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Abstract
The θ expansion of the Seiberg–Witten map has ambiguities which can be
removed by a gauge transformation and/or a field redefinition. In the context
of emergent gravity such a field redefinition changes the emerging metric and
requires the presence of non-minimal gravitational couplings. It also requires
that a real scalar field becomes a scalar density and allows the introduction
of a potential. We also find that the potential can have only one term and that
a quartic interaction is not allowed. Even though the metric depends on the
ambiguity we show that the dispersion relation does not present any sign of it.
A proposal for an exact Seiberg–Witten map is used to derive the full metric
going beyond the linearized limit.

Keywords: emergent gravity, Seiberg–Witten map
PACS numbers: 11.10.Nx, 04.50.−h

1. Introduction

Since the advent of the AdS/CFT correspondence the idea that local symmetries are not
fundamental acquired a renewed interest and has become a topic of great importance. On one
side of the correspondence we can have an ordinary gauge theory at weak coupling in flat
spacetime. As the coupling increases the theory is best described as a string theory in curved
spacetime. At strong coupling gravity has become an emergent phenomenon. Situations similar
to this can happen in several settings and have been the subject of much attention in recent
years (for some review papers see [1–4]). Usually the relation between the original theory
without gravity and the theory with gravity is very cumbersome so it is desirable to have some
situations where this relation can be as simple as possible. Sometime ago this was found in
the context of noncommutative (NC) theories [5] where the emerging gravitational field was
expressed explicitly in terms of the original matter and gauge fields.

One of most important properties of NC theories induced by the Moyal product in flat
spacetime is the fact that translations in NC directions are equivalent to gauge transformations
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[6]. It has a feeling of general relativity so it is natural to look for a connection between gravity
and NC theories. This was achieved in [5] where it was shown that after the Seiberg–Witten
(SW) map [7] gravity emerges from the NC theory. The effect of the gauge field and the NC
parameter θαβ on matter fields induces interactions similar to those produced by gravity. The
emergence of gravity through a NC theory lead to a series of applications ranging from matrix
models to holography [8–15].

Usually a NC field theory is formulated in a NC spacetime by replacing the ordinary
product of the fields by the Moyal product. The NC fields are then defined in commutative
spacetime but have non-conventional properties like for instance self-interactions of the gauge
field in an Abelian gauge theory. Through the SW map we can work with conventional fields
defined on commutative spacetime at the expenses of introducing a large number of interaction
terms. The NC effects appear for instance in modified dispersion relations for photons which
no longer move with the velocity of light [16]. In this setting it was found that matter fields
interacting with Abelian gauge fields to lowest order in θ have couplings which are essentially
gravitational couplings [5]. These results have been extended to all orders in the NC parameter
and at the full nonlinear level in the limit of slowly varying gauge fields [17, 18].

It is well known that the θ expansion of the SW map has ambiguities. For instance, for
the gauge field the most general expression for the SW map to first order in θμν is given by

Âμ = Aμ − 1
2θαβAα(∂βAμ + Fβμ) + α ∂μθF, (1)

where θF stands for θαβFαβ . The ambiguity is parametrized by a real constant α and can be
eliminated by a gauge transformation on Aμ with gauge parameter � = −α θF . For a real
scalar field we have

φ̂ = φ − θαβAα∂βφ + α θF φ, (2)

where the ambiguity is again parametrized by a real constant α and it can removed by a field
redefinition of the scalar field φ = φ′ − α θF φ′. A field redefinition changes the action but
should not generate any change in the physics. So any physical process evaluated before or
after the field redefinition should give the same result. On the other side we know that the
effect of the NC gauge field on the scalar field is equivalent to that of emergent gravity [5].
Since gravity is sensitive to any modification that is made in the action we could expect that
an ambiguity in the SW map could cause a physical effect in the gravitational context.

As we shall see, the ambiguity gives rise to a different geometry when compared with
the geometry in the absence of the ambiguity. This is discussed in section 2. Firstly, to have
emergent gravity we find that the scalar field must be promoted to a scalar density field. We
also find that a non-minimal gravitational coupling to the scalar density field is required but
a conformal coupling is excluded. We also find that even in the absence of any ambiguity
gravity can emerge if the scalar field has density weight −1/4. This is the density weight a
scalar field would have in order to have conformal symmetry [19, 20] but again the conformal
coupling is not allowed. In section 3 we will see that we can now include self-interactions of
the scalar field a situation which was not allowed previously in the absence of ambiguities. We
also find that emergent gravity allows only one term in the potential and that the interaction φ4

is not allowed and again conformal symmetry is prohibited. It is remarkable that the gravity
side is sensitive to the presence of noncommutativity and does not allow a conformal theory
to emerge.

In section 4 we analyze the dispersion relation for massive and massless particles both
in the NC theory and in the linearized gravitational background. We find that the dispersion
relation does not depend on the ambiguities and indeed they have the same form in both
contexts as expected. Finally, in section 5, we reconsider a proposal for an exact SW map to
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find the full metric beyond the linearized approximation. When the density weight is different
from −1/4 we find that det g = −1 so that we get was is called a unimodular gravity. This
kind of gravity theory is invariant under volume preserving diffeomorphisms instead of full
diffeomorphisms. This sort of gravity theory was found earlier [21] when gravity was extended
to NC curved spaces with either the Moyal product or the Kontsevich product. Finally, in the
last section we present our conclusions.

2. Emergent gravity in the presence of ambiguities

The action for the NC scalar field φ̂ in the adjoint representation of U(1) without self-
interactions in Minkowski spacetime is

Ŝ0 = 1

2

∫
d4x D̂μφ̂ 	 D̂μφ̂, (3)

where D̂μφ̂ = ∂μφ̂ − i[Âμ, φ̂]∗. Applying the SW map (1) and (2) and keeping only first order
terms in θ we get

Ŝ0 = 1

2

∫
d4x

[
(1 + 2α θF )∂μφ∂μφ − αφ2 � θF − 2θμαFα

ν

(
∂μφ∂νφ − 1

4
ημν∂

λφ∂λφ

)]
.

(4)

Notice that the term inside the parenthesis is traceless.
Consider now the action for a scalar density field φ with weight −ω (the weight of

√−g
is 1) without self-interactions in a gravitational background non-minimally coupled to the
curvature scalar

Sg
0 = 1

2

∫
d4x (

√−g)2ω+1 gμνDμφ Dνφ + 1

2
μ

∫
d4x (

√−g)2ω+1R φ2, (5)

where μ is the coupling constant and Dμφ = ∂μ + ω
ν
μνφ is the covariant derivative of a

density scalar of weight −ω. Taking the linearized limit gμν = ημν + hμν + ημνh, where hμν

is traceless, we get

Sg
0 = 1

2

∫
d4x[(1 + (1 + 4ω)h)∂μφ∂μφ − hμν∂μφ∂νφ

+ (3μ − 2ω)φ2 � h − μφ2∂μ∂νhμν]. (6)

After identifying the coefficients of ∂φ ∂φ and φ2 terms in (4) with those of (6) we get for
ω �= −1/4 that

hμν = θμαFα
ν + θναFα

μ + 1
2ημνθF, (7)

h = − μ

1 + 6μ
θF, (8)

μ = − 1

6 + 1+4ω
2α

, (9)

for α arbitrary. The non-minimal coupling and the density weight are required by the terms of
the form φ2 � θF . If they are not present there are no consistent solution except when α = 0.
Notice that only the combination 2α/(1+4ω) appears in the solution. Also ω �= −1/4 implies
that the conformal coupling μ = −1/6 is not allowed. When the ambiguity is not present we
get μ = 0 and h = 0 recovering the results found in [5].

For ω = −1/4 we find that α = 0 while μ remains arbitrary but different from −1/6.
The linearized metric still is given by (7) and the trace of metric is still (8) but now (9) no
longer holds.

3



Class. Quantum Grav. 31 (2014) 025011 V O Rivelles

We then find that the geometry depends on the ambiguity in the SW map through the trace
of the metric (8) and (9) when ω �= −1/4. However, when we consider the dispersion relation
for a particle in this background, in section 4, we will show that no ambiguity dependence is
found.

It is also worth to remark that in the absence of ambiguities there is a new situation that
was not detected in [5]. It corresponds to a scalar density field with ω = −1/4 which, as will
see in section 5, has a full nonlinear completion.

3. Including self-interactions

As remarked before, in the absence of ambiguities no self-interactions were allowed. The
reason for that was the imposition that the scalar field in the emergent case was a true scalar
field. By relaxing this condition and allowing it to be a density instead of a scalar will allow
the presence of interactions. So consider a potential for the NC field φ̂ which is polynomial

Ŝi =
∫

d4x V̂ (φ̂), V̂ (φ̂) =
∑
n>1

1

n
V (n)φ̂n. (10)

After the SW map we get

Ŝi =
∫

d4x
∑
n>1

[(
1 − 1

2
(1 − 2nα)θF

)
1

n
V (n)φn

]
. (11)

In the gravity side we have

Sg
i =

∫
d4x

√−g V̂ ((
√−g)ωφ), (12)

which at the linearized level yields

Sg
i =

∫
d4x

∑
n>1

[1 + 2(1 + nω)h]
1

n
V (n)φn. (13)

Identifying the terms with φn in both actions we get an equation which can be solved for
the density weight as

ω = − 1
4 [1 + 2α(4 − n)], ω �= − 1

4 (14)

or written like n − 4 = (1 + 4ω)/2α showing again that only the combination 2α/(1 + 4ω)

is relevant and it is now fixed by the self-interaction of φ. Notice that the mass term in the
potential contributes with terms of the form θF while the contribution from the previous
section in φ2 have the form � θF . Combining with (9) we get

h = 1

n − 4
θF, μ = − 1

n + 2
, (15)

so that the ambiguity only appears in the density weight (14).
The important information in (14) is that only one monomial is allowed in the potential

since a choice of n fixes the value of the density weight. So emergent gravity allows only one
type of self-interaction. Notice also that the renormalizable φ4 interaction is not allowed since
it implies that ω = −1/4. This is also seen in (15). It is also interesting to note that

1

n − 4
= − μ

1 + 6μ
, (16)

so that the conformal coupling is also not allowed and is tightly related to the absence of the
φ4 interaction. The situation when both α and ω vanish, which goes back to the case studied
in [5], is not allowed.
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It should also be remarked that adding non-minimal couplings to the potential in the form

Sg
nm =

∫
d4x RV̂ (φ), (17)

does not help in relaxing (14) since it produces equations for � θF and not for θF .
When ω = −1/4 we found before that α = 0 and remarkably we get the same solution

(15) and the relation (16) while (14) is no longer true. Again the conformal coupling is not
allowed as well as the φ4 interaction.

The effect of the self-interaction of the scalar field is to fix its density weight. The
renormalizable case n = 4 is excluded as well as the conformal coupling to gravity. The only
dependence on the ambiguity resides in the density weight when ω �= −1/4 since the metric
is no longer α dependent. The interaction has washed out the ambiguity in the metric and its
only left over is in the density weight. As we shall see, the dispersion relation does not depend
on the density weight so we do not expect any ambiguity in this case.

To summarize we found that the gravitational background is given by

hμν = θμαFα
ν + θναFα

μ + 1
2ημνθF, (18)

h = − μ

1 + 6μ
θF, (19)

where, for ω �= −1/4

μ =
⎧⎨
⎩

−1

/ (
6 + 1 + 4ω

2α

)
, ω arbitrary if V = 0,

−1/(n + 2), ω = −[1 + 2α(4 − n)]/4 if V �= 0,

(20)

while for ω = −1/4 we have α = 0 and

μ =
{

arbitrary if V = 0,

−1/(n + 2) if V �= 0.
(21)

When V �= 0 we must have n �= 4.
The linearized Ricci scalar corresponding to this background is

R = 1

2(1 + 6μ)
� θF = 1

2

n + 2

n − 4
� θF, (22)

where the last equality holds only in V �= 0. For ω �= −1/4 and V = 0 it depends on the
ambiguity while for ω �= −1/4 and V �= 0 or ω = −1/4 there is no ambiguity.

4. Dispersion relations

It is seen then that not only the background but also the Ricci scalar depends on the ambiguity
if ω �= −1/4 while in the NC field theory we expect that any physical process be independent
of α even though it appears explicitly in the action (4) and (11). To compare both sides and
see how they depend on the ambiguity let us consider plane waves in the NC gauge theory.
Upon quantization the dispersion relation of the plane waves will give the velocity of the
particle associated to the scalar field. We can then look for the velocity of these particles in
the gravitational background and derive its gravitational dispersion relation.

So let us compute the dispersion relation in the gauge theory side for the massive case.
Let us assume that the field strength in (4) is constant and look for plane wave solutions. We
find that [

1 −
(

1

2
− 2α

)
θF

]
(k2 − m2) − 2θαβFβ

μkμkα = 0. (23)
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To find how the energy depends on the velocity we multiply this equation by [1+(1/2−2α)θF ]
so that

k2 − m2 − 2θαβFβ
μkμkα = 0, (24)

and all α dependence is gone away. Then to lowest order in θ the dispersion relation is not
affected by the ambiguity in the SW map as expected.

In the gravity side we can derive the dispersion relation from gμνPμPν − m2 = 0. We
then find that [

1 −
(

1

2
− μ

1 + 6μ

)
θF

]
P2 − 2θαβFβ

μPμPα − m2 = 0, (25)

where P2 = ημνPμPν . Multiplying by [1 + (1/2 − μ/(1 + 6μ))θF] we get

P2 − 2θαβFβ
μPμPα − m2

[
1 +

(
1

2
− μ

1 + 6μ

)
θF

]
= 0. (26)

For the massless case, when μ depends explicitly on the ambiguity, the dispersion relation
has no dependence on α. For the massive case we have n = 2 so μ = −1/4 and there is no
dependence on α in the dispersion relation. Only the density weight depends on α. Then in both
cases the ambiguity does not contribute to the dispersion relation and in fact the gravitational
dispersion relation coincides with the gauge theory one since the θF contribution in the mass
term of (26) vanishes for n = 2 and we get an equation with the same form as (24).

5. Going to higher orders

Up to now we have been working with the SW map to first order in θ and in the linearized
approximation in the gravity side so that the linearized metric is also first order in θ . To go to
the nonlinear level in the gravity side we need higher order θ terms in the SW map. There are
some proposals for the SW map which go beyond first order. An exact SW map was obtained
in the limit of slowly varying fields by a clever coordinate transformation involving the gauge
field [17]. It can also be applied to the scalar field case [18] and the resulting NC action after
the SW map is given by

Ŝ0 = 1

2

∫
d4x

√
det(1 + Fθ )

(
1

1 + Fθ

1

1 + θF

)μν

∂μφ∂νφ, (27)

where a matrix notation was adopted so that (1 + Fθ )μν means the matrix ημν + Fλ
μ θλν . When

expanded in θ we find (4) to lowest order with α = 0 so that there is no ambiguity. Now we
can compare (27) with the emergent gravity action (5) in the limit of slowly varying field to
get

(
√−g)−2ω−1gμν = 1√

det(1 + Fθ )
((1 + Fθ )T (1 + Fθ ))μν, (28)

showing explicitly that the metric is symmetric. We then find that if ω �= −1/4 the metric is

gμν = 1√
det(1 + Fθ )

((1 + Fθ )T (1 + Fθ ))μν, ω �= −1

4
, (29)

with det g = −1. From the results in section 2 we find that if α = 0 then μ = 0 so that the trace
of linearized metric vanishes h = 0. (Notice however that the trace of (29) is non-vanishing
and only its linearized value gives zero.) Now, if ω = −1/4 we find

gμν = (
√

det(1 + Fθ ))−(1+4μ)/(1+6μ)((1 + Fθ )T (1 + Fθ ))μν, ω = − 1
4 , (30)

and det g = det(1 + Fθ )4μ/(1+6μ). Again, from the results of section 2 we find that μ is
arbitrary and different from −1/6 and the trace of the linearized metric is given by (8).
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Since we are in a broader context our results differ from [18] where φ was regarded
as a true scalar field. To take into account the usual

√−g contribution to the action of
the scalar field a dilaton was introduced to give the required power of det(1 + Fθ ). If we
take ω = 0 in (29) we get det g = −1 and we reproduce the result coming from the exact SW
map.

It is also worth remarking that when ω �= −1/4 we have det g = −1 which is characteristic
of a class of gravity theories dubbed unimodular gravity theories which are invariant by volume
preserving diffeomorphisms (for a review see ([22]). Gravity theories with volume preserving
diffeomorphisms in the NC setting were derived and analyzed in [21].

When going to higher orders in the SW map we realize that up to second order the
θ2 contributions to the action (4) can still be put in the form gμν∂μφ∂νφ with first order
derivatives acting on the scalar field. However at higher orders this is no longer true since the
Moyal product in (3) gives rise to terms with more than one derivative acting on the scalar field
and also contributions which go beyond the limit of slowly varying fields. This means that
the usual coupling to gravity is no longer valid. In fact it points out in the direction that some
version of NC gravity is required maybe along the lines of [21] where we proposed extensions
involving the Moyal product and the Kontsevich product and it was found that both required
det g = −1. An explicit contribution to the SW map to order θ3 for the action of the scalar field
was computed in [23] and we are investigating its compatibility with the NC gravity theories
proposed in [21].

6. Conclusions

We have analyzed the consequences of the ambiguity of the Seiberg–Witten (SW) map in the
emergent gravity context. We considered the case of a scalar field in the adjoint representation
of U(1) in the noncommutative (NC) theory and found that a gravitational interpretation
requires that the scalar field turns into a scalar density field. It also requires that a non-minimal
gravitational coupling to the scalar field is turned on. When the density weight is −1/4 and
the scalar density field is indeed conformal invariant the ambiguity is no longer required.
In general a potential for the scalar field can be added but only if it has just one term. It is
interesting that a quartic interaction which would lead to a conformal invariant theory is not
allowed. It seems to exist a clash between noncommutativity and conformal symmetry. The
emergent metric depends on the ambiguity so it is necessary to verify whether the resulting
physical effects also depend on the ambiguity. In the NC theory the ambiguity cannot affect
the physics. This is confirmed by computing the dispersion relation for plane waves. In the
gravity side we also computed the dispersion relation for particles and even though the metric
depends on the ambiguity the dispersion relation is ambiguity free.

The extension of these results to all orders in the NC parameter and also to the full
nonlinear level in the gravity side can be done in the case of slowly varying gauge field and
in the absence of ambiguities. Further work is required to go beyond this limit since it will
also require the knowledge of some form of NC gravity theory or even generalized geometry
present in NC theories [24].

It is also well known that supersymmetric NC theories have important properties. It was
expected that supersymmetry could remove the mixing of UV and IR divergences characteristic
of NC field theories [25] but this happens only in the absence of gauge fields [26]. After the
use of the SW map it is also known that the supersymmetry algebra presents serious troubles
[27] and we expect that the inclusion of the ambiguity may help in the understanding of these
difficulties.
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