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Abstract

Tesla-type turbine devices are turbine devices which convert fluid motion into the rotating motion of a rotor, but without
the need of any blades. This is possible due to the interaction of the boundary layer with the rotating fluid motion. In
order to successfully optimize this type of fluid flow device through the topology optimization method, some relevant
aspects need to be considered. The first one is due to its unique configuration, meaning that the 2D swirl flow model
may be considered, which is much less computationally expensive than considering a “full” 3D model. Moreover, since
higher mesh resolutions may be necessary in the design of Tesla-type turbines from to the possible appearence of smaller
disk-like structures, this may increase the overall optimization cost if the traditional Taylor-Hood elements (quadratic
finite elements for the velocity) are considered. This additional computational cost may be reduced by considering MINI
elements (linear finite elements with bubble enrichment for the velocity) instead. Another modification that may be
useful in its design is augmenting the traditional Brinkman model used in topology optimization with an additional
inertial term (Brinkman-Forchheimer model), which may lead to better optimized Tesla turbine designs. Another factor
to be considered is the multi-objective function, which may be defined to minimize the relative energy dissipation and
maximize the power transferred from the fluid. In such case, the power objective function may be augmented with an
additional porosity (material model) term. Numerical examples are presented, taking into account some aspects of the
design of Tesla-type turbine devices.

Keywords: Topology optimization, 2D swirl flow, Brinkman-Forchheimer model, Finite element method, MINI
elements, Tesla turbine

1. Introduction

The performance of fluid flow devices is an important
factor in the design of fluid flow systems, such as valves,
nozzles, channels, pumps and turbines. Turbines are fluid
devices aimed at converting a given fluid motion into the
rotating motion of a rotor, which, in turn, is used, for ex-
ample, for energy generation. There are various possible
designs for such devices, such as screw, Pelton, axial, and
centrifugal bladed turbines, which rely on the variation of
the linear momentum of the fluid induced by the blades.
There is a specific type of fluid device that does not rely
on blades in order to induce the movement of the rotor:
the rotating fluid from the inlet drags the rotor by relying
on the boundary layer effect. In this text, for simplicity,
this basic principle (fluid drag effect due to the boundary
layer) is referred to as “Tesla principle”. Thus, some differ-
ent designs may arise, such as Tesla [1], tubular adhesion
[2], filamentous [3] and spiral [4] turbines. Among these
various different designs, the designs that rely solely on the
dragging effect of the boundary layer (i.e., not relying on
structures (such as blades) to drag (or help dragging) the
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fluid) can be referred to as “Tesla-type fluid flow devices”.
The basic form of these devices consists of axisymmetric
geometries, which can be given, essentially, by the basic
forms of the Tesla turbine, which is composed of parallel
rotating disks, as shown in Fig. 1, and the tubular ad-
hesion turbine, which is composed of concentric rotating
cylinders, as shown in Fig. 2.

Figure 1: Tesla turbine according to Tesla’s original patent (based
on Tesla [1])
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Figure 2: Tubular adhesion turbine (based on Ford [2])

The Tesla turbine can be perceived as an almost pure
impulse turbine, portraying a large pressure drop in the
nozzle while having a small pressure drop in the rotor
[5]. Some advantages of Tesla turbines in comparison to
bladed turbines are [6, 7]: lower cost (i.e., simpler manu-
facturing, maintenance and balancing), lower noise (which
means less vibration), higher safety under higher rotations
(since there are no blades with risk of breakage under ex-
cessively high rotations), self-cleaning nature (due the cen-
trifugal effect), and independence from the direction of the
rotation. Another relevant aspect is the capacity to op-
erate under a large variety of fluids, such as Newtonian,
non-Newtonian, mixtures, mixed with particulates (such
as from biomass), steam, gases etc [8, 9, 10, 11, 12, 13, 6, 7].
According to Rey Ladino [7], one problem of the Tesla tur-
bine is the low efficiency, which is in the range of 10% to
50%.

In this work, the topology optimization method is used
to design Tesla-type turbine devices. The topology opti-
mization method is based on the optimization of the dis-
tribution of a given design variable (i.e., the solid/fluid
material) over a design domain. It was first introduced
in fluid problems by Borrvall and Petersson [14] (“pseudo-
density approach”). Other approaches have also arisen,
such as by using the “level-set method” [15, 16, 17], or
topological derivatives [18, 19]. In this work, the “pseudo-
density approach” is used. A wide variety of flow types has
already been considered in topology optimization: Stokes
flows [14], Navier-Stokes flows [20, 21], slightly compress-
ible flows [22], compressible flows [23], Darcy-Stokes flows
[24, 25], non-Newtonian flows [26, 27], thermal-fluid flows
[28, 29, 30], turbulent flows [31, 32, 33], unsteady flows
[34, 35] etc. Some fluid devices that have already been de-
signed through topology optimization are valves [36, 37],
rectifiers [38], mixers [39, 40], and flow machine rotors
[41, 42, 43].

In a Tesla-type turbine device, the fluid flow may be
modeled by assuming that the fluid rotates axisymmet-
ricaly around an axis. Particularly, the 2D swirl flow
model shows good agreement with experiments and 3D
simulations [7, 44, 45]. However, it may neglect some in-
let/outlet geometries, some specific flow oscillations [44]
and the presence of auxiliary non-axisymmetric structures

needed for the mechanical assembly of the fluid flow device.
Some of these structures that are necessary for the fabri-
cation are circumferentially spaced spacers/pins [46, 47] or
arms connecting to the central shaft [1, 48, 49] (see Fig. 3).
These additional structures should pose a small change in
the fluid flow, which can be measured by the “blockage ra-
tio” described in Dodsworth [50]. Also, in a Tesla turbine
design, in order to achieve a rotating inlet velocity, some
common approaches are, for example, considering one or
more tubes directed at a circular volute [1, 51, 52, 7, 48],
or a single inlet split into a “cylindrical flow” [45]. Some
examples of fluid flow devices that can be modeled by the
2D swirl flow model are hydrocyclones [44, 53, 54, 55],
swirling nozzles/diffusers [56, 57, 58], some labyrinth seals
[59, 60] and some pumps and turbines [61, 1, 2]. This
means that a 2D swirl flow model [62, 63] may be used for
modeling a Tesla turbine rotor. In comparison to a com-
plete 3D model, the main advantage of this model is the
lower computational cost.

Figure 3: Examples of some of the possible configurations of “spac-
ers” and “arms” being used to attach disk structures in a traditional
Tesla turbine case. It is also possible to combine both (“spacers”
and “arms”) simultaneously

Therefore, the main objective of this work is to design
Tesla-type turbine devices (such as the ones given by the
basic forms of Figs. 1 and 2) by using the topology op-
timization method based on a 2D swirl flow model. The
modeling is performed through the finite element method.
The material model of fluid topology optimization [14] is
extended by including not only the Darcy term [64] (which
corresponds to a “permeability effect” and is the model
that has been frequently used in fluid topology optimiza-
tion), but also the Forchheimer term (which corresponds
to an “inertia effect”) [65]. This inclusion is shown in
this work to possibly lead to better optimized Tesla-type
turbine designs. This type of augmentation in the mate-
rial model is called “Brinkman-Forchheimer model”, and
has been previously applied by Philippi and Jin [66] in
topology optimization to model solid material, being re-
ferred there as the “complete porosity formulation”. The
formulation presented by Philippi and Jin [66] does not
directly match the topology optimization formulation first
presented by Borrvall and Petersson [14], therefore it is
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reformulated in this work. The design variable is consid-
ered to be nodal. A multi-objective function is defined
to minimize energy dissipation and maximize the power
transferred from the fluid. The power objective function
is augmented with a porosity (material model) term, which
better matches the energy dissipation definition from Bor-
rvall and Petersson [14]. The fluid is considered to be
incompressible, with the properties of air at 25°C. Since
higher mesh resolutions may be necessary in the design
of Tesla-type turbines due to smaller disk-like structures
appearing, the computational cost from using the tradi-
tional Taylor-Hood elements (quadratic velocity interpo-
lation) increases the overall optimization cost. In order to
reduce the computational cost, MINI elements [67] (linear
interpolation with bubble enrichment for the velocity) are
used.

This paper is organized as follows: in Section 2, the fluid
flow model is described for 2D swirl flow; in Section 3, the
weak formulation of the problem and the finite element
modeling are presented; in Section 4, the topology opti-
mization problem is stated by considering the Brinkman-
Forchheimer model; in Section 5, the numerical implemen-
tation is briefly described; in Section 6, numerical exam-
ples are presented; and in Section 7, some conclusions are
inferred.

2. Equilibrium equations

The fluid flow modeling is performed for low Reynolds
number configurations, incompressible fluid and steady-
state regime, by solving the equations for continuity and
linear momentum (Navier-Stokes).

2.1. 2D swirl flow model

The differential equations for fluid flow are given under
a rotating reference frame as [68, 69, 41]

∇•v = 0 (1)

ρ∇v•v = ∇•T + ρf − 2ρ(ω∧v)− ρω∧(ω∧r) + fr(α) (2)

where v is the fluid velocity in relation to the rotating
reference frame, p is the fluid pressure, ρ is the fluid den-
sity, µ is the fluid dynamic viscosity, ρf is the body force
per unit volume acting on the fluid, r is radial position
with respect to the rotation axis (in 2D swirl flow, it is
equivalent to use s (position)), ∧ is used to denote cross
product, −2ρ(ω∧v) is the Coriolis force, −ρω∧(ω∧r) is
the centrifugal inertial force, fr(α) is the resistance force
of the porous medium used in topology optimization, α
is the pseudo-density, which may attain values that range
from 0 (solid) to 1 (fluid) (and is also considered as the de-
sign variable in topology optimization), and T is the stress
tensor given by

T = 2µε− pI , ε = 1
2 (∇v +∇vT ) (3)

The 2D swirl flow model, which can also be referred as
“2D axisymmetric model with swirl”, considers axisymme-
try and cylindrical coordinates (as shown in Fig. 4). In
such case, the position and velocity become

r = (r, 0, z) = rer + zez (4)

v = (vr, vθ, vz) = vrer + vθeθ + vzez (5)

Figure 4: Representation of the 2D swirl flow model exemplified for
a Tesla-type turbine device.

From axisymmetry, the derivatives of the state variables
(v and p) in the θ direction are zero (i.e., ∂vr

∂θ = ∂vθ
∂θ =

∂vz
∂θ = ∂p

∂θ = 0). The equations for the 2D swirl flow model
are further developed in Alonso et al. [62].

2.2. Boundary value problem

Generically, the boundaries for the computational do-
main when considering a 2D swirl flow model may include
the symmetry axis or not, which is shown in Fig. 5. Then,
the boundary value problem for the 2D swirl flow model
can be stated as follows [62, 63].

ρ∇v•v = ∇•T+ρf − 2ρ(ω∧v)−
ρω∧(ω∧r) + fr(α) in Ω

∇•v = 0 in Ω

v = vin = (vr,in, 0, 0) on Γin

v = 0 on Γwall

vr = 0 and
∂vr
∂r

=
∂vθ
∂r

=
∂vz
∂r

=
∂p

∂r
= 0 on Γsym

T •n = 0 on Γout

(6)

where Ω, Γin, Γwall, Γsym and Γout can be visualized in Fig.
5. The inlet boundary (Γin) consists of a rotating inlet un-
der the same rotation as the reference frame (ω0). On the
walls (Γwall), the no-slip condition is imposed. If there is
a symmetry axis (Γsym) bordering the computational do-
main, the derivatives in relation to the r coordinate are
considered to be zero, as well as the radial velocity. The
outlet boundary (Γout) consists of a stress free condition
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(i.e., open to the atmosphere), where n is the normal vec-
tor to the boundaries (pointing outside).

Figure 5: Boundaries that can be considered for 2D swirl flow de-
vices.

3. Finite element method

The finite element method is solved through the weak
formulation and finite elements described as follows.

3.1. Weak formulation

In the finite element method, the equilibrium equations
of 2D swirl flow are modeled by a corresponding weak
form. By considering the weighted-residual and Galerkin
methods for the mixed (velocity-pressure) formulation,
[70, 62]

Rc =

ˆ
Ω

[∇•v]wprdΩ (7)

Rm =

ˆ
Ω

[ρ∇v•v − ρf + 2ρ(ω∧v)

+ ρω∧(ω∧r)] •wvrdΩ +

ˆ
Ω

T •(∇wv)rdΩ

−
‰

Γ

(T •wv)•nrdΓ−
ˆ

Ω

fr(α)•wvrdΩ

(8)

where the subscripts c and m refer to the “continuity” and
the “linear momentum” (Navier-Stokes) equations, respec-
tively. The test functions of the state variables (p and v)

are given by wp and wv =

wv,r
wv,θ
wv,z

, respectively. Since

the integration domain (2πrdΩ) has a constant multiplier
(2π), which does not influence when solving the weak form,
eqs. (7) and (8) are given divided by 2π [62, 63].

From the mutual independence of the two test functions
(wp and wv), the equations of the weak form (eqs. (7) and
(8)) can be summed to a single equation

F = Rc +Rm = 0 (9)

3.2. Finite element modeling

In order to avoid instabilities and non-physical os-
cillations in the pressure [71], a finite element which
obeys the LBB (Ladyžhenskaya-Babuška-Brezzi) condi-
tion [72, 73, 74] is normally chosen. The most commonly

chosen finite element is the Taylor-Hood element, whose
lowest degree version is given by using a linear interpo-
lation for pressure (P1 element) and a quadratic interpo-
lation for velocity (P2 element). Due to this quadratic
interpolation, Taylor-Hood elements can be quite compu-
tationally demanding. In order to be able to use a lin-
ear interpolation for the velocity, which is computation-
ally less expensive than the quadratic interpolation, while
maintaining the finite element stable, stabilization meth-
ods have been proposed, such as pressure [75, 76, 77] and
SUPG [78] stabilizations. One problem of these methods is
that they include stabilization parameters which may have
to be calibrated for the problem that is being solved. A
way of using a lower interpolation for the velocity without
relying on stabilization parameters is by enriching the lin-
ear element (P1) with bubble shape functions (B3) [67, 75].
In this case, the elements are called “MINI” and have been
proven to be LBB stable by Arnold et al. [67]. The finite
elements are represented in Fig. 6. A linear (nodal) in-
terpolation (P1 element) is used for the pseudo-density
(design variable).

Figure 6: Finite elements chosen for the pressure-velocity formula-
tion (MINI elements) and the design variable (pseudo-density).

4. Formulation of the Topology optimization prob-
lem

4.1. Material model

The material model of fluid topology optimization [14] is
extended in order to include not only the Darcy term [64]
(“Brinkman model”) of the original formulation, but also
the Forchheimer term [65]. This type of augmentation in
the material model has been previously applied by Philippi
and Jin [66] in topology optimization to model solid ma-
terial, and is referred to as the “complete porosity formu-
lation”. In relation to the name “Brinkman model” [79],
which refers to the case where only the Darcy term is con-
sidered, some references refer to the model including the
Forchheimer term as the “Brinkman-Forchheimer model”
(or “Forchheimer model”) [80, 81]. In order to match the
topology optimization formulation presented first by Bor-
rvall and Petersson [14], the Brinkman-Forchheimer model
is briefly derived and formulated as shown in the following
Section.

4.1.1. Brinkman-Forchheimer model

According to Geertsma [82], when modeling a porous
medium, the Darcy’s law (linear law) is only valid to
model porous material when the velocity is low (sufficiently
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low Reynolds numbers) [83] and when the flow is single-
phase [84, 64, 85]. The more generic equation is given
by the Forchheimer’s law (quadratic law), including the
Forchheimer correction (“non-Darcy flow behavior”) to the
Darcy’s law. The original formulation of Forchheimer’s
law is given by the pressure drop in a porous medium
[65, 82, 86, 87, 88].

−∇p =
µ

kD
vmat︸ ︷︷ ︸

Darcy term

+βF ρ|vmat|vmat︸ ︷︷ ︸
Forchheimer term

(10)

where µ is the dynamic viscosity, ρ is the density, kD is the
formation permeability, p is the pressure, vmat is the ve-
locity in relation to the porous material (vmat = (vr, vθ−
ωmatr, vz) , where ωmat is the rotation of the porous
medium in relation to the reference frame), βF is the coef-
ficient of inertial flow resistance, and |vmat| =

√
vmat•vmat.

The influence of each term of eq. (10) is represented
in Fig. 7: the Darcy term gives the reduction of the size
of the fluid path due to the porous medium, while the
Forchheimer term gives the fluid deceleration due to the
inertia of the particles of the porous medium.

Figure 7: Darcy and Forchheimer effects in porous medium.

According to Cimolin and Discacciati [89], βF = CF√
kD

,

where CF is the dimensionless form-drag constant [86],
also called Forchheimer constant [81]. Therefore, by rep-
resenting the porous medium of eq. (10) as a resistance
force of the porous medium (fr(α) of eq. (2)), and con-
sidering µ

kD
≡ κ(α) and ρ√

µCF ≡ kinertia

fr(α) = −κ(α)vmat︸ ︷︷ ︸
Darcy term

−kinertia

√
κ(α)|vmat|vmat︸ ︷︷ ︸

Forchheimer term

(11)

where kinertia = ρ√
µCF is the inertial resistance factor, and

κ(α) is the inverse permeability (“absorption coefficient”).
The Forchheimer constant CF varies according to the

type of porous medium [87, 90, 91]. If the diameter of the
porous medium “particles” is much smaller than the mi-
croscopic scale [66], CF can be assumed as a “universal”
constant [92] given by CF = 0.55 [66]. Since, in topol-
ogy optimization, the porous material is used to model a
solid wall and not a specific type of porous material, CF
is assumed as 0.55 in this work.

Eqs. (1) and (2) considering eq. (11) consist of a well-
posed problem according to Varsakelis and Papalexandris

[93]. The other approach for modeling the Forchheimer
equation is given by the semi-empirical approach (Carman-
Kozeny equation) [94, 95, 96], which includes dependency
on microscopic and macroscopic particles characteristics
of the porous medium, distancing the porosity modeling
from the modeling of solid material used in this work.

4.1.2. Material model for the inverse permeability

Since the objective in topology optimization is to ob-
tain a sufficiently discrete distribution of the design vari-
able (pseudo-density) inside the design domain, the subtle
transition between the binary values 0 (for solid) and 1
(for fluid) is “relaxed”. This “relaxation” allows an in-
termediate porous medium (normally referred as a “gray”
material, with a pseudo-density between 0 and 1 (real val-
ues)). Borrvall and Petersson [14] considers the following
convex interpolation function for the inverse permeability:

κ(α) = κmax + (κmin − κmax)α
1 + q

α+ q
(12)

where the value of the inverse permeability (κ(α)) is
bounded by a maximum value (κmax) and a minimum
value (κmin), and has its convexity (relaxation) controlled
by the penalization parameter q > 0 (large values of q lead
to a less relaxed material model). It is also possible to op-
tionally define κmax in function of a dimensionless number
(a maximum Darcy number, “Damax”), which is given as
[21]:

Damax =
µ

κmaxL2
ref

(13)

where Lref is a characteristic dimension of the computa-
tional domain, and may be given, for example, as Lref =
2rext, where rext is the most external radius of the compu-
tational domain. Due to this work considering more than
one computational domain in the numerical examples, for
clarity, κmax is expressed as 1

DamaxL2
ref

, by indicating its

value in function of µ.

4.2. Topology optimization problem
The topology optimization problem can be formulated

as follows.

min
α

J(p(α),v(α), α)

such that

Fluid volume constraint:

ˆ
Ωα

α(2πrdΩα) 6 fV0

Box constraint of α: 0 6 α 6 1

(14)

where f is the specified volume fraction, V0 =
´

Ωα
2πrdΩα

is the volume of the design domain (represented as Ωα),
J(p(α),v(α), α) is the objective/multi-objective function,
and p(α) and v(α) are the pressure and velocity obtained
by solving the boundary value problem (eq. (6)), which
features an indirect dependency with respect to the design
variable α.
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4.3. Energy dissipation

The relative energy dissipation is used as the objective
function based on the energy dissipation defined in Bor-
rvall and Petersson [14] and considering inertial effects, as
defined in Alonso et al. [63] for a rotating reference frame.
By assuming zero external body forces,

Φrel =

ˆ
Ω

[
1

2
µ(∇v +∇vT )•(∇v +∇vT )

]
2πrdΩ

−
ˆ

Ω

fr(α)•v2πrdΩ

+

ˆ
Ω

(2ρ(ω∧v) + ρω∧(ω∧r))•v2πrdΩ

(15)

It can be mentioned that, since the rotation vector is given
by ω = ω0ez and by considering eq. (4), the Coriolis term
(2ρ(ω∧v)•v) becomes zero.

Borrvall and Petersson [14] demonstrated for Stokes flow
that minimizing energy dissipation is closely related to
maximizing the pressure increment of the outlet in rela-
tion to the inlet. In the case of Navier-Stokes flow, the
energy dissipation becomes closely related to the pressure
head. This relationship is shown in Appendix A.

4.4. Power

The power transferred from the fluid (P ′f ) is given as
the power transferred to the fluid (Pf ) with a negative
sign (P ′f = −Pf ). Since P ′f > 0 for turbine devices (i.e.,
power is transferred from the fluid), this value can be used
to define a “turbine power” (* On the opposite side, Pf
would be a “pump power”). The power transferred to
the fluid is given from the angular momentum equation
when including the resistance force of the porous medium.
According to Munson et al. [68], the integral form of the
angular momentum equation is given by:

∂

∂t

ˆ
Ω

(r ∧ vabs)ρ2πrdΩ +

‰
Γ

(r ∧ vabs)ρvabs•n2πrdΓ

= r ∧ F ext|Ω
(16)

where vabs = v +ω∧r (absolute velocity) and F ext is the
external force acting on the fluid. In eq. (16), the right
side of the equation is given by

r ∧ F ext|Ω = T ext−
ˆ

Ω

r∧(ρf)2πrdΩ−
ˆ

Ω

r∧fr(α)2πrdΩ

(17)

where T ext is the torque. The resistance force of the
porous medium (fr(α)) is included in a similar way as
the body forces ρf .

Therefore, by substituting eq. (17), in eq. (16), assum-
ing steady-state flow and zero external body forces,

T ext =

‰
Γ

(r ∧ vabs)ρvabs•n2πrdΓ

+

ˆ
Ω

r ∧ fr(α)2πrdΩ

(18)

Since Pf = ω•T ext, the power is given by

Pf =

‰
Γ

ω•(r ∧ vabs)ρvabs•n2πrdΓ

+

ˆ
Ω

ω•[r ∧ fr(α)]2πrdΩ

(19)

The above equation includes the resistance force of the
porous medium, which has not been previously included
in this formulation [41, 42]. This additional “resistance
force” term is analogous to the material model term of the
energy dissipation defined by Borrvall and Petersson [14]
and also shown in eq. (15).

4.5. Multi-objective function

In order to consider two objective functions in the
topology optimization problem, a multi-objective function
weighting both equations into one may be defined. Since
the measurement units and magnitudes of each of the ob-
jective functions can be different, the objective function
magnitudes and sensitivities may significantly vary from
one another. In order to reduce such possible disparity
and possible predominance of one objective function over
the other during the optimization iterations, the following
multi-objective function is used, based on the initial ratio
between the objective functions,

J = wΦΦrel + wP

(
Φrel,0

Pf,0

)
Pf (20)

dJ

dα
= wΦ

dΦrel

dα
+ wP

(
Φrel,0

Pf,0

)
dPf
dα

(21)

where Pf = −P ′f is the power transferred to the fluid, the
weights wΦ and wP are constants (wΦ + wP = 1), and
Φrel,0 and Pf,0 are the values of the objective functions
before starting the IPOPT algorithm.

4.6. Sensitivity analysis

The sensitivity is given by the adjoint method as(
dJ

dα

)*

=

(
∂J

∂α

)*

−
(
∂F

∂α

)*

λJ (22)

(
∂F

∂(v, p)

)*

λJ =

(
∂J

∂(v, p)

)*

(adjoint equation) (23)

where J is the objective/multi-objective function, the
weak form is given by F = 0, “ * ” represents conjugate
transpose, and λJ is the adjoint variable (Lagrange multi-
plier of the weak form). This way, the matrix forms of the
terms of eqs. (22) and (23) are computed and the solutions
of the resulting matrix systems directly result in dJ

dα . Par-
ticularly, in this work, the matrix forms are automatically
derived in dolfin-adjoint (using FEniCS).
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5. Numerical implementation of the optimization
problem

The finite element method is computed by FEniCS plat-
form [75], by using automatic differentiation and a high-
level language (UFL) for representing the weak form and
functionals for the finite element matrices. For the sensi-
tivities of the topology optimization problem, the adjoint
model is automatically obtained from the weak form and
objective functions by the dolfin-adjoint library [97, 98].
IPOPT (Interior-Point Optimization algorithm) [99] is
used as the algorithm for solving the topology optimization
problem: Being an interior point method, it forces the so-
lution to be searched in the feasible space, but also avoids
having to compute the exact value of the penalty parame-
ter of the logarithmic barrier at each iteration (by using a
line-search filter method). The dolfin-adjoint library pro-
vides an interface for using it. The nonlinear weak form
(eq. (9)) is solved by the Newton-Raphson method, in
which the corresponding linearized problems at each it-
eration are solved with MUMPS (MUltifrontal Massively
Parallel sparse direct Solver) [100].

The implementation of the topology optimization
method is illustrated in Fig. 8. It starts with an initial
guess for the distribution of the design variable (pseudo-
density) in the design domain. Then, a simulation is per-
formed with FEniCS from the finite element method and
the forward model (i.e., the weak form and boundary con-
ditions). This first simulation is used by dolfin-adjoint in
order to obtain the adjoint model, which is then used in
the optimization loop. The optimization loop is performed
with IPOPT and continues until the specified tolerance
(convergence criterion) is reached.

dolfin-adjoint

FEniCS

IPOPT

No

Yes

Converged?

Interior-point
optimization

algorithm

Update of the
topology

Adjoint model

Simulation

Optimized topology

Specified
tolerance

Forward model

Topology initial guess

Objective function,
constraints, sensitivities

Finite Element Method

Topology
optimization

Figure 8: Flowchart representing the numerical implementation of
the topology optimization problem.

6. Numerical results

In the numerical results, the properties of the fluid be-
ing considered are of incompressible air at 25°C, with a
dynamic viscosity (µ) of 18.37 ×10−6 Pa s [101], and a
density (ρ) of 1.169 kg/m3 [102].

The finite element meshes for all the numerical examples
are structured and divided in rectangular partitions of 4
triangular elements each (see Fig. 9).

Figure 9: Triangular elements distributed in a rectangular partition
of the mesh.

In order to achieve a better numerical conditioning for
calculating the weak form, functionals and sensitivities,
and also for improving the convergence rate, the MMGS
(Millimeters-Grams-Seconds) unit system is used, which
means that the length and mass units are multiplied by a
103 factor.

The Newton-Raphson method is computed with an ab-
solute tolerance of 10−10, and relative tolerance of 10−9.
The convergence criterion for the optimization is a toler-
ance of 10−10 for the optimality error of the IPOPT bar-
rier problem, which is essentially the maximum norm of
the KKT conditions [99].
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The external body force term (ρf) is not considered
for the numerical examples (ρf = (0, 0, 0)). The
porous medium is considered to be rotating together with
the reference frame (vmat = v). The minimum value
of the inverse permeability is assumed as zero (κmin =
0 kg/(m3 s)).

The initial guess for the design variable (pseudo-density)
is the uniform distribution α = f−1%, where f is the spec-
ified volume fraction and 1% is an assumed margin in order
for the initial guess not to violate the volume constraint
(because of the numerical accuracy of the calculations).
The plots of the optimized topologies show the values of
the design variable (α) in the center of each finite element.
The letter n denotes rotation in rpm, and the greek letter
ω denotes rotation in rad/s.

The values of the design variable (pseudo-density) in
the optimized topologies are post-processed by a threshold
(step) function:

αth =

{
1 (fluid), if α > 0.5

0 (solid), if α < 0.5
(24)

From the threshold function, a binary distribution is ob-
tained for the design variable (αth), which can then be cut
in order to remove the solid material (α = 0) from the
computational domain (see Fig. 10). In such case, the
final simulation can be performed with the Navier-Stokes
equations without the effect of the porous medium (i.e.,
without the Brinkman/Brinkman-Forchheimer model). In
this case, optimized topologies achieved with different op-
timization parameters can be compared. Except when
highlighted otherwise, in all of the optimized topologies,
the final values achieved for the design variable (pseudo-
density) are close to the bounds (i.e., close to α = 0 and
α = 1).

Figure 10: Illustration of the post-processing being applied for an
optimized topology.

The pressure head can be calculated for the results from
the integral form of the energy equation (1st Law of Ther-
modynamics) [68] by simplifying for an incompressible
steady-state flow with negligible heat transfer. By also
neglecting the effect of the height (i.e., the gravitational
force),

H =
1

Q

[‰
Γ

(
p

ρg
+
vabs

2

2g

)
vabs•n2πrdΓ

]
(25)

where Q is the flow rate. In turbine devices, it is expected
that H < 0 (i.e., the fluid exits the turbine with less energy

than when it enters) and Pf < 0 (P ′f > 0) (i.e., power
is transferred from the fluid to the rotor). Therefore, in
turbines, the opposite of the pressure head (H ′ = −H)
is a positive value that can be used to define a “turbine
pressure head” (* On the opposite side, H would be a
“pump pressure head”).

From the definitions of the pressure head (H, eq. (25))
and the power transferred to the fluid (Pf ,eq. (19)), it
is possible to define the isentropic efficiency for turbine
devices as [102, 7]

ηs =
Preal

Pideal
=
Pf/ṁ

∆hs
=
Pf/ṁ

gH
(26)

where ṁ is the mass flow rate, and ∆hs = gH is the
variation of specific enthalpy (specific work) in the ideal
process [102]. It can be mentioned that the fraction
shown in eq. (26) is inverted for pumps (i.e., for pumps,
ηs = Pideal

Preal
= gH

Pf/ṁ
).

The Reynolds number can be calculated from the small-
est size of the channels [7] or in function of the external
radius. In this work, for simplicity, it is calculated as the
maximum value of the local Reynolds number based on
the external diameter:

Reext, ` =
µ |vabs| (2rext)

ρ
(27)

where vabs is the absolute velocity, which varies in each
position of the computational domain, and rext is the most
external radius of the computational domain.

In order to confirm that the air flow is still incompress-
ible (Mach number smaller than 0.3 [69]), the Mach num-
ber may be calculated as the maximum value of the local
Mach number:

Ma` =
|vabs|√

ksh
RU

Mmolar
TK

(28)

where ksh =
cp
cv

= 1.4 (ratio of specific heats, where cp
considers a constant pressure, and cv considers a constant
volume) [102], RU = 8.31451 J/(mol K) is the ideal gas
constant, Mmolar = 28.96×10−3 kg/mol is the molar mass
of air [102] and TK = 298.15 K (i.e., 25°C) is the tem-
perature in Kelvin. In all numerical examples, the Mach
number is smaller than 10−2, which means that the fluid
flow is incompressible.

6.1. Effect of the Brinkman-Forchheimer model

The first example is the design of a full-inlet turbine-
type device by considering the Brinkman-Forchheimer
model (as in the other examples) and the Brinkman model
(i.e., eq. (11) without the Fochheimer term) (see Fig. 11):
The computational domain is composed of a constant ve-
locity inlet at the external radius rext, and the outlet is
axial. The specified volume fraction (f) is 70%.
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Figure 11: Design domain for the full-inlet turbine-type device.

The finite element mesh is chosen with 132 radial and
60 axial rectangular partitions of crossed triangular ele-
ments, totaling 16,033 nodes and 31,680 elements (see Fig.
12). The input parameters and dimensions of the design
domain that are used are shown in Table 1. The optimiza-
tion scheme for this example is given by different values
of κmax considering q = 103. Among different values of
κmax, the difference is essentially the “relaxation” of the
strength of the material model, in which the fluid flow can
be: insufficiently blocked, sufficiently blocked or “over”
blocked. The case when “over” blocking of fluid flow oc-
curs can hinder the topology optimization process, leading
to an overly gray or simple/trivial local minima. When
it is insufficiently blocked, sometimes a discrete topology
may still be obtained, but it is also possible that the re-
sulting topology be considered a worse local minima after
post-processing.

Figure 12: Mesh used for the full-inlet turbine-type device.

Table 1: Parameters used for the topology optimization of the full-
inlet turbine-type device.

Input parameters

Inlet flow rate (Q) 2.0 L/min

Rotation n0 = 1000 rpm

Inlet rotation ωin = ω0

Radial-axial inlet velocity
profile

Constant

Dimensions

h 5 mm

rshaft 2.6 mm

rint 5 mm

rext 10 mm

A series of optimizations is performed for a sequence
of different values for κmax for the Brinkman-Forchheimer
and Brinkman models considering the relative energy dis-
sipation as the objective function. Fig. 13 shows the ob-
jective function (relative energy dissipation) values with
respect to κmax for each optimized topology. The objec-
tive function values that are shown correspond to the post-
processed mesh. The maximum value obtained for the
maximum local Reynolds number (max(Reext, `)) is 5.57
× 103. In fact, this value is below the transition Reynolds
number in pumps (which is in the order of 106) [103, 104]
and, since pumps can be said to represent the inverted
operation of turbines, this means that the flow is most
probably laminar.
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(a) Effect in the relative energy dissipation (Φrel).

(b) Effect in the “turbine pressure head” (H′ = −H)
and isentropic efficiency (ηs).

Figure 13: Effect of κmax in the design of the full-inlet turbine-type
device for the Brinkman-Forchheimer and Brinkman models.

The optimized topologies are seen in Fig. 13a. As can
be seen, the value of κmax highly influences the quantity
of fluid paths (i.e., disks) and their thickness and exten-
sion. The appearence of these intermediary “disk-like”
structures reduces the dispersion of the fluid when enter-
ing the fluid flow device tending to lead to a more uni-
form effect of the “Tesla principle”. When the material
model is imposed with more “strength” (i.e., a higher
κmax), this effect is diminished due to the fact that a
small “gray” value in the pseudo-density (α) can now cause
a greater disturbance in the fluid flow, which may in-
duce a better or worse local minimum for the topology
optimization problem. By comparing the topology opti-
mization results by using the Brinkman model and the
Brinkman-Forchheimer model, it can be noticed that the
Brinkman-Forchheimer model led to optimized topologies
with less relative energy dissipation than the Brinkman
model, showing that, by using a more complete poros-
ity formulation (Brinkman-Forchheimer model), a better
local minima may be achieved. Fig. 13b shows a com-
parison of the values of the isentropic efficiency (ηs) and
“turbine pressure head” (H ′). In this case, it shows that
the Brinkman-Forchheimer model attained mostly better
isentropic efficiencies (ηs). However, the “turbine pressure
head” (H ′) is slightly worse for the Brinkman-Forchheimer
model. The reason for this difference is mainly due to the

better spacing and size between the “disk-like” achieved
by topology optimization.

It can also be highlighted that the objective functions
are written differently for the Brinkman model and the
Brinkman-Forchheimer model, since the Brinkman model
includes only the Darcy term of fr(α) (eq. 11), whilst
the Brinkman-Forchheimer model also includes the Forch-
heimer term. For the relative energy dissipation, the cor-
respondance in the formulation of the objective function
is shown in Appendix A, where the porous medium effect
term as a whole is on the left-hand side of eq. (A.9).

The convergence curves for the full-inlet turbine-type
devices follow similar patterns as the convergence curve
shown in Fig. 22 for the two-inlet turbine-type device.

The simulation of the optimized topology for the full-
inlet turbine-type device for κmax = 1 ×108µ (kg/(m3s))
for the Brinkman-Forchheimer model is shown in Fig. 14.

Figure 14: Optimized topology, 3D representation, pressure and
velocity for the full-inlet turbine-type device for the Brinkman-
Forchheimer model (κmax = 1 ×108µ (kg/(m3s))).

Fig. 14 shows that the radial-axial flow ((vr, vz)) is sep-
arated into four paths and various following subpaths. The
relative tangential velocity (vθ) is consistent with this be-
havior, and accelerates near the outlet due to the effect of
the “Tesla principle”.

6.2. Effect of the power objective function

The second example is the design of a parallel-type
turbine-type device by considering the multi-objective
function for relative energy dissipation and power (see
Fig. 15): The computational domain is composed of two
parabolic inlets located at the external radius rext, and
there are two outlets located at the internal radius rint.
It corresponds to the classical parallel channels (“double
pipe”) [14], but considered for 2D swirl flow in a turbine-
type configuration (inlets at the external radius) and con-
sidering additional inlet and outlet channels. These addi-
tional channels serve as for not having any inlet/outlet to
be partially blocked during topology optimization and are
considered to be outside the design domain. The specified
volume fraction (f) is 40%.
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Figure 15: Design domain for the parallel-type turbine-type device.

The finite element mesh is composed of 7,823 nodes
and 15,360 elements (see Fig. 16). The input parameters
and dimensions of the design/computational domain that
are used are shown in Table 2. The optimization scheme
for this example is given by κmax = 5 ×108µ (kg/(m3s))
and q = 103, without any special/specific treatment to
avoid local minima (such as continuation in the topology
optimization parameters and topology optimization filter-
ing/projection). This is done in order to facilitate a com-
parison of the effect of the power objective function in
topology optimization.

Figure 16: Mesh used for the parallel-type turbine-type device.

Table 2: Parameters used for the topology optimization of the
parallel-type turbine-type device.

Input parameters

Inlet flow rate (Q) 2.0 L/min

Rotation n0 = 1000 rpm

Inlet rotation ωin = ω0

Radial-axial inlet velocity
profile

Parabolic

Dimensions

h 5 mm

`c 0.5 mm

rint 5 mm

rext 10 mm

A series of optimizations is performed for a sequence
of weights for the power transferred to the fluid (Pf ) in
the multi-objective function. In order to verify the ef-
fect in the optimized topology of the porosity term of the
power objective function, the optimization is performed
with and without the porosity term (with/without fr(α))
shown in eq. (19). Fig. 17a shows the objective functions’
values with respect to the weights of the objective func-
tions for each optimized topology. The objective function
values that are shown correspond to the post-processed
mesh. Fig. 17b shows the corresponding isentropic ef-
ficiencies. The maximum value for the maximum local
Reynolds number (max(Reext, `)) is given as 2.99 × 103.

In Fig. 17, it can be noticed that the channels are
straight until about wP = 0.6 or wP = 0.8, from which the
optimized topologies start to significantly change. As can
be noticed in the figure for the case including the porosity
term, since both objective functions increased their values,
it can be said that the corresponding optimized topologies
should be local minima. When not including the poros-
ity term, the effect of the power objective function seems
to be “less aggressive” in the topology optimization than
when including the porosity term, because the sensitivity
of the energy dissipation predominates in the optimiza-
tion due to its corresponding porosity term. The “gray”
topologies wP = 1.0 (indicated with an asterisk (“*”)) in-
dicate the optimized topologies that would result if only
the power objective function is used, and the correspond-
ing energy dissipation value is not represented due to the
high presence of “gray” values for the design variable. As
can be noticed, the power objective function alone is un-
able to create a fully discrete topology, and needs another
function (such as the relative energy dissipation) in order
to achieve the formation of fluid channels. By compar-
ing these “gray” topologies, it can be noticed that, when
including the porosity term in the objective function, this
porosity term seems to contribute to the formation of chan-
nels, whereas not including it seems not to have such ten-
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(a) Effect in the objective functions (Φrel and P ′f = −Pf ). (b) Effect in the “turbine pressure head” (H′ =
−H) and isentropic efficiency (ηs).

Figure 17: Effect of wP in the design of the parallel-type turbine-type device.

dency.
The convergence curves for the parallel-type turbine-

type devices follow similar patterns as the convergence
curve shown in Fig. 22 for the two-inlet turbine-type de-
vice.

The simulation of the optimized topology for the
parallel-type turbine-type device for wP = 0.4 (with power
with the porosity term) is shown in Fig. 18.

Figure 18: Optimized topology, 3D representation, pressure and ve-
locity for the parallel-type turbine-type device (wP = 0.4).

In Fig. 18, the fluid flow is shown to have some acceler-
ation towards the outlet (at rext), which is consistent with
the “Tesla principle” due to the wall rotation.

6.3. Effect of the rotation

The third example is the design of a two-inlet turbine-
type device for different rotations (see Fig. 19): The com-

putational domain is composed of two parabolic inlets lo-
cated at the external radius rext (with imposed flow rates
of Q

2 , where Q is the “total” flow rate), and the outlet is
axial. The specified volume fraction (f) is 70%.

Figure 19: Design domain for the two-inlet turbine-type device.

The finite element mesh is chosen with 96 radial and 60
axial rectangular partitions of crossed triangular elements,
totaling 11,677 nodes and 23,040 elements (see Fig. 20).
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The input parameters and dimensions of the design do-
main that are used are shown in Table 3.

Figure 20: Mesh used for the two-inlet turbine-type device.

Table 3: Parameters used for the topology optimization of the two-
inlet turbine-type device.

Input parameters

Inlet flow rate (Q) 2.0 L/min

Rotation ω0 6= 0 rad/s

Inlet rotation ωin = ω0

Radial-axial inlet velocity
profile

Parabolic

Dimensions

h 5 mm

rshaft 2.6 mm

rint 5 mm

rext 10 mm

A series of optimizations is performed for a sequence
of rotations in order to evaluate the effect of the rota-
tion in the design of the two-inlet turbine-type device.
In this example, the objective function is the relative en-
ergy dissipation, and Fig. 21 shows the objective func-
tion (relative energy dissipation) values with respect to
the rotation for each optimized topology. The objective
function values that are shown correspond to the post-
processed mesh. The maximum value for the maximum
local Reynolds number (max(Reext, `)) is given at 2000
rpm, as 3.07 × 103.

(a) Effect in the relative energy dissipation (Φrel).

(b) Effect in the “turbine pressure head” (H′ = −H)
and isentropic efficiency (ηs).

Figure 21: Effect of the rotation in the design of the two-inlet turbine-
type device.

As can be noticed in Fig. 21a, the number of intermedi-
ary “disk-like” structures seems to increase as the rotation
increases. This can be explained by the fact that, when
under rotation, the fluid flow concentrates itself near the
solid surfaces due to the “Tesla principle”. This means
that having smaller fluid channels, such as in a size that is
similar to the boundary layer, may possibly lead to less en-
ergy dissipation inside the fluid flow. Fig. 21 shows that
the “turbine pressure head” (H ′) is higher under higher
rotations, which means that the fluid exits the computa-
tional domain with even less energy than when it entered
when under higher rotations. The rise in the isentropic ef-
ficiency (ηs) under higher rotations shows that the change
in the “turbine pressure head” (H ′) value is accompanied
by the fluid transfering more energy to the disks.

The optimization schemes for this example are shown
in Table 4. The choice of the optimization parameters is
performed for allowing the optimized topologies to be suffi-
ciently discrete and also to block fluid flow (or at least sig-
nificantly reduce it) inside the solid material (as in Alonso
et al. [62]).
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Table 4: Reference parameters for the optimization schemes (steps)
for the two-inlet turbine-type device.

Rotation (n0)
(rpm)

κmax (×108µ)
(kg/(m3s))

q

0 ∼ 1500 1.0 103

2000 1.8 103

The convergence curve for the two-inlet turbine-type de-
vice for 1000 rpm is shown in Fig. 22.

Figure 22: Convergence curve for the two-inlet turbine-type device
(1000 rpm).

The simulation of the optimized topology for the two-
inlet turbine-type device for 1000 rpm is shown in Fig.
23.

Figure 23: Optimized topology, 3D representation, pressure and ve-
locity for the two-inlet turbine-type device (1000 rpm).

In the simulation shown in Fig. 23 for the two-inlet
turbine-type device for 1000 rpm, the “Tesla principle”
can be noticed from the “concentration” of radial-axial ve-
locity vectors ((vr, vz)) between the “disk-like” structures.
This can also be noticed for relative tangential velocity

(vθ), where vθ is lower near the solid surfaces but higher
farther from them. It can be noticed that, due to the
higher radius of the rightmost part of the axial outlet, the
absolute tangential velocity (vθ,abs = vθ + ω0r) is higher,
meaning that the outlet flow has a tendency to exit more
intensely closer to this rightmost radius.

6.4. Effect of the inlet rotation

The fourth example is based on the tubular adhesion
turbine concept [2], and is considered for different inlet
rotations (ωin 6= ω0). The computational domain is com-
posed of a parabolic inlet located at the external radius
rext, and an outlet that is also located at the external ra-
dius rext (see Fig. 24). The specified volume fraction (f)
is 70%.

Figure 24: Design domain for the axial-type turbine-type device.

The finite element mesh is chosen with 30 radial and
100 axial rectangular partitions of crossed triangular ele-
ments, totaling 6,131 nodes and 12,000 elements (see Fig.
25). The input parameters and dimensions of the design
domain that are used are shown in Table 5.
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Figure 25: Mesh used for the axial-type turbine-type device.

Table 5: Parameters used for the topology optimization of the axial-
type turbine-type device.

Input parameters

Inlet flow rate (Q) 2.0 L/min

Rotation n0 = 1000 rpm

Inlet rotation ωin 6= ω0

Radial-axial inlet velocity
profile

Parabolic

Dimensions

h 15 mm

h1 2 mm

h2 1 mm

rshaft 2.6 mm

rext 7 mm

A series of optimizations is performed for a sequence
of inlet rotations (ωin) in order to evaluate its effect in
the design of the axial-type turbine-type device. In this
example, the objective function is the relative energy dis-
sipation, and Fig. 26 shows the objective function (rel-
ative energy dissipation) values with respect to the in-
let rotation for each optimized topology. The objective
function values that are shown correspond to the post-
processed mesh. The maximum value for the maximum
local Reynolds number (max(Reext, `)) is given at nin =
2000 rpm, as 1.71 × 103.

(a) Effect in the relative energy dissipation (Φrel).

(b) Effect in the “turbine pressure head” (H′ = −H)
and isentropic efficiency (ηs).

Figure 26: Effect of the inlet rotation in the design of the axial-type
turbine-type device.

In Fig. 26a, as the rotation increases, the fluid flow
path distances itself from inner radii and attains an “in-
let zone”. This is probably because, respectively, (1) A
fluid flow path at higher radii leads to more fluid flowing
((vr, vz)) under higher “swirl” velocities (vθ,abs), and (2)
Having an “inlet zone” seems to contribute to the change
of the fluid flow direction and to lead the “swirl” compo-
nent of the velocity (vθ,abs) through the vertical fluid flow
path. It can be highlighted that, for inlet rotations that
are smaller than the wall rotation (i.e., for ωin < ω0), the
fluid flow device does not act as a turbine and neither as a
pump. This may be understood by the reasoning that the
inlet fluid should enter a turbine-type device with at least
the same rotation of the turbine-type device, otherwise it
would be unable to transfer energy to the device, resulting
in a “brake”-like behavior, only dissipating energy. This
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can be noticed in Fig. 26b, where the efficiency values for
0 rpm and 500 rpm inlet rotations are not shown, because
these inlet rotations are unable to transfer power to the
solid structure (i.e., the values of “turbine power” (P ′f )
are negative), meaning that the fluid device does not act
as a turbine. Also, since the “turbine pressure head” (H ′)
is positive, it also does not act as a pump.

The optimization schemes for this example are shown in
Table 6.

Table 6: Reference parameters for the optimization schemes (steps)
for the axial-type turbine-type device.

Inlet rotation
(nin) (rpm)

κmax (×108µ)
(kg/(m3s))

q

0 ∼ 500 80 103

1000 ∼ 1500 2.5 103

2000 5.0 103

The convergence curves for the axial-type turbine-type
devices follow similar patterns as the convergence curve
shown in Fig. 22 for the two-inlet turbine-type device.

The simulation of the optimized topology for the axial-
type turbine-type device for 2000 rpm is shown in Fig.
27.

Figure 27: Optimized topology, 3D representation, pressure and ve-
locity for the axial-type turbine-type device (2000 rpm inlet rota-
tion).

Fig. 27 shows that the radial-axial ((vr, vz)) velocity
mainly follows a single fluid flow path inside the chan-
nel, while the relative tangential velocity (vθ) shows some
acceleration when the fluid enters the channel. This accel-

erated fluid is then decelerated through the vertical fluid
path, while transfering energy to the solid walls.

6.5. Effect of the specified fluid volume fraction

The last example is the design of a one-inlet turbine-
type device by considering different specified fluid volume
fractions in the fluid volume constraint (see Fig. 28): The
computational domain is composed of one parabolic inlet
located at the external radius rext, and the outlet is axial.

Figure 28: Design domain for the one-inlet turbine-type device.

The finite element mesh is the same shown in Fig. (20).
The input parameters and dimensions of the design do-
main that are used are shown in Table 7. The optimiza-
tion scheme for this example is given by κmax = 5.0 ×108µ
(kg/(m3s)) and q = 103.
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Table 7: Parameters used for the topology optimization of the one-
inlet turbine-type device.

Input parameters

Inlet flow rate (Q) 2.0 L/min

Rotation n0 = 1000 rpm

Inlet rotation ωin = ω0

Radial-axial inlet velocity
profile

Parabolic

Dimensions

h 5 mm

rshaft 2.6 mm

rint 5 mm

rext 10 mm

A series of optimizations is performed for a sequence of
specified volume fractions in order to evaluate its effect
in the design of the one-inlet turbine-type device. In this
example, the objective function is the relative energy dissi-
pation, and Fig. 29 shows the objective function (relative
energy dissipation) values with respect to the specified vol-
ume fraction for each optimized topology. The objective
function values that are shown correspond to the post-
processed mesh. The maximum value for the maximum
local Reynolds number (max(Reext, `)) is given as 3.1 ×
103.

In Fig. 29a, it can be noticed that, as the specified
volume fraction is increased, the number of “disk-like”
structures also increases until f = 70%, from when the
“outer shape” starts to significantly change. The forma-
tion of these “disk-like” structures is seemingly to reduce
the size of the flow paths to an adequate size according
to the “Tesla principle”, as in the case mentioned in Sec-
tion 6.3. The “outer shape” starts changing due to the
specified volume fraction allowing more fluid in the design
domain, which leads the topology optimization to achieve
these different formats.

Fig. 29a shows that, for f > 50%, the energy dissipa-
tion shows small difference between the different optimized
topologies. The results for f = 10% are not evaluated be-
cause the amount of fluid allowed is too small for the given
design, and the fluid flow path is completely blocked. The
result for f = 100% corresponds to not using the volume
constraint. It can also be highlighted that the optimized
topologies for f = 90% and f = 100% still feature “gray
regions” which could not be removed by changing the ma-
terial model parameters and neither by including a filter
or projection (such as a Helmholtz filter [105]). The ef-
fect when including a Helmholtz filter (PDE-based filter)
or even an algebraic-based filter [106] is that the interme-
diary structures stay as “gray material”, but have their
leftmost ends joined by a “thin gray material”.

By checking the isentropic efficiency (ηs) in Fig. 29b, it

can be noticed that the optimized topologies for f = 60%
and f = 70% feature the highest values. By comparing
the “turbine pressure head” (H ′), it can be noticed that it
is slightly higher for f = 60%, which may possibly mean
that this optimized topology is seemingly better than the
f = 70% topology.

The convergence curves for the one-inlet turbine-type
devices follow similar patterns as the convergence curve
shown in Fig. 22 for the two-inlet turbine-type device.

The simulation of the optimized topology for the one-
inlet turbine-type device for f = 60% is shown in Fig. 30.

Figure 30: Optimized topology, 3D representation, pressure and ve-
locity for the one-inlet turbine-type device (f = 60%).

In Fig. 30, it can be noticed that the radial-axial inlet
flow ((vr, vz)) is divided between the various “disk-like”
structures, and concentrates itself closer to the upper and
lower borders of the “outer shape” of the topology. Also,
the relative tangential velocity (vθ) includes some acceler-
ation in the middle of the fluid paths, which is due to the
“Tesla principle”.

6.6. Post-processing of the numerical results for fabrica-
tion

When considering the fabrication of Tesla turbine de-
vices, it is necessary to consider spacers/arms (Fig. 3).
In the case of the optimized topologies for the Tesla tur-
bine, this same concept can be applied, but with the
pins/spacers serving as connectors between disks, rather
than relying on single straight bolts that traverse all disks
(Fig. 3). This is shown in Fig. 31, for an example opti-
mized topology, in order to facilitate visualization. First,
there is an example optimized topology obtained from the
2D swirl flow model, which can be represented in 3D as
shown next. Following, there is an additional design step,
which consists of including the spacers/arms, requiring
the design choice/analysis of their disposition, size and
shape/geometry so as to minimize their influence in the
fluid flow, while also taking material constraints (such as
resistance) into account. This additional step is out of
the scope of this work, but some possibilities are shown in
Fig. 31: circular pins may be chosen as the spacers, while
spaced by 120° angles (Fig. 31a); outlet arms may also be
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(a) Effect in the relative energy dissipation (Φrel). (b) Effect in the “turbine pressure head”
(H′ = −H) and isentropic efficiency
(ηs).

Figure 29: Effect of the specified volume fraction in the design of the one-inlet turbine-type device.

included (Fig. 31b); the 120° spaced circular pins may be
“intercalated” between each pair of disks, featuring, for ex-
ample, some intermediary pins at 0°-120°-240° and others
at 60°-180°-300° (Fig. 31c); the 120° spaced circular pins
may be reinforced by adding some more pins (Fig. 31d);
other spacings between pins, such as 90°, may be consid-
ered (Fig. 31e); and other spacer shapes/geometries may
be considered, such as airfoil-shaped spacers (Fig. 31f).
In terms of fabrication, depending on the scale of the opti-
mized topology, the corresponding prototype may be fab-
ricated as a single part through additive manufacturing.
In larger dimensions, the spacers and disks may be even
fabricated through conventional means (such as through
stamping and machining), with bolts between each pair of
disks in order to fixate the spacers and disks.

7. Conclusions

This work presents a topology optimization approach
for the design of Tesla-type turbine devices, by consid-
ering various aspects: the 2D swirl flow model, due to
its smaller computational cost in relation to a complete
3D model; MINI elements, in order to reduce the com-
putational cost from using Taylor-Hood elements (due
to the possible need of higher resolution meshes to at-
tain the disk-like structures in the optimized topologies);
the Brinkman-Forchheimer model, which includes an ad-
ditional inertial effect in the material model that may lead
to better optimized 2D swirl flow turbine designs; and a
power objective function with an additional porosity effect
term. All these aspects are necessary to achieve a success-
ful topology optimization for simulation for designing 2D
swirl flow turbine-type devices (i.e., Tesla turbines).

The numerical examples show the different aspects
considered in the design separately: the Brinkman-
Forchheimer model, the power objective function, the ro-
tation, the inlet rotation, and the specified fluid volume
fraction. By applying the topology optimization method,

“disk-like” structures appear in order to improve the per-
formance of the fluid flow device, which depend on rotation
/ inlet rotation, the definition of the material model, and
the design domain. The power objective function formula-
tion including the additional porosity effect term is more
consistent with respect to the relative energy dissipation
definition, although, when combined with energy dissipa-
tion in an objective function, its effect may lead to worse
local minima.

In terms of the intermediary disk-like structures of the
optimized topologies, the same approach described above
should be followed, with circumferentially-spaced spacers
or arms. In terms of manufacturing, the device may be
manufactured through additive manufacturing, or even
conventional means, as mentioned in Section 6.6. It can
be highlighted that additive manufacturing is able to fab-
ricate highly detailed and complex structures, such as the
complex “super-truss”-structures from Liu et al. [107].

As future work, it is suggested to optimize for thermal
flows, non-Newtonian fluid flows and turbulence models.
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Appendix A. Relationship between energy dissi-
pation and pressure head

In order to derive the relationship between energy dis-
sipation and pressure head, the differential equation that
corresponds the Navier-Stokes equations (eq. (2)) is multi-
plied by v and integrated over the computational domain
(2πrdΩ). The resulting equation after considering zero
external body forces and applying Gauss’s divergence the-
orem in the divergent of the stress tensor becomes

0 =

ˆ
Ω

[ρ∇v•v + 2ρ(ω∧v)

+ ρω∧(ω∧r)] •v2πrdΩ +

ˆ
Ω

T •(∇v)2πrdΩ

−
‰

Γ

(T •v)•n2πrdΓ−
ˆ

Ω

fr(α)•v2πrdΩ

(A.1)

The first term of the right side of eq. (8), which corre-
sponds to the convective term of the Navier-Stokes equa-
tions, can be further developed. First, it can be rewrit-
ten by reordering its terms and using the product rule for
derivatives as

(∇v•v)•v = ((v•∇)v)•v =
1

2
(v•∇)(v•v) (A.2)

Since ∇•(v(v•v)) = (v•∇)(v•v) + (v•v)∇•v and by as-
suming incompressible flow (from the continuity equation
(eq. (1)), ∇•v = 0), eq. (A.2) becomes

(∇v•v)•v =
1

2
(v•∇)(v•v) =

1

2
(∇•(v(v•v))) (A.3)

When integrating eq. (A.3) over the computational do-
main (2πrdΩ), multiplying by ρ (as in eq. (A.1)), and
assuming ρ to be constant (incompressible fluid), Gauss’s
divergence theorem can be applied, resulting in

ˆ
Ω

ρ(∇v•v)•v2πrdΩ =

ˆ
Ω

ρ

2
(∇•(v(v•v))) 2πrdΩ =

‰
Γ

ρ

2
[n•(v(v•v))] 2πrdΓ

(A.4)

The first stress tensor term of the right side of eq. (8)
can be simplified by considering eq. (3) and pI•∇v =
p∇•v = 0 (from the continuity equation (eq. (1))),

ˆ
Ω

T •(∇v)2πrdΩ =

ˆ
Ω

µ(∇v +∇vT )•(∇v)2πrdΩ =

ˆ
Ω

1

2
µ(∇v +∇vT )•(∇v +∇vT )2πrdΩ

(A.5)

The second stress tensor term of the right side of eq.
(8) can be unfolded by substituting eq. (3) and using the

relation I•v = v,

‰
Γ

(T •v)•n2πrdΓ =

‰
Γ

[(µ(∇v +∇vT ))•v]•n2πrdΓ

−
‰

Γ

pv•n2πrdΓ

(A.6)

Since, in 2D swirl flow, vabs•n = v•n (i.e. vrnr + vznz,
due to considering a 2D mesh), the equation for the pres-
sure head (eq. (25)) can be rewritten as follows,

H =
1

Q

[‰
Γ

(
p

ρg
+
vabs

2

2g

)
vabs•n2πrdΓ

]
=

1

Q

[‰
Γ

(
p

ρg
+
vabs

2

2g

)
v•n2πrdΓ

]
=

1

ρgQ

[‰
Γ

(
pv•n+

ρ

2
[n•(v(vabs•vabs))]

)
2πrdΓ

]
=

1

ρgQ

[‰
Γ

(
pv•n+

ρ

2

[
n•(v(v•v + 2vθω0r + (ω0r)

2))
])

2πrdΓ

]
(A.7)

From eq. (A.7), a “relative” pressure head can be de-
fined as

Hrel =
1

ρgQ

[‰
Γ

(
pv•n+

ρ

2
[n•(v(v•v))]

)
2πrdΓ

]
=

H − 1

ρgQ

[‰
Γ

(ρ
2

[
n•(v(2vθω0r + (ω0r)

2))
])

2πrdΓ

]
(A.8)

As can be noticed, eq. (A.8) features some terms that
are also shown in eqs. (A.4) and (A.6). By substituting
eqs. (A.4), (A.5), (A.6), and (A.8) in eq. (A.1),

ˆ
Ω

[
1

2
µ(∇v +∇vT )•(∇v +∇vT )

]
2πrdΩ︸ ︷︷ ︸

Relative energy dissipation (viscous effect)

−
ˆ

Ω

fr(α)•v2πrdΩ︸ ︷︷ ︸
Relative energy dissipation (porous medium effect)

+

ˆ
Ω

(2ρ(ω∧v) + ρω∧(ω∧r))•v2πrdΩ︸ ︷︷ ︸
Relative energy dissipation (inertial effects)

=

‰
Γ

[(µ(∇v +∇vT ))•v]•n2πrdΓ︸ ︷︷ ︸
Viscous stress effect

− ρgQHrel︸ ︷︷ ︸
Relative pressure head effect

(A.9)

Therefore, the minimization of the relative energy dis-
sipation given in eq. (15) is related to the maximization
of the relative pressure head (Hrel) and, therefore, to the
(absolute) pressure head (H). Borrvall and Petersson [14]
neglect the “Viscous stress effect” of the right side of eq.
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(A.9), in order to show the relation of the energy dissipa-
tion to the variation of pressure weighted by the flow rate
(i.e., the static pressure term of the pressure head), and
also does not include the convective term, which is the
non-linear Navier-Stokes term not present in the Stokes
equations.
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