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A universal language for finding mass 
spectrometry data patterns

Despite being information rich, the vast majority of untargeted mass 
spectrometry data are underutilized; most analytes are not used for 
downstream interpretation or reanalysis after publication. The inability to 
dive into these rich raw mass spectrometry datasets is due to the limited 
flexibility and scalability of existing software tools. Here we introduce a 
new language, the Mass Spectrometry Query Language (MassQL), and an 
accompanying software ecosystem that addresses these issues by enabling 
the community to directly query mass spectrometry data with an expressive 
set of user-defined mass spectrometry patterns. Illustrated by real-world 
examples, MassQL provides a data-driven definition of chemical diversity 
by enabling the reanalysis of all public untargeted metabolomics data, 
empowering scientists across many disciplines to make new discoveries. 
MassQL has been widely implemented in multiple open-source and 
commercial mass spectrometry analysis tools, which enhances the ability, 
interoperability and reproducibility of mining of mass spectrometry data 
for the research community.

Innovation in mass spectrometry (MS) has enabled tremendous pro-
gress in life sciences, and advances in MS instrumentation have led to 
the widespread adoption of omics disciplines (for example, metabo-
lomics, lipidomics and proteomics). Despite the broad application of 
MS to characterize proteins, peptides, polymers, small molecules and 
nucleic acids across research disciplines, the ability for scientists to flex-
ibly search for known chemical classes within and across MS datasets 
remains a challenge. The interrogation of MS data for the presence of 
specific chemicals or classes of molecules utilizes patterns in MS peaks 
representing intact analytes1 isotopic signatures or characteristic mass 
differences (MS1), associated fragmentation patterns in tandem MS data 
(MS/MS), chromatographic retention time, collisional cross-section 
or combinations thereof. This search for specific patterns is usually 
performed through a slow and error-prone manual inspection of the 
data. Alternatively, specialized software tools have been developed for 
this purpose but are often limited to search for a specific compound1  
or a limited set of class-specific MS patterns2. Although bespoke one-off 
scripts provide the necessary flexibility to search for specific MS data 
patterns3, most noncomputational researchers and laboratories lack the 
computational skills to develop or customize them4,5. This skill gap limits 
biologists and chemists from effectively searching across MS datasets, 
potentially leaving many biologically important molecules hidden and 

undiscovered in the data. To address this gap, here we introduce the Mass 
Spectrometry Query Language (MassQL), an open-source language for 
flexible and mass spectrometer manufacturer-independent searching. 
MassQL aims to enable noncomputational researchers to easily search 
their MS (across MS1 and MS/MS) data for patterns of interest without 
the need for programming skills or a dedicated computational col-
laborator. In this Article, we describe the MassQL language, showcase 
its accompanying computational ecosystem to increase accessibility 
and highlight two application examples that demonstrate how MassQL 
can be used on entire public repositories (such as Global Natural Prod-
ucts Social Molecular Networking (GNPS)/MassIVE6, Metabolomics 
Workbench7 and MetaboLights8).

Results
The versatility of MS to capture unique characteristics of chemical 
structures, such as isotopic patterns (for example, bromination), diag-
nostic fragmentation (for example, product ion of sulfur trioxide) and 
neutral losses (for example, loss of sugar moieties), makes it a powerful 
analytical tool but also presents challenges to effectively interpret and 
utilize the richness of the data. Specifically, the ability to simultaneously 
utilize some or all of these different dimensions of MS data in an inte-
grated fashion is currently out of reach. To complement the versatility 
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Metabolomics Workbench7) and commercial (Bruker’s MetaboScape). 
It must be noted that these software tools use the same MassQL lan-
guage grammar but implement their own MassQL query engine back-
end. This provides the possibility to develop optimized query engines 
for improved query performance, while maintaining query semantic 
consistency across tools. Finally, to facilitate the integration of MassQL 
into other platforms and pipelines, MassQL is available as Python and R 
(ref. 14) libraries and as a web application programming interface (API).

Discovery of siderophores at repository scale
Iron-binding small molecules play essential roles across biology, 
including microbial or mammalian siderophores that facilitate iron 
homeostasis15,16. We recently developed a native metabolomics method 
that includes infusion of iron to identify iron-binding compounds from 
complex samples based on the identification of retention time and 
peak shape correlations along with an Fe3+-characteristic m/z delta 
of 52.91 (ref. 17). As a complementary strategy to our native metabo-
lomics method, which requires hardware modification in instrument 
setup and data acquisition, we mined all existing public metabolomics 
data, encompassing over 230 million analytes, to discover putative 
iron-binding compounds using MassQL. Although iron is often stripped 
from iron-binding compounds in liquid chromatography, we hypoth-
esized that some iron-binding compounds will remain bound to iron 
at detectable levels in the MS data.

To develop the MassQL query, we used an MS dataset collected 
from Eutypa lata supernatant extracts that were treated with a 
post-liquid chromatography iron addition, as described by Aron et al.17 
(Supplementary Notes 3.3.1 and 3.3.2). The refined MassQL query 
searches MS1 spectra for the characteristic isotopic pattern of iron 
along with a distinctive iron-binding mass shift (Fig. 2a). Specifically, 
the MassQL query searches for MS1 precursor ions with an m/z of x, m/z 
of x − 1.993 at 0.063% intensity of x (the stable isotope ratio of 54Fe to 
56Fe), and m/z of x + 1.0034 (the 13C peak), in addition to a proton-bound 
adduct (apo) peak at m/z of x − 52.91. Combined MassQL queries for 
apo and bound MS2 spectra identified seven out of the eight puta-
tive siderophores identified using ion-identity molecular networking 
(IIMN)18 in the published analysis of the post-liquid chromatography 
iron addition of E. lata extracts. The unique compound that was found 
using IIMN but not by the MassQL query was missed because the 54Fe 
peak intensity fell outside of the expected intensity tolerance of 25%, 
which is probably due to the low intensity of this peak. We used strict 
m/z (10 ppm) and expected intensity percentage (25%) tolerances to 
minimize false-positive retrieval. Using MassQL, an additional four 
molecules were found that were not found using IIMN (Supplementary 
Fig. 3.3.2-1); these molecules are probably iron-binding, as manual 
inspection revealed that they exhibit the expected iron-bound isotopic 
pattern. The published IIMN analysis may have missed these molecules 
owing to requirements for peak shape and retention time correlations 
or owing to low-intensity peaks falling below feature finding thresholds.

After validation of the siderophore query on the E. lata dataset, 
we extended the search for iron-binding compounds to all public 
high-resolution Thermo Fisher Q Exactive data available in the GNPS/
MassIVE repository6 (Supplementary Note 3.3.3). In searching over 230 
million MS/MS spectra in 97,109 public data files, we retrieved 26,944 
MS/MS spectra associated with the iron-characteristic isotope pattern 
in their MS1 data. We used MS-Cluster19 on the retrieved MS/MS spectra 
to collapse redundant observations of the candidate iron-binding 
molecules. This resulted in 7,504 consensus MS/MS spectra. Using 
these consensus spectra, we created a molecular network in GNPS. 
We could putatively identify 441 (5%) of the consensus spectra by 
spectral library search against the public MS/MS libraries in GNPS6. 
The putatively identified known compounds were further filtered to 
remove duplicates and adducts of ethylenediaminetetraacetic acid 
(a common anticoagulant). After filtering, 52% of annotated spectra 
are known iron binders, while an additional 25% are lipids, bile acids, 

of MS data, the MassQL language implements a succinct and expressive 
grammar to search for chemically and biologically relevant molecules 
in the MS data by leveraging these patterns (Fig. 1a,b). The MassQL lan-
guage enables searching for patterns in MS1 data (for example, isotopic 
patterns and adduct mass shift) and MS/MS fragmentation spectra (for 
example, presence/absence of fragments and neutral losses), as well as 
applying chromatographic and ion mobility constraints. In addition, 
MassQL provides language support for user-defined tolerances, such 
as ion intensity and mass accuracy (Fig. 1b). Moreover, each of these 
query elements can be combined with Boolean operators (for example, 
AND, OR and NOT) to form more complex queries. These properties 
and patterns are common to nearly all MS data types, thus making 
MassQL agnostic to the instrument vendor, mass detector (for exam-
ple, Orbitrap and quadrupole time-of-flight), ionization source (for 
example, electrospray ionization and matrix assisted laser desorption/ 
ionization) and separation method (for example, liquid chromato
graphy, gas chromatography and ion mobility). Together, the MassQL 
language provides users the flexibility and expressiveness to query 
simple and complex MS patterns regardless of their computational 
expertise, thus lowering the barriers of entry to MS data interrogation. 
Finally, as a language, new MassQL terms can be defined, which enables 
grammar and syntax evolution to maintain compatibility of queries to 
advancing MS technologies.

The MassQL computational ecosystem is made of several key com-
ponents that ensure its extensibility and usability for the community. 
These components are a formal definition of the MassQL grammar, a 
MassQL language parser, a reference implementation of the MassQL 
query engine, interactive web interfaces to enhance accessibility for 
noncomputational users and a NextFlow computational workflow for 
parallelized querying of very large datasets (Methods). Together, this 
enables MassQL searches on a single MS data file, within and across 
whole MS datasets, up to entire data repositories, including GNPS/
MassIVE6, Metabolomics Workbench7 and MetaboLights8.

The MassQL formal grammar builds upon common MS terminol-
ogy (Methods), which makes MassQL queries easy to write and alter for 
scientists with basic familiarity with MS. To further help new users, we 
have created extensive documentation (https://mwang87.github.io/ 
MassQueryLanguage_Documentation/), instructional videos (https:// 
www.youtube.com/playlist?list=PLkDps_-pcYZ5D3rhas208dsMg66l 
CGmcs) and an interactive MassQL sandbox (https://massql.gnps2. 
org/). The sandbox enables users to interactively develop and test 
MassQL queries on demonstration data to check for queries’ correct-
ness before applying to their own data. Moreover, the sandbox automat-
ically translates each query into English, Portuguese, Spanish, German, 
French, Mandarin Chinese, Japanese, Korean and Russian, which helps 
the interpretability of queries in manuscripts and grants. In addition, 
we have developed and deployed a large-language-model-powered 
conversational assistant (https://massql-analysis.gnps2.org/
MassQL_Chatbot) to support new users with real-time MassQL query 
writing and troubleshooting. Finally, as a community effort, we cre-
ated a wiki-like compendium of 35 applications of MassQL (https:// 
massql.gnps2.org/compendium/; Fig. 1d) that serves as a reference 
and inspiration for new users. Queries in the compendium can be (re)
used as they are, or as a starting point to develop queries tailored to 
the chemicals or compound classes of interest. The compendium is 
regularly updated with new examples of MassQL queries successfully 
used by community members in published works and will function as 
an ‘app store’ for a centralized MassQL query deposition and sharing.

While MassQL was originally implemented within the GNPS 
environment6,9, this was limiting for the accessibility to a broader 
audience. To further enhance usability, we have engaged with the 
wider metabolomics software community and, through these efforts, 
the MassQL language has been adopted and natively supported in 
a variety of MS data analysis software and infrastructure (Fig. 1c), 
both open-source (MZmine10, pyOpenMS11, MS-DIAL12, UniDec13 and 
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polyphenols and peptide/amino acids—classes that have been shown 
to bind iron and other divalent metals20–23. Notably, because such a 
large fraction (>95%) of the analytes in the molecular network could 
not be annotated to known molecules (Fig. 2d), this molecular network 
is probably a rich resource for the discovery of new siderophores.

OPEs in the environments
Organophosphate esters (OPEs) are widely used flame retardants 
and plasticizers and are ubiquitously detected in environmental 

samples24–26. Recent studies in environmental chemistry have reported 
several novel OPEs by searching for a conserved, unique fragmenta-
tion pattern (O = P(OR)3) in MS/MS data27–29. The characteristic frag-
ment, frequently leveraged in literature, is the phosphate product ion 
(H4O4P+, m/z 98.9842). The traditional low-throughput methodologies, 
which includes manual analysis and targeted lists of known OPEs, limits 
the ability to discover novel potentially harmful chemicals. Here, we 
demonstrate how MassQL can enable high-throughput screening and 
discovery of novel OPE without a predefined suspect list.
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Fig. 1 | Schematic representation of the MassQL ecosystem. a, Examples of 
molecules that produce distinctive data patterns when measured by MS as 
mass/charge (m/z) and intensity (i) peaks. b, MassQL query representing MS/MS 
fragmentation patterns that encapsulates a characteristic mass loss. The query 
can be translated to nine languages for enhanced accessibility. c, MassQL is a 

universal tool to query MS data. MassQL enables data searching in a single file 
to entire MS repositories. MassQL has also been incorporated into a wide range 
of MS software. d, MassQL queries are shared and reused via the Community 
Compendium, which increases reproducibility and knowledge dissemination.
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Utilizing the characteristic phosphate product ion, we formu-
lated a MassQL query to search for an MS/MS peak at m/z 98.9847 
with 50 ppm mass error tolerance and a peak intensity >50% of the 
base peak (Supplementary Notes 3.2.3 and 3.2.4). Similarly to sidero-
phores example, a MassQL query was developed on a test marine 
water dataset to verify the utility of the MassQL for identifying puta-
tive OPEs in complex samples (Supplementary Note 3.2.3). In this 
test dataset, where three OPEs were previously identified by manual 
analysis30, MassQL returned 589 MS/MS spectra belonging to ~60 
unique molecular features. MS/MS library search against the GNPS 
spectral library of the MassQL retrieved MS/MS spectra putatively 
annotated four OPE molecules, including all three previously iden-
tified OPEs, and one new putatively identified OPE. We additionally 
putatively identified two non-OPE molecules. The first molecule 
contained a phosphate group that resulted in the characteristic phos-
phate fragment in the MassQL query. The second putative non-OPE 
molecule did not contain a phosphate group, but further investigation 
revealed a potentially false-positive library match due to large mass 
errors in the library MS/MS peaks. These results suggested that the 
MassQL query was useful in retrieving OPEs but may also capture a 
broader range of phosphate-containing compounds. For this reason, 
when scaling up to repository searches (see below), we leverage the 
ability of molecular networking to group together similar structures 
and segregate OPEs from phosphate-containing compounds more 
generally.

To identify OPEs in public data, we scaled the MassQL query to all 
Q Exactive data in the GNPS/MassIVE6 data repository (which included 
>230 million MS/MS spectra). The MassQL query found 338,439 MS/MS 
matching the query criteria. Only 15% (51,310) of the MS/MS found by 
MassQL could be explained (precursor m/z match with 20 ppm mass 
error) by known OPEs based on a comprehensive OPEs list (n = 95) 
compiled by Ye et al.29. We extracted all MS/MS spectra and created 
consensus MS/MS spectra using Falcon-MS30, resulting in 2,777 con-
sensus spectra. We used these consensus spectra to create a molecular 
network. Combining the library annotation results, we propose one 
additional OPE that was not included in the GNPS library and the com-
prehensive OPE list by Ye et al.29 (Fig. 3). It is important to reemphasize 
that, in the search for OPEs, the MassQL query was not designed to 
specifically look for OPEs but phosphate-containing molecules more 
generally. The molecular networking strategy complemented the 
MassQL results to organize OPE molecules in their own families. This 
combination of MassQL and molecular networking was critical because 
MassQL greatly reduced the data size (from 230 million to ~338,000 
MS/MS, making molecular networking computationally tractable), 
while molecular networking helped to focus attention on families of 
specifically organophosphate molecules.

False discovery rate estimation and query validation strategies
Overall, the key challenge when using MassQL is to define queries that 
are sensitive toward the target compound(s) (that is, effectively retrieve 
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the desired spectra) but do not retrieve too many false-positive hits. 
Due to the flexibility and broad applicability of MassQL, a universal 
method for false discovery rate (FDR) estimation is difficult to establish. 
Rather, tailored strategies for query validation can be designed case 
by case by the user, depending on the research context.

As demonstrated in a recent publication that used MassQL to 
mine liquid chromatography–MS/MS raw data in the public domain 
and discover new, unreported bile acids31, one possible strategy to 
estimate the FDR of MassQL queries over MS/MS spectra is to putatively 
identify the MS/MS spectra retrieved by MassQL using reference MS/
MS spectral libraries. In their study, Mohanty et al. first used the GNPS 
spectral libraries (which contained 4,533 reference spectra of bile acids) 
to design and refine MassQL queries for bile acid spectra and estimate 
the queries’ selectivity. Such selectivity was measured by counting the 
number of retrieved bile acids and the number of retrieved non-bile 
acids (false positives). Thereafter, when using the refined MassQL 

queries to search repository data, more than 594,000 putative bile 
acids MS/MS spectra were retrieved. Among these, 270,437 MS/MS 
spectra were putatively identified by MS/MS library search, with 726 
MS/MS matching to non-bile acids (0.27%). It is important to highlight 
that this FDR estimation approach is limited to the compounds that are 
deposited in the reference MS/MS libraries.

It should be noted that the same validation approach cannot be 
universally applied, for example, to the repository-scale discovery 
of siderophores described in the present manuscript (‘Discovery of 
siderophores at repository scale’). Siderophore molecules do not 
belong to a single compound class and can exhibit very diverse chemi-
cal structures. Therefore, queries for diagnostic MS/MS fragment ions 
cannot be used, and the search was instead performed on the MS1 level 
(‘Discovery of siderophores at repository scale’ section). The adopted 
strategy was to first develop and refine the query on a reference dataset 
of E. lata extracts known to contain iron-binding molecules17. After 
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satisfactory results were obtained on the reference dataset (Supple-
mentary Note 3.3.2), the query was performed on a repository scale. 
In this specific example, we used a strategy based on a ‘decoy’ query 
to get a sense for potential false discoveries (Supplementary Note 2), 
estimated at 21.7% for this repository scale query. Although a relatively 
large number of false-positive hits may be expected when performing 
searches at a repository scale, these false positives can be mitigated by 
utilizing additional computational tools in a downstream analysis (for 
example, molecular networking and spectral library search) to validate 
the query results. In these cases, MassQL acts more as a prefilter to 
reduce the data to a more tractable size (from hundreds of millions of 
spectra to a few thousands) and ‘enrich’ them with putative leads for 
further investigation and confirmatory experiments (‘Discovery of 
siderophores at repository scale’ and ‘OPEs in the environments’ sec-
tions). Overall, we encourage users to critically inspect query results 
and develop tailored validation strategies that are fit for their research 
purposes.

Discussion
Here, we introduced MassQL, a platform- and manufacturer-independent 
query language to search for MS data patterns within and across MS 
datasets. The main goal of MassQL is to provide noncomputational sci-
entists with the flexibility to encode complex MS patterns into concise 
and expressive queries, reducing the need to write bespoke program-
ming scripts. Together with the accompanying software infrastructure 
created through community efforts, the MassQL ecosystem lowers the 
barrier of entry to MS data interrogation for chemists and biologists 
lacking programming skills. This goal is being realized by the adoption 
of MassQL by the community. Of note, MassQL has already been used 
by researchers for MS data mining32, microbiome research31, exposomic 
and biomonitoring33, infectious disease research34 and natural product 
discovery35–42.

While traditional MS/MS similarity/search tools are a powerful 
technique for matching related or similar compounds within libraries 
or repositories (for example, spectral library search43 and MASST44), 
MassQL provides a complementary set of capabilities with enhanced 
flexibility and precision. Specifically, traditional MS/MS search tools 
rely on a full MS/MS similarity measure to retrieve a match, whereas 
MassQL queries are a set of user-defined constraints to retrieve a 
spectrum. This provides the flexibility to search for more specific and 
complex patterns (for example, combine MS1 and MS/MS patterns, 
retention and drift time constraints; Supplementary Notes 3.3 and 3.4) 
and empowers scientists to leverage their domain knowledge of the 
chemical or compound class under investigation. A specific example 
where MassQL can complement MS/MS similarity is when small struc-
tural modifications can result in large changes in the overall fragmen-
tation patterns. This situation can cause relevant analog molecules to 
evade discovery by MS/MS similarity-based search. MassQL has been 
shown to complement MS/MS comparison strategies by enabling the 
searching for conserved key fragments or neutral losses in the MS/
MS spectrum without requiring a full MS/MS similarity match (for 
example, ref. 42).

While MassQL-based querying of small and large datasets can be an 
effective way to prioritize data, the utility of this querying paradigm can 
be enhanced when paired with complementary analysis tools (before or 
after MassQL). First, in this Article, we showcased how discovery can be 
enhanced by combining upstream MassQL searches with downstream 
molecular networking and spectral library analysis (see ‘Discovery 
of siderophores at repository scale’ and ‘OPEs in the environments’ 
sections in the Results). The use of MassQL as a prefiltering tool was 
essential in making the analysis possible, both from a computational 
tractability and data interpretability/prioritization perspective. Sec-
ond, MassQL has been shown in the literature as a downstream tool to 
enhance the analysis of molecular networking—specifically, to aid in 
the prioritization of relevant compounds and, as highlighted above, to 

overcome shortcomings in MS/MS alignment35,37–39,41,42. We do acknowl-
edge limitations with MassQL as available today—specifically, MassQL 
has limited capabilities to leverage more than a handful of MS spectra, 
for example, consecutive MS spectra arising from the elution of chro-
matographic peaks that can be grouped as a chromatographic feature.

We envision that the MassQL computational ecosystem will grow 
in adoption and capability. We recognize areas for improvement within 
MassQL, such as enhancing the query performance of MassQL and 
expanding the expressiveness of the language. We have designed and 
scaffolded the MassQL ecosystem to be extensible in both of these 
respects. We have defined a format context-free grammar for MassQL 
that is separate from any query engine that implements the MassQL 
semantics (Methods). Even though the reference implementation of 
the MassQL query engine is not explicitly optimized for speed (Sup-
plementary Note 1), this architecture enables the wider community to 
develop new query algorithms to improve search speed, while using 
the same formal grammar. This paradigm has already been demon-
strated in the popular software tools that implemented their own 
query engine: MS-DIAL12, Mzmine10 and Bruker’s MetaboScape. Finally, 
MassQL derives its strength from a vibrant user open-source commu-
nity, and we expect this community-guided evolution of the language 
to continue in the future. As both the language and software ecosystem 
evolve, MassQL will become more capable and versatile to meet the 
scientific community’s growing needs in mining MS data.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
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Methods
MassQL language description
MassQL condition description. The following table gives a short sum-
mary of the most common ways that we can set a condition to find the 
data we want. Each of the following conditions may have more than one 
way to qualify each condition, to modulate the tolerance, intensity and 
so on to help improve the specificity a user desires. Further details can 
be found in the official documentation at https://mwang87.github.io/ 
MassQueryLanguage_Documentation/.

MassQL qualifier description. The following gives a short summary 
of the most common qualifiers for conditions that users can specify 
in MassQL. Further details can be found in the official documentation 
at https://mwang87.github.io/MassQueryLanguage_Documentation/.

MassQL reference implementation
The reference implementation is a fully working version of the MassQL 
software ecosystem for the community to use. It also serves as a guide 
for future MassQL implementations that may optimize speed and/or 
introduce new functions in other systems. Specifically, the reference 
implementation includes the following pieces:

•	 MassQL formal grammar. The grammar is defined using the 
extended backus-naur form and builds upon common MS 
terminology for improved expressiveness and interpretability 
(see ‘MassQL language description’ section). During the develop-
ment, community input and feedback shaped the vocabulary and 
capabilities of the language.

•	 MassQL parser. The parser transforms a query into an internal 
data structure that can be used by any programming language. 
The parsing is done by using the lark Python library (https:// 
github.com/lark-parser/lark) and specific Python code to trans-
form a MassQL query to a parse tree and into the internal data 
structure that organizes all query conditions and qualifiers.

•	 MassQL query engine. The MassQL reference query engine is 
written in Python and utilizes pyteomics45 to read open MS data 
files from mzML, mzXML and MGF formats into data frames. 
Such MS spectra in data frame format can optionally be saved 
as Apache feather files to cache data for repeated querying. The 
query engine itself processes the query over these data frames 
using the Python pandas library to perform data filtering and 
manipulations. Output results are data frames that can be 
exported as a tabular format. Optionally, the retrieved MS  
spectra can be exported in JSON format, MGF and mzML46.

The MassQL reference NextFlow47 workflow is designed as an auto-
mated high-throughput tool for querying multiple files simultaneously 
on a computational cluster. This workflow utilizes the reference query 
engine and parallelizes the querying of multiple files across a multicore 
processor or a batch cluster, depending on the compute resources 
available. All results are then merged together, including extracted MS 
spectra in JSON format, MGF and mzML format, if desired.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this paper are deposited at MassIVE (massive.ucsd.
edu). The relevant dataset accessions are provided together with the 
relevant description in the Supplementary Notes.

Code availability
Reference Engine Implementation (Python), language formal grammar, 
GNPS Workflow, NextFlow Workflow and interactive web interface 
are available via GitHub at https://github.com/mwang87/MassQuery 
Language and Zenodo at https://doi.org/10.5281/zenodo.14419767  
(ref. 48). MassQL is also available via Python API (https://pypi.org/ 
project/massql/), R API (https://github.com/rformassspectrom 
etry/SpectraQL), mzmine (https://github.com/mzmine/mzmine),  
OpenMS (https://pyopenms.readthedocs.io/en/latest/massql.html),  
MS-DIAL 5 (http://prime.psc.riken.jp/compms/index.html) and UniDec  
(https://github.com/michaelmarty/UniDec). The official online doc-
umentation for MassQL is available at https://mwang87.github.io/ 
MassQueryLanguage_Documentation/.
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Data type MassQL syntax Example

MS1 peak m/z MS1MZ=<m/z value> MS1MZ=163.1

MS2 precursor m/z MS2PREC=<m/z> MS2PREC=488.1

MS2 precursor 
charge

CHARGE=<Value> CHARGE=2

Fragmentation 
product ion m/z

MS2PROD=<m/z> MS2PROD=163.1

Ionization polarity POLARITY=<Value> POLARITY=Positive

Retention time 
(minimum)

RTMIN=<Value in Minutes> RTMIN=5

Retention time 
(maximum)

RTMAX=<Value in Minutes> RTMAX=10

Scan number 
(minimum)

SCANMIN=<Value> SCANMIN=5

Scan number 
(maximum

SCANMAX=<Value> SCANMAX=5

Ion mobility MOBILITY=range 
(min=<min>, max=<max>)

MOBILITY=range  
(min=1, max=2)

Qualifier type Condition Example

m/z tolerance MS2PROD, 
MS1MZ, MS2PREC

MS2PROD=163.1:TOLERANCEMZ=0.1

m/z ppm 
tolerance

MS2PROD, 
MS1MZ, MS2PREC

MS2PROD=163.1:TOLERANCE
PPM=50

Peak intensity 
minimum

MS2PROD, MS1MZ MS2PROD=163.1:INTENSITYVA
LUE=1000

Peak intensity 
minimum percent 
of base peak

MS2PROD, MS1MZ MS2PROD=163.1:INTENSITYPERC
ENT=10

Peak intensity 
minimum percent 
of TIC

MS2PROD, MS1MZ MS2PROD=163.1:INTENSITYTICPER
CENT=10

Mass defect of 
peak

MS2PROD, 
MS1MZ, MS2PREC

MS2PROD=ANY:MASSDEFECT=mass
defect (min=0.1, max=0.2)

Exclusion of 
condition

MS2PROD, 
MS1MZ, MS2PREC

MS2PROD=163.1:EXCLUDED
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