tr
ol

, s
oi

l 
er

os
io

n 
pr

ev
en

tio
n 

an
d 

pr
ot

ec
tio

n,
 s

oi
l w

at
er

 
m

an
ag

em
en

t

C
hr

is
te

ns
en

 e
t a

l.,
 2

02
3;

 C
ip

rio
tt

i 
et

 a
l.,

 2
01

9;
 K

éf
i e

t a
l.,

 2
00

7;
 

Ri
et

ke
rk

 e
t a

l.,
 2

00
4;

 S
ea

rle
 

et
 a

l.,
 2

00
9

Tr
op

ic
al

 fl
oo

dp
la

in
 

fo
re

st
→ W

hi
te

-s
an

d 
sa

va
nn

a

Fi
re

 in
cr

ea
se

Re
pe

at
ed

 w
ild

fir
es

 in
 tr

op
ic

al
 fl

oo
dp

la
in

 fo
re

st
s 

de
cr

ea
se

 tr
ee

 
co

ve
r w

hi
ch

 le
ad

s 
to

 re
du

ce
d 

se
ed

 d
is

pe
rs

al
 a

nd
 c

on
se

qu
en

tly
 

se
ed

 a
va

ila
bi

lit
y,

 k
ee

pi
ng

 tr
ee

 c
ov

er
 lo

w
 a

nd
 h

am
pe

rin
g 

fo
re

st
 

re
co

ve
ry

H
al

t d
eg

ra
da

tio
n:

 fi
re

 p
ro

te
ct

io
n

Ad
di

tio
na

l i
nt

er
ve

nt
io

ns
: i

nc
re

as
e 

so
il 

fe
rt

ili
ty

, s
oi

l 
er

os
io

n 
pr

ev
en

tio
n 

an
d 

pr
ot

ec
tio

n,
 a

ss
is

te
d 

na
tu

ra
l r

eg
en

er
at

io
n,

 s
ee

di
ng

Fl
or

es
 e

t a
l.,

 2
01

7;
 F

lo
re

s 
&

 
H

ol
m

gr
en

, 2
02

1a
, 2

02
1b

C
or

al
 re

ef
→ A

lg
al

-d
om

in
at

ed
 

re
ef

Fi
sh

in
g

Eu
tr

op
hi

ca
tio

n
W

ar
m

in
g

A
 c

om
bi

na
tio

n 
of

 fi
sh

in
g,

 e
ut

ro
ph

ic
at

io
n 

an
d 

w
ar

m
in

g 
pr

es
su

re
s 

re
su

lts
 in

 a
lg

al
 d

om
in

an
ce

 a
nd

 lo
w

 a
bu

nd
an

ce
 o

f h
er

bi
vo

re
 

fis
h 

gr
ou

ps
 th

at
 fe

ed
 o

n 
al

ga
e,

 p
re

ve
nt

in
g 

su
cc

es
sf

ul
 c

or
al

 
re

cr
ui

tm
en

t w
hi

le
 o

ut
co

m
pe

tin
g 

su
cc

es
sf

ul
ly

 re
cr

ui
te

d 
co

ra
ls

H
al

t d
eg

ra
da

tio
n:

 re
du

ce
 fi

sh
in

g 
pr

es
su

re
s 

an
d 

ch
ro

ni
c 

nu
tr

ie
nt

 in
pu

t, 
gl

ob
al

 w
ar

m
in

g 
m

iti
ga

tio
n

Ad
di

tio
na

l i
nt

er
ve

nt
io

ns
: i

nt
ro

du
ce

 h
er

bi
vo

re
 fi

sh
 

gr
ou

ps
 th

at
 fe

ed
 o

n 
al

ga
e,

 th
us

 re
du

ci
ng

 a
lg

al
 

do
m

in
an

ce
, i

nt
ro

du
ce

 fi
sh

 s
pe

ci
es

 s
uc

h 
as

 
pa

rr
ot

 a
nd

 s
ur

ge
on

 fi
sh

es
 th

at
 p

ro
m

ot
e 

co
ra

l 
re

cr
ui

tm
en

t

G
ra

ha
m

 e
t a

l.,
 2

01
3

Te
m

pe
ra

te
 fo

re
st

 
Ba

se
 b

uf
fe

r 
do

m
ai

n
→ A

ci
di

c 
bu

ff
er

 
do

m
ai

n

A
ci

di
fic

at
io

n
A

ci
di

fic
at

io
n 

in
 te

m
pe

ra
te

 fo
re

st
s,

 fo
r e

xa
m

pl
e 

th
ro

ug
h 

co
nv

er
si

on
 o

f d
ec

id
uo

us
 to

 a
ci

di
fy

in
g 

tr
ee

 s
pe

ci
es

, l
ea

ds
 to

 
gr

ea
te

r l
itt

er
 m

as
s 

an
d 

ac
cu

m
ul

at
io

n 
of

 to
xi

c 
ex

ch
an

ge
ab

le
 

al
um

in
iu

m
, a

s 
w

el
l a

s 
lo

w
er

 m
ic

ro
bi

al
 fu

nc
tio

na
l d

iv
er

si
ty

, 
ea

rt
hw

or
m

 b
io

m
as

s 
an

d 
ba

se
 s

at
ur

at
io

n.
 S

lo
w

 re
co

lo
ni

za
tio

n 
sp

ee
d 

of
 e

ar
th

w
or

m
s 

an
d 

st
ro

ng
 re

te
nt

io
n 

of
 a

lu
m

in
iu

m
 

im
pe

de
s 

re
co

ve
ry

 to
 th

e 
ba

se
 b

uf
fe

rin
g 

do
m

ai
n

H
al

t d
eg

ra
da

tio
n:

 s
to

p 
co

nv
er

si
on

 fr
om

 d
ec

id
uo

us
 to

 
ac

id
ify

in
g 

sp
ec

ie
s

Ad
di

tio
na

l i
nt

er
ve

nt
io

ns
: p

la
nt

 tr
ee

 s
pe

ci
es

 w
ith

 
nu

tr
ie

nt
-r

ic
h 

lit
te

r, 
lim

in
g,

 re
in

tr
od

uc
tio

n 
of

 s
oi

l 
m

ic
ro

be
s 

or
 s

oi
l f

au
na

C
on

to
s 

et
 a

l.,
 2

02
1;

 D
es

ie
 

et
 a

l.,
 2

01
9;

 D
es

ie
, V

an
 

M
ee

rb
ee

k,
 e

t a
l.,

 2
02

0;
 D

es
ie

, 
Va

nc
am

pe
nh

ou
t, 

et
 a

l.,
 2

02
0;

 
Ja

ns
on

e 
et

 a
l.,

 2
02

0

G
ra

ss
la

nd
→ W

oo
dl

an
d

Fi
re

 d
ec

re
as

e
D

ur
in

g 
pe

rio
ds

 o
f f

ire
 s

up
pr

es
si

on
 in

 p
ra

iri
e 

co
m

m
un

iti
es

, 
in

cr
ea

se
d 

tr
ee

 c
ov

er
 (i

.e
. w

oo
dy

 e
nc

ro
ac

hm
en

t) 
re

su
lts

 
in

 c
an

op
y 

cl
os

ur
e 

w
hi

ch
 le

ad
s 

to
 fe

w
er

 fi
re

s,
 p

re
ve

nt
in

g 
gr

as
sl

an
d 

co
m

m
un

ity
 re

co
ve

ry

H
al

t d
eg

ra
da

tio
n:

 s
to

p 
fir

e 
su

pp
re

ss
io

n
Ad

di
tio

na
l i

nt
er

ve
nt

io
ns

: r
ei

nt
ro

du
ce

 h
ig

h 
in

te
ns

ity
 

fir
e 

re
gi

m
e,

 in
tr

od
uc

e 
gr

az
er

s 
to

 li
m

it 
tr

ee
 

re
ge

ne
ra

tio
n

A
nd

er
so

n 
et

 a
l.,

 2
00

0;
 R

at
aj

cz
ak

 
et

 a
l.,

 2
01

8

Tr
ee

-d
om

in
at

ed
 

ra
in

fo
re

st
→ Li

an
a-

do
m

in
at

ed
 

ra
in

fo
re

st

Li
gh

t i
nc

re
as

e 
(tr

ee
 c

ut
tin

g)
Li

an
as

 g
ro

w
 ra

pi
dl

y 
in

 re
sp

on
se

 to
 in

cr
ea

se
d 

lig
ht

 le
ve

ls
 c

au
se

d 
by

 h
ea

vy
 d

is
tu

rb
an

ce
 in

 m
an

y 
tr

op
ic

al
 a

nd
 s

ub
tr

op
ic

al
 fo

re
st

s,
 

fo
r e

xa
m

pl
e 

fr
om

 lo
gg

in
g 

or
 c

yc
lo

ne
s.

 S
in

ce
 li

an
as

 c
om

pe
te

 
he

av
ily

 w
ith

 tr
ee

s 
in

 tr
op

ic
al

 ra
in

fo
re

st
s,

 tr
op

ic
al

 fo
re

st
s 

w
ith

 
ab

un
da

nt
 li

an
as

 c
an

 s
ho

w
 s

lo
w

er
 ra

te
s 

of
 tr

ee
 g

ro
w

th
 a

nd
 

th
us

 s
lo

w
 o

r a
rr

es
te

d 
fo

re
st

 re
co

ve
ry

 fo
llo

w
in

g 
di

st
ur

ba
nc

e 
co

m
pa

re
d 

to
 th

os
e 

w
ith

 fe
w

 li
an

as

H
al

t d
eg

ra
da

tio
n:

 s
to

p 
de

fo
re

st
at

io
n

Ad
di

tio
na

l i
nt

er
ve

nt
io

ns
: l

ia
na

 c
ut

tin
g

In
gw

el
l e

t a
l.,

 2
01

0;
 L

ai
 

et
 a

l.,
 2

01
7;

 M
ar

sh
al

l 
et

 a
l.,

 2
02

0;
 P

hi
lli

ps
 

et
 a

l.,
 2

00
2

 13652664, 2024, 5, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2664.14614 by C

A
PE

S, W
iley O

nline L
ibrary on [04/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  929MAES et al.

for native tree species or soil nutrient imbalances, can slow down 
regeneration (Broughton et al., 2022; Cramer et al., 2008; Flores & 
Holmgren, 2021a, 2021b; Lawrence et al., 2010; Styger et al., 2007, 
2009; Verheyen,  2021). Here, additional interventions (e.g. litter 
addition, enrichment planting) might speed up recovery (Figure 2; 
Sansevero et al., 2017; Styger et al., 2007).

In sum, restoration practice should strengthen ecological feed-
backs that increase helpful resilience, and at the same time weaken or 
disrupt those that increase unhelpful resilience. These feedbacks will 
ultimately determine the likelihood of an abrupt shift between eco-
system regimes (Figure 2; Hoffmann et al., 2012; Huang et al., 2018; 
Stevens et al., 2017). For instance, if the target regime is grassland, 
woody encroachment may shift it towards a forest regime. The re-
inforcing ‘canopy closure feedback’ (i.e. trees → canopy closure → 
more trees through less below-canopy grasses to fuel fires) would 
drive the shift towards a forest regime, while the ‘open vegetation 
feedback’ (i.e. grasses → fire → more grasses through increased 
fuel loads) would maintain the desired regime. The canopy closure 
feedback underpins unhelpful resilience because it reinforces the 
undesired regime (and should be weakened), while the open veg-
etation feedback underpins helpful resilience because it reinforces 
the desired regime (and should be strengthened). Reintroduction of 
fires or introduction of grazers will both weaken the canopy closure 
(decrease unhelpful resilience) and strengthen the open vegetation 

feedback (increase helpful resilience) (Johnstone et al., 2016; Pausas 
& Keeley, 2014a, 2014b).

Restoration management and guidelines have mainly focused 
on general resilience, which stems from the common but incorrect 
assumption that resilience is always helpful or ‘good’ (Appendix S3, 
Table S2; McDonald, 2000; Nimmo et al., 2015; Standish et al., 2014). 
This point has likewise been raised in other socio-ecological disci-
plines (Dornelles et al., 2020; Oliver et al., 2018; Van De Leemput 
et  al.,  2014). The singular focus on increasing helpful resilience is 
likely not sufficient to address degradation scenarios with abrupt 
regime shifts and hysteresis, where the presence of high unhelpful 
resilience implies a need for more complex interventions to actively 
disrupt those ecological feedbacks maintaining the undesired regime 
(Table 2).

Based on the evidence and examples of how CSS concepts can 
influence recovery trajectories and how restoration teams can tailor 
their interventions, we argue that restoration guidelines should ex-
plicitly incorporate CSS assessments in the restoration project cycle 
(Table 3). In such CSS assessment, restoration teams should evalu-
ate; (i) the likelihood of an abrupt regime shift to occur, (ii) evidence 
of hysteresis or high unhelpful resilience in the degraded system and 
(iii) the underpinning ecological feedbacks that must be strength-
ened and/or disrupted to maintain the system in or shift it to, the 
desired regime (Figure 2; Table 2).

TA B L E  3  Restoration project cycle.

Assessing •	 Drivers of degradation + Pre-degradation regime
•	 Expected impact of climate change
•	 Local and regional socio-economic context
•	 Reciprocal engagement of local stakeholders
•	 Complex Systems Science (CSS) Assessment
A	 Has regime shift occurred? Lagging indicators
B	 Regime shift likely to occur? Leading indicators
C	 Evidence of hysteresis?
D	 Underpinning ecological feedbacks of resilience?

Adaptive management
•	 Re-evaluate objectives
•	 Reiterate cycle to
A	 Maintaining or Ongoing 

management if 
objectives met

B	 Assessing if objectives 
not met

Planning Visioning
•	 Determine short-term, measurable objectives and longer-term goals
Designing
•	 Determine interventions to achieve objectives
(Unassisted to Intensively assisted interventions)
•	 Establish Key Performance Indicators (KPIs) to track performance
•	 Tailor interventions to CSS assessment
A	 Determine complexity of interventions needed
B	 Strengthen and/or Disrupt feedbacks
C	 ↑Helpful and/or ↓ Unhelpful RESILIENCE

Implementing •	 Perform interventions

Monitoring &
Evaluating

•	 Track restoration performance through measured KPIs
•	 Are the objectives being met?
•	 Which constraints still remain?

Maintaining •	 Continue tracking restoration performance (M&E)
•	 Continue restoration management

Note: Our framework Explore Before You Restore suggests that key CSS concepts of regime shifts, ecological resilience and ecological feedbacks need 
to be incorporated in the project cycle to improve restoration outcomes. Suggested CSS aspects to be incorporated in the project cycle are in bold. 
Importantly, our framework assumes that restoration planning (i) carefully considers the social-economic dimensions (in addition to ecological ones) 
and (ii) is approached from a social-ecological perspective (Crow, 2014; Elias et al., 2022; Maniraho et al., 2023).
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3  |  C SS A SSESSMENT IN RESTOR ATION 
PR AC TICE

Our framework follows a restoration project cycle which typically com-
prises six phases, including five distinct phases (Assessing, Planning, 
Implementing, Monitoring & Evaluation, Maintaining) and one phase that 
cuts across all others (Adaptive management) (Appendix S3). To incorpo-
rate CSS thinking in ecosystem restoration, we suggest that the Assessing 
phase is extended to involve four key questions related to CS dynamics in 
degraded systems (Table 3; Figure 2). These questions include (A) whether 
an abrupt regime shift has occurred or (B) is likely to occur, (C) where it has 
occurred, whether there is evidence of hysteresis (high unhelpful resil-
ience of the degraded regime) and (D) which ecological feedbacks under-
pin helpful and unhelpful resilience (Figure 3). During Planning, restoration 
interventions should be tailored to the CSS assessment (Figure 3). Below, 
we provide an overview of indicators available to answer these ques-
tions during CSS assessment, based on currently available knowledge and 
tools. In doing so, we identify key outstanding science and policy tasks 
needed to further operationalize CSS assessment in restoration (Table 4).

3.1  |  Question A: Has a regime shift occurred 
(lagging indicators)?

A critical question to ask is whether a prior abrupt regime shift has oc-
curred to create the degraded ecosystem (Figure 2). If environmental 

degradation has led to an abrupt regime shift, the degraded eco-
system will be substantially reorganized into a self-maintaining new 
stable regime (Figure 1a, scenario iii–iv). Importantly, a regime shift 
could also lead the system into a new unstable regime, resulting in 
a spiral of environmental degradation, for example failure of plant 
recruitment and growth leads to greater soil exposure and thence 
greater erosion and further vegetative failure. The complexity of 
restoration interventions will need to be greater after a regime 
shift to facilitate successful recovery (Figure 1; Table 2; Carpenter 
et al., 2008; Ghazoul & Chazdon, 2017; Suding et al., 2004).

To evaluate whether a regime shift has already occurred in 
the degraded system, restoration teams can use lagging indica-
tors of resilience, which assess whether helpful resilience has de-
creased (Carpenter et al., 2008; Carpenter & Brock, 2006; Cowan 
et al., 2021; Ota et al., 2021; Scheffer et al., 2009). Such indicators 
are ecological attributes that develop over long periods of time in an 
ecosystem, hence reflecting a unique regime at a single point in time, 
and they can, therefore, indicate substantial reorganization of the 
degraded system (Berdugo et al., 2020; Cowan et al., 2021; Seidl & 
Turner, 2022). Lagging indicators in terrestrial vegetated ecosystems, 
for instance, are metrics describing the above- and below-ground 
species diversity, dominance and composition, vegetation cover and 
structure and soil fertility (Cowan et al., 2021). For lake ecosystems, 
typical indicators may be nutrient (e.g. Oxygen, Phosphorus) or chlo-
rophyll concentrations, pH, turbidity and species diversity (Carpenter & 
Cottingham, 1997; Ortiz et al., 2020). Significant differences in these 

F I G U R E  3  The different phases of a Restoration Project Cycle identified by scanning nine ecosystem restoration guidelines from 
international organizations published in the last decade 2012–2022 (Appendix S3). The details of each phase are explained in Table 3. Our 
framework suggests that three key elements of Complex Systems Science (top left) should be incorporated into the project cycle to improve 
restoration outcomes.

 13652664, 2024, 5, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2664.14614 by C

A
PE

S, W
iley O

nline L
ibrary on [04/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  931MAES et al.

metrics between the degraded system, and either undisturbed con-
trols (spatial comparison) or historic reference ecosystems (temporal 
comparison), at the time of restoration planning, can indicate that an 
abrupt shift towards a new stable regime has taken place, since the 
‘lagging’ characteristic of these indicators implies that a new regime 
has already been in place for some time at the start of restoration 
(Figure 1a; Cowan et al., 2021).

For instance, humid Amazonian forests can shift to an al-
ternative savanna state due to altered fire regimes (Barlow & 
Peres, 2008; Brando et al., 2014; Flores & Holmgren, 2021a, 2021b; 
Silvério et  al.,  2013). These vegetation state shifts are correlated 
with changes in vegetation structure and composition, biodiversity 
and ecosystem functioning that can be used as ‘lagging’ resilience 
indicators. For example, repeatedly burnt Amazonian blackwater 
floodplain forests lose tree cover, increase herbaceous cover and 
shift tree species composition from typically forest species towards 
an increasing abundance of white-sand savanna species (locally 
known as ‘campinas’; Flores & Holmgren, 2021a). These vegetation 
shifts, from closed floodplain forests to white-sand savannas as fire 
occurrence increases, appear to be caused by both nutrient erosion 
(Flores & Holmgren,  2021a) and seed dispersal limitation (Flores 
& Holmgren, 2021b). Seed dispersal limitation could be caused by 
shifts in animal communities responsible for seed dispersal. For 
example, burnt forests and white-sand savannas show a lower 
abundance of omnivorous and frugivorous fish that are key seed 
dispersers for many forest tree species (Lugo-Carvajal et al., 2023). 
These complex changes in soil, plant and animal communities can 
be used as lagging indicators of resilience. Though these metrics 
may only provide an indication of regime shifts that happened at 
some point in the system's degradation history, for restoration this 
may already be instructive. We argue that it may be more important 
in ecosystem restoration to identify whether the degraded system 
finds itself in a new and undesired stable regime, which drivers of 
degradation have led to the regime, and what is causing the un-
desired regime to be maintained in the case of hysteresis, than to 
identify when exactly the regime shift took place.

3.2  |  Question B: Is a regime shift likely to occur 
(leading or early-warning indicators)?

If the degraded system is not yet substantially reorganized, a 
shift may still be pending due to ongoing loss of helpful resilience 
(Boulton et al., 2022; Scheffer et al., 2001). Assessing the exact dis-
tance of an ecosystem to a critical threshold based on empirical data 
is not (yet) feasible and may always remain challenging (Davidson 
et al., 2023; Hillebrand et al., 2020; Van Nes et al., 2014). However, 
loss of helpful resilience over time, signalling a pending regime shift, 
can be evaluated through repeated measurements of leading indi-
cators of resilience or ‘early-warning signals’, that is ecosystem at-
tributes that specifically respond to environmental disturbances, 
such as tree growth or vegetation greenness which decrease due 
to drought of fire disturbances. Such leading indicators are useful to 
evaluate ‘early-warning signals’ that signal the vicinity of an abrupt 
shift (EWS, Table 1; Biggs et al., 2009; Carpenter et al., 2008; Cowan 
et al., 2021; Dai et al., 2012; Dakos et al., 2008; Forzieri et al., 2022).

Specifically, studies show that trends of slower recovery rates or 
of increased variability in these indicators in response to disturbances 
(i.e. critical slowdown or flickering, respectively), indicate that the eco-
system is approaching an abrupt shift (Carpenter et al., 2008; Dakos 
et al., 2015; Scheffer et al., 2001, 2009). For example, slower recovery 
of vegetation greenness related to successive droughts, and evaluated 
using remote sensing time series, has predicted tree mortality as the 
onset of a regime shift in different forest types (Boulton et al., 2022; 
Dakos et  al.,  2012; Liu et  al.,  2019; Verbesselt et  al.,  2016). Since 
leading indicators are useful to predict the likelihood of particular 
outcomes (Carpenter et al., 2008; Carpenter & Brock, 2006; Cowan 
et al., 2021; Ota et al., 2021; Scheffer et al., 2009), leading indicators 
of ecological resilience can thus be used to assess whether a regime 
shift might occur in the future in the context of CSS assessment.

Importantly, to assess a pending regime shift with leading indica-
tors requires evaluating a rate of change, which is based on repeated 
measurements of the indicator over time. Repeated measurements 
in restoration could be extracted from, among others, indigenous 

TA B L E  4  Outstanding restoration science, practice, & policy tasks.

Theme Task

Restoration Science-Practice Extend the framework Explore Before You Restore
•	 Operationalize resilience indicators (lagging, leading) into tools for ecosystem restoration
•	 Develop practical methods to assess hysteresis
•	 Extend ecosystem-, biome- and region- specific case study evidence on regime shifts and hysteresis in 

global databases and scientific literature
•	 Support global restoration performance monitoring networks
•	 Evaluate relationships between loss of resilience, abrupt regime shifts and restoration performance 

for different approaches (e.g. NR, ANR, Tree planting), bringing together different knowledge sources, 
that is western science, with Indigenous and Local Knowledge (ILK)

Restoration Policy Operationalize CSS assessment into the Restoration Guidelines
•	 Introduce the idea that (unhelpful) resilience can also hinder restoration
•	 Translate CSS assessment in the restoration project cycle into practical and accessible language for the 

diversity of restoration teams
•	 Target interventions that strengthen helpful resilience and weaken unhelpful resilience
•	 Support global restoration performance monitoring networks
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and local knowledge (ILK), repeated inventories and remote sens-
ing (Falardeau et  al.,  2022; Pascual et  al.,  2017; Wheeler & Root-
Bernstein, 2020). Gathering such data prior to restoration is generally 
not feasible for restoration teams, however, as it requires time and 
money and delays restoration on the ground. Therefore, project 
teams should realistically focus on incorporating repeated measure-
ments of (the response of) leading indicators (e.g. species recruitment, 
biomass) to key disturbances in the ecosystem (e.g. fire, drought) in 
their M&E strategies. In this way, they can monitor possible changes 
in the response of the degraded ecosystem to disturbances from the 
restoration onset, which may signal a pending regime shift and adjust 
their interventions if they find indications for the latter.

3.3  |  Question C: Is there evidence of hysteresis? 
Or which feedbacks underpin unhelpful resilience?

If a regime shift is likely to occur or has occurred, evaluating hys-
teretic behaviour in the degraded system is key, since greater res-
toration efforts are required to reverse the (potential) shift when 
hysteresis is present (Figure 2). Although trial treatments or driver 
reversal experiments allow quantification of hysteresis in the field 
by observing whether the system returns to a previous regime after 
halting or reversing the driver of degradation (Gann et  al.,  2019; 
McDonald, 2000; Ratajczak et al., 2018; Standish et al., 2014), these 
methods are again generally not feasible for teams on the ground 
because of a lack of time and money.

To assess hysteresis, restoration project teams should, therefore, 
evaluate whether the degraded system shows signs of strong eco-
logical feedbacks at the local or landscape scale that act to maintain 
the undesired regime (unhelpful resilience). Such feedbacks can signal 
hysteretic behaviour (Figure 2; Table 2). In the case of the repeatedly 
burnt tropical floodplain forests, for example, lower tree cover due to 
wildfires in the degradation history of the system had led to a depleted 
seed bank, which leads to reduced seed dispersal and consequently 
lower seed availability and tree recruitment. This continues low tree 
cover and constrains forest recovery through these self-maintaining 
‘history-dependent’ feedbacks between low tree cover and poor seed 
sources (Flores & Holmgren, 2021b). In many coral reefs, for instance, a 
combination of fishing, eutrophication and global warming has resulted 
in algal dominance and low abundance of herbivore fish groups that 
feed on algae. This feedback maintains the algal dominance and pre-
vents successful coral recruitment through outcompeting successfully 
recruited corals (Graham et al., 2013). See Table 2 for more examples of 
hysteretic behaviour across different ecosystem types that can ham-
per successful recovery and thus impact ecosystem restoration.

3.4  |  Question D: Which feedbacks underpin 
helpful resilience?

Besides feedbacks that maintain the undesired regime and indi-
cate hysteresis by underpinning unhelpful resilience (question C), 

feedbacks that maintain the desired regime and thus underpin help-
ful resilience must be identified as well to facilitate successful eco-
system recovery. In the example of a shift from the floodplain forest 
to a more open savanna ecosystem regime, feedbacks that would 
promote tree cover, such as assisted natural regeneration or seeding, 
underpin helpful resilience and could help force a shift to the desired 
forest regime. Intervening in this feedback is key to strengthen-
ing helpful resilience, in addition to weakening unhelpful resilience 
through, for example disrupting feedbacks that maintain the sa-
vanna regime by means of fire protection (Flores et al., 2016; Flores 
& Holmgren, 2021a, 2021b; Table 2 ‘Additional interventions’).

Similarly, in the example of a shift from the coral- to the algal-
dominated regime in degraded coral reefs, intervening in the 
feedbacks that promote coral recruitment and underpin helpful re-
silience, for example by introducing parrot- and surgeon fishes, can 
help force a shift to the desired coral regime (Graham et al., 2013). 
At the same time, disrupting the feedbacks that maintain the algal 
domination, which underpin unhelpful resilience, for example by 
introducing herbivore fish species that feed on the algae, will help 
to force the same shift (Graham et  al.,  2013, Table  2 ‘Additional 
interventions’).

In sum, if restoration teams include CSS assessments in their 
restoration project cycles, they can adequately determine the com-
plexity of required interventions based on the presence or likeli-
hood of regime shifts and evidence of hysteresis (Figure 2, Planning). 
Further, they can target their interventions to specifically disrupt 
feedbacks that underpin unhelpful resilience and strengthen those 
that underpin helpful resilience. While collecting information about 
regime shifts, hysteresis and feedbacks may, in practice, be chal-
lenging, costly and time consuming, we reiterate that it can greatly 
improve restoration outcomes (Magnuszewski et al., 2015; Maxwell 
et al., 2017; Qiu et al., 2022; Xiao et al., 2020), possibly saving re-
sources in the long run.

4  |  OUTSTANDING TA SKS

Answering questions A and B from the previous section assumes res-
toration teams select measurable and feasible indicators that are: (i) 
comparable to relevant reference systems across time or space and 
(ii) responsive to the key disturbance(s) in their ecosystem(s) (for ques-
tion B) (Cowan et al., 2021). Despite promising prospects of specific 
resilience indicators and methods to detect regime shifts (Andersen 
et al., 2009; Boulton et al., 2022; Lenton, 2011), operationalization of 
these methods into clear recommendations and tools to use across 
different ecosystem types remains a key outstanding task for the 
scientific community (Table  4; Selkoe et  al.,  2015). Specifically, we 
identify the development of practical tools and methods to assess 
ecological resilience loss, abrupt regime shifts and hysteresis in de-
graded systems as outstanding tasks, as these are, to our knowledge, 
non-existent. The lack of scientific consensus on the usefulness and 
applicability of regime shifts in ecology likely also hampers this opera-
tionalization (Higgins et al., 2023; Hillebrand et al., 2023). Further, a 
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helpful platform where restoration teams can explore whether eco-
systems from similar climates and degradation settings have experi-
enced a regime shift, is the online database www.​regim​eshif​ts.​​org (Biggs 
et al., 2009; Stockholm Resilience Centre, 2022). This evidence-based 
catalogue should, however, be extended, as more scientists and 
practitioners assess regime shifts across different ecosystems and 
biomes (Table  4). Similarly, data-driven networks where teams can 
share their M&E restoration performance data (e.g. https://​globa​lrest​
orati​onobs​ervat​ory.​com/​) should be encouraged to facilitate global 
monitoring of restoration performance as we progress in the UNDER 
(Ladouceur & Shackelford,  2021). Further, scientifically testing the 
hypotheses brought forward in our framework, that is that the loss 
of helpful resilience and presence of abrupt regime shifts significantly 
influence restoration performance, remains another outstanding task 
(Table 4). Importantly, this should be done while bringing together dif-
ferent knowledge sources, that is western science. with Indigenous 
and Local Knowledge (ILK) (Falardeau et al., 2022; Wheeler & Root-
Bernstein, 2020), as well as considering the broader social-ecological 
dimension of CS dynamics and ecosystem restoration (Appendix S1, 
Table S2; Folke et al., 2010; Nikinmaa, 2020). For restoration policy-
makers, we encourage them to step away from common assumptions 
on helpful ‘general’ resilience and instead introduce the concept of 
unhelpful resilience and further incorporate CSS assessment into 
their guidelines (Table 4). A crucial step towards CSS incorporation 
will be to start ‘learning-by-doing’ (Kato & Ahern, 2008; Walters & 
Holling, 1990), that is apply the proposed CSS assessment in real-life 
restoration projects, tailor the restoration strategies to it, and monitor 
and evaluate the remaining constraints and effectiveness (Table 3). 
Importantly, such inclusion of CSS assessment in restoration should 
be done through translating the key concepts in practical and compre-
hensible language that are accessible to a wide diversity of restora-
tion teams, for example also those teams with limited or no scientific 
expertise.
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