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Abstract

We explore a timeless approach to quantum theory, in the form of the Page–Wootters
mechanism, in which a gravitational interaction is introduced between the system and a
finite-dimensional clock. The clock model used is the recently proposed quasi-ideal clock,
a construction that can approximate the time–energy canonical commutation relation. We
derive equations of motion for the case in which the system is in a pure and mixed state,
obtaining a Schrödinger-like equation that leads to a non-linear equation exhibiting deco-
herence due to the non-ideal nature of the clock and gravitational coupling. A distinctive
feature of this equation is that it exhibits dependence on the system’s initial conditions.

Keywords: Page–Wootters mechanism; quantum clocks; equation of motion

1. Introduction
The goal of combining Einstein’s theory of gravitation with quantum theory has been

demonstrated to be an arduous task. At present, a theory pertaining to quantum gravity
has not been discovered, and much effort is being put into trying to understand scenarios
in which we can study the effects of relativity on quantum mechanical systems without
the commitment to high energies [1–4]. One way to achieve this is to adopt the approach
of general relativity and investigate quantum theory constructions that do not depend on
background structures, such as time. In quantum mechanics, time has a special place; it is a
parameter with respect to which all other events happen, a condition that is certainly not
exhibited by general relativity, as a result of the principle of general covariance [5].

Time-covariant quantum mechanics, in which the dependence of a state on an external
reference timeframe is excluded and therefore time is treated like any other quantity, can
exhibit a Hamiltonian constraint that takes the form of a Wheeler–DeWitt equation, leading
to a timeless condition. The dynamics in this formalism can be recovered by assigning a
clock as the state of one of the subsystems, which is used as a reference for time. Then,
in this construction, time is what is read from a clock in the same manner as it is viewed in
general relativity. This way of restoring a kind of time evolution in a static global state is
recognized as the Page–Wootters mechanism [6,7], also known as the timeless approach to
quantum mechanics or the relational Schrödinger picture, an approach that has garnered
much attention [8–20].

Among the many advances made regarding the Page–Wootters mechanism, criticism
of those propagating the formulation was addressed [21], an indefinite causal order in
the gravitational system was identified [22], and limits on precision when constructing an
observable time were established [2]. A point in common with all the advances mentioned
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above is the use of idealized quantum clocks. Even though such clocks are usually effective
when determining the physical constraints of the problem, we wish to explore a more
realistic scenario where we rely on an imperfect clock, i.e., a clock with a finite dimension
and states which are not necessarily orthogonal. Although several models have been
proposed for the construction of quantum clocks, we are going to focus on a clock model
that mimics several properties of the ideal clock while possessing a finite dimension. This
model is known as the quasi-ideal clock [23], which has already been shown to satisfy a
covariant condition akin to the Page–Wootters condition [24].

Here, we further expand the timeless formulation of quantum mechanics in a manner
which is twofold: we employ the quasi-ideal clock model as the “timekeeper” in the
timeless formulation, obtaining a Schrödinger-like equation for the case where the clock
and system interact gravitationally. In doing that, we extend a previous result in which a
temporally non-local Schrödinger equation was obtained when the system was in a pure
state, and there was an interaction between the two [25,26]. Additionally, we consider
the system to be in a mixed state, and we derive an equation of motion that describes
gravitational decoherence. This equation is unique in that it depends on the system’s initial
conditions; therefore, it is non-linear in nature. The fact that the clock is not ideal is reflected
in a dependence upon its dimension, where the dimension alleviates these non-linear and
non-unitary effects.

2. Temporally Non-Local Schrödinger Equation
We start with a brief review of previous work [6,25] describing the effects of interaction

in the Page–Wootters model. A physical Hilbert space Hphys composed of all global states
Ψ⟩ is considered, which satisfy a Wheeler–DeWitt-like constraint [27,28]

H Ψ⟩ = 0, (1)

where H is the total Hamiltonian. The global state is considered to comprise a clock with
Hilbert space HC and a system (the system of interest) with Hilbert space HS and Hamil-
tonians HC and HS. Then, the global state is said to contain the full history of the system
of interest, with the clock being the timekeeper of the system. The clock states τ⟩ ∈ HC

are such that a state τ⟩ is associated with time τ. The initial clock state can be defined as
0⟩ ∈ HC and state evolution between its states is given by

τ⟩ = e−iHCτ 0⟩ . (2)

Any state of the system can be obtained by conditioning the global state Ψ⟩ to a clock state
associated with a time τ as

S(τ)⟩ = (⟨τ ⊗ 1s) Ψ⟩ , (3)

where S(τ)⟩ ∈ HS is what we will call a system state. This action can be interpreted
as selecting a slice of the global state, representing the system state at the desired time.
Then, an equation of motion for the system state in terms of the clock can be obtained using
Equations (1) and (3):

i
d
dτ

S(τ)⟩ = HS S(τ)⟩ . (4)

The constraint in Equation (1) can be modified to include a general interaction Hamiltonian
HI ; then, the constraint can be written as

(HS + HC + HI) Ψ⟩ = 0. (5)
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This new constraint can also be shown to lead to a Schrödinger-like evolution; more
specifically, the system state will obey a temporally non-local Schrödinger equation:

i
d
dτ

S(τ)⟩ = HS S(τ)⟩+


dτ′K(τ, τ′) S(τ
′)⟩, (6)

where the new term is a self-adjoint integral operator and K(τ, τ′) = ⟨τHI τ′⟩ is seen
as its kernel. Given that this equation is non-local in time, it is implied that to verify its
solution, knowledge of the system state is required at all times [25].

3. Ideal and Quasi-Ideal Clocks
The result in Equation (6) considers ideal clocks, usually defined to be a quantum

system associated with a time observable T , which acts on an infinite dimensional Hilbert
space possessing a distinguishable basis of time states. The use of an ideal clock can be
traced back to the requirement that the time observable obeys the canonical commutation
relation with the clock Hamiltonian HC

[HC, T ] = −i, (7)

which is equivalent to requiring that the expectation value of T varies linearly with time.
This condition is supposed to be satisfied only by the ideal momentum clock [29], with the
clock Hamiltonian being the momentum operator HC = PC and the position operator as
the time observable X = T .

Respecting this condition is not straightforward, and well-known clock models fail
to adhere to it. Notably, even the prominent Salecker–Wigner–Peres (SWP) clock cannot
approximately adhere to this condition [30,31]. The discussion surrounding the construction
of a time observable is extensive, and we will not delve further into it. What is of interest
in the present work is that there are constructions that can approximate the canonical
commutation relation in Equation (7), meaning that there are clock models that can mimic
the evolution of the idealized clock model while possessing finite dimensions. This is the
case for the quasi-ideal clock (QIC).

Let QI(k0)⟩ be a QIC state (which will be introduced shortly) is conditioned on the
parameter k0 ∈ R, which is taken to be the initial time position of the clock. Then, we can
write the commutation relation as

[HC, T ] QI(k0)⟩ = −i QI(k0)⟩+ comm⟩ , (8)

where comm⟩ is a non-unity state vector that quantifies the error in the commutation
relation of the QIC when compared to the ideal case, being exponentially small in dimen-
sion [23].

The QIC is based on the SWP clock, which can be seen as a quantum rotor [32]
possessing a Hamiltonian with evenly spaced energy levels:

HC =
d−1

∑
j=0

j Ej⟩ ⟨Ej , (9)

where d is the dimension of its Hilbert space, i.e., the number of energy eigenstates of
the clock, which may be determined through some spectroscopic technique, with the
period T = 2/. The SWP clock states form an orthonormal set of states k⟩ for



Universe 2025, 11, 308 4 of 15

k = 0, 1, . . . , d− 1, which is dubbed the time basis. With this, it is possible to construct a
time operator:

T = ∑
k
tk k⟩ ⟨k , (10)

where tk = (T/d)k. These states are connected to energy eigenstates through a discrete
Fourier transform:

k⟩ =
1√
d

d−1

∑
j=0

e−i2 jk/d Ej⟩ , (11)

and evolve according to e−iHCT/d k⟩ = k+1⟩, thus establishing regular, integer time
intervals tk, such that the periodic condition e−iHCT k⟩ = k mod (d)⟩ is satisfied.

The QIC states that approximately obey the canonical commutation relation above are
defined as a coherent superposition of time states [23]:

QI(k0)⟩ = ∑
k∈Sd(k0)

Ae−(k−k0)2/σ2ei2 j0(k−k0)/d k⟩ , (12)

where A ∈ R+ is a normalization constant, σ ∈ (0, d) is the width of the clock in the time
basis, j0 is the average energy of the clock for which j0 ∈ (0, d− 1), and Sd(k0) = k : k ∈
Z and − d/2 ≤ k0 − k < d/2 is a set of d consecutive integers centered about k0. When
applicable, we will write (k0; k) = Ae−(k−k0)2/σ2ei2 j0(k−k0)/d so that

QI(k0)⟩ = ∑
k∈Sd(k0)

(k0; k) k⟩ . (13)

The evolution of the clock states is given by a relation equivalent to Equation (2):

e−iHCt QI(k0)⟩ = QI(k0 + td/T)⟩+ ⟩ , (14)

where ⟩ is an error term composed of two distinct errors, an error in changing the mean
position of the clock, i.e., passing from k0 to k0 + 1, and an error in changing the consecutive
integers, i.e., S(k0) to S(k0 + 1), whose norm becomes exponentially smaller as the number
of dimensions decreases. Unlike the SWP clock, the quasi-ideal states are continuous, in the
sense that their evolution holds, according to the idealized case, for arbitrarily small time
intervals, where t ∈ R.

4. Relative State for the Quasi-Ideal Clock
Without loss of generality, we choose the initial state of the clock to be centered around

k0 = 0 and rewrite the evolution, so that Equation (14) becomes

e−iHCt QI(0)⟩ = QI(td/T)⟩+ ⟩ . (15)

As in Equation (3), we wish to define the relative state of the system as a slice of the global
state with respect to the QIC at time t:

S(τd/T)⟩e = ⟨QI(τd/T)Ψ⟩ . (16)

Althoughwe are defining the system state with the parameter τd/T, we will alter td/T → τ,
so that all results are written in terms of τ.
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The subscript in Equation (16) indicates that the state is an effective state for the system,
as can be seen in the equation below (see Appendix A):

S(τ)⟩e =
1
T

 T

0
dτ′ ⟨QI(τ)QI


τ′

⟩ S(τ

′)⟩

=
1
T

 T

0
dτ′FQI(τ − τ′) S(τ

′)⟩ . (17)

The state we obtain is not exactly S(τ)⟩, the one we would like to prepare, but rather
an approximation that depends on how well the QIC can distinguish the clock states at
different times. This effect is due to the non-ideal condition of the clock: time will be
determined with a certain accuracy that depends on the function FQI(τ − τ′). In order for
this function to peak sharply around τ, and hence increase the accuracy of the clock, we
need to time-squeeze the QIC, which is accomplished for a regime where σ <

√
d. Thereby,

we reduce the uncertainty in time readings in exchange for an increased uncertainty in
energy, making the QIC closer to a time state. This also implies that if we aim to use this
clock to implement a controlled unitary, it will be subject to larger errors, since for squeezed
states the QIC becomes more vulnerable to a back-reaction.

Another aspect of Equation (16) worth noting is that if we consider the dimension
of the clock to be large enough that we can ignore the error in the evolution given by
Equation (14), we obtain ⟨QI(τ)Ψ⟩ ≈ ⟨QI(0) eiτHC Ψ⟩. Using the definition of a relative
state, we can obtain a slightly different form for the effective system state, which will be
useful; this is carried out as follows:

S(τ)⟩e = ∑
k∈Sd(τ)

∗(τ; k) ⟨kΨ⟩

=
1√
d

∑
k∈Sd(τ)

∗(τ; k) S(k)⟩ , (18)

where we used S(k)⟩ =
√
d ⟨kΨ⟩. We can see that, written this way, the effective system

state is a superposition of the system state conditioned to the time basis S(k)⟩. The relative
state S(k)⟩ is not an effective version, as in Equation (16), due to the fact that the time
basis forms a complete distinguishable basis. Hereafter, we refer to the effective system
state only as the system state, for simplicity.

5. Equation of Motion
To obtain the equation of motion for the mixed system state, we first derive an equation

of motion for the pure system state. We introduce a lemma (see Appendix B) that will be
very useful in describing the time evolution of the QIC with respect to τ.

Lemma 1. Given a QIC state evolved to time τ, its derivative will be given by

d
dτ

QI(τ)⟩ = −i
T
d
HC QI(τ)⟩ − ′⟩ , (19)

with the error decreasing exponentially with the dimension

 ′⟩  ≤ O(poly(d)e
−d
4 ). (20)
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The process of obtaining a Schrödinger-like equation for the system state conditioned
on the QIC states follows the same steps given by the Page–Wootters method.

i
d
dτ

S(τ)⟩e = i
d
dτ

⟨QI(τ)Ψ⟩

=


−T

d
⟨QI(τ)HC + i ⟨′


Ψ⟩

= −T
d
⟨QI(τ)HC Ψ⟩+ i ⟨′Ψ⟩

=
T
d
⟨QI(τ) (HS + HI − H) Ψ⟩+ s⟩

= HS
T
d
S(τ)⟩e +

T
d
⟨QI(τ)HI Ψ⟩+ s⟩ .

For the derivation, we also defined s⟩ := i ⟨′Ψ⟩, which can be interpreted as the error
given by the quasi-ideal clock in a certain slice of time associated with the system state.
From this result, we need to address the term regarding the interaction HI . Many choices
could be made; here, we choose the one the seems the most interesting—we consider what
happens when the QIC interacts gravitationally with the system of interest. For the case
of weak gravitational fields and slowly moving particles, we can consider the Newto-
nian formula for the gravitational potential Φ(x) = −GmSmC/x; using the mass–energy
equivalence principle, we obtain the interaction Hamiltonian:

HI = −GHS ⊗ HC, (21)

where we define G := G/c4x. G as the gravitational constant, c as the speed of light, and x
as the coordinate distance between the clock and the system. The interaction term can be
computed as follows:

⟨QI(τ)HI Ψ⟩ = −GHS ⟨QI(τ)HC Ψ⟩

= GHS


i
d
T

d
dτ

⟨QI(τ)+
d
T
i ⟨′


Ψ⟩

= iGHS


d
T ∑k

d
dτ

∗(τ; k) ⟨kΨ⟩+ d
T
i ⟨′Ψ⟩



= iGHS


d

T
√
d
∑
k

d
dτ

∗(τ; k) S(k)⟩+
d
T
s⟩


.

Hence,

⟨QI(τ)HI Ψ⟩ = iGHS
d
T

d
dτ

S(τ)⟩e +GHS
d
T
s⟩ . (22)

With this result, we return to Equation (21), obtaining

i
d
dτ

S(τ)⟩ = HS
T
d
S(τ)⟩e + iGHS

d
dτ

S(τ)⟩e +GHS
d
T
s⟩+ s⟩

= HS
T
d
S(τ)⟩e +GHS


HS

T
d
S(τ)⟩e + iGHS

d
dτ

S(τ)⟩e +GHS
d
T
s⟩+ s⟩



+ GHS
d
T
s⟩+ s⟩

= HS
T
d
S(τ)⟩e +GH2

S
T
d
S(τ)⟩e +


GHS +GHS

d
T
+ 1


s⟩+O(G2)

= HS
T
d
S(τ)⟩e +GH2

S
T
d
S(τ)⟩e + sg⟩+O(G2), (23)
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The new error sg⟩ will be the same error as the one in Lemma 1, with the addition
of terms related to the gravitational constant and the system Hamiltonian; it will be
exponentially small in terms of dimension if the Hamiltonian of the system HS is bounded
and the system state in relation to the time basis is normalized, i.e., ⟨S(k)S(k)⟩ = 1.
With these considerations in mind, it is very easy to see that considering a large enough
clock dimension allows us to neglect it and approximate the equation by disregarding terms
of G that are second-order and above, through which we recover the expected approximate
Schrödinger-like equation:

i
d
dτ

S(τ)⟩e = HS
T
d
S(τ)⟩e +GH2

S
T
d
S(τ)⟩e . (24)

We now consider the system state to be a mixture of the pure system states in
Equation (17):

S(τ) = ∑


p 
S(τ)⟩e ⟨

S(τ) , (25)

where S(τ) = U(τ)S(0)U†(τ) = ∑ p 
S(τ)⟩e ⟨

S(τ). Taking the derivative of this
state and using Equation (24), we find

dS(τ)
dτ

= −i
T
d
[HS, S(τ)]− iG

T
d
[H2

S, S(τ)]. (26)

We readily see that the effect of the gravitational interaction appears in the form of a
second term, with the system Hamiltonian squared, analogously to the Schrödinger-like
equation. This suggests that we can consider the system state as evolving according to
the Hamiltonian Hd = T

d HS(1+GHS). In [22], when considering how the equations
of motion will appear according to different subsystems, it was proposed that terms of
the form 1+ 2Φ(x)/c2 express time dilation. This interpretation comes from the weak
field approximation to the metric ds2 = −(1+ 2Φ(x)/c2)c2dt2 + dx2, which will have a
dominant term g00 = −(1+ 2Φ(x)/c2), for the Newtonian potential Φ(x). If we observe
the Hamiltonian in the equation above, it seems to be analogous to a time dilation effect
or a “blue-shifted” Hamiltonian, guiding the evolution of the system state. We note that
we only considered the interaction mediated by gravity without explicitly introducing
gravitational time dilation. We will see shortly that, when accounting for the clock error,
the interaction between the clock and the system state induces a non-unitary behavior in
the evolution of the system state, provided that Equation (24) holds, which is in contrast to
the ideal clock case (see Appendix C).

To obtain Equation (26), the evolution is considered with negligible clock error. At this
point, we continue by considering the effect of the small contribution given by the error of
the QIC. Let us use the following transformations:

̃(τ) = eiHdτS(τ)e−iHdτ (27)

and
Ṽ(τ) = eiHdτV(τ)e−iHdτ , (28)

where we define the potential V(τ) = GH′√
d
Vk,k′(τ) with GH =


1+GHS +GHS

d
T


and ′

is the sum of errors in Lemma 1 (more details can be found in Appendix D). With these
definitions, the initial state of the system will coincide with the transformed initial state
̃(0) = S(0), and we obtain

d̃(τ)
dτ

= −i[Ṽ(τ), ̃(τ)]. (29)
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Integrating the above equation and iterating it, we obtain

d̃(τ)
dτ

= −i[Ṽ(τ), ̃(0)]−
 τ

0
[Ṽ(τ), [Ṽ(s), ̃(s)]]ds, (30)

an equation that is only dependent on the density operator of the system of interest. We
assume a weak coupling between the clock and the system due to the nature of the assumed
potential, i.e., gravitational, and expand the transformed density operator around τ, i.e.,

̃(s) = ̃(τ) + (s− τ)
d̃(τ)
dτ

+O((s− τ)2). (31)

It is easy to see that the derivatives will contribute with higher-order terms in G; retaining
only those up to second-order terms, we reach

d̃(τ)
dτ

= −i[Ṽ(τ), S(0)]−
 τ

0
[Ṽ(τ), [Ṽ(s), ̃(τ)]]ds. (32)

This leads us to

dS(τ)
dτ

= −i[Hd, S(τ)]− i[V(τ),U†S(0)U]

−
 τ

0
[V(τ), [V(s), (τ)]τ−s]ds, (33)

where
[V(s), (τ)]t−s = e−iHd(τ−s)[V(s), (τ)]eiHd(τ−s).

Finally, we use the Baker–Campbell–Hausdorff formula [33],

U†S(0)U = S(0) + iτ[Hd, S(0)]−
τ2

2
[Hd, [Hd, S(0)]] +O(τ3),

to expand the second term of the equation above. For a sufficiently small time step τ, we
may truncate this series to the first order in τ, finding

dS(τ)
dτ

= −i[Hd, S(τ)]− i[V(τ), S(0)] + τ[V(τ), [Hd, S(0)]]−
 τ

0
[V(τ), [V(s), (τ)]τ−s]ds. (34)

There are several interesting aspects in the above equation. First, since we do not
assume that the initial state of the system is a product state with the environment (which is
not included in the present work), the resulting equations contain terms that depend on the
initial conditions of the system. This feature can be attributed to the timeless prescription:
we must define an initial clock state as the “beginning”, but this state is itself subject to the
clock time, here determined by the QIC.

As mentioned, the system state inside this “Universe” is effectively determined by
how well we can distinguish between different times. This is reminiscent of the work
in [34], which studied the impact of real clocks in quantum mechanics. The description we
have obtained already effectively implies that the system state undergoes decoherence. We
believe that this effect is captured by the second and third terms of Equation (34), which
resemble the Lindblad-type terms also found in [34].

Moreover, we argue that this dependence on the initial conditions is natural: the
time is set at the initial moment, but in principle, it could have been defined with respect
to another parameter, τ′. Unlike in [34], however, here we encounter compound effects
arising from the gravitational interaction between the clock and the system. This interaction
produces the time-dilated Hamiltonian Hd, in which the system not only loses coherence
but does so while evolving with this time-dilated Hamiltonian.
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In addition, the fourth term reflects the impact of gravitational errors, which further
implies decoherence of the system state. This form of decoherence, however, depends on
the full history of the system, which requires knowledge of its state at all previous times.
Finally, we note that, in the limit of an ideal clock, one recovers the usual evolution of the
system, although it is still subject to time dilation.

If we expand this potential coefficient in order to show the influence of the error and
the gravitational constant, we obtain the following result:

V(τ) ∝

1+GHS +GHS

d
T

2

=


1+ 2GHS


1+

d
T


+


GHS


1+

d
T

2
. (35)

For this potential, the energy given by the Hamiltonian is the energy of the state
of the system S(k)⟩, related to the time basis. Then, the decoherence term will have
contributions related to the order of the energy and the squared energy, in contrast to the
equation of motion obtained in Ref. [35], which is only dependent on the square of the
energy. We also note that in the case that the energy S(k)⟩ is negligible, we still have
decoherence due to the non-ideal nature of the clock. Moreover, in Equation (34), there
are two new terms, both dependent on the initial state of the system S(0). Given the
dependence on initial conditions, this shows that this equation of motion is non-linear in
nature, in contrast to other results, in the context of gravitational interaction [35–37].

As mentioned, the non-unitary and non-linear effects arise due to the non-ideal nature
of the chosen clock model, and the “idealness” can be related to its dimension, showing
the role that the size of the clock plays. The smaller its size, the more pronounced these
new terms become; this case would be associated with an ineffective clock dictating the
time inside the universe. Looking at Equation (34), we see that this implies that the system
state will decohere very rapidly, and we would not be able to fix an initial system state.
Meanwhile, the larger it is, the better the clock is considered to be and the closer to an ideal
clock it is; therefore, the non-unitary/non-linear behavior is less noticeable and the loss of
coherence is less attenuated.

6. Discussion
Here, we further developed the Page–Wootters formulation by examining the impact

of a non-ideal clock as the timekeeper when there is a gravitational interaction between
the clock and the system state. To this end, we utilized the quasi-ideal clock, a finite clock
that can approximate ideal clock conditions. We then defined an effective state for the
system as conditioned by this clock model; the effective state is characterized by how well
the QIC basis can be distinguished between different times, which can be improved by
time-squeezing the QIC states, or in other words, reducing their uncertainty in time and
increasing their uncertainty in energy.

We then considered the interaction mediated by gravity and obtained a Schrödinger-
like equation with the error parameters given by the QIC. The error depends on the
dimension of the clock and decreases exponentially in relation to it. Then, under very large
dimensional limitations, we can neglect the errors of the QIC and show that the equation we
obtained leads to a linear Schrödinger-like equation under the influence of a Hamiltonian
that seems to be time-dilated.

We then consider a mixed system state and derive an equation of motion accounting
for clock errors. This leads to a non-linear equation describing decoherence, which is mainly
attributed to the non-ideal nature of the clock. The fact that we defined the system state on
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an imperfect clock time gives rise to two terms dependent on the initial conditions; hence,
depending on the how large this error is, the system state could potentially lose coherence
too quickly and the model would be ineffective. Since the error parameter depends on the
dimension, we can quantify that the larger the clock and the closer it is to the ideal case,
the longer the system state will keep its coherence, and the smaller the clock, the faster
this will happen. It is interesting to note that, by using a non-ideal clock and placing it
in conditions in which it interacts gravitationally with the system, we have an equation
of motion that compounds the effects exhibiting decoherence under the guided evolution
using a time-dilated Hamiltonian.

We note here that there are other decoherence models in the literature associated with
gravity; a noteworthy example is the one given by Pikoviski et al. [37] In their work, they
consider a composite system with a well-defined center of mass and some internal degrees
of freedom that may act as clocks for the system. Decoherence is obtained by noting that
when the superpositions go through different spacetime trajectories, they will experience
different times because of time dilation. This analysis does not consider a timeless condition
as is carried out here, but in principle we could define the system state as composed of
a center-of-mass state and other internal degrees of freedom and obtain an equation of
motion that also takes this effect into account.

Another interesting follow up would be to include thermodynamical considerations.
Previous works have established that, for autonomous clocks, i.e., independent systems
that evolve according to a time-independent Hamiltonian, there is a certain limit for the
entropy generated per tick. Interestingly, entropy was found to be associated with the
accuracy of the clock, working as a resource that determines the “quality” of the clock. It
would be compelling to understand how this affects the evolution of the system and to see
whether the production of entropy impacts the decoherence observed here.
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Appendix A. Derivation of the Global State
We can demonstrate that the natural choice for the global state used in Equation (17)

is connected to the global state using the SWP clock when we have the constraint

H Ψ⟩ = (HS + HC) Ψ⟩ = 0, (A1)

which is essentially the same construction as that provided in Ref. [38]. First, we repeat this
construction and give it a more appropriate notation.

We start with a generic state for the universe with Em⟩S ∈ HS and En⟩C ∈ HC:

Ψ⟩ =
d−1

∑
n=0

dS−1

∑
m=0

pn,m En⟩C Em⟩S , (A2)
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which can be written as

Ψ⟩ =
dS−1

∑
m=0

p̃m E = −Em⟩C Em⟩S

=
dS−1

∑
m=0

d−1

∑
k=0

p̃m k⟩ ⟨kE = −Em⟩C Em⟩S

=
1√
d

dS−1

∑
m=0

d−1

∑
k=0

p̃me−i2mk/d k⟩ Em⟩S

=
1√
d

d−1

∑
k=0

k⟩ S(k)⟩ , (A3)

where we use the constraint of Equation (A1) in the first line and in the second line we use
the resolution of the identity for time states. In order to show how this is linked to our choice,
we use the covariant POVM generated by the quasi-ideal states [24], which in the limit
of large dimensions is approximately PQI(τ) := U(τ) QI(0)⟩ ⟨QI(0)U†(τ)τ∈[0,T];
hence,

Ψ⟩ =
1√
d

d−1

∑
k=0

1
T

 T

0
dτ QI(τ)⟩ ⟨QI(τ)k⟩ S(k)⟩

=
1√
dT

d−1

∑
k=0

 T

0
dτ QI(τ)⟩∗(τ; k) S(k)⟩

=
1
T

 T

0
dτ QI(τ)⟩

1√
d

d−1

∑
k=0

∗(τ; k) S(k)⟩ . (A4)

Using the definition given in Equation (18), we obtain

Ψ⟩ = 1
T

 T

0
dτ QI(τ)⟩ S(τ)⟩ . (A5)

Appendix B. Time Evolution of the QIC
Here, we provide proof for Equation (19); the idea is to use Lemma 8.0.1 of Ref. [23] to

obtain the infinitesimal evolution of the QIC, and then employ the definition of a derivative:

d
dτ

QI(τ)⟩ = ∑
k

d
dτ

(τ; k) k⟩

= ∑
k


lim
→0

(τ + ; k)− (τ; k)



k⟩

= lim
→0

∑k (τ + ; k) k⟩ −∑k (τ; k) k⟩


= lim
→0

QI(τ)⟩ − i(T/d)HC QI(τ)⟩ − ⟩i − QI(τ)⟩


= − iTHC
d

QI(τ)⟩ − lim
→0

⟩i


. (A6)
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The error will have the form ⟩i = ∑k∈Sd(k0)

(1 + 2 + 3) + 2C


k⟩, where the form of

each error can be found in Ref. [23]; therefore, its limit will be

lim
→0

⟩i


= lim
→0

∑
k∈Sd(k0)


(1 + 2 + 3) + 2C




k⟩

= lim
→0

∑
k∈Sd(k0)

[(1 + 2 + 3) + C] k⟩

= ∑
k∈Sd(k0)

(1 + 2 + 3) k⟩

= ∑
k∈Sd(k0)

′ k⟩ = ′⟩ . (A7)

Hence,

′⟩≤





2A

2
√
d

1
2 +

1
2d +

1
1−e


e
−d
4 + 1

2 +
1

2d +
1

1−e


e
−d
4 if σ =

√
d

2A


2σ


α0
2 + 1

2σ2 +
1

1−eσ2α0


e
−σ2α0

4 +


1

2d +
d

2σ2 +
1

1−e
d
σ2

+ 1

1−e
d2
σ2


e
−d2

4σ2


otherwise

, (A8)

which also decreases exponentially with the dimension, where α0 ∈ (0, 1] is a parameter
used to quantify how close j0 is from the edge of the energy spectrum [23].

Appendix C. Equation of Motion for the Ideal Clock
Following the usual steps to generalize Equation (6) and taking the state of the system

to be S(τ)⟩, we obtain
S(0) = ∑



p 
S(0)⟩ ⟨

S(0) , (A9)

with S(τ) = U(τ)S(0)U†(τ) = ∑ p 
S(τ)⟩ ⟨

S(τ); then

dS(τ)
dτ

= ∑


p


d
dτ


S(τ)⟩ ⟨

S(τ)+ 
S(τ)⟩

d
dτ

⟨
S(τ)



= −i∑


p(HS 
S(τ)⟩+ Hk 

S(τ)⟩ ⟨
S(τ)

− 
S(τ)⟩ ⟨

S(τ)HS + ⟨
S(τ)Hk). (A10)

To proceed, we first need to obtain the action of the integral operator Hk. Here, we consider
a gravitational interaction between the clock and the system; therefore, the Hamiltonian of
the universe will be

H = HS + HC − G
c4x

HS ⊗ HC, (A11)

where G is the gravitational constant, x is the distance between the clock and the system,
and c is the speed of light. We are using the idealized momentum clock HC = PC; the
kernel K(τ, τ′) can be computed as follows:

K(τ, τ′) = − G
c4x

HS ⟨τ PC τ′⟩

= − G
c4x

HS


dpp ⟨τp⟩ ⟨pτ′⟩



= − G
c4x

HS


1
2


dppe−ip(τ′−τ)



= − G
c4x

HSi̇(τ′ − τ), (A12)
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where the dot in the delta was used to indicate a time derivative. The adjoint kernel
K†(τ, τ′) is easily obtained. With this,

Hk S(τ)⟩ = −
 G

c4x
HSi̇(τ′ − τ) S(τ

′)⟩ dτ′

= i
G
c4x

HS


(τ′ − τ)

d
dτ′

S(τ
′)⟩ dτ′

= i
G
c4x

HS
d
dτ

S(τ)⟩ (A13)

and its adjoint

⟨S(τ)Hk = i
G
c4x


̇(τ′ − τ) ⟨S(τ

′)HSdτ′

= −i
G
c4x


(τ′ − τ)

d
dτ′

⟨S(τ
′)HSdτ′

= −i
G
c4x

HS
d
dτ

⟨S(τ)HS. (A14)

Then, defining G := G
c4x , we obtain

dS(τ)
dτ

=−i∑


p(HS 
S(τ)⟩+ Hk 

S(τ)⟩ ⟨
S(τ) − 

S(τ)⟩ ⟨
S(τ)HS + ⟨

S(τ)Hk)

=−i∑


p


[HS, 

S(τ)⟩ ⟨
S(τ)] +G


iHS

d 
S(τ)⟩
dτ

⟨
S(τ)+ i 

S(τ)⟩
d ⟨

S(τ)
dτ

HS



=−i∑


p

[HS, 

S(τ)⟩ ⟨
S(τ)] +G


H2

S 
S(τ)⟩ ⟨

S(τ)+ HSHk 
S(τ)⟩ ⟨

S(τ)

− 
S(τ)⟩ ⟨

S(τ)H2
S − 

S(τ)⟩ ⟨
S(τ)HkHS



=−i∑


p

[HS, 

S(τ)⟩ ⟨
S(τ)] +G[H2

S, 
S(τ)⟩ ⟨

S(τ)] +O(G2)

, (A15)

where in the second line we use Equation (6). As all other terms will be of orders superior
to G, which is proportional to the inverse of c4, we assume these terms to be negligible;
therefore, our equation of motion will be approximately

dS(τ)
dτ

= −i[HS, S(τ)]− iG[H2
S, S(τ)]. (A16)

Appendix D. Time-Dependent Potential
To obtain the potential, we start by defining the normalized version of the error

sg⟩ =

⟨ss⟩ ′sg⟩; then, from ⟩s := i ⟨′Ψ⟩, we have

sg⟩ :=

1+GHS +GHS

d
T


i ∑
k∈Sd(0)

′ ⟨kΨ⟩

= GH
′ ∑
k∈Sd(0)

⟨kΨ⟩

=
GH

′
√
d

∑
k∈Sd(0)

S(k)⟩ , (A17)
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with G := G/c4x, where G is the gravitational constant, c is the speed of light, x is the
coordinate distance between the clock and the system, and d is the dimension of the Hilbert
space. Then, we can define

V :=

⟨ss⟩ sg⟩ e⟨S(τ) , (A18)

in such a way that Equation (23), disregarding terms of the second order of G, becomes

i
d
dτ

S(τ)⟩e = HS
T
d
S(τ)⟩e +GH2

S
T
d
S(τ)⟩e +V S(τ)⟩e . (A19)

Just as a note, from the equations above we can see that the potential can be written
explicitly as

V =
GH

′
√
d
∑
k,k′

(τ; k′) S(k)⟩ ⟨S(k′)

=
GH

′
√
d

Vk,k′ . (A20)
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