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ARTICLE INFO ABSTRACT

Communicated by L. Ghivelder An interesting concept that has been underexplored in the context of time-dependent simulations is the
correlation of total magnetization, C(r). One of its main advantages over directly studying magnetization is
that we do not need to meticulously prepare initial magnetizations. This is because the evolutions are computed
from initial states with spins that are independent and completely random. In this paper, we take an important
step in demonstrating that even for time evolutions from other initial conditions, C(t,,?), a suitable scaling can
be performed to obtain universal power laws at T = T,. We specifically consider the significant role played by the
second moment of magnetization. Additionally, we complement the study by conducting a recent investigation
of random matrices, which are applied to determine the critical properties of the system. Our results show that
the aging in the time series of magnetization influences the spectral properties of matrices and their ability to
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determine the critical temperature of systems.

1. Introduction

Which temporal phase of the spin system evolution contains infor-
mation regarding the criticality of a physical system? Furthermore, is it
feasible to retrieve certain initial behaviors of such a system following
a period of aging?

Particularly, in the context of time-dependent Monte Carlo (MC)
simulations, we are asking whether it is possible to observe the power
law-behavior of non-equilibrium critical dynamics [1], even for short-
ranged initial correlations (o;0;) # 0.

Let us consider the question from an even more specific point of
view. Let us suppose the Ising model on a d-dimensional lattice under
an initial condition where the spins are randomly and equiprobabilisti-
cally distributed, such that {o;6;) =0 and (s;) = 0. After a certain time
1y, we observe that (o;0;) # 0, but (c;) =0 still holds true. Therefore, if
we initiate the simulations with this new initial condition, can we ob-
tain the same temporal power laws with the same exponents? In other
words, is aging an important factor?

An interesting measure in the context of nonequilibrium time-
dependent Monte Carlo simulations (TDMCS) is the autocorrelation
(spin-spin) [2]. Let us consider the calculation for an arbitrary 7,:
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with average taken different time evolutions from different random ini-
tial configurations.

In a highly informative and comprehensive reference by Henkel and
Pleimling [3], it has been demonstrated that when a system is prepared
at a high-temperature and suddenly quenched to a critical temperature,
the evolution of A(z,1) in different spin systems suggests the presence
of a dynamical scaling behavior underlying the aging process. The same
thing can be observed in [4] and recently aging phenomena in a com-
plex version of the two-dimensional Ginzburg-Landau equation have
been observed using the difference finite method [5].

This behavior can be described by the following equation:

A1) =157 () @
0

Here, the parameter b is defined as b = (d — 2 + 1)/ z, where d repre-
sents the dimensionality of the system and 7 is a critical exponent where
z is the dynamic exponent, and the function f(x) exhibits the property
f(x) ~x~*c/* as x approaches infinity. In this context, 1. denotes the
autocorrelation exponent.
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An alternative approach to investigate the early stages of time evo-
lution in spin systems is to examine the correlation of the total magne-
tization. This correlation is defined as:

=5 <2 Y a0 (0)> = (m(ym(0)) @)

i=1 j=

Here, N represents the number of spins in the system, and ¢,() denotes
the spin value of spin i at time ¢. The angular brackets (-) denote the
average over different time evolutions and initial configurations. This
correlation provides insights into the relationship between the magne-
tization at time t and the initial magnetization at time 0.

Tome and Oliveira [6] proposed and demonstrated that the correla-
tion C(¢) follows a power-law behavior,

cy~1, Q)

when the initial magnetization (m,) is zero and the spins at time 0
are equally likely to be +1 or —1 p(o;(0) = +1) = p(c;(0) = -1) = %,
for j =1,..,N. The exponent ¢ is the same as the magnetization ex-
ponent obtained in time-dependent simulations within the context of
short-time dynamics [7,8]. However, in those simulations, the initial
conditions require a fixed initial magnetization m, < 1, which necessi-
tates preparation and extrapolation as m, approaches 0. This approach
is computationally more demanding.

At this juncture, it becomes intriguing to investigate the behavior
of spin systems when we examine the total correlation between time 7,
and a subsequent time 7, denoted as C(t,t,) = (m(t)m(t;)). The correla-
tion depends on two key factors: the waiting time, denoted as ¢, and
the observation time, indicated by 7. Furthermore, we can investigate
how aging impacts the determination of criticality in the system. In this
manuscript, we conveniently define the time difference between obser-
vation and waiting time as At =1 —1,. Aging effects become prominent
when both 75> 1 and Ar>> 1.

For this analysis, we employ a recent technique that involves con-
structing Wishart-like matrices using the time evolutions of magnetiza-
tion. The spectral properties of these matrices are highly valuable in
capturing the critical properties at the initial stages of the evolution, as
demonstrated in our previous works. Therefore, we conducted compu-
tational experiments to investigate the behavior of this method when
we vary #, while keeping At fixed.

In the following section, we provide comprehensive details regard-
ing our scaling approach for C(t,1,), the fundamental properties of the
Wishart-like spectra, as well as pedagogical studies to substantiate the
forthcoming results in this work. Subsequently, we present our findings,
followed by concluding remarks in the final section.

2. Methods and preparatory studies

The total correlation, as defined by Equation (3), assumes averages
over random initial configurations of a system with spins ¢;(0), where
j=1,.., N, independently chosen according to: p(c;(0) = +1) = p(c;(0) =
-1 = % (high-temperature). In this case, if N () represents the number
of spins up and N_(r) represents the number of spins down, we can
express it as follows:

m(0) = my = % [N,(0) = N_(0)] (5)

(mo) = 0. But, ([N, = N_|*) = (N,2) + (N_2) = 2(No(N = N,). If

(N, 2)=(N 2)=ﬂ+N—2 and (N, (N—N )y =N(N,) - (N2) =
NTZ - T Therefore, we have (m2) = —, which implies a standard nor-
mal distribution for the initial rnagnetlzatlon when N > 1 given by:

Py =/ 237 ®)

However, when we consider the time evolution of different time-
series starting from these prepared initial conditions, using, for exam-
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ple, the Metropolis dynamics as a prescription for these evolutions, the
initial distribution of magnetization degrades.
This degradation can be described for arbitrary ¢ by distribution:

I RN 05

P(m(1)) = \/mew[ : Arf] @

given that:

m(t)?) = (m())* ~ (m(t)?

(m) () ©
=At

This is expected since according to short-time theory, (m()) =0, and

]
(d—37) —
for my ~ 0, one would expect that (m?) ~ #*, where & = —— u

Janke et al. [9] showed that even for quenches below T, the relatlon
(m?) ~1%/% holds true. Remember, for quenches below T, the ratio
of the critical exponents g/v =0, thus the & = (d — #/v)/z reduces to
& = d/z. This holds true for both the nearest neighbor and long-range
Ising model.

In Equation (8), the constant A is adjustable through fitting. Fig. 1
pedagogically illustrates this aging phenomenon.

First, in Fig. 1 (a), we observe different evolutions of magnetiza-
tion in the two-dimensional Ising model for various values of #,, while
keeping the observation time Az constant at 300.

We can observe histograms of magnetization for different values of
1, in Fig. 1 (b), following a Gaussian distribution (Eq. (7)) with variance
defined by Eq. (8).

The Gaussian behavior is disrupted at equilibrium (¢, ~ 4000). The
inset plot in the same figure demonstrates that (m>) — (m)* and (m?)
exhibit the same power-law behavior, as (m) ~ 0. Fitting Eq. (8) yields
the well-known result from the literature: & =0.801(1) for <m2 ), which
is in complete agreement with the expected value of & = 1 - 2£ ~0.802,

utilizing z ~ 2.165 from [10,11], and ﬂ =0.0606 from [7] ThlS agree-
ment holds true even without startlng from initial configurations with
mg =0, as is traditionally done in computer simulations within the con-
text of short-time dynamics. Additionally, we obtained A = 0.00026(3).

From a simulation standpoint, the idea is to interrupt the simulation
while preserving the configuration at time #,. This configuration is then
used as the initial state to calculate the correlation C(t,t,). The first
crucial aspect is to determine if there is a finite time scaling for C(z,7,)
as predicted by A(t,1).

In other words, for very large t,, C(t,1,) does not depend on f,.
However, according to scaling theory, for sufficiently large but not ex-
cessively large #,, C(1,1,) still exhibits a dependence on #.

In this paper, we aim to address this point and propose a conjecture
regarding the aging time scaling law:

Cltig) = rﬁg(}x ©

where & = ;’7, and g(x) ~ x?. Here, 5 = 7, and based on short-time
theory, the exponent ¢ is precisely expected in the second moment of
magnetization (m?) ~ ¢ when starting from random initial conditions
with m,, exactly equal to 0.

Building upon the methodology primarily developed by Henkel and
Pleimling [3], and bolstered by valuable suggestions from anonymous
referees of this work, we will demonstrate that this quantity serves as
a correlator in momentum space and is expected to exhibit numerical
scaling according to Eq. (9).

Utilizing the Ising model as a simplification, our objective is to nu-
merically verify such scaling. We will demonstrate that considering the
magnetization distribution from Eq. (7) to select spins is sufficient to re-
produce C(1,t,). However, we must also scale the time by ¢, to account
for the effects of non-zero spatial correlations (0,0 ; ).

Another important aspect addressed in this paper is the determina-
tion of the critical properties of the system when it is out of equilibrium.
Specifically, we investigate the role of 7, in determining the critical
properties of the system.
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Fig. 1. (a) Aging in the time evolution of magnetization in the two-dimensional Ising model with Metropolis dynamics for L =100, with time intervals Az = 300,
and initial times 7, = 0, 500,2000 and 4000. (b) Histograms of magnetization for different values of 7, following a Gaussian distribution with variance defined by
Equation (8). The Gaussian behavior is disrupted in the equilibrium state (7, ~ 4000) when we observed that the system undergoes a slight transition into the ordered
phase due to finite size scaling. The inset plot demonstrates that the difference (mz> — (m)* exhibits the same power-law behavior as (mz) in the short time regime,

as (m) is approximately 0.

To examine this, we explore the effects of 7, on the short-time prop-
erties of the system using a recent method based on random matrices.
We developed this method to determine criticality by analyzing spec-
tral quantities obtained from Wishart-like matrices constructed from the
time evolutions of magnetization. In this current manuscript we will
demonstrate that the spectra are significantly influenced when large
values of 7, are used.

In the next subsection, we will provide a brief description of this
method.

2.1. Criticality in nonequilibrium regime using Wishart-like matrices of
magnetization

The signature of criticality out of equilibrium seems to be even more
prominently manifested than what can be observed when uncorrelated

systems (7" — oo) are brought to finite temperatures, particularly around
T~Tc.

In a recent study presented at [12], we examined the response of
spectra in random matrices constructed from time evolutions of magne-
tization in earlier stages of a spin system. Our findings demonstrated the
influence of criticality out of equilibrium on the spectral properties of
statistical mechanics systems. We specifically utilized the short-range
two-dimensional Ising model as a test model, as well as long-range
mean-field systems [13].

To conduct such a test, we need to construct the magnetization ma-
trix element m;;, which represents the magnetization of the j-th time
series at the i-th Monte Carlo step of a system with N spins. Here,
i ranges from 1 to Ny, and j ranges from 1 to N,,,,.. Therefore,
the magnetization matrix M has dimensions N ¢ X N 4. TO analyze
spectral properties, an interesting alternative is to consider not M, but

the square matrix of size Nyrc X Nygppiet
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1
Nuyc

G= MM, (10)

1 Nyc
Nuyc “k=1
(see for example [14-16]). At this stage, instead of working with m; o
it is more convenient to utilize the matrix M*, defining its elements

. . * 2
with the standard variables: m;; = (m;; - (m;N/4/ <m/2> —(m;)", where
k\ _ _1 N k
()= e ZA

Therefore, G, = {1 {r)
i%

where G =

my;my;, which is known as the Wishart matrix

, where (m;m; ) = NMC Zk 1€ mymy

and o; = \/(m?) — (m;)*. Analytically, if m?; are uncorrelated random

variables, in this case, the density of eigenvalues ¢(1) of the matrix G*
follows the well-known Marcenko-Pastur distribution (see for example
[171), which is expressed as:

Nuc VAR —H) (’H‘;“*’” if A <A<,

27N,

sample

o(d)= an

0 otherwise

N,

sample

Nyc *

where 1, =1+ Nampte o
MC

However, for T # T,, 6(4) does not follow the equation (11). The
behavior of o(4) obtained from MC time series simulated at different
temperatures suggests a strong conjecture that the average eigenvalue
(A)y = fo°° Ac(A)d A reaches a minimum at the critical temperature, while
the variance var(2) = {4%) — (A)” exhibits an inflection point at the same
critical temperature, where (4%) = /| 426(4)d A. Alternatively, a more
precise identification can be made using the negative of the derivative
of the variance:

_ _6var(/1)
c= T (12)

This behavior is also observed in the Potts model [18]. Therefore,
the idea here is to observe if such fluctuations behave differently when
we vary the starting index i from ¢, to 7 =t, + At, while keeping Ar =
Nyc fixed.

3. Results

Our results are structured into two distinct sections. In the first sec-
tion, we provide a comprehensive justification for the scaling of Eq. (9),
employing a methodology rooted in Fourier space studies. This ap-
proach builds upon the foundational work of Henkel and Pleimling [3],
which we have extended to accommodate Fourier space investigations.
In the second section, we present the numerical evidence substantiating
this scaling behavior as well as additional numerical studies pertaining
to aging phenomena.

3.1. Correlator in Fourier space

The two-time correlation function can be formally defined as:

Ct1y:7) = <m(z, ;)m(zo,6)> —(m(t,» ) <m(to,6)> (13)

where m(t,7) is the order-parameter at time ¢ and position r, and
C(t,ty;7P) = <m(t, F)m(zo,6)> for fully disordered initial state (m(t,7)) =

(m@.0))=0
Given the assumption of spatial translation invariance, it follows

that the two-time temporal-spatial spin-spin correlator must adhere to
the following equation:

C(t,ty;F) = k?C(x%1, K ty; KF), 14

where « is a rescaling factor, while ¢ is an exponent that can be deter-

mined by performing the scaling operation: x = T /, In this instance:
l')
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Ciyp=1;"c (— 1 1/7) (15)
Thus, we write:
LT
C(%’l,z]/z)_FC(fo’z]/Z) (16)
0 0

At criticality, in the equilibrium as t approaches infinity (t - o), we
know that C(t,t;7) must exhibit algebraic behavior as

Ct,1;7) ~ p~@=240 a7
where |F| represents the magnitude of r. By substituting ¢ = 1,, we

can observe that: Fq(1; t]%) = F(#). Using Eq. (15), we can express
C(t,t;7) as t‘WZF(#). Comparing this with Eq. (17) yields: F(,lr/z) ~

—¢
(%) , where ¢ =d — 2 + 5. Returning to Eq. (15), we find:

1z

T as)

’ l/z
0

Clt,1:7) =17 /7 F, (

Dynamical symmetry arguments, however, suggest that for 7> t,:

_fc 2
Fc( W)—( ) C Rl )

_ic
(1) * z 19
<’0> (ll/z)
_& l/z 2
(L o
_<t0> (tl/z l/z)

where A is an exponent similar to how ¢ was considered. Thus,

I V
Cltstg: Py =15 ) <5> ’ P(Wﬁ) 0)
one has and when r equals zero, one has
_ic _ic
At tg) = Clt,19:0) = 1,722 7 (0) (é) T (i) o, (21)

which leads to Eq. (2) in the limit of large times if F(0) is a constant.
It should also be noted that we introduced A, the symbol for the auto-
correlation exponent, with a purpose, and its value is determined by

Ao =d—z6, (22)

according to results obtained by Jansen, Schaub, and Schmittmann [1],
where 0 = (x — %)/z represents the initial slip exponent. Here, § and v
denote the static exponents, and x, is known as the anomalous dimen-
sion of magnetization [7]. For an interesting method to determine x,,
please refer to [19].

In addition, 0 is precisely the same exponent as C(¢) in Eq. (4). It can
take on positive values (see, for example, [6,8,7,20]), negative values
as observed in two-dimensional tricritical points [20,21], or even very
small values as seen in the 4-state Potts model due to the presence of a
marginal operator [19].

By defining the spatial Fourier transform of C(z,1,;7) as:

Ct,10:9) = / d¥F ePTC(t,10;7) (23)

where d9F = dx,dx,...dx,, one has:
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Fig. 2. (a) C(1,,1) as a function of 1 —t, + 7 for the case f, = 100, with varying values of z. We can observe that the power law behavior occurs when z ~ ¢, = 100. (b)
Coefficient of determination for the fitting with different values of . The maximum value occurs when 7 % t, = 100. The values of 6 are represented in different colors
according to the legend’s gradient. The optimal situation (peak values) includes 6 ~ 0.19, as expected. (c) Optimal value of  as a function of #,. (d) Corresponding

value of 6 for the optimal = at each ¢,,.

Ct,1;0) = / d9F C(t,15:7)

R4
Ac

_ =2z (N [ o P e
=1 <t0> /'/(,1/z)d r 24)
R4

‘c
—@d-2+n)/z [ t e d — gd = ) t 0
=1, wiE L~ r/Z/,?(u)d =Ci1,* (—
) )
R4

where C = [, F()d%ii is supposedly a constant. Thus, by utilizing the

relation from Eq. (22) and denoting our original C(,t,) as 8l (t,ty; 6), one
obtains:

@ /oy 0
C(t,tg)~t, * -, 25
i (2) .
by confirming the behavior described in Eq. (9) for ¢ > t,,. Pleimling and
Gambeassi [22] as well as Henkel et al. [23] have investigated numerical
results related to aging in the Fourier space of response functions, al-
though they did not focus on correlation as we do in this current study.

With these results in hand, we can now delve into numerical findings
regarding this scaling and other aging effects

3.2. Numerical studies

We performed two-dimensional Monte Carlo (MC) simulations on
the Ising model in two dimensions, precisely at the critical temperature
denoted as T =T, = —2—, employing the Metropolis dynamics with

In(1+v/2)
single-flip spins.

We vary ¢,. In all numerical experiments of this study, we used L =
128. By starting from random initial configurations with (m,) =0, we

calculated C(t,1,) considering averages over N,,, = 40000 different runs.
We explored different values of f,. The initial question to address is
determining the optimal value of = for which the quantity C(z,7,) x ( —
to + 7) follows a power law. Is r approximately equal to 7,?

Thus, in order to check if 7 ~ 1, for each 1,, we vary = and examine
the behavior of C(t,1,) as a function of t — ¢y + 7 in a log-log scale for
different values of 7. Fig. 2 (a) depicts the case where 7, = 100.

The power-law behavior becomes evident (qualitatively) when z is
approximately equal to 7,, which in this case is 100. The 6 values are
visually represented using various colors to denote different gradients,
as specified in the legend. These values are derived by conducting linear
fits of In C(#, ) X In(t — 1, + 7) for each = as depicted in Fig. 2 (b).

This observation is reinforced by the fact that the maximum coef-
ficient of determination, which approaches 1, is achieved when 7 is
approximately equal to 7, (100). This coefficient serves as a robust indi-
cator of the fitting quality, with values closer to 1 signifying a superior
fit. Its utility in the field of Statistical Mechanics has been extensively
explored for the determination of critical parameters (for further refer-
ence, please consult [24]).

The region of the optimal fit reveals a 6 value close to the ex-
pected 0.19. In Fig. 2 (c), we depict the linear trend of the optimal
value, which corresponds to the highest coefficient of determination,
in relation to 7,. The linear regression analysis produces = = b t,, with
b=1.03 + 0.02, providing additional evidence that r remains approxi-
mately equal to ¢, regardless of the specific 7, value. These error bars
are calculated based on data from five different seed values.

Lastly, Fig. 2 (d) presents the corresponding 6 values corresponding
to the optimal 7 values determined for various ¢, values.

The green line corresponds to the value observed in short-time sim-
ulations from Ising-like models (in the same universality class) men-
tioned in various references (see, for example: [6-8,20]).
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Fig. 3. Plots of the correlation divided by the initial second moment are shown
as functions of ¢ (a), t — 1, (b), and 7/t,. An excellent scaling is observed in plot
(c), as predicted by Eq: (9).

We now test the scaling relation given by Equation (9). To do so, we
consider the correlation divided by the initial second moment:

{m(®)m(1y))
(m(19)?)
as function of ¢,  — ), and finally ¢ /¢, presented in three different plots,
all of them using log-log scale for the quantities, here indexed by (a),
(b), and (c) respectively in Fig. 3. Fig. 3 (c) suggests that scaling de-

scribed by Eq: (9).

These plots nicely illustrate the three defining criteria of aging [3]:
(a) slow dynamics, (b) breaking of time-translation invariance and (c)
dynamical scaling with its characteristic data collapse.

This scaling is performed using the quantity {(m(1,)*) (or {m(1y)*) —
(m(to))2 since (m(t,)) = 0). Alternatively, we can perform the scaling ac-
cording to Eq. (9) by dividing C(,1,) by tg while adjusting the value of &
to optimize the scaling. We also conducted a test to verify this, and the
results are presented in Fig. 4. We found that b = 0.806 is the optimal
value that matches Eq. (9), which is very similar to & = 0.8010(4), the
expected exponent for the time evolution of (m?(?)), by demonstrating
that the definition of C*(1,1) as outlined in Eq. (26) aligns seamlessly
with the concepts presented in the developments explored within sub-
section 3.1.

Since the magnetization distribution at an arbitrary time 7, follows
Eq. (7), the question is whether considering an initial condition with
magnetization distributed accordingly would yield the same correlation
C(1,1y) as calculating it with the initial condition that the system ob-

C*(t, 1) = (26)

4x1074T T T =
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<
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Fig. 4. Direct scaling by fitting » that better corresponds to Eq. (9). We find
b=0.806, which is very similar to & =0.8010(4), expected to be the exponent of
the time evolution of {(m*(1)).
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Fig. 5. Verification of C(1,t,) for different values of 7, (points) versus correla-
tion by mimicking the initial distribution of spins (continuous curves). We have
scaled the time for the simulations with mimicked initial condition by multiply-
ing t by 1,.

tained at that time. In other words, does the obtained C(t,1,) remain
the same?

To explore this, we prepared systems with the initial condition
described by Eq. (7) using many different samples with different m,
values, but with the condition (m}) = Atf). We chose ¢, values of

50,100,200, and 300, which resulted in y/(m2) = Al/zrg/ ?=0.077, 0.102,
0.135, and 0.158, respectively.

So, using these standard deviations, we generate m, according to
Eq. (7), and the spins are randomly chosen with the probability: p(c;) =
m, where ¢; = 1,..., N. It is important to note that p_ + p, =1. We
then evolve the system and compare C(t,1,) with the results obtained
by preparing the initial condition according to a Gaussian distribution
with the predicted variance previously established. Fig. 5 illustrates this
comparison.

It is essential to mention that we had to scale the time by multiplying
t by t, in the case of evolutions with mimicked initial conditions. It
is interesting because it suggests that the spatial correlation of spins
has an important role, and its effects determine the time scaling of the
system and not only the distribution of magnetization to be a Gaussian
according to Eq. (7). However, we can observe that curve for C(z,1,)
can be reproduced if we suitably scale the time.
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Fig. 6. (a) Eigenvalue average as a function of T/T,.. A deviation from the minimum at 7' =T, is found for 7, > 50, as can be observed. (b) The variance of eigenvalues

for different temperatures and (c) The negative derivative of this same variance.
3.3. Aging and random matrices

Finally, we test the effects of aging on the spectral method sensitive
to determine the critical properties of the system. So we build matrices
for Ny, = 100, considering At = N, = 300, and considering differ-
ent values of #,. The result is interesting because for #, = 50, for example,
we observe a minimum of eigenvalue mean at 7' = T in previous works,
however when the aging is more significant, we observe a visible devi-
ation of such minimum as suggested by Fig. 6 (a).

A deviation from the minimum at 7 =T, is found for 7, > 50, as can
be observed. Thus it is interesting the sensitivity of spectra considering
time series with aging. The same can be observed on the other spectral
parameters such as the variance of eigenvalues for different tempera-
tures Fig. 6 (b), and Fig. 6 (c), that shows the pronounced peak on the

negative of the derivative of this same variance when no aging is con-
sidered. However, after the peak (¢, = 1), we observe a double peak
(t, =500) and subsequent discontinuity in the vicinity of T /T =1, and
there is no consensus regarding the localization of the critical parame-
ter. This lack of consensus is particularly pronounced for 7, > 50, where
finite-size effects appear to be significant and influence the localization.

4. Conclusions

We conducted a study on aging phenomena by examining the scal-
ing behavior of the total correlation of magnetization. Such scaling is
corroborated by an analysis of the correlator in Fourier space according
to methodology developed by Henkel and Pleimling [3]. Our findings
reveal an important deviation in the scaling of the second moment of
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magnetization. Moreover, we demonstrate that when considering the
initial magnetization distributed according to the Gaussian distribution
expected at the time we hypothetically started after interrupting the
time-dependent simulations, we need to scale the time appropriately to
capture the correlation obtained with this initial time.

Furthermore, we present an intriguing analysis of random matrices,
which sheds light on the expected spectra of matrices constructed from
the time evolutions of magnetization during aging. This method exhibits
high sensitivity and demonstrates how aging can impact the determina-
tion of the critical temperature under the influence of finite size scaling
effects.

Overall, our study provides valuable insights into the effects of aging
on magnetization dynamics and highlights the importance of account-
ing for initial conditions and scaling considerations in such systems.
It is important to stress, that Pleimling and Gambassi, and Henkel et
al. much before had obtained other numerical examples for studies in
Fourier space however by concerning response functions [22,23].

Lastly, it is crucial to note that the irrelevance of ¢, in the context
of renormalization-group was previously established at T =T by Cal-
abrese and Gambassi [25]. They conducted a meticulous comparison of
correlators and responses in both direct and momentum space. Our re-
sults align with their findings, as our short-ranged initial correlation, in
theory, should not alter the critical exponents.

It is also important to note that for temperatures below the critical
point (T < T¢), Janke and colleagues [9], have established that scaling
laws, which remain invariant regardless of the selection of #,, are likely
associated with the behavior {m(t)? ) ~ t%/7, even in the context of long-
range systems.
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