

Enhanced Electrochemical Detection of Molybdenum Using Confinement Strategies and Scanning Electrochemical Microscopy

Fabiana F. de Oliveira^{1*}, Gabriel N. Meloni¹, Mauro Bertotti¹

¹ Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo

*e-mail: fabifsilva@usp.br

Sensitive detection of molybdenum (Mo) is essential due to its biological importance and potential toxicity. An electrochemical method was developed based on an EC' (electrochemical-catalytic) mechanism between molybdate and bromate, with enhanced sensitivity achieved through species confinement using Scanning Electrochemical Microscopy (SECM). A thin-layer cell was formed by positioning a 5 μm -radius carbon microelectrode close to a conductive substrate, amplifying the cathodic current via Mo(VI) regeneration. The effect was intensified with microelectrodes of higher RG (ratio of the glass radius to fiber radius) values, reaching a 110% current increase for RG = 9 (Figure 1). This confinement enabled molybdate detection in the 0.5–10 $\mu\text{mol L}^{-1}$ range, with a limit of detection of 240 nmol L^{-1} . Validation using synthetic urine confirmed the method's accuracy and applicability to complex samples.

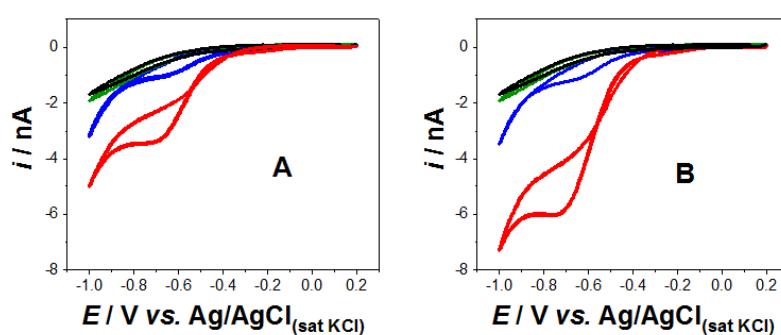


Figure 1 - Cyclic voltammograms recorded with a carbon microelectrode ($r = 5 \mu\text{m}$ and RG = 9) positioned in the bulk solution (A) and at 8 μm from a conductive substrate in an SECM configuration (B). Acetate buffer at pH 3.7 in absence (black) and presence of 250 $\mu\text{mol L}^{-1}$ bromate (green), 10 $\mu\text{mol L}^{-1}$ molybdate (blue), and 10 $\mu\text{mol L}^{-1}$ molybdate + 250 $\mu\text{mol L}^{-1}$ bromate (red). Scan rate: 50 mV s^{-1} .

Acknowledgments:

CNPq and FAPESP.

References:

- [1] Bard, A. J. & Faulkner, L. R. *Electrochemical Methods: Fundamentals and Applications*, 2nd ed., Wiley, 2001.
- [2] Smedley, P. L. & Kinniburgh, D. G. Molybdenum in natural waters: A review of occurrence, distributions and controls. *Applied Geochemistry*, 2017.