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Abstract

Caffeine is a natural alkaloid consumed primarily for its stimulant and metabolic effects.
Some everyday products, such as coffee, tea, soft drinks, sports supplements, and even pain
relievers, contain caffeine. However, excessive caffeine consumption, greater than 400 mg
per day, can cause adverse effects. Therefore, this work presents an electrochemical sensor
based on a molecularly imprinted polymer (MIP) electropolymerized on gold nanoparticles
functionalized with p-aminothiophenol (AuNPs-pATP) for caffeine quantification. AuNPs-
pATP synthesized show a spherical morphology with an average diameter of 2.54 nm.
Stages of MIP formation were monitored by cyclic voltammetry (CV) and electrochemical
impedance spectroscopy (EIS) using a potassium ferrocyanide redox probe, where the
following were observed: (i) an increase in conductivity upon modification of the GCE with
AuNPs-pATP, (ii) the blocking of active sites during the electropolymerization step, and
(iii) the release of specific cavities upon template removal, revealing consistent differences
between the MIP and the control polymer (NIP). SEM images revealed three-dimensional
spherical cavities on MIP surface, while the NIP showed a more compact rough surface.
Caffeine quantification was performed using square wave voltammetry (SWV) with LOD of
0.195 umol L~! and LOQ of 0.592 pmol L~!. Interference studies indicated high selectivity
and a high density of caffeine-specific binding sites in the MIP. Additionally, MIP sensor
demonstrated reusability, good reproducibility, and stability, as well as promising results
for analysis in soft drink and sports supplement samples.

Keywords: caffeine; molecularly imprinted polymer; electrochemical sensor; electropoly-
merization

1. Introduction

Caffeine (1,3,7-trimethylxanthine) is a member of the methylxanthine class of alka-
loids that includes theobromine and theophylline. It is a natural constituent of more than
60 plant species, including coffee beans, tea leaves, cola nuts, cacao, yerba mate, and
guarana berries [1]. Caffeine (CAF) is one of the most consumed food ingredients world-
wide, found in beverages such as coffee, tea, energy drinks, and carbonated drinks, as well
as in products containing cocoa or chocolate [2,3]. It is also found in a variety of medications
and dietary supplements, as it has psychoactive properties, allowing its use as a central
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nervous system (CNS) stimulant, diuretic, and in analgesic compounds [4,5]. So, caffeine
has several positive effects, including reduced fatigue, pain relief, decreased drowsiness,
increased alertness, and concentration, suppressed appetite, slightly reduced weight gain,
and decreased risk of depression and suicide [6-8]. However, excessive consumption can
cause anxiety, agitation, gastrointestinal disorders, high blood pressure, cardiovascular
disease, disrupt sleep patterns, tremors, nausea, hyperactivity, seizures, kidney dysfunc-
tion, induce daily headaches, impair normal child development, and have adverse effects
on fertility [3]. In pregnancy, the main concerns are induction of spontaneous abortion
and poor fetal growth [6,9]. Furthermore, it is important to understand that caffeine is a
mild CNS stimulant, but when combined with other stimulants, it increases the risk of
agitation, tremor, insomnia, and seizures [4]. The U.S. Food and Drug Administration
(FDA) recommend < 400 mg of caffeine per day for a healthy adult [10,11]. It has been
reported that the presence of caffeine in aquatic ecosystems has affected the development
and reproduction of species, even causing lethality [12]. Therefore, the importance of de-
tecting and quantifying caffeine encourages the ongoing search for new analytical methods
capable of detecting this compound accurately and quickly [13,14].

Although electrochemical methods offer several advantages (portability, high sensitiv-
ity, short analysis time, low cost, etc.), chromatographic and spectroscopic methods are the
most widely used for caffeine quantification [6,7,15-17]. The main disadvantage of electro-
chemical methods is selectivity, as certain components of a studied matrix can significantly
interfere with the desired detection. To solve selectivity problems, recognition materials,
such as molecularly imprinted polymers (MIPs), aptamers, enzymes, and antibodies, have
been introduced into electrode modifications [10,18].

The unique properties of MIPs, such as low cost, ease of preparation, controllable
morphology, high chemical and physical stability, sensitivity in complex matrices and high
selectivity, have sparked increased interest among scientists for molecular recognition ap-
plications [11,13]. However, MIPs polymerized by traditional methods (bulk, precipitation,
sol-gel, etc.) have limitations, such as incomplete template removal, difficult accessibility
to the binding site, slow interaction kinetics, and the formation of heterogeneous cavities.
Therefore, the preparation of MIPs by electropolymerization is positioned as the most
efficient method because it is simple, rapid, reproducible, and environmentally friendly [2].

There are some works based on molecular imprinting technology for caffeine quan-
tification; among them, one uses polypyrrole synthesized by electropolymerization, in the
presence of caffeine, as a template, on the surface of a glassy carbon electrode (GCE) [19].
Another study presents a novel electrochemical sensor that was fabricated on the surface of
a pencil graphite electrode (PGE) by one-step electropolymerization with gold nanoparticles
(AuNPs) and caffeine. This combination, like the MIP thin film with AuNPs, improves the
electrical response by facilitating charge transfer processes [2]. A third approach presents
the integration of a MIP into a carbon paste electrode, which functioned as a selective
recognition element and preconcentrating agent for the detection of CAF [20].

In the present study, we constructed an analytical device for caffeine detection based on
MIP associated with AuNPs-pATP. The incorporation of AuNPs functionalized with pATP
into MIP-based electrochemical sensors allows us to efficiently combine the advantages of
both materials. The main advantages of using this MIP sensor compared to other sensors
are (i) the ease and speed of preparing the MIP by electropolymerization, since in traditional
methods (bulk, sol-gel, precipitation, etc.), the removal of the template can take many days,
generating abundant amounts of toxic waste due to the excessive use of organic solvents,
(ii) the layer-by-layer modification of the electrode using functionalized gold nanoparticles
that guarantees greater homogeneity of the binding sites, in addition to the same orientation
and location on the surface due to the amine groups of the functionalization [21], and
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(iii) indirect quantification using a known redox probe at potentials close to 0 V to avoid
reaching high positive potentials (1.5 V) where caffeine oxidation occurs [19,20].

The synthesis of the gold nanoparticles functionalized with p-aminothiophenol was
evidenced by UV-vis and IR characterizations. The construction of the electrochemical sen-
sor (Figure 1) began with the modification of the GCE with the functionalized gold NPs by
drop casting. Then, on the modified electrode, electropolymerization was performed using
caffeine as template and o-phenylenediamine as monomer. To monitor each step during the
formation of MIP and caffeine presence in MIP cavities, [Fe(CN)g]?~/4~ was used as a redox
probe, where the current response decreases as the cavities are occupied. Additionally,
parameters such as polymerization cycles, elution time, and rebinding time were optimized,
and interferents, reuse, reproducibility, and stability studies were performed. Finally, the
detection of caffeine in real samples was evaluated.
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Figure 1. Schematic illustration of the preparation of electropolymerized MIP film and its application
for the quantification of caffeine.

2. Materials and Methods
2.1. Chemicals

Caffeine (CAF), p-aminothiophenol (pATP), o-phelynedediamine (oPD), tetrachloroau-
ric acid (HAuCly), sodium borohydride (NaBHj,), methanol, glacial acetic acid, potassium
ferrocyanide (K4[Fe(CN)¢]), potassium ferricyanide (K3[Fe(CN)g], and for selectivity tests
theobromine, xanthine, and glucose were used, were purchased from Sigma-Aldrich.

Phosphate-buffered saline (0.1 mol L™}, pH 7.0) was prepared using disodium phos-
phate and sodium hydrogen phosphate. All aqueous solutions were prepared using water
purified with a Milli-Q purification system (resistivity > 18 M() cm).

Electrochemical measurements were performed using a Autolab potentiostat—
galvanostat (Hach Lange, France), monitored by the NOVA 2.1 software (Metrohm, Nether-
land). All electrochemical experiments were performed in a three-electrode cell contain-
ing 5 mL of electrolyte solution, with a glassy carbon working electrode (0.07 cm?), an
Ag/AgCl-saturated reference electrode, and a platinum plate as the auxiliary electrode. All
experiments were carried out at room temperature (25 °C).

Infrared spectra and absorbance spectra were obtained using a Bruker ALPHA Fourier
Transform Infrared Spectroscopy in Attenuated Total Reflectance (ATR) mode (Billerica,
MA, USA) and UV-vis spectrophotometer (SEIKO-SPA400, Seiko instruments Inc., Chiba,
Japan), respectively. The JEM 2100 JEOL transmission electron microscope with a LaB6
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filament was used to register the TEM images of pATP-functionalized AuNPs. Scanning
electron microscope (SEM) measurements were performed on a 5-15 kV Thermo Fisher
Scientific Inspect F50 (Waltham, MA, USA). The SEM measurements for GCE/AuNPs-
pATP/MIP and GCE/AuNPs-pATP/NIP were performed using an accelerating voltage of
usually 5 kV with a working distance of ~8 mm.

2.2. Synthesis of pATP-Functionalized AuNPs

The gold nanoparticles functionalized were synthesized by chemical reduction using
a sodium borohydride solution as reductant agent. For this purpose, 1.6 x 10~* mol of
tetrachloroauric (III) acid trihydrate was dissolved in 60 mL of methanol. Then, a solution
of pATP was prepared dissolving 1.6 x 10~% mol in 12 mL of methanol and water in a ratio
of 1:1 (v/v) and added dropwise under stirring to the gold salt solution. After 10 min, a
solution of 8.0 x 10~ mol of NaBH, in 2.2 mL of water was added dropwise to the mix
under vigorous stirring. Then, the solution was kept in darkness without stirring for 1 h.
The resulting suspension was filtered under vacuum and washed successively with water
and ethanol. Finally, the powder was dried and stored as a solid [22].

2.3. Caffeine—MIP Electrochemical Sensor Fabrication

Prior to surface modification, the bare GCE was polished with 1.0, 0.3, and 0.05 pm
alumina-water slurry and ultrasonicated in HNOj3, ethanol, and distilled water for 10 min.
Before the synthesis of MIP, the working electrode was modified by drop casting of 1.0 uL
of AuNPs-pATP (5 mg mL~! in distilled water). Then, the GCE modified (GCE/AuNPs-
pATP) was carried out by electropolymerization of monomer oPD (6.0 mmol L Dina
deoxygenated solution in the presence of caffeine (1.0 mmol L™!) as a template, using
a cyclic voltammetry technique over a potential range of 0.0 to 1.0 V at a scan rate of
50 mV s for 10 cycles [23]. This sensor is now called GCE/AuNPs-pATP/PPD.

The next step was to remove the template (CAF) from the imprinted polymer by
extraction using a mixture of 0.25 mol L~! NaOH in ethanol /water 1:1 (v/v) for 15 minutes
by magnetic stirring [24]. The obtained sensor was named GCE/AuNPs-pATP/MIP. For
the other hand, as a control polymer, a non-imprinted polymer was made in a similar way
without addition of the CAF template; it was named GCE/AuNPs-pATP /NIP.

2.4. Quantification of Caffeine Using the Caffeine—MIP Electrochemical Sensor

The quantification of caffeine was carried out using square wave voltammetry (SWV)
with a modulation amplitude of 20 mV, step of 1 mV, and a frequency of 10 Hz. The
caffeine-MIP electrochemical sensor was immersed for 20 min in a solution of caffeine in
0.1 mol L' PBS 7.0. A potential of 0 to 0.5 V was applied to quantify the concentration
of caffeine by the SWV cathodic peak current. For analysis in real samples, dilutions of
1.0 pumol L1 of CAF in Coca-Cola, Red Bull, and capsules in 0.1 mol L1 PBS 7.0 were
used. All experiments were performed in triplicate.

2.5. Quantification of Caffeine Using HPLC

The caffeine quantification by reverse-phase chromatography was performed using a
Shimadzu LC-10 system. A C18 Eclipse XDB column (150 x 4.6 mm, 5 pm) from Agilent
was used as the stationary phase. The mobile phase consisted of ultra-pure water (Milli-Q)
acidified with acetic acid (99%, Sigma-Aldrich, St. Louis, MO, USA) to pH 4.0 (solvent A)
and methanol (99.9%, Carlo Erba, Le Vaudreuil, France) as the organic phase (solvent B).

1

The method used was isocratic, with a flow rate of 1.5 mL min™", using 30% solvent B, at a

temperature of 40 °C, and an injection volume of 20 uL [25].
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3. Results and Discussions

3.1. Characterization Experiments

The UV-vis absorption spectrum of the AuNPs-pATP presented in Figure 2a shows
a broad absorption band at 535 nm, characteristic of this type of functionalization. This
result demonstrates that the thiol group (-SH) of the pATP molecules effectively bound to
the surfaces of the Au nanoparticles, causing a broadening and shifting of the band toward
longer wavelengths compared to pure AuNPs, which usually present a well-defined LSPR
band at 520 nm [26-28]. Additionally, the shift in the maximum wavelength of the AuNPs
to a longer wavelength region indicates a possible change in the morphology and a certain
degree of aggregation after their functionalization [29].
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Figure 2. (a) UV-vis spectra, (b) FT-IR spectra, (c) TEM imagen, and (d) size distribution of
AuNPs-pATP.

The FTIR spectrum of AuNPs-pATP (Figure 2b) shows characteristic peaks of pATP in
3364 cm ™! corresponding to the stretching vibration of -N-H of the charged amine. The
aromatic -C=C~ in-plane vibrations appeared at 1593 and 1491 cm~!, and these peaks
confirmed the presence of a benzene ring on AuNPs surfaces. The characteristic band at
818 cm! was assigned to the vibration of the =C-H of the benzene ring [29].

The TEM images presented (Figure 2c) show the formation of very small spherical
nanoparticles with an average diameter of 2.54 nm, according to the size distribution ob-
tained using Image]J 1.8.0 software (Figure 2d), this result is consistent with some previously
reported work [22,30,31]. However, it is important to mention that due to the high affinity
of pATP for gold, pATP molecules are expected to bind not only to the open surface of the
nanoparticles, but also to sites located between neighboring nanoparticles [26]. Therefore,
Figure S1 shows that the functionalization wraps around the AuNPs, forming small ellipti-
cal agglomerates with a major diameter between 20 and 50 nm, this being supported by the
UV-vis adsorption spectrum obtained (Figure 2a).
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3.2. Caffeine Sensor Modification

For the fabrication of a high-quality poly-o-phenylenediamine polymeric film, proper
adhesion of the monomer to the substrate is essential. AuNPs-pATP was used to modify
the electrode surface, since it contributes to improving the electrical properties of the sensor,
while facilitating strong adsorption and increasing the reaction activity of the surface due
to the strong interaction between gold and the thiol group (-SH) of pATP, leaving the
amino group (-NH;) exposed on the surface capable of immobilizing caffeine through
non-covalent interactions [32,33]. Experiments were performed to evaluate the optimal
amount of AuNPs-pATP (1 mg mL ') to be deposited on the electrode surface before oPD
electropolymerization.

Figure 3a shows the CV recorded during the electropolymerization of oPD in the
presence and absence of CAF. In the first cycle, we can see two oxidation peaks, at 0.35 V
and 0.75 V. The current peak at 0.35 V corresponds to the oxidation of the oPD monomer,
which gradually decreases with the increasing number of cycles and confirms the formation
of a PPD film on the electrode surface. Furthermore, the current peaks with template (CAF)
are lower than those without CAF, due to the introduction of CAF into the PPD film during
electropolymerization [24].

140 4
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Figure 3. (a) Cyclic voltammograms for the polymerization of oPD in 0.1 mol L~! PBS (pH = 7.0) for
10 consecutive cycles with (red) and without CAF (blue) templates at a scan rate of 50 mV s 1and
(b) CVs of steps of MIP preparation in PBS 7.0 electrolyte containing 5 mmol L1 of [Fe(CN)g]3~/4~
as a redox probe and 50 mmol L~! of KCl. SEM imagens of (¢) GCE/AuNPs-pATP/MIP and
(d) GCE/AuNPs-pATP/NIP.

Figure 3b shows cyclic voltammograms of each electrode modification step. The
presence of functionalized gold nanoparticles increases the conductivity of the sensing
layer, as well as the number of binding sites through enhanced roughness of the surface [34].
Electrode modification using functionalized gold nanoparticles results in an increase in
the redox peak pair compared to the unmodified electrode. Once the polymerization
is complete, the oxidation peaks disappear, demonstrating the formation of the poorly
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conductive PPD film [24]. After removing the caffeine from the PPD film, there is an
increase in the peak signal; the NIP, on the other hand, does not suffer a significant increase
in the current peaks, showing that the PPD film does not suffer any degradation effects from
the washing solution [35]. Impedance spectroscopy was used to characterize the stages of
electrode modification (Figure S2). The modification of GCE with AuNPs-pATP (in red)
generates an improvement in the charge transfer that decreases after electropolymerization
due to the insulating PPD film formed on the surface (in blue). After washing the polymer,
the high charge transfer resistance decreases (in green) because cavities are generated in
the film due to the caffeine extraction [36].

Additionally, the SEM images obtained for the GCE/AuNPs-pATP/MIP show a rough
surface with the formation of well-defined hollow spheres, which can be associated with
the formation of the MIP with cavities specific to caffeine (Figure 3c). Meanwhile, for the
GCE/AuNPs-pATP/NIP, the surface obtained is more compact and less rough, with no
evidence of defined cavities (Figure 3d).

3.3. Optimization of Parameters

Before the quantification of CAF with the electrochemical sensor, several parameters
including (a) electropolymerization cycles, (b) elution time of template, and (c) rebinding
time were optimized by using the peak currents (Ip) by square wave voltammograms.

Figure 4a shows the relationship between electropolymerization cycles and peak
current before rebinding, scan cycles were used to evaluate the MIP film thickness. We can
observe a low current in less than 10 cycles; under these conditions, the film created is very
thin, as well as not allowing creation of sufficient imprinted cavities. However, a higher
number of cycles creates a thicker film with a less conductive surface and makes it difficult
to remove the template from the center of the polymer. Therefore, 10 polymerization cycles
were the optimal condition found, where the current also reached its maximum value. The
washing time was also optimized (Figure 4b), with an increase in current observed up to
15 minutes, after which small decreases are observed, which may be due to wear of the PPD
film due to excessive washing. Rebinding time was also optimized at 20 minutes as the
time to fill the largest number of selective cavities (Figure 4c); longer rebinding times result
in a decrease in current due to polymer swelling, which can distort or resize the printed
cavities and weaken existing non-covalent interactions [37].
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Figure 4. Optimization of parameters of electrochemical sensor: (a) electropolymerization cycles,
(b) washing time, and (c) rebinding time, by square wave voltammetry in 0.1 mol L~! PBS 7.0
electrolyte containing 5.0 mmol L1 of [Fe(CN)g]>~/4~ as a redox probe.

3.4. Detection of Caffeine (CAF)

The electrochemical sensor was used for the quantification of CAF via indirect de-
tection. Square wave voltammograms of GCE/AuNPs-ATP/MIP were recorded before
and after the rebinding of CAF, using 5.0 mmol L~ of [Fe(CN)]>~/4~, a redox probe to
evaluate the filling of imprinted cavities. Indirect detection was chosen because direct



Biosensors 2025, 15, 704

8 of 13

electrochemical determination of caffeine using common electrode materials such as metals
or glassy carbon occurs at a very positive potential (around 1.5 V), which overlaps with the
discharge of the background medium [20].

The Ip decreases gradually with increasing concentration of CAF, this occurs because
the selective cavities formed in the MIP are again occupied by CAF, which leads to greater
resistance to charge transfer on the electrode surface (Figure 5a).
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Figure 5. (a) Square wave voltammograms of GCE/AuNPs-ATP/MIP in 0.1 mol L~! PBS 7.0
electrolyte containing 5.0 mmol L~! of [Fe(CN)s]*>~/4~ as a redox probe after the rebinding of
CAF at different concentrations for 20 min. (b) Linear relationship between peak currents and
CAF concentrations.

As shown in Figure 5b, the value of Ip is correlated linearly with the concen-
tration of CAF from 1.0 to 6.0 umol L™!. The linear equation can be expressed as
Ip (RA) = (12.669 £ 0.106)-(0.962 + 0.027) CAF (umol L~1), with coefficient of deter-
mination of R? = 0.997, and the limit of detection (LOD) of 0.195 pumol L~!, and limit of
quantification (LOQ) of 0.592 pumol L1

3.5. Selectivity, Reuse, Reproducibility, and Stability

The selectivity of the electrochemical sensor was evaluated by comparing the decrease
in peak current (Alp) against CAF and some interfering species such as xanthine and
theobromine (similar in structure to CAF) (Figure S3) and glucose, citric acid, and NaCl
(common compounds in beverages with CAF).

Figure 6a shows how the current decrease (Alp) against these interferents is signif-
icantly lower than that against CAF, indicating the high selectivity sites of the electro-
chemical sensor. The relationship between the MIP and NIP currents provides us with
the imprinting factors (IF), where the value for caffeine is significantly higher than that
obtained for the interferents, highlighting the correct formation of the printed cavities and
their excellent selectivity. Furthermore, the selectivity factor (f3) greater than 1 suggests
better orientation of functional groups in the formation of the selective imprinted cavities
to caffeine (Table 1) [38]. On the other hand, Figure 6b shows the current percentage values
for five reuse cycles of the sensor after rebinding to the CAF in the imprinted cavities and
subsequent washing in NaOH 0.25 mol L~! in ethanol /water (1:1) for 15 minutes for reuse.
The Ip percentage values vary with a small relative standard deviation (RSD) of 3.61%,
demonstrating excellent reuse capacity of the imprinted CAF sensor. Figure 6¢c shows the Ip
values of seven imprinted sensors that were prepared under the same conditions and tested
with the rebinding of CAF. The relative standard deviation (RSD) of 4.42% demonstrates an
imprinted sensor with good reproducibility. Finally, the stability tests (Figure 6d) show a
decrease to 90.10% of the initial peak current value after five days, demonstrating good
stability of the sensor.
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Table 1. Results obtained from the analysis of selectivity of MIP and NIP to caffeine in the presence
of interfering molecules.

Molecule AIMIP (pA) AINIP (HA) IF @ [5 @
Caffeine 11.31 0.91 12.43 1.00
Glucose 4.82 1.35 3.57 3.48
Xanthine 3.12 1.23 2.54 4.90
Theobromine 2.99 1.02 2.93 4.24
Citric acid 3.01 1.19 2.53 491
NaCl 1.68 0.98 1.71 7.25

O IF = Alyvip / Alnip, @ B = IFcap/TFint

3.6. Detection of CAF in Real Samples

Finally, the imprinted electrochemical sensor was used for the detection of CAF in the
soft drink (Coca-Cola), energy drink (Red Bull), and sports supplement (capsules) samples.
For this purpose, caffeine concentrations of 1.0 umol L~ were used, along with optimized
parameters for quantification.

HPLC was used in order to compare the results obtained by electrochemical detection.
A diode array detector (DAD) was used, with the wavelength set to 275 nm. Figure S4
shows the chromatographic profiles of each real sample, highlighting the caffeine peak
obtained at a 3-minute retention time. The caffeine capsule does not show the presence of
other species, unlike Red Bull and Coca-Cola, where the presence of other polar molecules
is observed, although outside the measurement range of caffeine. A calibration curve with
10 points was constructed, ranging from 1 to 100 mg L~! (Figure S5). The limit of detec-
tion (LOD) and limit of quantification (LOQ) were determined to be 0.82 pmol L~ and
2.67 umol L1, respectively. Samples were prepared by dilution: Coca-Cola and the
energy drink were diluted 10 times, while the internal paste of the tablet was di-
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luted 20 times. At the end, the samples showed the following caffeine concentrations:
Coca-Cola (93.0 + 0.5) mg L™}, energetic drink (306 + 2) mg L~!, and caffeine capsule
(163.62mg + 1.2) mg g~ 1.

The sensor recovery results compared with the HPLC method showed lower recovery
percentages for the Coca-Cola sample because the presence of phosphoric acid in its
composition possibly generates greater acidity that can interfere with the quantification of
caffeine. The overall results are shown in Table 2 and demonstrate the high accuracy of the
developed imprinted CAF sensor.

Table 2. Comparison of caffeine detection by HPLC and electrochemical sensor.

Sample Caffeine Caffeine Measured Caffeine Measured % Recovery of Sensor
P Expected by HPLC by Sensor (HPLC *)
Coca-Cola <150 mg L1 ™M 93.04 mg L~! 72.57 mg L~1 - (77.99 *)
Red Bull 320mg L~! 305.99 mg L} 29824 mg L ! 93.2 (97.47 %)
Caffeine capsules 200 mg 163.62 mg 142.40 mg 71.2 (87.03 %)

(@ There is no exact value of caffeine quantity provided by the official Coca-Cola website. * % Recovery of Sensor
compared to HPLC measurement.

4. Conclusions

This work reported the development and application of a MIP-based electrochemical
sensor (GCE/AuNPs-pATP/MIP) for the quantification of caffeine in beverage and sports
supplement samples. Gold nanoparticles functionalized with pATP were successfully
synthesized, as evidenced by FTIR spectroscopy, UV-visible spectrophotometry, and TEM.
Additionally, MIP and NIP sensors were characterized by SEM. Caffeine quantification
parameters were optimized to 10 polymerization cycles, 15 minutes of elution time, and
20 minutes of rebinding time. In these optimized conditions, the linear range obtained was
from 1.0 to 6.0 umol L~!, LOD and LOQ were 0.195 umol L~! and 0.592 pmol L™}, respec-
tively. The sensor showed good selectivity (IF = 12.43) against interferents with structures
similar to caffeine and other common compounds found in real samples. Furthermore, its
stability, reproducibility (RSD = 4.42%), and reuse (RSD = 3.61%) in five consecutive reuse
cycles were verified.

There are few studies based on MIPs for the detection of caffeine in the literature,
which makes this analyte even more interesting. Table S1 presents an MIP-modified
carbon paste electrode that employs bulk polymerization and template removal using
methanol extraction for 48 h generating large amounts of organic waste. A sensor based
on polypyrrole NPs is also shown where caffeine detection is achieved at a high oxidation
potential using a direct method. Additionally, a MIP/PGE nanocomposite is prepared by a
sol-gel method and electropolymerization in a single step without employing a caffeine
immobilization step, so the formation of homogeneous and oriented binding sites on
the surface is not guaranteed. In contrast to the disadvantages mentioned in previous
work, our proposed sensor stands out for its rapid and environmentally friendly synthesis,
low cost, use of low detection potentials, the incorporation of AuNPs-pATP for caffeine
immobilization, and the efficient formation of selective cavities.

To fully exploit the potential of this type of sensor, future research should focus
on exploring different functionalization and new platforms such as polyimide, paper-
based electrodes, and polylactic acid (PLA) (3D printing) for portable and scalable
selective sensing.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/bios15100704/s1. Figure S1: (a) TEM image of AuNPs-pATP,


https://www.mdpi.com/article/10.3390/bios15100704/s1
https://www.mdpi.com/article/10.3390/bios15100704/s1

Biosensors 2025, 15, 704

11 0f 13

References
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