

AVALIAÇÃO DOS CATALISADORES DE NI E NIPt PARA A REAÇÃO DE ELETRO-OXIDAÇÃO DA UREIA

Diego Guislene Gigliotti

Rodrigo Gomes de Araújo

Joelma Perez

Instituto de Química de São Carlos - USP

Diegoggigliotti@usp.br

Objetivos

Sintetizar, caracterizar e avaliar os catalisadores de PtNi e Ni suportados em carbono Vulcan para a reação de oxidação da ureia em meio básico. Analisar os produtos gasosos de reação usando a técnica de espectrometria de massa eletroquímica on-line (OLEMS).

Métodos e Procedimentos

Os nanocatalisadores de PtNi e Ni foram sintetizados utilizando o método do póliol modificado¹ a fim de obter uma carga metálica de 20% em relação ao carbono (massa/massa). A análise de Termogravimetria foi empregada para determinar a carga metálica sobre o suporte de carbono.

Para o estudo da reação de oxidação da ureia (ROU) foram realizados ensaios eletroquímicos em meio básico (1 mol L⁻¹ NaOH + 1 mol L⁻¹ Ureia) utilizando uma célula de teflon de um compartimento, com configuração de três eletrodos; eletrodo de referência de (Hg | HgO)(NaOH, 1,0 mol L-1), contra eletrodo de grafite e o eletrodo de trabalho sendo constituído de 10 mg do catalisador depositado sobre tecido de carbono de área geométrica de 2 cm².

Para avaliar os eletrocatalisadores foram realizados ensaios de cronoamperometrias, utilizando a espectrometria de massas para analisar a distribuição dos produtos. Os potenciais

avaliados para os eletrocatalisadores consistiram em saltos potenciostáticos de 0,5 a 1,8 V vs ERH para o catalisador de PtNi, enquanto os potenciais avaliados para o Ni foram de 0,8 a 1,8 V vs ERH, cada polarização foi realizada durante 600 segundos. Entre cada potencial avaliado foi realizado uma polarização de 0,3 V vs ERH durante 600 segundos. A técnica de OLEMS foi empregada para avaliar os produtos gasosos gerados durante a oxidação da ureia, sendo monitorados os sinais de massas; m/z 27 (HCN+), 28 (N2+), 30 (NO+) ,43 (HNCO+), 44 (CO₂+ ou N₂O+), e, 46 (NO₂+).

Resultados

A partir da análise de Termogravimetria foi possível verificar a porcentagem da carga metálica em relação à massa total da amostra. Os resultados obtidos foram próximos das cargas metálicas almejadas que eram de 20%, sendo as cargas encontradas para o catalisador de PtNi (19,7% e Ni (22%).

A figura 1 apresenta os potenciais *onset* e os produtos formados identificados pela técnica de OLEMS, juntamente com a corrente iônica para os eletrocatalisadores de PtNi e Ni, destacando e ampliando a região de 0,9 V a 1,3 V vs ERH para PtNi para uma melhor visualização da formação dos produtos analisados e a identificação do potencial de início de reação.

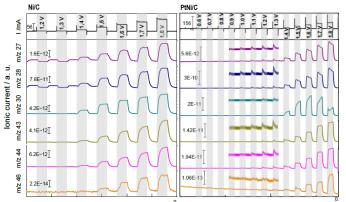


Figura 1- Espécies detectadas por Espectrometria de Massa Eletroquímica On-line (OLEMS) e seus respectivos potenciais aplicados para detecção durante a eletro-oxidação da ureia nos catalisadores Ni/C e PtNi/C

Para as espécies gasosas avaliadas, o catalisador de Ni apresentou início de reação, a partir de 1,4 V vs ERH, sendo possível notar o aumento da produção das espécies de acordo com o potencial aplicado.

Para o eletrocatalisador de PtNi foi observado que as espécies HNCO e CO₂/N₂O foram observadas a partir de 1,0 V enquanto N₂ e HCN em 0,9 V. Os perfis obtidos dos produtos permitem notar duas regiões distintas: a primeira, entre 0,6 e 1,3 V, e a segunda, entre 1,4 e 1,8 V. A primeira região demonstra um comportamento de produção de HCN e N2 entre 0,8 e 1,3 V, seguido de uma queda, sugerindo envenenamento da superfície.2 Na segunda região, entre 1,4 e 1,8 V, o perfil de formação das espécies avaliadas com a aplicação do potencial foi diferente, mostrando um perfil mais parecido com o eletrodo de Ni, o que demonstra catalisador bimetálico combinando características tanto da Pt como do Ni.

Conclusões

Os resultados obtidos demonstram que os catalisadores sintetizados apresentaram cargas metálicas próximas às nominais, confirmando a eficiência do método de síntese utilizado. A partir das análises eletroquímicas e da técnica de OLEMS, foi possível verificar que o catalisador bimetálico PtNi exibiu comportamento distinto em relação ao de Ni, evidenciando um efeito sinérgico entre os metais. Esse efeito resultou em uma diminuição do potencial de início da reação de oxidação da ureia em comparação ao Ni, além de apresentar perfis de formação de espécies gasosas que combinam características típicas da Pt e do Ni. Indicando o potencial do material bimetálico PtNi como uma alternativa promissora para a reação de eletro-oxidação da ureia.

Os autores declaram não haver conflito de interesses.

Autor A concebeu, planejou o estudo e realizou a coleta e análise dos dados. Os autores A, B e C participaram da redação e revisão final do manuscrito. Todos os autores aprovaram a versão final do resumo.

Agradecimentos

CNPq, Fapesp e Universidade de São Paulo.

Referências

1-WANG, Z. et al. Effect of pH Value and Temperatures on Performances of Pd/C Catalysts Prepared by Modified Polyol Process for Formic Acid Electrooxidation. Fuel Cells, v. 11, 04/01 2011.

2-PÉREZ-SOSA, M. A. et al. Enhanced performance of urea electro-oxidation in alkaline media on PtPdNi/C, PtNi/C, and Ni/C catalysts synthesized by one-pot reaction from organometallic precursors. International Journal of Hydrogen Energy, v. 46, n. 41, p. 21419-21432, 2021/06/15.