
THE INCREMENTAL SPLITTING OF

INTERVALS ALGORITHM FOR THE DESIGN OF
BINARY IMAGE OPERATORS

N. S. T. Hirata
∗
, J. Barrera, R. Terada

Department of Computer Science
Institute of Mathematics and Statistics – University of São Paulo
Rua do Matão, 1010 – São Paulo, Brazil – 05508-900
nina@ime.usp.br, jb@ime.usp.br, rt@ime.usp.br

Ed. R. Dougherty

Department of Electrical Engineering - Texas A&M University
College Station - 77843-3128 - TX - United States
edward@ee.tamu.edu

Abstract This paper discusses the design of binary image operators from training
data and its relation to Boolean function learning. An extended ver-
sion of the incremental splitting of intervals (ISI) algorithm for Boolean
function learning and some improvements and heuristics to reduce its
processing time are proposed. Some examples illustrate the application
of the algorithm.

Keywords: Binary image operator, Boolean function minimization, learning.

1. Introduction
Boolean functions characterize a large class of binary image operators. De-
signing these operators from pairs of observed/ideal training images can be
viewed as designing or learning Boolean functions. From the input-output
data collected from the sample images, one can build part of the truth-table of
a Boolean function. However, in practice, the quantity of entries in this table
is relatively small. In order to fill the table and also to find a more compact
representation for the function, incompletely specified Boolean function mini-
mization algorithms can be applied [2, 3]. This framework is briefly recalled in
Section 2.

∗Partially supported by CNPq - Brazil, proc. 68.0093/01-0 and 300238/01-0.

H. Talbot, R. Beare (Eds): Proceedings of ISMM2002
Redistribution rights reserved CSIRO Publishing. ISBN 0 643 06804 X

219

In Section 3, an extension of the incremental splitting of intervals (ISI) algo-
rithm [2, 3], for Boolean function minimization, is presented. More specifically,
the basic operation of splitting an interval by a single element is extended to
the operation of splitting an interval by a sub-interval, leading to a more gen-
eral and efficient algorithm. Some improvements and heuristics that aim to
reduce the processing time of the algorithm are also presented.

In Section 4, some application examples are shown and in Section 5 our
concluding remarks and steps for future research are presented.

2. Designing Binary Image Operators
A binary image on E = Z2 is a function from E to {0, 1}, or equivalently, a
subset of E. A set S ⊆ E represents the binary image 1S : E → {0, 1} defined,
for all x ∈ E, by 1S(x) = 1 ⇐⇒ x ∈ S.

Let W ⊂ E, W = {w1, w2, . . . , wn}, be a non-empty set called window,
and ψ : {0, 1}n → {0, 1} be a Boolean function on n variables. Let 1S |Wx,
where Wx is the translation of W by x, denote the vector (1S(x+w1), 1S(x+
w2), . . . , 1S(x + wn)). The mapping Ψ : P(E) → P(E) defined, ∀x ∈ E and
∀S ⊆ E, as

x ∈ Ψ(S) ⇐⇒ ψ(1S |Wx) = 1

is a binary image operator characterized by function ψ.
The kernel of Ψ is defined as being the set K(Ψ) = {X ∈ {0, 1}n : ψ(X) = 1}.

The collection of all maximal intervals of the kernel of Ψ corresponds to the
basis of Ψ, denoted B(Ψ).

Given an interval [A,B] ⊆ {0, 1}n, the sup-generating operator is the one
characterized by λ[A,B](X) = 1 ⇔ A ≤ X ≤ B. Binary image operators have
a canonical representation in terms of elements in its basis [3, 1]:

1Ψ(S)(x) = max{λ[A,B](1S |Wx) : [A,B] ∈ B(Ψ)}.

One who is familiar to the notion of kernel and basis of an operator will im-
mediately recognize that these notions correspond, respectively, to the canoni-
cal sum of products and minimal sum of products form of a Boolean function.
Therefore, estimating the kernel of the operators is equivalent to estimating
the ones of the functions, and finding the basis of the operators is equivalent
to minimizing Boolean functions.

Given pairs of observed/ideal images, each pair representing an image one
wants to process and its respective ideal desired result, the design goal is to
find an operator that, when applied to the observed images, generates images
that best approximates the respective ideal images. This can be stated as an
optimization problem: an operator ψ∗ in a family C is optimal in C with respect
to a given error measure Er(·) if

Er(ψ∗) ≤ Er(ψ), ∀ψ ∈ C.

The error of an operator is related to the process associated to the observed/ideal
images. In our case, the observed/ideal images are considered realizations of a

220

The incremental splitting of intervals algorithm 221

jointly stationary process (S, I). The mean absolute error of ψ, MAE(ψ), at a
given position x ∈ E, is defined as

MAE〈ψ, x〉 =
∑

(S,I)∈P(E)×P(E)

|1Ψ(S)(x) − 1I(x)|P (1S |Wx, 1I(x))

where P (1S |Wx, 1I(x)) is the joint probability of S ∩Wx and 1I(x).
Due to stationarity, we can omit x, so that

MAE〈ψ〉 =
∑

(X,y)∈{0,1}n×{0,1}
|ψ(X) − y|P (X, y)

where X is the vector 1S |Wx and y = 1I(x). It can be shown that the MAE-
optimal operator is the one characterized by the following Boolean function:

ψ∗(X) =
{

1, if P (X, 1) > P (X, 0),
0, if P (X, 1) ≤ P (X, 0). (1)

The design procedure considered here is composed of three basic steps:

1 estimation of the joint probabilities P (X, y) from pairs of sample images;

2 definition of ψ(X) by using the estimated probabilities in place of P (X, y)
in equation 1;

3 attribution of a value for ψ for those non-observed shapes (generalization).

Step 3 can be accomplished, for instance, via incompletely specified Boolean
function minimization. The resulting intervals characterize product terms of
the final Boolean expression and can be directly mapped to the morphological
representation in terms of erosions and dilations.

3. The incremental splitting of intervals algorithm
The incremental splitting of intervals (ISI) is a Boolean function minimization
algorithm that has been used in the context of designing binary image operators
in the last years [3, 2]. This section presents a more general version of the ISI
algorithm and some recent improvements [6].

3.1 Basic definitions and concepts

Given A,B ∈ P(W), the collection [A,B] = {X ∈ P(W) : A ⊆ X ⊆ B} is
called the interval with extremities A and B.

Given X ⊆ P(W), an interval [A,B] ⊆ X is maximal in X if there is no
other interval [A′, B′] ⊆ X such that [A,B] ⊂ [A′, B′]. The set of all maximal
intervals of a collection of elements X ⊆ P(W) is denoted M(X).

Proposition 3.1 (Splitting rule) Let [A,B] and [C,D] be two intervals of
P(W) such that [A,B] ∩ [C,D] �= ∅. Then

M([A,B]\ [C,D]) =
{
[A,B∩{c}c] : c ∈ C ∩Ac

}
∪

{
[A∪{d}, B] : d ∈ Dc∩B

}
.

222 Hirata, N. et al

Here, M([A,B] \ [C,D]) means the maximal intervals in the collection [A,B] \
[C,D]. As we can see, it can be written as a union of two collections of intervals,
the ones with left extremity A and the ones with right extremity B. This result
generalizes the splitting by a single element (or trivial interval) that has been
previously presented [2, 3].

Example 3.1 Let [A,B] = [000, 111] (also denoted XXX) and [C,D] = [001, 011]
(also denoted 0X1). The elements of {0, 1}3 appear as circles in the Hasse dia-
gram representation in Fig. 1. The elements of the interval appear as the filled
circles while the others appear as non-filled circles. There are two maximal in-
tervals contained in XXX\0X1: {[000, 110] and [100, 111]} (or XX0 and 1XX).

111

000

001

101011

001

011

000

010 100

110

110

111

101

100

110

010 100

Figure 1. The maximal intervals contained in XXX \ 0X1 are XX0 and 1XX.

3.2 The algorithm

The splitting rule presented in the previous section is the core of ISI algorithm.
Starting from the n-cube, ISI successively removes elements of ψ〈0〉 = {X ∈
{0, 1}n : ψ(X) = 0} by splitting the intervals by these elements. After the
splitting step, when all elements of ψ〈0〉 have been removed, the remaining
elements are represented by a collection of maximal intervals contained in it.
At the end of the splitting process, the remaining elements are exactly the
elements in ψ〈1〉 = {X ∈ {0, 1}n : ψ(X) = 1}, represented by the collection of
maximal intervals contained in it. A key point here is to note that the maximal
intervals contained in ψ〈1〉, i.e., M(ψ〈1〉), form the basis of the corresponding
operator Ψ.

Example 3.2 Consider the minimization of ψ(x1, x2, x3) = x1x2x3+x1x2x3+
x1x2x3 + x1x2x3 + x1x2x3. The elements of ψ〈0〉 = {111, 011, 010} are given
by the collection Iψ〈0〉 = {X11, 01X}. Figure 2 shows the maximal intervals
computation process by the ISI algorithm. ISI starts with the 3-cube XXX. The
first splitting step eliminates elements of interval X11. The resulting intervals
are {XX0,X0X}. The second splitting step eliminates elements of interval 01X.
Since this interval intercepts XX0, it is split and generates intervals 1X0 and
X00. But since X00 ⊆ X0X, it can be eliminated. Thus, after the splitting
phase finishes, the remaining intervals are {X0X, 1X0}.

The incremental splitting of intervals algorithm 223

100

110

000

100

011

000

100001

101

111

000

001

101011 011

111

000

010 100

110

110

010 100

010

XXX X11

XX0

X0X

01X

1X0

X00

Figure 2. ISI algorithm dynamics.

The ISI algorithm consists of two basic steps: (i) computation of the maximal
intervals in the kernel (i.e., basis), and (ii) selection of a sub-collection of the
intervals that is enough to represent the kernel (i.e., a sub-basis). A description
of (ii) can be found, for instance, in [5].

In many cases, particularly for large values of n, Boolean functions are not
completely specified. In our case, the value of the function is not known for
those shapes that have not been observed during sampling. These elements are
called don’t cares and will be denoted as ψ〈∗〉.

If ISI is applied as described above to the set ψ〈1〉∪ψ〈0〉∪ψ〈∗〉, then after all
elements of ψ〈0〉 are extracted from the initial n-cube, the resulting intervals
are all maximal intervals contained in ψ〈1〉 ∪ ψ〈∗〉. However, there is no need
to cover elements in ψ〈∗〉 because they can be equally mapped to 0 or 1. If
during the splitting process, an interval that does not contain any element of
ψ〈1〉 is generated, it can be discarded because it will not be needed in step (ii).

Figure 3 shows a pseudo-code of the ISI algorithm that takes into account
these observations. Lines 2-14 correspond to step (i) and line 15 to step (ii). For
each interval [C,D] representing the zeros of the function (line 2), ISI separates
the current set of intervals into two sets: those that does and does not intercept
[C,D] (lines 3-4). Only those that intercept [C,D] need to be split (lines 6-12).
An interval that is split is destroyed, and from those that are newly generated,
only those that are not contained in some already existing interval and those
that contain at least one element of ψ〈1〉 are kept (line 13). After removing all
elements of ψ〈0〉, the algorithm proceeds to step (ii) (line 15).

3.3 Heuristics and analysis

Step (i) of ISI algorithm starts with one interval and then splits it into smaller
intervals, which in their turn may be further split, and so on. Therefore,
as the number of iterations increases so does the number of newly generated
intervals. For a large value of n, the number of intervals generated may become

224 Hirata, N. et al

1. I←− {[∅,W]} ;

2. For each [C,D] ∈ Iψ〈0〉 do {
3. IP ←− {[A,B] ∈ I : [A,B] ∩ [C,D] = ∅} ;

4. Itmp ←− {[A,B] ∈ I : [A,B] ∩ [C,D] 	= ∅} ;

5. INew ←− ∅;
6. For each [A,B] ∈ Itmp do {
7. Isplit ←−M([A,B] \ [C,D]) ;

8. For each [A′, B′] ∈ Isplit {
9. if there is no [E,F] ∈ IP such that [A′, B′] ⊆ [E,F]
9′. and if [A′, B′] covers at least one element of ψ〈1〉
10. then INew ←− INew ∪ {[A′, B′]} ;

11. }
12. }
13. I←− IP ∪ INew ;

14. }
15. I = min cover(ψ〈1〉, I) ;

16. Return I.

Figure 3. ISI algorithm.

computationally prohibitive even with the improvement mentioned above. A
heuristic to keep a relatively small number of intervals at any iteration of
the algorithm consists in computing a minimum cover regularly after a fixed
number of iterations of the splitting phase. This regular number of iterations is
called a period and denoted k. If k = 1, then the number of intervals after each
iteration is no more than |ψ〈1〉|. To implement this heuristic, in the algorithm
of Fig. 3, the minimum cover (line 15) must be computed between lines 13 and
14, whenever the iteration is a multiple of k. This heuristic may increase the
number of resulting intervals because some intervals that would be part of an
optimal solution may be thrown away during the extraction process.

In practice, the gain in processing time due to the heuristic is far more at-
tractive than the slight increase in the number of resulting intervals. Moreover,
the increase in the number of resulting intervals does not significantly affect
the precision of the designed operator. The following tables illustrate two ex-
perimental cases (MAE has been measured on a independent set of test data)

4. Application examples
An image operator Ψ : P(E) → P(E) is anti-extensive if Ψ(S) ⊆ S, for all S ⊆
E. In terms of its characteristic Boolean function, anti-extensiveness means
that if o �∈ X then ψ(X) = 0 (o denotes the reference point of the window).
In the case of anti-extensive operators, any element of ψ〈1〉 is necessarily an
element of the interval [o,W]. Therefore, the ISI algorithm can be modified to
start with this interval instead of the interval [∅,W]. This restriction reduces
the possible operators to those whose kernel is a subset of the interval [o,W].

The incremental splitting of intervals algorithm 225

Table 1. ISI for different periods (n = 15,
|ψ〈1〉| = 9110 and |ψ〈0〉| = 14538).

k |I| Time MAE

1 1472 13807.91 0.009290
10 1385 1402.54 0.009295
25 1391 558.61 0.009296
50 1348 338.98 0.009307
100 1334 250.99 0.009317
300* 1327 203.30 0.009308
800 1321 253.70 0.009318
1500 1310 337.03 0.009321
3000 1345 522.89 0.009324
5000 1405 873.22 0.009319
8000 1470 1370.79 0.009307
12000 1412 1437.90 0.009316
14538 1523 3498.07 0.009313

Table 2. ISI for different periods (n = 25,
|ψ〈1〉| = 1340 and |ψ〈0〉| = 8126).

k |I| Time MAE

1 423 382.99 0.015918
10* 350 51.57 0.013547
25 328 84.70 0.012615
50 318 299.26 0.012484
100 320 1147.23 0.012732
300 317 21954.26 0.012785
800 344 204746.53 0.013227

The design technique discussed here is initially applied to the observed/ideal
pairs of images (S, I). Once a first operator Ψ1 is designed, a second one Ψ2

to enhance the result of Ψ1 can be similarly designed from pairs (Ψ1(S), I).
This can be successively iterated, for instance, until no more improvements
are achieved [8]. Ψ1(S) is the result of iteration 1, Ψ2(Ψ1(S)) is the result of
iteration 2 and so on.

Figure 4 shows the result obtained for the recognition of adders and mul-
tipliers in a functional diagram, using a 9 × 7 window. A total of 6 pairs of
similar images has been used for learning the operator.

Figure 4. Extraction of objects from a diagram.

Figure 5 shows the result of a two-iteration operator, both designed on 7×5
window, for segmenting texture from map images. A total of three pairs of
training images have been used.

This technique has also been applied in character recognition problems [4, 7].

226 Hirata, N. et al

Figure 5. Texture segmentation: test image and result of a two-iteration operator.

5. Concluding remarks
This paper recalled the design of binary image operators from training examples
given by observed/ideal pairs of images. The problem was posed under the
perspective of Boolean function minimization. An extended version of the ISI
algorithm and some improvements and heuristics have been considered. Some
examples show the results obtained.

For large windows, usually the amount of data is not enough for obtaining
a good precision. A possible approach to overcome this difficulty is to reduce
the space of operators by considering a sub-family of the whole family. An
interesting question is how these constraints will affect the Boolean function
learning problem.

References

[1] G. J. F. Banon and J. Barrera. Minimal Representations for Translation-Invariant
Set Mappings by Mathematical Morphology. SIAM J. Applied Mathematics,
51(6):1782–1798, December 1991.

[2] J. Barrera, E. R. Dougherty, and N. S. Tomita. Automatic Programming of
Binary Morphological Machines by Design of Statistically Optimal Operators in
the Context of Computational Learning Theory. Electronic Imaging, 6(1):54–67,
January 1997.

The incremental splitting of intervals algorithm 227

[3] J. Barrera, R. Terada, R. Hirata Jr, and N. S. T. Hirata. Automatic Programming
of Morphological Machines by PAC Learning. Fundamenta Informaticae, 41(1-
2):229–258, January 2000.

[4] M. Brun, J. Barrera, N. S. T. Hirata, N. W. Trepode, D. Dantas, and R. Terada.
Multi-resolution Classification Trees in OCR Design. In D. L. Borges and S.-
T. Wu, editors, Proceedings of Sibgrapi 2001, pages 59–66, Florianopolis, Brasil,
October 2001. IEEE.

[5] F. J. Hill and G. R. Peterson. Introduction to Switching Theory and Logical
Design. John Wiley, 3rd edition, 1981.

[6] N. S. T. Hirata, J. Barrera, and E. R. Dougherty. Boolean Function Minimization
by Incremental Splitting of Intervals. submitted, 2001.

[7] N. S. T. Hirata, J. Barrera, and R. Terada. Text Segmentation by Automatically
Designed Morphological Operators. In Proc. of SIBGRAPI’2000, pages 284–291,
Gramado, Brazil, October 2000.

[8] N. S. T. Hirata, E. R. Dougherty, and J. Barrera. Iterative Design of Morpholog-
ical Binary Image Operators. Optical Engineering, 39(12):3106–3123, December
2000.

