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ABSTRACT

We consider the scalar delayed differential equation €x(t) = —x(t) + f(x(t — r)), where ¢ > 0,
r = r(x,e) = 14 n(e)R(x), and f represents either a monotone positive feedback df /dx > 0 or a
monotone negative feedback df /dx < 0, plus some other hypotheses. When the delay is a constant,
i.e. r(x,€) = 1, this equation can support metastable rapidly oscillating solutions that are transients
whose duration is of order exp(c/¢), for some ¢ > 0. In this paper, combining analytic and numerical
techniques, we investigate whether this metastable behavior persists when the delay r(x, €) depends non
trivially on the state variable x. More precisely, we proceed in three steps. First we explore theoretically
and numerically the existence of branches of rapid periodic solutions for these equations. Then, to predict
conditions for metastability, we introduce transition layer equations that depict the asymptotic shape
of transient oscillations when € tends to zero and n(e) ~ e. Finally, these predictions are validated by
numerical simulations. Numerical explorations are also performed for other scalings of n(¢) with €. Our
conclusions are: (i) when n(0) # 0, there are no metastable transients; (ii) when n(0) = 0 and 5'(0)
is finite, for monotone negative feedback, the metastable oscillations exist irrespective of choices of f
and R; (iii) for monotone positive feedback, they require that the feedback f and the delay R satisfy extra
conditions, such as f being an odd function and the delay R(x) an even function. One novel result is that
state-dependent delays may lead to metastable dynamics in equations that cannot support such regimes
when the delay is constant.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

appear as models in economics, physics and biology [1-7].
Many studies have dealt with the asymptotic dynamics of

State-dependent delay differential equations (DDEs) of the form these equations, establishing existence, stability and profiles of

6%(0 = ex(t) = —x(t) + f(x(t — 1)),

wherer = r(x, €) = ro + F(x, €), M
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the so-called slowly periodic oscillations when f represents a
negative feedback (see, for instance, [8-17]). There are also
results on existence and stability of periodic solutions, and on
the convergence of most solutions to equilibria in the case of
monotone positive feedback [18,19]. For a review on DDEs with
state-dependent delays see [20]. In contrast with these previous
studies, in addition to the long term behavior of solutions, we
are also interested in the transient dynamics of Eq. (1): we
explore the occurrence of metastable transient oscillations prior
to convergence to an asymptotic regime. Typically, in such a
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long-lasting transient, the system engages in seemingly stable
and sustained oscillations for a time of order exp(c/¢) for some
constant c, before eventually converging to a stable equilibrium or
a stable periodic solution.

It is well known that delayed feedback can lead to oscillations
in a system that would otherwise remain at rest. Much focus
has been on delay-induced sustained undamped oscillations, such
as periodic ones. However, the delay can also produce transient
oscillations that end up vanishing with time. While these had
been reported in several studies (see for instance [21-24] and
references therein), for a long time they had not been considered
as a topic of investigation on their own. In [24], the term DITO
was coined for this phenomenon both as an acronym for “delay
induced transient oscillation” and as a means to emphasize its
repetitive nature. In the same paper, it was argued that long-
lasting DITOs could strongly alter the dynamics of the system
and, for instance, interfere with information retrieval in neural
networks. That work together with the ones cited above initiated
intrinsic interest in the phenomenon. Since these early studies,
DITOs have been reported in other systems, such as for instance
[25,26]. In support of claims in [21] and numerical explorations
in [24], through analytical treatment of a specific system of DDEs
with piecewise constant feedback, it was shown, in [27], that
some DITOs could persist for durations of the order exp(c/e).
Such long transients would outlast any observation window
when € is small enough and would be undistinguishable from
(nearly) periodic solutions. In analogy with long-lasting transient
oscillations in partial differential equations, DITOs with such
exponential lifetimes are referred to as metastable [28].

Metastable oscillations have been thoroughly studied in many
systems such as scalar partial differential equations [29,30]. How-
ever they have received far less attention in DDEs. Here we
examine their occurrence in DDE (1). Our previous works charac-
terized the conditions for metastability in equations with constant
delays for both monotone positive and negative feedbacks [28,31].
They further revealed a remarkable difference in metastability be-
tween the monotone positive and monotone negative feedback
equations, that had escaped earlier reports and explorations. In-
deed, a positive feedback DDE presents metastability only when
the feedback f satisfies a special symmetry property that holds, for
instance, when f is an odd function. This is not a requirement in the
negative feedback case (see also [32,33] for related results). One
consequence of this result is that not all DITOs are metastable.

All these previous works deal with constant delays. As far as we
know, the present paper is the first one to investigate and show
the existence of metastability for state-dependent delay equations.
Our goal in this paper is to study the transient dynamics of Eq. (1)
when the parameter € > 0 is small or, equivalently, rq is large.
The present investigation is based upon available information
regarding rapidly oscillating periodic solutions (periodic solutions
that have a large number of zeros in a time interval of length
o), and educated guesses supported by systematic numerical
investigations.

In previous singular perturbation analyses of DDEs with state-
dependent delay [34-36], the small parameter € appears only on
the left hand side of the equation. Here, the novelty resides in the
fact that € appears in Eq. (1) in two different places: multiplying the
time derivative of x, which characterizes a singular perturbation
problem, and as an argument of r. One major contribution of this
work is to highlight the fact that the dynamics of Eq. (1) strongly
depend on the way r depends on €.

This paper presents the first exploratory work in the transient
dynamics of state-dependent DDEs. As this topic has not been
investigated before, our work unfolds in two major steps. First,
inspired by what is known for constant delays, we characterize
theoretically, and numerically, conditions for metastability, and

then we validate these through numerical simulations. To this end,
the paper is organized as described below.

For the sake of self-consistency, in Section 2 we schematically
review key results on metastability in DDEs with constant
delays. These are used to identify the two essential ingredients
of metastability: (i) rapidly oscillating periodic solutions, and
(ii) transition layer equations whose heteroclinic orbits capture
the shape of transient oscillations as ¢ — 0. In the following
sections, we explore the same ingredients in state-dependent DDEs
and their consequences on the transient dynamics. In Section 3,
using a Hopf bifurcation theorem, we examine the existence of
rapidly oscillating periodic solutions for Eq. (1), regardless of
the choice of r and its scaling with the small parameter €. In
Section 4 we introduce transition layer equations and compute
numerically their heteroclinic orbits to describe metastability.
These equations generalize those of DDEs with constant delay
[37,38,31]. From our investigation, we postulate that symmetry
conditions on heteroclinic solutions of these equations can be
used to characterize the conditions required for metastability. In
Section 5, we present systematic numerical explorations of the
transient dynamics of Eq. (1) that validate the predictions of the
previous section. Section 6 contains a discussion and a summary of
the results. Notably, one novel observation, specific to equations
with state-dependent delay, is that the existence of metastable
solutions may depend on the behavior of the function r when
€ — 0. So we have considered several possible scalings of n with
e fore — 0.

Prior to Section 2, we go over some assumptions and notations.
In most applications the functions f and r are differentiable in x;
here this is always assumed. Furthermore, in accordance with our
previous results [28,31], we assume that f is either a monotonic
increasing (positive feedback) or a monotonic decreasing (negative
feedback) function satisfying the following hypotheses.

MPFH

f'(x) > 0,f(0) = 0,f(0) > 1, and there exista > 0,b > 0,
such that f(—a) = —a,f(b) = b,0 < f'(—a) < 1,0 < f'(b) <
1,and f (x) # x forx € (—a, 0) U (0, b).

MNFH
f'(x) <0,f(0) =0,f(0) < —1, and there exista > 0,b >
0, such that f(—a) = b, f(b) = —a,0 < f'(—a)f'(b) <

L Iffx)| > xforx € (—a,0) U (0,b), and |[f(f(X))| < x
forx € (—o0, —a) U (b, 00).

The names MPFH and MNFH stand for “monotone positive feed-
back hypothesis” and “monotone negative feedback hypothesis”,
respectively.

In the following, a function f satisfying MPFH or MNFH will be
called symmetric if it is an odd function. Under these hypotheses,
both the dynamics of the map f : R — R, and the DDE Eq. (1),
with constant delay are well understood. In particular, the map
f satisfying MPFH has only three fixed points: x = 0, unstable,
and x = —a, x = b, stable on the interval [—a, b]. For f satisfying
MNFH, the map has a single unstable fixed point x = 0, and a single
attracting 2-periodic orbit {—a, b} on the interval [—a, b]. Without
loss of generality, one can use the time scaling s = ri and consider
Eq. (1) with ryp = 1. In the following we shall assume that the delay
function is

r(x,€) =14+ n(e)RKX), (2)

where 7 is a non negative and smooth function on ¢ > 0, and
R : R — R.In this way, different scalings between the delay r
and the parameter € can be analyzed by changing the function 7.
Typically R will be chosen as a smooth nonnegative function.
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2. Metastability in DDEs with constant delay

Metastability is a concept that appears in several branches
of physics and mathematics. Schematically, a state is called
metastable if it is transient, that is, it is eventually transformed
into another one, but this transformation is on such a slow time
scale that it is not perceived in normal observation windows. One
of the first systems of relevance to the present work, in which
metastability had a full mathematical treatment, is that of scalar
parabolic equations [29,30]. Metastable solutions of DDEs (1) with
constantdelay r(x, €) = 1share a number of features with those of
the partial differential equations [28,31]. In this section, we provide
an overview of metastable solutions in scalar DDEs with constant
delay, that will serve as a basis for the comparison and analysis of
the case of state-dependent delay.

Throughout the remainder of this section, we refer only to DDEs
(1) with constant delay set to one. Roughly speaking, metastable
solutions of these equations are trajectories that evolve close to
unstable manifolds of unstable periodic orbits, and they seem to
be periodic, while in fact they are endowed with a drift of order
exp(c/e€). In Section 2.1 we describe the relationship between
rapidly oscillating periodic orbits and metastable oscillations, and
in Section 2.2 we show how transition layer equations allow us to
quantify the slow drift of such oscillations. For details see [28,31].

2.1. Metastability and rapidly oscillating periodic orbits

To make the description more concrete, consider, for instance,
the function f(x) = % arctan(5x) satisfying MPFH. For any value
of € > 0, Eq. (1) has exactly three equilibria, x = —a, x = 0, and
X = a, where a is the positive solution of x = %arctan(Sx). For
all values of € > 0, the equilibria x = —a and x = +a are locally
asymptotically stable and x = 0 is unstable. For all € sufficiently
large the unstable manifold of x = 0 is one-dimensional and as €
decreases, x = 0 undergoes an infinite number of Hopf bifurcations
ate; > € > --- > 0 such that the dimension of the unstable
manifold of x = 0 at € € (ep, €,+1) becomes 2n + 1. Let x,, denote
the periodic solution that bifurcates from x = 0ate = ¢, If
Xp(t) = 0 then x,(t 4 s) has exactly 2n zeros for s € [—1,0].
The branches of periodic orbits that appear at these successive
Hopf bifurcations can be extended up to ¢ = 0. On a given
branch the minimal period converges to a constant, the amplitude
converges to a > 0 [39], and, for f odd, the oscillations tend to
a square-wave-like shape when € — 0. So, provided that ¢ >
0 is sufficiently small, Eq. (1) admits rapidly oscillating periodic
solutions: periodic solutions that have a large number of zeros in
a time interval of length one. Given ¢ > 0 the global attractor
of Eq. (1) consists of its set of equilibria and periodic orbits, and
their finite-dimensional unstable manifolds. These solutions are
organized in a peculiar way: the global attractor admits a Morse
decomposition, with each Morse set containing a periodic orbit or
an equilibrium. The direction of the flow on this decomposition
is such that the number of zeros of solutions is a non-increasing
function of time [40,19]. A similar description of the periodic orbits,
their branches, their shape, and the organization of the trajectories
on the global attractor holds for Eq. (1) with negative feedback
[14,38].

Now that we have depicted the long term dynamics of DDEs
with f either satisfying MNFH or being odd and satisfying MPFH,
we can describe the way metastable solutions appear in Eq. (1). For
€ > 0 small, an initial condition ¢ : [—1, 0] — R to Eq. (1) with
2n zeros gives rise to a solution x; (-, ¢, €) : [—1, 0] — R that after
a time of order one is pointwise close to a function in the unstable
manifold of x,, that has a square-wave-like shape close to that of
Xn. The dynamics of x,, is approximately periodically oscillatory, but
the slow motion of the solution along the unstable manifold of x,

eventually annihilates a pair of zeros of the solution, which takes
a time of order exp(c/e€). After the annihilation of the two zeros
the solution drifts along the unstable manifold of another periodic
solution x,_1, and this process repeats itself until the solution
eventually approaches one of the two stable equilibria x = —a or
x = afor an odd function f satisfying MPFH, or a slowly oscillating
periodic orbit for f satisfying MNFH. Metastability means here that
the solutions have a (fast) oscillatory transient time that grows as
exp(c/e) whene — 0.

2.2. Metastability and transition layers

Metastability not only depends on the existence of periodic
solutions (i.e. the qualitative geometry of the phase portrait), but
also on the quantitative dynamics along their unstable manifolds.
Metastability happens only when the rapidly oscillating solutions
are square-wave-like, in which case their jumps have been
understood as transition layer phenomena, and described and
analyzed using transition layer equations.

Suppose that f satisfies MPFH and that x(t) is an oscillatory
metastable solution of (1), with r = 1, that jumps from x(t) ~
b > 0,fort < 0,tox(t)  —a < 0,fort > 0, with x(0) = 0.
The approximately periodic behavior of the metastable solution
implies that x(t) =~ x(t + 1+ pe). When € is small, this and Eq. (1)
imply

d
ed—’t‘m = —x(t) + F{x(t — D} ~ —x(t) + F{x(t + pe)}.

Rescaling x(t) as ¢~ (t) = x(et), the above equation for x(t) implies
that in the limit ¢ — 0, ¢~ must satisfy the transition layer
equation (see [31]):

¢ () =—¢ (O +f@ (t+p)), 3)

where p~ > 0 is an unknown constant and the function ¢~
must satisfy the boundary conditions lim;, o, ¢~ (t) = b and
lim;_, o ¢~ (t) = —a. The same ideas apply to a jump from x(t) ~
—a < Ofort < 0,tox(t) ~ b > Ofort > 0, and leads to the
existence of an increasing transition layer solution, i.e. a solution
to

() =—¢T(O) +F@T(t+ ")) 4)
where p™ > 0 is an unknown constant and the function ¢*
must satisfy the boundary conditions lim;_, _o, ¢ (t) = —a and

lim;. o ¢*(t) = b.

The constants p* and p~ are drift velocities of ascending and
descending sign-changes (zeros) of an oscillatory solution. If an
oscillatory solution x(t) of Eq. (1) satisfies x(t;") = 0 and X' (t;) >
0, then one expects to find a time t; ~ tj + 1 + ep™ such
that x(t;") = Oand X' (t]7) > 0;ifx(t;) = 0and X'(t;) < O,
then one expects to find a time t; &~ t; + 1 4 €p~ such that
x(t;) = O0and x'(t;) < O. This suggests that the symmetry
condition p™ = p~ should be associated with metastability of
oscillating solutions. Indeed, exponential duration of oscillatory
transients is provenin[31] for scalar DDEs, with monotone positive
feedback, by an estimate of the type |t1i - (toi +14ep®)| < e/,
so that when p™ = p~ oscillatory solutions are close toa 1 + €p
periodic solution up to an exponential order.

Finally, we discuss the transition layer for f satisfying MNFH.
Transient oscillations are square-wave-like and they have an
approximate period T & 2 + €C. If an oscillatory solution x(t) of
Eq. (1) satisfies x(tg) = 0 and X'(tp) > 0, then one expects to find
atime t; & ty + 1 + €p™ such that x(t;) = 0 and X'(t;) < 0, and
thenatimet, ~ t; + 1+ €p~ such that x(t;) = 0 and X'(t;) > 0.
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So the transition layer equations for the increasing and decreasing
transition layer solutions are coupled:

{<p+<t) =—¢T (O +f@[t+ oD,
¢7(t) =—¢~ (O +f(@ [t + 0T,
where ¢ is increasing and ¢~ is decreasing on R, with
lim, oo @™ (t) = —a,limioo @™ (t) = b,lim ¢~ (t) = b
and lim;_, o ¢~ (t) = —a, with ¢*(0) = ¢~ (0) = 0 and p* are
unknown real constants. For f satisfying MNFH, given an oscilla-
tory solution x(t), an (ascending) zero x(ty) = 0 with x'(ty) > 0
gives rise to a (descending) zero x(t;) = 0 with X'(t;) > 0, and
then to another ascending zero x(t;) = 0 with x'(t;) > 0, with
ti ~tg+1+eptandt, = t; + 14 €p~. So, in the first order, the
drift speeds of ascending and descending zeros are identical and
equal to 2 + €(p~ + p™). Hence the symmetry condition, equiva-
lent to the condition p™ = p~ in the case f satisfies MPFH, is here
pT +p~ = p~ + pT, and it is obviously always true, irrespective
of p*and p~ [31].

In summary, the analysis using transition layer equations
reveals and explains that metastability manifests itself in different
ways in positive and negative feedback systems. Indeed, monotone
positive feedback DDEs present metastability only when a special
symmetry property of the transition layer problems (3) and (4)
is satisfied, which holds for instance when f is an odd function,
while there is no such restriction in the case of monotone negative
feedback equations (5) [28,31].

(3)

3. Existence and amplitude of periodic solutions

Based on literature results and novel results that follow in
this section, we conjecture that, provided the delay satisfies a
number of classical technical assumptions [34-36,10,20,41-43],
the geometric organization of the phase portrait of DDEs with
state dependent delays and monotone feedback is similar to that of
equations with constant delays. Namely our three conjectures are:
(i) Eq. (1), with 7 (x, 0) = 0, sustains branches of periodic solutions,
that appear at the 0 equilibrium by successive Hopf bifurcations
and exist until ¢ — 0, with amplitudes and periods that converge
to some non zero limits. (ii) A Poincaré-Bendixson like theorem
holds, and as a consequence the global attractor of (1) is composed
of equilibria, periodic solutions, and their unstable manifolds.
(iii) The global attractor of (1) has a Morse decomposition, it is
ordered by a discrete Lyapunov functional, and it is composed only
of equilibria of (1), the periodic solutions described in the first
conjecture, and connections from more rapidly oscillating periodic
solutions to less rapidly oscillating periodic solutions.

With few hypotheses on the feedback f, we have shown that
a local Hopf-bifurcation theorem of [41] applies to (1). This gives
an essential element in the proof of conjecture (i): for some
decreasing sequence ¢, — 0, a Hopf bifurcation occurs at the
zero equilibrium of (1) each time that € crosses one ¢, which
gives rise to an oscillating periodic solution with 2k zeros per unit
time. The corresponding theorem is rigorously stated in Section 3.1
and proved in Appendix A. Assuming the existence of branches
corresponding to these periodic solutions, in Section 3.2, we show
thatif we have n(e) = ce+o(€)in(2)forsome 0 < ¢ < 400, then
the amplitudes of all periodic solutions converge to the same non
zero limit when ¢ — 0. On the contrary, following a proposition
of [35], we show in Section 3.3 that when 7(0) # 0, the amplitude
of periodic solutions with 2k zeros per period (along the branch
that appears at ¢), is bounded from above by some constant C;
(independent of €) such that C;, k—+> 0.

—> +00

3.1. Sequence of Hopf-bifurcations for Eq. (1)

The Ph.D. Thesis of M. Eichmann [41] contains a local Hopf-
bifurcation theorem for state-dependent DDEs which implies the
following.

Theorem 1. Suppose that f is C*>(R, R), r :]0, 1[xC°([—M, 0], R)
— RisClandr :]0, 1[xC'([—M, 0], R) — Ris C% for M > 0.
Suppose that f(0) = 0 and |f’(0)| > 1. Then there is a decreasing
sequence (ex)ren COnverging to zero, such that for any k > 0 there
is an open interval | — n, ni[ and C! mappings y* :1 — nk, m[—
C'([—M, 0], R), €* :] — my, ;[—10, 1[ and w* :] — ni, me[— R,
with y*(0) = x* = 0, €*(0) = ¢, and w*(0) = B = Im(\y) such
that for any u €] — ny, ni[ there is a periodic solution to

€ (WX (£) = —x() + f(x(t — r(e" (W), x0)))

with initial condition xo = y*(u) and with frequency wiw

2r

We remark that the delay functionr (e, x;) in the theorem above
is more general than that in Eq. (2), and that the function f does not
have to be positive or negative feedback.

Theorem 1 is an immediate consequence of the theorem by
Eichmann [41]. In Appendix A we verify that the hypotheses
of Eichmann’s theorem are satisfied. Here we first justify the
existence of the critical values ¢, and show that the associated

frequencies ;"—7‘; = % k—) +00. Suppose that f(0) = 0 and that
— 00

If'(0)] > 1, and let x* = 0 be the unstable steady solution of
Eq. (1). The linearization of Eq. (1) at x* = QO is

€y (t) = —y(t) + f'(0)y(t — rop)

where 1y = r(0) = r(x*) = 1. The characteristic equation
associated with this linearized equation is 1 4+ €A = f/(0)e™, or,
equivalently, withA =« + i € C

1+ ea =f'(0)e™* cos(B)
€B = —f'(0)e “sinB.

This is the same characteristic equation as for the constant-delay

equation, and there exists a sequence ¢ k—> 0 such that for each
—+00

€ = ¢ the characteristic equation has a single pair of solutions
on the imaginary axis A = =if, Bx > 0. Moreover, 8, — o0
as k — oo. Since fy is the angular frequency of the periodic
orbit unfolded at ¢, Theorem 1 implies the existence of rapidly
oscillating periodic solutions of Eq. (1) as € tends to zero.

3.2. Case n(0) = 0with0 < 1'(0) < +o0

With the previous assumptions on 7, one has r(x,e) = 1+
n(€)R(x) ~ 1+€n’(0)R(x) whene — 0. Without loss of generality,
we assume 7'(0) = 1, so that the delay is r(x, €) = 1+ €R(x) in
Eq. (1).

Suppose that there is an ¢p for which Eq. (1) has a periodic
solution xq(t) with period Ty. Given an integer n > 0, Eq. (1) and
the periodicity of xo(t) imply that

€oXo(t) = —xo(t) + f(Xo{t — 1 —nTy — €R[xo(D)]}).

Then, rescalipg time as f = t/(1 + nT,), we obtain that x,(t) =
Xo[ (1 4 nTy)t] satisfies the equation

€0 an N ~ ~ 1 € R ~
1T nTe di () = —x(t) + f <Xn=t 13 1o [Xn(t)]}>~
Therefore, for € = €, = €p/(1 4+ nTy) Eq. (1) admits the periodic
solution x,(t) = xo[t(1 + nTp)] with period T, = Ty/(1 + nTp).
It shows that the branches of rapidly oscillating periodic solutions
can be obtained from the first branch of periodic solutions. Hence,
assuming that the first branch exists up to € — 0, it follows that
all the other branches exist, and the amplitude of periodic solutions
along all these branches converges to the same positive limit when
e — 0.

In this sense, Eq. (1) sustains “large amplitude” rapidly
oscillating periodic solutions as € tends to zero when the delay
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function is of the form r(e,x) = 1+ eR(x) orr(e,x) = 1+
€1’ (0)R(x). As mentioned in Section 2, this is one of the signatures
of the existence of metastable solutions in the case of DDEs with
constant delay. So this strengthens the similarity of DDEs with
state dependent delay and DDEs with constant delay, thus giving
support to the possibility of metastability in the case (0) = 0 with
0 < 1'(0) < +o0.

3.3. Casen(0) #0

The situation for n(0) # 0 is different from the one depicted
above, and this can be understood thanks to Proposition 3.4 in [35],
which precludes the existence of large amplitude rapidly oscillat-
ing periodic solutions as € — 0. First, we recall that proposition
in [35], and then we discuss its consequences in terms of the am-
plitude of the periodic solutions.

Proposition 1 (Mallet-Paret, Nussbaum). Suppose that the feedback
fis CO°(R, R) and that the delay function r (e, x) is Lipschitz regular in
x. Let x(t) satisfy Eq. (1) for t € R for some value of €, and suppose
there exist ag < ay and ty < t; < t, < t3 such that x(t;) < ag for
even i, and x(t;) > a for odd i, for 0 < i < 3. Then

max r(-, €) — min r(-, €) < 3(t3 — tp).
[ag.a1] [ag,a1]

Proposition 2. Suppose that the feedback f is C°(R, R) and that the
delay function r(e, X) is Lipschitz regular in x. Let r(x,e) = 1+
n(€)R(x), and suppose that R(x) is not constant on any interval (e.g.
R(x) = rx*, k > 1andr, # 0)and n(e) ~ n(0) # 0.

Then, there is a function ¢, depending only on n(0) and R, with
o(T) T—g 0, such that for any periodic solution x(t) of Eq. (1) with

period T, and ag = min x(t) and a; = maxx(t), we have
lar — aol < (T).

In particular, if f and r satisfy additionally the hypotheses
of Theorem 1, the periodic solutions x; that appear when € = ¢
(see Theorem 1) have periods Ty l—> 0 and amplitudes max{x(t)} —

K—> 00

min{xy(t)} k—> 0.

Proof. To see why Proposition 1 precludes the existence of large-
amplitude rapidly oscillating periodic solutions, let x(t) be a
periodic solution of Eq. (1) with period T, and let @y = minx(t)
and a; = maxx(t). Choose ty such that x(ty) = ag, choose t; such
thatty < t; < tp+T andx(t;) = aj,andt, = tg+Tandt3 = t1+T.
As in Section 1, let r(x, €) = 1+ n(e)R(x), and suppose that R(x)
is not constant on any interval, e.g. R(x) = rx*, k > 1,1, # 0,
and n(e) ~ n(0) # 0.Then 6T > 3(t5 — to) > n(0)|rk|Ag/3,
where Ap = MaXye[ag,a,] R(X) — Minye(qy,q,1 R(X) > 0. Given that
n(0) # 0, we have |r| Ag/3 < .75

This estimate relates the period of oscillations indirectly to their
amplitude (through Ag): the faster the periodic oscillations are,
i.e. the smaller the T is, the smaller their amplitude is. The Hopf
bifurcation at € = ¢ gives rise to a periodic solution with period

T, = ﬁ ’—> 0 (see Theorem 1 and Appendix A), and the estimate
K k—00

above implies that so does their amplitudes a; — ag ’—> 0. O
K—> 00

This result indicates that DDE (1) with state-dependent delay,
and n(0) # 0, cannot support fast periodic solutions that resemble
those of DDEs with constant delays. This led us to conjecture that
these equations cannot support large-amplitude square-wave-like
metastable solutions similar to those of DDEs with constant delays.
This conjecture is supported by extensive numerical investigations
(Section 5).

4. Transition layer and metastability

In this section, we refine our previous analysis of the conditions
under which DDE (1), with state-dependent delay, can support
metastable oscillations through the introduction of transition layer
equations. Such equations have been used previously to determine
the shape of slowly oscillating periodic solutions for scalar DDEs
with constant delay and negative feedback in the singular limit
€ — 0 [38]. They have also been instrumental for the analysis
of metastable solutions in scalar DDEs with constant delays and
monotone feedback in the same singular limit [31].

For f satisfying MNFH, the singular limit as ¢ — 0 of Eq. (1)
in the case n(0) # 0 can be analyzed through the theory
developed in [34-36] that replaces transition layer equations with
the so-called “Max-Plus” equations. As numerical explorations
tend to show that such systems do not support metastability
(Section 5), we will not dwell any further in this case. Throughout
the remainder of this section, our focus is on the case n(0) = 0,
which we henceforth assume to hold.

For some feedback functions f and state-dependent delay
function r, solutions of Eq. (1) have an approximately periodic
square-wave shape when € — 0, as in the constant delay case
r(x, €) = 1, and the corresponding “jumps” can be analyzed with
the help of transition layer equations. The approximate period of
metastable oscillations (depending on ¢) is an essential point in
finding transition layer equations. For constant delay, at the first
order, this period is 2 4+ pe under MNFH ([38] Theorem 3.2), and
1 + €p under MPFH [31]. In Section 5 similar asymptotics are
shown to hold in the state-dependent delay case as well when
n(0) = 0and 0 < 7’(0) < +oo. In this section we write
appropriate transition layer equations under various hypotheses
on 1, show that their solutions exist, and that these equations
can be used to characterize metastability, as confirmed by the
numerical investigation presented in Section 5.

The case n(0) = 0 and 1'(0) = +o0 has also been investigated,
using r(x,€) = 1+ €“R(x) withax = % We found numerically
that oscillations are square-wave-like when € is small, their period
is either 2 + €% p (f satisfies MNFH) or 1 4 €“p (f satisfies MPFH),
and rescaling time as ¢ (t) = x(}a), one observes convergence to a
transition layer profile (see Fig. 7 in Section 5). However the scaling
argument used in the case n'(0) < +oo does not apply here, and
these transition layer profiles are not analyzed in this section.

The remainder of this section is organized as follows. First,
in Section 4.1, we show that when 0 < 7'(0) < +oo,
appropriately defined transition layer equations can be used to
find a symmetry condition that characterizes precisely the cases
of metastable oscillatory transients. Details about the existence
of transition layer solutions, their numerical construction, and
illustrating figures can be found in Appendix B. The case of ' (0) =
0 is examined in Section 4.2. One can still write a transition layer
problem, but it does not depend on the delay function R anymore,
leading to incorrect results. To overcome this, we have introduced
a one-parameter family of auxiliary transition layer problems, and
thanks to the analysis of the corresponding one-parameter family
of transition layer solutions we are able to characterize the cases
where metastability can occur. Finally, in Section 4.3, we discuss
a new phenomenon: the possibility of a state-dependent delay
giving rise to metastability in equations that do not exhibit such
transients when the delay is constant.

4.1. Case n(0) =0and 0 < n’(0) < 400

4.1.1. Monotone positive feedback

Let f satisfy MPFH, and consider Eq. (1) where r(x,¢) = 1 +
n(e)R(x) with n(0) = 0and 0 < 7’(0) < +oo (without loss
of generality we assume that »'(0) = 1 in the remainder of this
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Table 1

Drift speeds p™, o, solutions of Eq. (6) for f satisfying MPFH, n(¢) = € and various
choices of delay R(x). Metastability occurs only when p* = p~.Table (a) symmetric
positive feedback f (x) = % arctan(5x). Table (b) non-symmetric positive feedback
fx) = % arctan(5(x — 0.05)) + % arctan(0.25) (see Appendix B.1 for details on the
numerical method and parameters value used).

Table 2

Drift speeds p™, o, solutions of Eq. (7) for f satisfying MNFH, (¢) = € and various
choices of delay R(x). Metastability occurs regardless of the equality p* = p~.(a)
Symmetric negative feedback f (x) = —% arctan(5x), (b) non-symmetric negative
feedback f(x) = —% arctan(5(x + 0.05)) + % arctan(0.25) (see Appendix B.2 for
details on the numerical method and parameters value used).

(a) R(x) =0 R(x) =x R(x) = cos(x) R(x) = %x(] +x) (a) R(x) =0 R(x) =x R(x) = cos(x) R(x) = %x(l + x)
pt 0.824 0.554 1.752 0.732 pT 0.824 1.172 1.744 1.122
P 0.824 1.158 1.752 1.158 P~ 0.824 0.434 1.744 0.714
(b) R(x) =0 R(x) = x R(x) = cos(x) R(x) = %x(] + x) (b) R(x) =0 R(x) = x R(x) = cos(x) R(x) = %x(] + x)
pt 1.024 0.690 1.916 0.932 pt —0.702 —0.616 0.280 —0.646
P 0.664 0.994 1.612 0.884 P~ 2.574 2.362 3.570 2.476

section). For such delays, our numerical investigations show that ~ and lim;.o ¢~ (t) = —a, with ¢7(0) = ¢~ (0) = 0 and p*

metastable oscillations are approximately 1 + €p periodic. When
€ is small, this and Eq. (1) imply that an oscillatory metastable
solution x(t) that jumps from x(t) ~ b > Ofort < 0, to
x(t) &~ —a < Ofort > 0, with x(0) = 0, satisfies

d
Edf):(f) = —x(t) + f{x(t — 1= n(eRX(t)))}

~ =x(t) + fix(t + p~€ = n(e)R(x(D)))}.

The same ideas apply to a jump from x(t) ~ b > 0fort > 0,
tox(t) ~ —a < O0fort < 0. Likewise in the constant delay
case, rescaling x(t) as ¢*(t) = x(et), the above equation for x(t)
implies thatin the limite — 0, ¢* must satisfy the transition layer
equations:

dE() = —pT(0) +F(*(t — R(=()) + pb)) (6)

where p~ > 0 and p* > 0 are unknown constants (drift
speeds) and the functions ¢* satisfy the boundary conditions
lim;, oo @™ (t) = b, lim; 00 ¢~ (t) = —a, lim;, _ ¢7+(t) = —q,
and lim;_, o, ¢ (t) = b.

If a solution to Eq. (6) exists, it is called a transition layer
solution. In contrast to the constant delay-case, this transition layer
equation (6) is a state-dependent equation, and from a theoretical
point of view, depending on the values of p and R(x), it may
be both advanced and delayed. The numerical method used for
solving equation (6) is presented in Appendix B.1. We have defined
an operator 7 whose (stable locally attractive) fixed points are
solutions of (6).

In general, the constants p~ and p* associated with the
decreasing and increasing transition layer solutions are different.
In Table 1 we display p~ and p™ solutions of Eq. (6) for n(e) =
¢ and various choices of R(x), for both symmetric and non-
symmetric positive feedback f (numerical method details given in
Appendix B.1). We found that in the state-dependent case of Eq. (6),
as in the constant delay case, oscillatory transients are metastable
only when p™ = p~.Table 1 also shows that p™ = p~ is obtained
only when the positive feedback function is symmetric and the
delay R(x) is even.

4.1.2. Monotone negative feedback

We now discuss the transition layer equation for state-
dependent delay equation with f satisfying MNFH. Numerically,
transient oscillations are square-wave-like and they have an
approximate period T ~ 2 + €C (see Section 5). Likewise the case
of DDEs with constant delay, the transition layer equations for the
increasing and decreasing transition layer solutions of DDEs with
state-dependent delays are coupled:

{d}*(t) =—¢" (O +f(@ [t —RG )+,
¢ () = —¢~ (1) +f(@" [t — RGBT (D) + p7 ],

where ¢ is increasing and ¢~ is decreasing on R, with
liMes oo 7 () = —a, iMoo 97 (6) = b, lime o™ () = b

(7)

are unknown real constants (drift speeds). See Appendix B for
numerical solutions of Eq. (7).

For negative feedbacks, the symmetry condition supporting
metastability is always satisfied when the delay is constant [31],
and we show that the same holds when the delay is state-
dependent. In Table 2 we display the drift speeds p™, p~ that are
solutions of Eq. (7) for n(¢) = € and various choices of R(x). Com-
parison of Tables 1 and 2 shows that when the feedback function f
is symmetric, and R(x) is even, p* = p~ for both positive and neg-
ative feedbacks. This happens because when f is symmetric, and
R(x) is even, the increasing solutions of the transition layer equa-
tions for both positive and negative feedback coincide (the same
happens for the decreasing solutions).

4.2. Casen(0) =0andn'(0) =0

4.2.1. Monotone positive feedback

If n(0) = 0 and »'(0) = 0, solutions are approximately 1+ €p
periodic, and the same time rescaling ¢ (t) = x(et) implies ¢(t) =
—¢(t) +f(@(t — “OR(¢(1)) + p)), and as € — 0

$(O) = —¢(O) +f((t + p)), ®)
where the decreasing and increasing solutions ¢ must satisfy the
boundary conditions lim;_, o ¢ (t) = —a,lim,, ¢ (t) =

b, lim_, _oo ¢~ (t) = band lim,_, ;. ¢~ (t) = —a, with¢*(0) = 0
and p = pT > 0is an unknown constant. This Eq. (8) is the
same one found in the constant delay case, for which the existence
of decreasing and increasing transition layer solutions has been
proven in [31]. In particular, when (0) = 0 and n'(0) = 0, the
drift speeds pT are equal to those of the corresponding constant
delay case (R(x) = 0). As a consequence, we obtain that for f
satisfying MPFH, if n(0) = 0 and »'(0) = 0, metastability cannot
occur if p* # p~. However, when p* = p~, metastability may or
may not occur.

To obtain the symmetry requirement for metastability in this
case n(0) = 0 and n’(0) = 0, we introduce the following 1-
parameter family of transition layer equations

¢E() = —¢=(O) + f(@E[t + p;° — AR(GE(D)]), 9)

where A € R is a real parameter. As previously, pf are some
unknown real constants, and ¢ are the transition layer solutions,
that are expected to depend on A. The case A = 0 reproduces
the drift speeds p* of the transition layer equation (8). In Fig. 1
we display the constants ,of as a function of A for the symmetric
positive feedback function f (x) = % arctan(5x) and various choices
of R(x). We found that if p;r = p, holds only for A = 0 (panels (b)
and (d) in Fig. 1), metastable DITOs are not observed for positive
values of e. Oscillatory transients are metastable only when p;" =
0, on some non-trivial interval A € [0, §] with § > 0 (panels
(a) and (c) in Fig. 1). So this is the new sufficient condition for the
existence of metastable oscillatory transients when the positive
feedback f is symmetric and n’(0) = n(0) = 0.
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Fig. 1. Drift speeds pki, solutions of Eq. (9), for A € [0, 0.5], using the symmetric positive feedback function f(x) = % arctan(5x) and various choices of R(x): (a) R(x) = 0
(constant delay); (b) R(x) = x; (c) R(x) = cos(x); (d) R(x) = %x(l + x). See Appendix B.1 for details on numerical methods and parameters used.

4.2.2. Monotone negative feedback

For n(0) = 0 and n'(0) €]0; +oco[, we have seen that the
symmetry condition supporting metastability always holds when
the feedback is negative. The same is true if n'(0) = n(0) = 0:
regardless of the symmetry of the feedback f and of the function
R(x) inr(x,e) = 1+ n(e)R(x), rapidly oscillating transients are
metastable (see Section 5).

4.3. Metastability induced by state-dependent delay

In this section we present a new phenomenon: given a DDE with
constant delay that does not display metastability, it is possible to
add a state dependence to the delay so that the resulting state-
dependent DDE will exhibit metastability. To this end, we consider
Eq. (1) with a non-symmetric positive feedback function f, and
delay functionry (x, €) = 1+ €AR(x), so that A = 0 corresponds to
constant delay DDE which does not exhibit metastability.

We did a numerical investigation using the non-symmetric
positive feedback function f(x) = % arctan(5(x + 0.05)) —
% arctan(0.25). We have used the following functions R(x) : R(x) =
X, R(x) = cos(x),R(x) = %x(l + x). Solving the transition layer
equation (9) for each function R we have numerically computed the
X -families of constants pf and p, , the parameter A being varied
within the interval [—1.0, 1.0] (it should be remarked that for large
A values the numerical solution of the transition layer equation
(9) is problematic). Results are displayed in Fig. 2. Metastability
will occur for those values of A such that p;r = p, . Fig. 2(c)
(R(x) = cos(x)) shows that no solution was found such that
pf = p, , likewise the constant delay case (Fig. 2(a)), indicating
that introducing a state dependent delay may not make up for the
lack of symmetry of the feedback function f. Nevertheless, Fig. 2(b)
(R(x) = x)and Fig.2(d) (R(x) = %x(l—l—x))showthat,in these cases,
adding state dependence to the delay has resulted in metastability.
The solution such that p;LC = p, isic~ 0.5in the case R(x) = x
(see Fig. 2(b)), and A, &~ 1.1 in the case R(x) = %x(l + x) (see
Fig. 2(d)).

5. Numerical simulations of Eq. (1)

To corroborate the characterization of metastable state-
dependent DITOs obtained in Sections 3 and 4, we have carried a
numerical investigation of Eq. (1), thus completing the analysis of
the transient dynamics.

We shall present the results of numerical solutions of Eq. (1),
for functions f satisfying MNFH and MPFH, and delay functions of
the form r(x, €) = 14 n(e)R(x). We have used n(e) = €“ with
@ =00 #0,a =10 = 0,70 > 0,a =1
(n(0) = 0,7’(0) = o0)and @ > 1(n(0) = 0,7 (0) = 0). As
for R(x), we have considered the following cases: R(x) = x, R(x) =
x>, R(x) = %x(l + x), R(x) = sin(x), and R(x) = cos(x).

For monotone positive feedback, with constant delay, metasta-
bility requires an extra symmetry condition such as the feed-
back function being odd, so in this case we have used f(x) = %
arctan(5x). For negative feedback case we have used both symmet-
ric f(x) = —% arctan(5x) and non-symmetric f(x) = —% arctan
(5(x + 0.05)) + % arctan(0.25). The results are qualitatively the
same for these two functions, so we shall only show the results for
the symmetric negative feedback function.

In the case n(0) = 0 and ’'(0) = 0 (@ > 1), the observations
are qualitatively the same. As « increases, the results are closer and
closer to those observed in the constant delay case.

The numerical results were checked using first and second
order numerical schemes, using time steps dt = 5.107° and
dt = 2.107%, and with linear interpolation for the state-dependent
delay function. Simulations of solutions of Eq. (1) have also been
checked using the RADAR-V package in Fortran. The range of ¢
values we investigated is € € [0.01, 0.1]. We have used the same
initial condition on t € [—2, 0] for all simulations. Metastability
is checked by tracking the zeros of the solutions. In the positive
feedback case, we say that transient oscillations end when the last
pair of zeros of the solution disappears. In the negative feedback
case, we say that transient oscillations end when the solution has
at most one pair of zeros in any interval of length two (called “slow
oscillations”).
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In the following, in order to show whether the transient
oscillations time T, is of order exp(g), we plot € Vs € log(T,). If

y(€) = € log(T,) satisfies y(0) > 0, then T, = e<1+°()) meaning
that oscillatory transients are metastable. On the other hand, if

1
y(e) = €log(T,) satisfies y(0) = 0, then T, = eo<f>, meaning
that oscillatory transients are not metastable.

5.1. Case n(0) # 0

The key numerical observation in this section is that when
n(0) # 0, even when € is very small, transient oscillations do not
last for an exponentially long time. In other words, metastability is
precluded.

The results are displayed in Fig. 3, monotone positive feedback
on the left panels, and monotone negative feedback on the right
panels. The top panels in Fig. 3 exhibit the solution profile for
e = 0.1, 0.01, 0.001, and the bottom panels display € Vs € log(T,).

The solution profile displayed in Fig. 3(top panels) show that
when 1(0) # 0, for both positive (top-left panel) and negative
(top-right panel) feedbacks, the oscillations are not square-wave-
like even for very small €. This contrasts with what happens for
constant delay. However, it is consistent with what is known for
negative feedback state-dependent DDEs. In fact, as € tends to zero,
profiles take on to the limit profile shapes described by Mallet-
Paret and Nussbaum for singularly perturbed state-dependent
delays with negative feedback [34-36].

The bottom panels of Fig. 3 show that when n(0) # 0,
oscillatory transient duration grows slowly when € converges to
zero. For positive feedback (Fig. 3(c)), when R(x) = %x(l + X)
(curve x), DITOs’ duration never exceeds a few units of time for
€ > 0.001; for R(x) = cos(x) (curve +) DITOs’ duration tends
to +oo but it does not grow as ec whene — 0 (the function
y(e) = e€log(T) satisfies y(¢) — 0 when ¢ — 0), and they
are not metastable in this sense. For negative feedback (Fig. 3(d))
the DITOs’ duration does not grow as e whene — 0, meaning
that DITOs are not metastable. Moreover, we can see that in the
negative feedback case the DITOs’ duration depends very little on
R(x), the curves € Vs € log(T.) being almost identical for R(x) = x
and R(x) = 3x(1 + x) (see Fig. 3(d)).

5.2. Case n(0) = 0with0 < n’(0) < +o00

In this case, in addition to the Hopf bifurcation theorem, Cooke’s
rescaling argument [44] applies to Eq. (1) and one expects that the
rapidly oscillating solutions have large amplitude when € tends
to zero. We numerically observed that metastable oscillations
are almost 1 + €p periodic (the zeros drift-speed p depends
on the feedback function f and the delay function r), and that
the constants p are coherent with the corresponding constants
in Section 4.1. This period estimate is crucial for obtaining
the transition layer equation for the state-dependent DDE (see
Section 4, Eq. (6)). Here we have taken n(€) = €,so thatr(x, €) =
1 4+ €R(x). Metastability is expected for any delay function R
and f satisfying MNFH (symmetric and non-symmetric), while
for f symmetric satisfying MPFH, the delay function R cannot be
arbitrary and must satisfy an extra symmetry assumption, such as
being even.

Fig. 4 displays the numerical results for Eq. (1) when n(e) =
¢, under MPFH (panels on the left) and under MNFH (panels on
the right). The top and middle panels of Fig. 4 display the DITOs’
profiles for R(x) = cos(x) and a few ¢ values. The bottom panels of
Fig. 4 display the transient duration (€ Vs € log(T,)) for R(x) = 0
(constant delay), R(x) = cos(x), R(x) = x, R(x) =, R(x) = %x(l +
X), R(x) = x.

The top panels of Fig. 4 show that for both, positive and negative
feedback cases, the oscillatory solutions have a square-wave-like
shape when € goes to zero, likewise the constant delay case.
Fig. 4(a) for positive feedback shows that, as ¢ — 0, the square-
wave-like solution has period 1 + ce (at the first order). Fig. 4(b)
for negative feedback shows that, as € — 0, the square-wave-like
solution has period 2 + c’e (at first order).

The middle panels in Fig. 4 display the square-wave-like
oscillation after rescaling the time, s = f The time-rescaled
profiles displayed in the middle panels of Fig. 4 show convergence
to a limit profile when € converges to zero, for both positive and
negative feedbacks, in agreement with the results in Section 3. As
explained in Section 3, after the appropriate time rescaling s = g
the square wave shape converges to some limit profile, which is
the solution of the transition layer problem (6). Convergence to
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Fig. 3. Profile of solutions of Eq. (1) (top panels), and oscillatory transient duration (bottom panels), when 1(0) # 0, with delay r(x, €) = 1 + R(x), for positive feedback
fx) = % arctan(5x) (panels on the left) and negative feedback f (x) = 7% arctan(5x) (panels on the right). Top panels: solution profile for e = 0.1, 0.01, 0.001, (a) positive

feedback with R(x) = cos(x), (b) negative feedback with R(x) = x. (c) € Vs € log(T,) for positive feedback, and delays R(x) = cos(x) (curve +), R(x) = %x(l + x) (curve x);
(d) € Vs € log(T,) for negative feedback, and delays R(x) = x (curve +), R(x) = %x(] + x) (curve x).

transition layer profiles occurs for both increasing and decreasing
rescaled jumps, for both positive and negative feedbacks.

An approximation of the unknown constant p = p* in problem
(6) can be obtained from the numerical approximate period of
metastable oscillations: T &~ 14¢ . We have checked that the limit
profiles agree with the solutions of the transition layer equations
obtained as attractive fixed point of an appropriate operator 7, up
to numerical error of order O(dt/¢), where dt is the discretization
parameter (see Appendix B). Due to regularity properties of the
operator 7, this implies that the corresponding constants p also
agree at the same order.

Fig. 4(f) shows that in the negative feedback case, metastable
oscillatory patterns are observed regardless of the delay function
R. For negative feedback with constant delay (R(x) = 0), the
curve + in Fig. 4(f) shows that T(¢) ~ exp(g), for some non-zero
constant c, as expected. This same panel (f) shows that, for state-
dependent delay, € log(T(¢)) ~ c1 + c€ + o(¢), implying that
T(e) = exp(%) exp(cz) (14 0(1)). The value of constants ¢ and ¢,
depends on the delay function R, but in all cases ¢; > 0 implying
that the state-dependent DITOs are metastable.

State-dependent DITOs are metastable if and only if the function
y(e) = €log(T) has a non-zero limit when ¢ — 0. Fig. 4(e)
shows that in the positive feedback case, the DITOs are metastable
only for odd functions f and even delay functions R(x). The curve
+ in Fig. 4(e) shows that, for constant delay, T(e) ~ exp(g),
for some non-zero constant c, as expected. In the case of state-
dependent delay, when the delay function is even, the curves for
R(x) = cos(x), R(x) = x* in Fig. 4(e) show that € log(T(¢)) =~
c1+ce€+o0(€), meaning that T = exp(%) exp(cz)(140(1)) so that
the state-dependent DITOs are metastable. In contrast, when R(x)
is not even (cases R(x) = sin(x), R(x) = x + %xz), Fig. 4(e) shows
that € log(T (¢)) :g 0 so that T (¢) is not of order exp(g), implying

that the state-dependent DITOs are not metastable.

5.3. Metastability induced by state-dependent delay

As already emphasized, for f satisfying MPFH, DDE (1) with con-
stant delay exhibits metastability only if f is odd. The constants p*
and p~ that solve the transition layer problem are equal in the case
of odd monotone positive feedback f with constant delay, implying
metastability. When f satisfying MPFH is not symmetric, the con-
dition p™ = p~ does not hold for constant delays, and DITOs are
not metastable. Nevertheless, in Section 4.3 we have shown that
for non-symmetric f satisfying MPFH, and state-dependent delay
r(x, €) = 14+ X1eR(x), for a critical value A = A, the transition layer
equations (9) do have solutions such as p™ = p, provided that R(x)
is not even (see Fig. 2). Therefore, metastability has been induced
by introducing the appropriate state-dependence to DDE (1) with
non-symmetric monotone positive feedback.

In this section, we present the numerical solutions of Eq. (1)
for the same case analyzed in Section 4.3: f(x) = % arctan(5(x +

0.05)) — %arctan(O.ZS), with state-dependent delay r(x,€) =
1 + XeR(x), R(x) not even. Panels (a) and (c) of Fig. 5 display the
results for the case R(x) = %ex(l + x) (corresponding to Fig. 2(d));
panels (b) and (d) display the results for R(x) = x (corresponding
to Fig. 2(b)).

The fronts and the values of p* and p~ change continuously
with A. In other words, simulations over fixed durations of DDE
solutions for A in the vicinity of A, are similar because for A close
to A¢, the difference p* — o~ is small and the DITOs are long lasting.
This similarity not withstanding, the transient regime durations
scale differently with € at A. and nearby values A. Only at A, the
system becomes metastable in the sense that the DITOs last for
exponentially long times. This difference is illustrated in the figures
that show transient regime duration at fixed A for various € and the
reverse, i.e. at fixed € for various values of A.

The panels (a)and (b) of Fig. 5 display € Vs 1/ log(T (¢)), for three
values of A, and we can see that when the parameter A is larger or
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Fig. 4. Profile of solutions of (1) (top and middle panels), and oscillatory transient duration (bottom panels), when n(e) = ¢, for positive feedback f(x) = % arctan(5x)
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smaller than the critical value X, the curves y(¢) = 1/ log(T,) are
very steep when € — 0, indicating that DITOs are not metastable
in those cases. In contrast, when A = A, the curves y(¢) have a
bounded slope as € — 0, indicating that DITOs are metastable.
We have obtained A, =~ 1.05 for the case R(x) = %ex(l + x)
(Fig. 5(a)), and A, =~ 0.55 for the case R(x) = x (Fig. 5(b)).
The difference between these values of A., and those values of A,
found in Section 4.3, is smaller than 10~!, which is of the order of
numerical precision for these parameters.

The panels (c) and (d) of Fig. 5 display A Vs € log(T,), for three
values of €, and we can see that when ¢ is fixed, there is a unique
value A, such that DITOs’ duration is maximal, and it converges to
the critical value A, as € decreases.

The results in this subsection agree with the results in
Section 4.3, confirming the possibility of state-dependence of the
delay inducing metastability when the constant delay case does
not exhibit metastability.

5.4. Case n(0) = 0 withn’(0) =0

When 1/(0) = 0, likewise the case 0 < 1'(0) < oo, oscillations
have a square wave shape, a “period” T = 1 4+ €p, and a rescaled

limit transition-layer profile (figures not shown). The correspond-
ing transition layer equation (8) is independent of the function 7,
and it is the same transition layer equation as for the constant-
delay case r(x, €) = 1.

For given feedback f and delay R(x), if metastability occurs
when0 < 1/(0) < 400, our numerical investigation indicates that
it will also occur for n’'(0) = 0. We have computed the transient
duration for the symmetric positive feedback f (x) = % arctan(5x),
with delay r(x, €) = 1+ n(e)R(x), n(e) = €*, o > 1.

Fig. 6(a) displays € Vs € log(T,) for the state-dependent delay
R(x) = 3x(1 +x),and @ = 1.5,2,3. It shows that ¢ log(T)
converges to zero when ¢ — 0, regardless of «, implying that for
symmetric positive feedback the DITOs are not metastable if R(x)
is not even.

Fig. 6(b) displays € Vs € log(T,) for the state-dependent delay
R(x) = x? (even function),and @ = 2, 3.1t shows that ¢ log(T) does
not converge to zero when € — 0, implying that for symmetric
positive feedback the DITOs are metastable if R(x) is even. From
Fig. 6(b) we can also see that as « increases, the duration T of
transient oscillations is closer and closer to the duration of the
transient for the constant delay case.
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For f satisfying MNFH, the same result holds: metastable DITOs
for the case 0 < n'(0) < +oo implies metastable DITOs for the
case n'(0) = 0.

5.5. Case n(0) = 0 with n'(0) = +o0

When 1(0) = 0, with ’'(0) = 400 oscillations have a square-
wave-like shape and an approximate period T = 1 + €“p when

€ — 0 (figures not shown). The usual time rescaling s = g

does not give converging profiles, but the scaling s = E% does.
As illustration, we display in Fig. 7 the results for the negative
feedback f(x) = —1arctan(5x), with r = 1 4 €"/?cos(x). At
the time scale te~'/2, we observe the convergence of oscillating
solutions jumps to a limit transition layer profile when € — 0.
Here neither Mallet-Paret and Nussbaum’s nor Cooke’s argu-
ment [44] apply, so that we have no indication on whether rapidly
oscillating periodic solutions (which are expected because of Eich-
mann’s Hopf bifurcation theorem) have large or small amplitudes.
Numerical simulations have shown that oscillatory transients can

f(x)= -0.5*atan(5*x), r(x,e) = 1+ ewzcos(x)

€=0,01 -
06  £=0.005
£=0.001
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Fig. 7. Convergence of rescaled jumps of oscillating solutions in the limit ¢ —
0, when n(0) = 0 with n’(0) = +o00. We used negative feedback f(x) =
—3 arctan(5x), withr = 1+ €'/2 cos().

last for a very long time, but due to numerical difficulties it is not
clear whether this transient duration is exponential; hence we can-
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not say whether these long-lasting oscillatory transients are in-
deed metastable or not.

6. Discussion and conclusion

At present time, no global geometric characterization of the
organization of the phase portrait of scalar state-dependent DDEs
is available. Even basic results, such as the Hopf bifurcation
theorem, have only recently been established. However, based
on current knowledge and systematic numerical explorations, it
is possible as done in Section 3 to conjecture that the phase
portraits of DDEs with state-dependent delays have the same
geometrical organization as those of constant delays. Furthermore,
it is possible to discuss the putative occurrence of metastability
based upon the available information regarding rapidly oscillating
periodic solutions, and educated guesses supported by numerical
investigations.

In this paper we have shown that metastable oscillating
solutions can exist in singularly perturbed DDEs with state-
dependent delays of type (1). Based both on mathematical and
numerical results, we have been able to link the properties of
Eq. (1), and its solutions, to the occurrence of oscillatory metastable
transients.

Such metastable transients were never observed in numerical
explorations when the state-dependent delay r = r(x) does not
depend on the singular parameter €. Considering delays of the
formr(x, €) = 1+ n(e)R(x), we found that the scaling parameter
value n(e) is crucial for the existence of metastable transients.
When n(0) # 0 exponentially long-lasting oscillatory transients
were never observed, even for very small . When 1(0) = 0 and
n’(0) = oo long-lasting oscillatory transients can be observed, but
due to numerical difficulties one cannot conclude whether these
transients are indeed metastable or not. For (¢) = €%, the larger
the « is, the longer transient oscillations will last. When (0) = 0
and 0 < 7’(0) < oo metastable oscillatory transients can always
be observed for monotone negative feedback, while for monotone
positive feedback some symmetry condition must be satisfied by
the feedback function f and the delay function R.

There are two main tools to analyze metastability phenomena.
With a geometric approach, one can look for the existence of
a global attractor containing a “cascade” of unstable periodic
orbits and heteroclinic connections between them, and with a
dynamical approach one can investigate transition layer equations
that describe the asymptotic shape of the oscillations when ¢
converges to zero.

We have shown that, with few hypotheses on the functions f
and r, a Hopf bifurcation theorem of Eichmann applies to Eq. (1).
This implies the existence of a sequence of Hopf bifurcations
as € converges to zero, meaning that a global attractor with
the previously described structure might exist in many cases.
Nevertheless, metastable oscillations cannot be observed in
general. Our numerical investigation has shown that when the
delay function r does not converge to a constant as € converges to
zero (see Fig. 3 in Section 5.1), the amplitude of periodic solutions
has to converge to zero as the period converges to zero, and
metastable oscillations were not observed. This suggests that not
only rapidly oscillating but also large amplitude periodic solutions
are needed to support metastability.

Furthermore, even when the delay function r converges to a
constant as € tends to zero (Section 5, cases n(0) = 0), the
state-dependent DITOs are metastable only in those cases where
there exist transition layer equations similar to those found for
DDEs of type (1) with constant delay (@« > 1, Sections 5.2 and
5.4). This suggests that metastable state-dependent DITOs cannot
exist unless the oscillations have a limiting shape determined by
heteroclinic solutions to a transition layer problem of the form (6),
as € converges to zero.

Our numerical analysis of the transient oscillations in DDE
(1) induced by state-dependent delay of the form r(x) = 1 +
n(€)R(x) has revealed that for f satisfying MNFH, metastable state-
dependent DITOs exist in the same way as for the constant delay
case, while for f satisfying MPFH, metastable state dependent
DITOs exist if and only if f and R satisfy some symmetry conditions.
If f is an odd function satisfying MPFH (sufficient condition for
metastability in the case of constant delay), then metastable state-
dependent DITOs exist when the delay R(x) is an even function. We
also have shown that by adding state dependence to the delay, it
is possible to obtain metastability for f satisfying MPFH for which
the constant delay transient oscillations are not metastable (see
Sections 4.3 and 5.3).

An important contribution of this work has been the intro-
duction of a novel class of transition layer equations associated
with state dependent delays. From our numerical investigations,
we claim that these equations capture two essential aspects of
the dynamics of DDEs with state-dependent delays. The first is
the shape of the transient oscillations as the parameter € becomes
small. The second is the drift of the oscillations. Our focus has been
on monotone feedbacks; nevertheless the transition layer equa-
tions we have introduced remain valid for non monotone feed-
backs as well. That square-wave like solutions have been reported
in other classes of singularly perturbed DDEs (albeit with constant
delay) [7] further suggests that similar analyses should hold for
broader equations than Eq. (1). Our paper paves the way to in-
vestigate the dynamics of DDEs with such feedbacks and state-
dependent delays, through the novel transition layer equations.

Acknowledgments

The authors thank Denis Mestivier for his help in handling
RADAR-V codes.

CGR is partially supported by CNPq (Brazil) grant 305089/
2009-9, CPM is partially supported by CNPq (Brazil) grant 311022/
2009-0.

Appendix A. Proof of Theorem 1

Theorem 1 is an immediate consequence of a “Hopf bifurcation
theorem” proven by Eichmann (Eichmann’s Ph.D thesis [41] p
81). For ¢ €]0;1[ and y € C'([—M,0],R), let g be the
function g(e,y) = g (=y(0) + f(y(—r(e,y)))), such that Eq. (1)
is equivalent to

X () =g(e, x,), (10)

with the notation x;(s) = x(t + s) foralls € [—M, 0].

The Hopf bifurcation theorem of Eichmann has three first
order derivatives hypotheses (H;) (H,) and (H3), three second
order derivatives hypotheses (H;) (Hs) (Hg) and three spectral
hypothesis (L), (L;) and (L3). For convenience of the reader we
state these hypotheses here before proving that they are satisfied
by Egs. (1) and (2).

Suppose that there is an open subset U of C!([—M, 0], R) such
that

e (H;) the mapping g : 10, 1[xU — R is continuously differen-
tiable,

e (Hy) for any (e,x) €]0, 1[xU the second partial derivative
D,g (e, x) can be extended to a linear continuous map

Dyg(e,x) : C°([—M, 0], R) — R;
e (Hs) the (extended) mapping

10, 1[xU x C°([—M, 0], R) — R

(€,X,y) > Dyg(e, x)y,

is continuous;
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e (Hs) the mapping g :10, 1[x (U N C?) — R is twice continu-
ously differentiable;

e (Hs) for any (€,x) €]0, 1[xU N C? the second order partial
derivative ng(e, X) can be extended to a bilinear continuous
map

D’g(e,x) : C'([—M, 0], R) x C'([—M, 0], R) — R;
e (Hg) the (extended) mapping

10, 1[xU x C'([—M, 0], R) x C'([—-M, 0], R) — R

(€,%,y,2) > Dig(e,x)(y,2)

is continuous, and

10, 1[xU x C'([—M, 0], R) — £(C% R)

(e.X.y) > Dig(e, ) (¥, ).

is continuous (where £(C?, R) is the space of linear functionals
from C*([—M, 0], R) to R).

Suppose that g(e, 0) = 0, for any € €]0, 1[, and let A(¢) be the
generator of the strongly continuous semigroup on C°([—M, 0], R)
generated by the linearized equation

y; = Dyg (e, 0)y;.

Suppose that there is a €* €]0, 1] and some open interval
le* —n, €* + n[C]0, 1[ such that

e (Ly)foranye €le*—n, €*+nl, there is a simple eigenvalue XA (¢)
of A(¢), such that the mapping € — A(¢€) is C1(Je* — n, €* +
nl. ©),

e (L) the eigenvalue A(e€) crosses the imaginary axis at €*
R(A(e*)) = 0and I (A(e*)) = wy > 0, and %(e*) #0,

e (I3)andforany k € Z — {—1, 1}, v = ikwy is not an eigenvalue
of A(e*).

Now we show that the hypotheses of Eichmann’s theorem are
satisfied so that it immediately implies Theorem 1. We start by
proving the following Propositions 3 and 4.

Proposition 3. Let U be an open subset of C'([—M, 0], R). Suppose
f:R — RisClandr ]0 1[xU — [0, M]is C'. Suppose that
forany (e, x;) €]0; 1[xU, 2 3y :]0; 1[xC'([—M, 0], R) — R can be
extended to a continuous linear map 10; 1[xC°([—M, 0], R) — R,
and that (¢, x;, hy) — g—;(e,xt) - h; is continuous ]0; 1[xU x
C%(—M,0],R) = R.

Then the regularity hypotheses (H1), (Hy) and (H3) of Eichmann’s
Hopf Bifurcation Theorem hold.

Here, 3= and denote Frechet derivatives.

Proof. One finds

og -1 1
Bf(e,y) = —g(e,y) — -
€ € ar €

x <g(e,y)y/(—r(e,y))f’(y(—r(e,y)))>
g 1|: < , or
—(e,x)-h = — | =h(©) + | =X (=1(€, X)) —
Ay € ay

X (€,x)-h+ h(—r(e, x)))f/(x(—r(e, x))):| .

This shows that g—f :]0, 1[xU — R and % 10, 1[xU — R
are C% so thatg € C!, and (H;) holds. Using the hypotheses made

on r in the Theorem 1, the formula shows that (H,) and (H3) also
hold. O

Proposition 4. Suppose that the hypotheses of Proposition 3 holds.
Suppose additionally that f : R — R is C? and that r :]0, 1]
x (UNC*([—-M,0],R)) — [0,M] C R is C% Suppose that

for any (e,x) €]0,1[xU, the function 2725(6,)() has a bilinear

continuous extension to C'([—M, 0], R) x C'([—M, 0], R) — R,
which depends continuously on (¢, x) €]0, 1[x (UNC?). And suppose

that (e, x,h) — 22 r(e x)(h, -) is continuous 10, 1[x (U N C?) x

C! — £(C%, R).
Then regularity hypotheses (H,), (Hs) and (Hg) of Eichmann’s
Hopf Bifurcation Theorem are true.

Proof. This proposition is a consequence of the following formulas
for second order derivatives of function g.

ad ag _
—£< 37+g> (e,%) =

P e X (=r(e, 0)
862 €, X)X €, X
! 1 ar 2 !
' ((=r (e, X)) — X' (=(€. %)) <&(€”‘)> Fx(=r(e. %))

- (X( r(e, x)) (e X)) " (x(=1(€,%)))

and

3(3—+ ) ) h—<32r ) h) (
oy €. T8 (e,x)-h= ayae(e’x' X (=r(e, X))

, ar . ar
x f'(x(=1(e, %)) — af(e,X)x (—r(e, %) ((E,X) . h)

€ ay

0

X f(x(—r(€, X)) + é(e, X)X (=1 (e, X)f " (x(—T1 (€, X)))

X |:—x/(—r(e, X)) (g—;(e, X) ~h) + h(—r(e, x))}

and

ad ag
3 <e—(e,x)-h>

9
= f'(x(—r(€, X)) [X”( r(e, X)) (6 X) (&C(e,X)-h>]

+f'(x(=T (e, %))) [—X'(—r(é, X))

X o (e X)-h—H(=r(e, x)) (e x)]

[ X (—r(e, x)) (e X)-h+ h(—r(e, x))]

X f"(x(—r(e, X)X (- (€, X)) (6 X)

and

i (ea—g> (€,%) - (h, k) = (—g(e,x) -h+ h(—r(e,x)))
ay \ dy ay

or
X (——(e, X) - k+ k(—r(e, x)))
ay
x X (=1 (€, x))f"(x(—r (€, %))
ad
+f'(x(=r1(€, %)) [X”(—T(G,X)) (Bf;(e,X) : k)

(1)
X 8y(e,x~ ]
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32
+f (x(=r (€. %)) [—x/(—r(e,x»ayZ(e, %) - (h, k)
x —h (=r(e, x))g(e,x) . ki| .
dy

If r and f are C?, then one can check that g :]0, 1[x (U N C?
([—M, 0], R)) — Ris C? and this is (H,). If %(e, x) has a contin-
uous extension to C!'([—M, 0], R) x C'([—M, 0], R) — R, then so
does %(e, x) and this is (Hs). Since the extension of g—;(e, x) and

%(e, X) are continuous in (e, x) the first part of (Hg) is satisfied.

Sincer :]0, 1[xU — Ris C', and due to the last hypothesis on (‘;yi;
in the proposition, the last requirement of (Hg) holds too. O

The hypotheses of Theorem 1: f is C*(R,R),r :]0, 1[xC°
([-M,0],R) — RisC!,and r :]0, 1[xC'([—-M, 0], R) — R is
C?, imply that the regularity hypotheses of Propositions 3 and 4
are verified.

We now turn to the spectral hypotheses of Eichmann’s Hopf-
bifurcation theorem. We consider the equilibrium x* = 0, which
satisfies g(e, 0) = O for all € €]0, 1[, and the linearized equation
atx* 1 y/(t) = %(e, 0)y, withyo € C'([—M, 0], R), i.e.

ey (t) = —y(t) + f (0)y(t — ro)

where ry = r(0) = r(x*) = 1. The characteristic equation is

1+ ea = f'(0)e"* cos(B)
€B = —f'(0)e “sinB.

This is the same characteristic equation for the constant-delay
equation, and a standard argument shows that there exists a
sequence € k—> 0 such that for each ¢ = ¢, the characteristic

— 400

equation has a single pair of solutions on the imaginary axis A =
+ify, Br > 0.This implies in particular that (L3) of [41] is satisfied.

To check that for each k the eigenvalue A, can be tracked in
a neighborhood of € = ¢, we use an implicit function theorem.
Considering G :]0, 1[xR x R? defined by G(¢, o, B) = (1 +
eca—f'(0)e~* cos(B); eB+f'(0)e~®sin(B)), we have G(e, o, B) =
0 if and only if A = « + iB is a characteristic root. We have
G(ek, 0, By) = O (for any k), and the derivative of G with respect
to o and B at (e, 0, By) is

1+ e +f(0)cos(B)  f'(0)sin(Br)
—f"(0) sin(B) €x + f'(0) cos(By)

_ 2+ e f'(0) sin(fy)

— \—=f'(0) sin(By) 1+ €

which has a positive determinant and is invertible. Thus (for any
k) there is an open interval I, containing ¢, and a C' function
Vg : Iy = Csuch that for all € € Iy, v (€) is a characteristic root
and Uk(ék) = Ag.

Furthermore, computing the € derivative of v, at ¢ = €, and
using the relations for Ay, one finds

(1+ e’ (ex) = exBrByrlex)
(1+ e By = —(1 + e () Br,

which gives either ;(ex) = 0 and aj(e) = ——,1 or Bi(er) # O

and o, () = Ekﬁ]"f’;(g"), so that one always has a;(e;) # O.

Consequently both (L])( and (L,) of Eichmann'’s spectral hypotheses
are satisfied, so that Theorem 1 follows.

Appendix B. A numerical method for solving transition layer
equations

In this section we present a method for solving numerically
the transition layer equations (6)-(9). This section is divided into
two parts: negative and positive feedbacks. Some details are only
provided for the positive feedback case, since for the negative
feedback case they are similar.

B.1. Monotone positive feedback

The existence of transition layer solutions is usually proven
with the help of a fixed point theorem. Suppose that f is smooth,
has three fixed points x = —a,x = 0 and x = b, and that f is
increasing on the interval [—a, b] (positive feedback, with no sym-
metry hypothesis). Consider the set * of functions ¢ € C!(R, R)
such that ¢(0) = 0,limy,_oo (X)) = —a,limy, 100 P(x) =
b, |¢'lle < SUpye[_q.p If )| = max{a, b}, and ¢ is strictly in-
creasing on R. On that space we define the operator 7 that to
¢ € CT associates the function 7 ¢ =  given by

V) = e / eF (@5 + p — RS,

o0
where p € [0; 4oo[ is the only constant such that ¢(0) =

f?w ef (¢[s + p — R(¢(s))])ds = 0. It can be shown that € C™.
Then y» = T ¢ is the unique solution of equation

V() = =y (t) + f(@t — R(P (D) + p]) (11)
such thatlimy_, _o ¥ (x) = —a, limy_, 1o, ¥ (x) = band ¢ (0) = 0.
So an increasing solution of the transition layer equation (6) (case
n(0) = 0and n’(0) = 1)is afixed point of the operator 7 in the set
C™. In the following we show how to numerically solve the fixed
point problem 7 ¢ = ¢*. A solution to the problem 7¢~ = ¢~
is obtained in the same way.

Let ¢ be a smooth increasing function such thatlim,_, _,, ¢(t) =
—aand lim;_, 1~ ¢(t) = b. Then, for any y € R, the function

t
O =e [ efls+y - Ro©NDs
—0Q

is also smooth, increasing, and satisfies lim;_, o, ¥/ (t) = —a and
lim;—, yoc ¥ (t) = b. Since, for any ¢t € R, the map y — ¥, () is
increasing, there is a unique y = p such that ,(0) = 0 and so
Y, = T ¢. A numerical approximation to the map ¢ — v, is the
following. Let L > 0 and ¢" be the function that coincides with ¢
on the interval [—L, L] and such that ¢'(t) = —afort < —L and
¢L(t) = bfort > L. Clearly sup,p [¢*(t) — ¢(t)| can be made
arbitrarily small if L is chosen sufficiently large. So, we fix L > 0
and choose an initial ¢¢ that satisfies ¢(t) = —afort < —L and
¢o(t) = bfort > L. Then for a given y we use a first order Euler
method to solve the equation

Y, () = =¥, () + (@[t + ¥ — R(do ()],

with the initial condition v/, (—L) = —a and time step dt. Knowing
that y > p is equivalent to v, (0) > 0, we can use a shooting
method to find y; and y, suchthat p—dt < y; < p <y, < p-+dt.
Defining ¢1(t) = ¢, (t) fort < Land ¢;(t) = bforx > L
we obtain the approximation 7¢9 = ¢;. This procedure can be
iterated ¢,+1 = T¢p,n = 1,2, ..., hoping that it converges to a
fixed point ¢*. The convergence of this sequence was numerically
verified, typically iterating ¢,+1 = 7 ¢, up ton = 20 and checking
that

|pn(t) — Pn_1(t)| < dt.

A sample of our results are shown in Table 1(a) (Section 4.1.1) and
in Fig. 8.
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Fig.8. Decreasing transition layer solutions of Eq. (6) (n(0) = 0 withn’'(0) = 1) withf(x) =
In (b): ¢10(t) = T 0 (t) is displayed (with ¢ (t) = ab 1—¢" ), for functions R(x) = 2x, R(x)

a+bet

In Table 1(a) the constants p* were computed for f(x) =
%arctan(Sx), L = 100.0, and dt = 0.001. The initial condition

_2,
used to obtain Table 1(a) was ¢>0+ t) = L‘fi) for the increasing
atbe 3
2
transition layer solution, and ¢, (t) = ”b“;e;[) for the decreasing
a+be3

transition layer solutions.
In Fig. 8(a) several iterates ¢, are shown to converge to a
limit profile ¢~ for f(x) = %arctan(Sx), with R(x) = cos(x),

and initial condition ¢q(t) = ab a];be;. In that case the feedback
f is symmetric, so that the operator 7 is also symmetric, and
if we consider an increasing initial profile ¢y = —d¢o, the
corresponding sequence is &)n = T"(—¢o) = —T ¢o. In particular,
Fig. 8 illustrates the convergence and shapes of iterates for both
increasing and decreasing profiles. In Fig. 8(b) the limit profile
d10(t) = T (t) &~ ¢~ (t) is shown for R(x) = 2x, R(x) = —x?,
and R(x) = %x(] + x), using the initial condition ¢o(t) = ab al;be;.
For R(x) = x, the numerical convergence of the sequence ¢, 1 =
T ¢, was successfully tested for the following initial functions:

Po(t) = — \%I and ¢ (t) = ab ;J:be; (14-0.4 cos(t)). All these results
also hold for a non-symmetric positive feedback as well.

For DDEs with state-dependent delays, such as transition layer
equations (6), the existence of solutions ¢ to the Cauchy problem
is known under classical hypotheses, in particular on the delay
function R, that ensures that t + t — R(¢(t)) is not decreasing
(see [20] for example). We mention that in several numerical
examples, when R is too large, the maps t > t — R(¢,(t)) are not
monotone, the iterative sequences ¢, = 7"¢o does not converge,
and transition layer solutions seem not to exist (see Section 4.2)

In the case n(0) = 1’(0) = 0, the transition layer equation (9)
is associated with the operator

t
() =t / EF(Bls + p* — AR(($)]ds,

and the same numerical method presented above can be used to
compute its fixed point. For instance, Fig. 1 (Section 4.2.1) shows
the constants p* that were computed using various choices of R
and: f(x) = %arctan(5x), L = 100.0, dt = 0.001, n = 20, and the

_2,
initial condition ¢0+(t) = ‘1"(1_7821) for the increasing transition

a+be 3

2;
layer solution and ¢, (t) = ab“;e;[) for the decreasing transition
a+be3
layer.

Finally, in Fig. 2 (in Section 4.3), illustrating that metastability
may be induced by state-dependent delay in the case of non-
symmetric positive feedback (that does not exhibit metastability
for constant delay), the values of p* were computed using L =

b T T T T T T T
e mXag - X R(x) =-x* —=— _|
e R0 = 05551 5) o
T BX R(x) =2x —-x--
04 - RN e
3
= 02 "i.\ T
) Sy
& 0 \&! 1
e
o2k ", i
=S
3.
04 =S -
SRy
06 1 1 1 1 1 1 1
15 A 0.5 0 0.5 1 15

1—et

arctan(5x) (Positive feedback case).In (a): R(x) = cos(x) and ¢y (t) = abm.

1
2
= —x%, and R(x) = 3x(1+x).

100.0,dt = 0.001,n = 20, and the initial conditions ¢, (t) =

b(1 ’%t) b(1 %t)

ai —e — ai —e
—2, ¢0 t) = 2,
a+be 3 a+be3

B.2. Monotone negative feedback

For f satisfying MNFH, one can repeat the procedure above and
define the operator 7 that has as fixed points the solutions to the
transition layer equation (7), namely

t
ST =T (t) = e f Sf (@ Is + p* — R~ (5)]ds

—00

t
s O=79'0=c [ @ts+p RO NS
—00

where ¢ (resp. ¢ ) are increasing (resp. decreasing) smooth func-
tions with lim,_, _oo @7 = —a, lim;_, ;oo ¢ = b and lim,_, _o,
¢~ = b,lim;_ o ¢~ = —a, and p* are the only constants such
that ¢ (0) = ¢~ (0) = 0. Since the function f is decreasing, the
operator 7 now maps an increasing function to a decreasing one
and vice versa. As in the case of positive feedback, if the function
¢ is strictly monotone the function y +— ¥, (t) is strictly mono-
tone too, so that the constants p* above are well defined and can
be computed by a shooting method. We choose a smooth increas-
ing initial function ¢ with lim;_, _oo ¢ = —a, lim;_, 4o ™ = b
and the subsequences ¢, and p,;, (resp. ¢an+1 and pop41) converge
to the transition layer solution ¢ and the constant p™ (resp. ¢~
and p~). Numerically, as in the positive feedback case, we use dis-
cretization of step dt on an interval [—L, L], the functions ¥, are
computed using a first order Euler scheme of step dt, the constant
p are approximated with a precision dt, and the convergence after
n iterations of 7 is checked similarly:

|pn(t) — P2 (t)| < dt,
[p1-1(t) — ¢r—3(t)| < dt.

In Table 2 (Section 4.1.2) the constants p* were computed using

— 5t
L =100.0, dt = 0.001, n = 40, and ¢ (t) = LI=-51,
atbe 3
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