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Abstract. Spontaneous speech has not yet been widely explored in Brazilian
Portuguese (BP) for the task of automatic prosodic segmentation. In this arti-
cle, we compared seven types of classifiers, considering their performance for
various types of speaker profiles (varied genders, ages, education levels, and
regions of birth) and environmental impact, and trained the most appropriate
one. Thus, we propose a Random Forest classifier, based on acoustic features,
with low environmental impact and an F1 score of 0.55% and 0.77%, with bi-
nary and macro averages, respectively. Additionally, we are making it publicly
available and present a discussion of its efficiency for different speaker profiles,
as well as its environmental impact.

1. Introduction

Prosodic segmentation is the process of dividing spoken language into smaller units
(prosodic units) based on prosodic clues such as intonation, intensity, and duration. These
units, which do not always correspond to grammatical units, help structure speech and fa-
cilitate the comprehension of the spoken message. Between one unit and the following,
prosodic boundaries are inserted. Previous studies [Raso et al. 2020] have distinguished
between terminal prosodic breaks (TB), which mark completed sequences, that is, they
communicate the conclusion of the utterance, constituting the smallest pragmatically au-
tonomous unit of speech, from non-terminal prosodic breaks (NTB), which signal a non-
autonomous prosodic unit whose information is not completed within the same utterance.

This task is applied in a variety of areas, including speech technol-
ogy (both text-to-speech (TTS) and automatic speech recognition (ASR) systems)
and linguistic analysis [Liu et al. 2022, Lin et al. 2019, Viola and Madureira 2008,
Chen and Hasegawa-Johnson 2004]. Several studies have already addressed automatic
prosodic segmentation (see Tables 1 and 2). Many of them have used prepared speech
corpora, such as radio news. In these cases, prosodic and syntactic boundaries coin-
cide, since the speaker follows punctuation, which marks the syntactic boundaries, con-
sequently placing a prosodic boundary in the same positions where syntactic boundaries
exist. In addition, disfluencies are rare in this scenario [Biron et al. 2021]. However,



studies that focus on spontaneous speech may have more difficulty in achieving high per-
formance due to the presence of disfluencies and less clear prosodic boundaries, since the
speaker formulates the text as they speak, unlike a reading task of a previously punctuated
text.

The task of automatic prosodic segmentation for spontaneous speech, specifically,
is a long-standing problem [Biron et al. 2021], but it remains relevant, given the aforemen-
tioned obstacles. Previous approaches include rule-based methods (heuristics), traditional
machine learning, and, more recently, deep learning. While there are approaches based
exclusively on acoustic signals, some methods have also relied on lexical and syntactic
cues and include extensive preparation steps, such as manual tagging. The work proposed
here is based solely on acoustic features, uses traditional machine learning, focuses on
spontaneous speech, and innovates by presenting a comprehensive evaluation of classifi-
cation algorithms applied to BP and segmentation bias of speaker profiles across gender,
region of birth, age, and education level.

The contributions of this work are as follows.
1. an automatic prosodic segmentation method inspired by the work of

[Ananthakrishnan and Narayanan 2008], with spontaneous speech data in Brazil-
ian Portuguese, bridging the gap of automatic prosodic segmentation in BP;

2. evaluation of the method bias in terms of speaker profiles, which vary in gen-
der, age, education level, and dialectal varieties, using corpus MuPe-Diversidades
[Craveiro and Galdino 2025];

3. measurement of carbon emissions, energy costs, and duration of performing the
task with seven ML classifiers using CodeCarbon1, in addition to the classic per-
formance measures (binary and macro F1 score, and accuracy)2, to choose the
most appropriate ML method for the task; and

4. provision of the code and model3 to facilitate the evaluation and replicability of
the method, as well as enabling further training and usage with other datasets.

2. Literature Review on Prosodic Segmentation Methods
We present seven automatic prosodic segmentation studies published between 2008 and
2024, chosen because they include a variety of approaches. Tables 1 and 2 summarize
them and the method we propose, evaluated in the spontaneous speech dataset MuPe-
Diversidades, which covers different BP dialectal varieties and is freely available 4.

[Biron et al. 2021] detects prosodic boundaries in spontaneous English speech
(Santa Barbara Corpus) through heuristics based on pause durations and speech rate dis-
continuities (SRDs)5, measured through phone durations within 300ms windows. Pho-
netic alignment6 is obtained with Montreal Forced Aligner7, and results are evaluated in
Praat. They report an F1 score of 66%.

1https://codecarbon.io
2F1 score is the harmonic mean of precision and recall. While binary average only considers the positive

label (TBs), macro F1 considers metrics for each label (TBs and NBs) and measures their unweighted mean.
3https://github.com/nilc-nlp/ProsSegue
4https://github.com/nilc-nlp/MuPe-Diversidades
5SRDs refer to slowing down of speech rate at the end of a unit along with acceleration at its beginning.
6A forced phonetic aligner is a tool that automatically aligns a speech recording with its corresponding

phonetic transcription, providing time-aligned boundaries for each phonetic unit.
7https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner



[Kocharov et al. 2017] proposes predicting intonational units by combining syn-
tactic and acoustic information and a Random Forest classifier. The approach assumes
that certain word boundaries, such as between prepositions and nouns, are unlikely to
contain prosodic breaks, allowing syntax to narrow down potential boundary locations.
With Boston University Radio Speech Corpus (BURNC) for English, it reached an F1
score of 76% and 86.5% accuracy. Key acoustic features include changes in fundamental
frequency (F0), speech rate, and intensity. The study found that about 97% of the prosodic
boundaries were in syntactically plausible positions and that the remaining 3% could be
related to language-specific rules and parsing errors.

[Roll et al. 2023] uses the Santa Barbara Corpus (SBC) to introduce the PSST
method, which finetunes OpenAI’s Whisper ASR model (764M parameters) to segment
speech by integrating prosodic and syntactic cues, functioning also as a transcription tool.
They manually revise transcriptions, preserving disfluencies and removing unwanted to-
kens. Versions with masked syntax or text-only input tested the influence of syntax, but
the best model combined acoustic and syntactic information, obtaining 96% accuracy and
87% F1 score. The method is efficient, semi-supervised, and does not require extensive
annotations or computational resources, making it practical for NLP applications.

[Raso et al. 2020] presents a Linear Discriminant Analysis (LDA) classifier that
automatically identifies prosodic boundaries in spontaneous BP speech using phonetic-
acoustic parameters. Data came from the C-ORAL-BRASIL I and II corpora with expert-
annotated prosodic boundaries. 42 phonetic-acoustic features were extracted, covering
speech rate, segment duration, fundamental frequency (F0)8, and pauses. The model
achieved an F1 score of 81.5% for TBs and 54.5% for NTBs, with an average of 68%.
Pauses and F0 were key predictors, while duration was less influential. The model was
prone to falsely detecting boundaries due to pause sensitivity. Overall, parameters near
boundaries, especially pauses and normalized duration, were the most effective.

[Hoi et al. 2022] proposes a method based on pause detection using spectrograms
and a convolutional neural network (CNN). Using 33 hours of transcribed news au-
dio from corpus RTP9 (15,000 sentences), in European Portuguese, the method detects
whether pauses greater than or equal to 250 ms mark terminal or non-terminal breaks.
Audio windows (100 ms before + 300 ms after the pause) are classified using a 3-layer
CNN. Without relying on phonetic alignment or linguistic features, the model achieved
95.6% accuracy. While efficient and language-agnostic, the method only handles pause-
based boundaries and may be influenced by unintended acoustic biases.

[Craveiro et al. 2024] adapted the approach described in [Biron et al. 2021] to
Brazilian Portuguese, using the forced phonetic aligner UFPAlign10 [Batista et al. 2022],
designed for BP. Working with lengthy NURC-SP audio recordings (30–90 minutes), they
segmented the audios into 10-minute chunks for alignment. Their approach uses a 300
ms time window to detect pause duration and SRDs. It obtained an F1 macro of 31% with
a hit threshold of 0.25 seconds. The code is available11.

8Fundamental frequency (F0) refers to the approximate frequency of the (quasi-)periodic structure of
voiced speech signals [Bäckström et al. 2020].

9https://www.rtp.pt/
10https://github.com/falabrasil/ufpalign/
11https://github.com/nilc-nlp/ProsSegue



[Ananthakrishnan and Narayanan 2008] uses the Boston University Radio Speech
Corpus to explore an LDA, a Gaussian Mixture Classifier (GMM), and a Neural Net-
work (NN), basing their approach on acoustic features, but also on their combination with
syntactic and lexical evidence. They extract the following features from each syllable:
duration of pauses immediately after syllables (p dur), nucleus vowel duration (n dur),
F0 range (f0 range), energy range (e range), difference between minimum and average
within-syllable F0 (f0 avgmin diff), difference between maximum and average within-
syllable F0 (f0 maxavg diff), difference between minimum and average within-syllable
energy (e avgmin diff), difference between maximum and average within-syllable energy
(e maxavg diff), and difference between syllable average F0 and average F0 of the utter-
ance it belongs to (f0 avgutt diff). With their NN classifier, they achieved 91.6% accuracy
with the acoustic + syntactic approach, and 89.9% without syntactic features.

Table 1. Summary of prosodic segmentation research on prepared and sponta-
neous speech (1).

Source Language Corpus Gender balanced ? Segment Types Domain

Raso et al. (2020) PT-BR
C-Oral Brasil I
C-Oral Brasil II

(∼17min)

No
only male voices

TB
NTB SPONT

Hoi et al. (2022) PT-PT RTP (∼33hs) No
TB

NTB PREP

Craveiro et al. (2024) PT-BR
Part of the NURC-SP

MC (∼5hrs)
Aprox.

2 male, 4 female
TB

NTB SPONT

Ananthakrishnan et al. (2008) EN BURNC (∼3hs)
Yes

3 male, 3 female IUs PREP

Kocharov et al. (2017) EN BURSC (∼10hs)
Yes

3 male, 3 female IUs PREP

Biron et al. (2021) EN-US SBC (∼20hs) Yes IUs SPONT

Roll et al. (2023)
EN-US
EN-GB

SBC (∼20hs)
IViE (∼36hs)

Yes
55% female, 44% male IUs SPONT

This Work (2025) PT-BR
MuPe-Diversidades

(2h32m15s)
Yes

53% female, 47% male TB SPONT

(1)“EN-US” stands for American English, “EN-GB” for British English, “TB” for terminal prosodic boundaries, “NTB” for
non-terminal prosodic boundaries. “SPONT” refers to spontaneous speech, “PREP” to prepared speech.

Table 2. Continuation of Table 1 (1)
Source

F1 score/
Accuracy Training ? Features Approach

Code
Availability

Raso et al. (2020) 68%/—
Yes

LDA

Speech Rate,
Rhythm, Duration,
F0, Intensity, Pauses

TML
Not
Available

Hoi et al. (2022) —/95.6%
Yes

CNN API Spectrogram DL
Not
Available

Craveiro et al. (2024) 31%/—% No Pauses, SRDs Heuristics Open Code

Ananthakrishnan et al. (2008) —/91.6%
Yes

LD, GMM, NN
9 acoustic features;
see Section 2 TML

Not
Available

Kocharov et al. (2017) 76%/86.5%
Yes

Random Forest
Pauses,
SRS, Df0C, Intensity TML

Not
Available

Biron et al. (2021) 66%/— No Pauses, SRDs Heuristics
Not
Available

Roll et al. (2023)
87%/96% (SBC)
73%/93% (IViE)

Yes
IUs Finetuning
with Whisper

— DL
Not
Available

This Work (2025) 55%/97% (2)
77% (3)

Yes
Random Forest

9 acoustic features;
see Section 3 TML

Open Code (4)

(1) The acronym “SRD” stands for speech rate discontinuities, “SRS” for speech rate slowdown at the end of a sentence, “Df0C” for
F0 contour decline, “DL” for deep learning, and “TML” for traditional machine learning. (2) F1 score binary average and accuracy.

(3) F1 score with macro average. “GMM” stands for Gaussian Mixture Classifiers, “LD” for Linear Discriminant, and “NN” for
Neural Network. (4) The code for the proposed method in this paper is available at github.com/nilc-nlp/ProsSegue.



3. Our ML-based Method using Acoustic Features

3.1. Dataset

The publicly available12 MuPe-Diversidades [Craveiro and Galdino 2025] contains short
samples of speech (4-10 minutes), totaling 2hrs32min15s. Its speakers are balanced in
gender and state of origin (Alagoas, Bahia, Ceará, Espı́rito Santo, Goiânia, Minas Gerais,
Mato Grosso do Sul, Pará, Paraı́ba, Paraná, Pernanmbuco, Piauı́, Rio de Janeiro, Rio
Grande do Sul, Rondônia, Sergipe, and São Paulo), and have varied education levels and
ages, which range from 20 to 91 years old.

Figure 1. Life story SP1 MuPe -
unedited.

Figure 2. Life story SP1 MuPe - re-
vised.

MuPe-Diversidades includes not only audio files but also multilevel transcriptions
aligned to the audio. The revised segmentation data for this corpus, made by an experi-
enced linguist (Version 1), was obtained by first applying a baseline automatic segmenta-
tion method (Version 0). The multilevel transcriptions consist of the following main in-
terval tiers annotated in the speech analysis software Praat [Boersma and Weenink 2025]
(see Figures 1 and 2 for an illustration).

• 2 tiers (TB-, NTB-) in which the speakers’ speech excerpts (speaker 0, speaker 1)
are segmented into prosodic units and transcribed orthographically;

• 1 tier for comments (com) about the audio and the annotation;
• 1 tier containing the punctuation (-period) that ends each TB.

Regarding prosodic units, the concept used here is based on the principles of the
C-ORAL-BRASIL prosodic segmentation study [Raso and Mello 2012]. In the flow of
speech, unit boundaries with terminal or non-terminal values are recognized. The iden-
tification of prosodic breaks is based mainly on the perceptual (auditory) relevance of
prosodic clues but also on visual inspection of the acoustic signal synthesis provided by
Praat. The main clues to a prosodic break in BP are the insertion of pauses and changes
related to fundamental frequency and duration [Serra 2009, Raso et al. 2020].

3.2. Acoustic features and pipeline

The method we propose here is inspired by the work of
[Ananthakrishnan and Narayanan 2008], as it measures the same nine acoustic fea-
tures (see Section 2 for details) at a syllable level. We opted for a model based solely
on acoustic features as they obtained only a slight improvement (1.6%) when they
added syntactic evidence to their acoustic model. To measure f0 avg utt, we considered

12https://github.com/nilc-nlp/MuPe-Diversidades



utterances as all the text between annotated TBs, which we also used to attribute labels
to the syllables (TB, indicating a terminal boundary right after the syllable, or NB,
indicating no immediate boundary after it). We normalized the syllable nucleus duration
per speaker and per vowel-type 13 to normalize the data against variation among speakers
and due to vowel-intrinsic properties, while preserving variations produced by boundary
cues. We also had to adjust pitch parameters14 during feature extraction to obtain valid
values in all voiced frames.

Our pipeline, illustrated in Figure 3, consists of three phases: forced phonetic
alignment with UFPAlign [Batista et al. 2022] to obtain initial and final timestamps of
each phone, syllable, and word; extraction of acoustic features with library parselmouth15;
and segmentation using the Random Forest model (see Section 4 for details).

Figure 3. Pipeline of the proposed method

As input for the first phase, UFPAlign requires a WAV audio with 16kHz, and a
monophonic signal, along with its transcription, which should contain all words separated
by a single space, and ideally no overlaps. Our final output is a textgrid with different
intervals containing the resulting utterances, separated prosodically by the classifier. Ad-
ditionally, UFPAlign was designed to process short audios (e.g., 30 seconds). We dealt
with examples of 4-10 minutes, which were mostly processed smoothly, but five of them16

required a version of UFPAlign that uses M2M aligner17.

4. Experiments and Results

4.1. Evaluation of Classification Algorithms

Before settling on a Random Forest classifier for our approach, we explored seven types
of ML classifiers from scikit-learn, version 1.6.1. To compare them, a K-Fold cross-
validation was performed (k=5). Firstly, we removed interviewers’ speech to avoid bias
and separated the entire corpus (MuPe-Diversidades) into a train set (80%) and a test set
(20%). This division was performed for each of the speakers to ensure we would have a

13We used the following list of phones to calculate phone average durations of all possible nucleus vowels
that UFPAlign indicated: “a”, “e”, “i”, “o”, “u”, “a∼”, “e∼”, “i∼”, “o∼”, “u∼”, “E”, “O”. We found a few
cases of “j” and “w” indicated as nucleus vowels, which we treated as “i” and “u”, respectively.

14We used a pitch floor of 50Hz, a pitch ceiling of 800Hz, a time step of 0.001, an octave jump cost of
0.4, a voicing threshold of 0.2, and default values for all other parameters.

15https://parselmouth.readthedocs.io/en/stable/
16In two of those, one word could not be properly aligned, representing approximately 0.0015% of its

audio. In those cases, two adjacent syllables were concatenated and treated as one by our method.
17https://github.com/letter-to-phoneme/m2m-aligner



representation of their speaker profile in both the training and test set, making it possible
to evaluate the method’s efficiency for their specific profile (region of birth, gender, age,
and education level) further on. Then, we extracted acoustic features individually for each
speaker and transformed NAN values to 0 to feed them to the classifiers.

Table 3. This table presents the average and standard deviation obtained consid-
ering three seeds (17, 42, 79) at the K-Fold cross-validation for each classifier.

Model F1 binary F1 macro Accuracy

Linear Discriminant Analysis (LDA) Avg 0.51 0.745 0.965
Stddev 0.0013 0.00068 5e-05

Multi-layer Perceptron (MLP) Avg 0.53 0.76 0.97
Stddev 0.004 0.002 0.0002

Random Forest (RF) Avg 0.55 0.77 0.97
Stddev 0.0037 0.0019 0.00013

Logistic Regression (LR) Avg 0.53 0.75 0.96
Stddev 0.0005 0.00026 4e-05

Gradient Boosting (GB) Avg 0.49 0.74 0.97
Stddev 0.004 0.002 9e-05

Decision Tree (DT) Avg 0.46 0.715 0.95
Stddev 0.011 0.006 0.0012

Support Vector Classifier (SVC) Avg 0.54 0.76 0.96
Stddev 1.7e-04 9e-05 3e-05

We also performed a parameter search, whose grid varied for each classifier (main-
taining 500 and 200 as the maximum number of iterations for LR and MLP, respectively,
as well as Adam solver for the latter, and kernel rbf for SVC), followed by a class weight
search, whose grid of NBxTB (1x1,1x2,1x3,1x5,1x10,1x15,1x30,1x35,1x40,1x50, bal-
anced) was maintained when present (RF, LR, DT, and SVC). With the optimal param-
eters18, we performed a cross-validation with three different seeds (17, 42, 79) for each
classifier and measured the average and standard deviation of each, which are presented
in Table 3. Using CodeCarbon, we measured total carbon emissions as CO2-equivalents
(CO2eq) in kg, CO2eq emissions rate (measured as emissions per duration) in kg/s, en-
ergy consumed (as the sum of CPU energy, GPU energy, and RAM energy) in kWh, and
duration of these phases in seconds, summing the values obtained in parameter search and
cross-validation stage. These values are illustrated in the charts presented in Figure 4.

As can be seen in Table 3, the Random Forest classifier, with 0.55, outperforms
the others by at least 0.01. SVC, MLP, and LR classifiers follow it closely with 0.54 and
0.53, respectively. However, the graphs presented in Figure 4 show that the SVC classifier
has a significantly greater environmental impact than all the others, which implies that it
should be avoided if we wish to preserve good scalability. Also from this perspective,
the LDA seems to be the least costly classifier to escalate. In fact, LDA, LR, and DT
classifiers have a smaller environmental impact overall and seem to be ideal choices if
we were dealing with a huge amount of data for training. But in our case, since our best
performing classifier (RF) consumed approximately 0.3g/CO2-eq, the equivalent amount
of CO2 necessary to send one email from laptop to laptop, or about 2 seconds worth of
the 5-tonne lifestyle19 recommended by [Berners-Lee 2020], we can safely choose it. Our
Random Forest classifier was trained with a maximum depth of 20, a minimum sample
split of 5, 100 estimators, a seed of 42, and class weights of 1(NB) x 30 (TB).

18Details on parameters can be found at https://github.com/nilc-nkp/ProsSegue.
19A lifestyle that causes 5 tonnes of CO2e per year, recommended as a possible and necessary personal

goal on the journey to a low-carbon world.



Figure 4. These four charts represent the comparison among the seven clas-
sifiers in terms of total CO2eq emissions, CO2eq emissions rate, and energy
consumed during parameter search and K-fold cross-validation, and the total du-
ration of the process for each classifier.

In the work by [Ananthakrishnan and Narayanan 2008], feature importance was
ranked as follows: p dur, n dur, f0 maxavg diff, f0 range, e range, f0 avgmin diff,
e maxavg diff, e avgmin diff, f0 avgutt diff20. With a statistical test, they conclude that
all features are helpful, but emphasize the role that F0 range, energy range, and espe-
cially pause and nucleus duration played as indicators of boundary events. In our work,
pause duration is also the most relevant feature, with an importance of almost 0.5. In con-
trast, the others differ significantly in order (p dur, f0 avgutt diff, e maxavg diff, n dur,
e range, f0 maxavg diff, e avgmin diff, f0 avgmin diff, f0 range)21 and have decreasing
importances that range approximately from 0.05 to 0.08.

Finally, including the phonetic alignment and extraction of features from the
MuPe-Diversidades corpus, parameter search, training, and prediction of results, the to-
tal CO2 emission was approximately 8.2 grams, which is equivalent to the CO2eq used
to send 28 short emails from laptop to laptop [Berners-Lee 2020]. The total energy con-
sumed was approximately 75 Wh, and the total duration of the process was approximately
5,34 hours (the extraction of features took 5,2 hours).

4.2. Bias Evaluation in Segmentation for BP Spontaneous Speech

We prioritize binary F1, since we understand that placing TBs correctly is the focus of
the task, rather than identifying NB locations, especially as NBs are significantly more
numerous and could indicate misleading results. However, we also report macro F1 for

20These nine features were presented in Section 2.
21We measured feature importance with Random Forest Feature Importance (MDI) from sklearn.



an overall perspective, as not inserting breaks at wrong locations is also relevant. Consid-
ering the entire test set, we obtained an F1 score with a binary average of 55%, a macro
average of 77%, and an accuracy of 97%. However, it is important to further analyze per-
formance considering different speaker profiles. To account for that, we compared the per-
formance of speakers from different regions, ages, genders, and education levels. Thus,
we stratified our data, grouping speakers from different states into regions. We grouped
speakers from the North and Midwest regions of Brazil, totaling seven speakers, and also
speakers from the South and Southeast regions of Brazil, totaling 11 speakers, due to lim-
ited representation for each region. We also separated our speakers into three age groups
(I:20-35; II:35-55; III:56+), which contain 5, 10, and 15 speakers, respectively, and four
education groups (I: no education; II: incomplete elementary school, complete elemen-
tary school; III: technical school, incomplete bachelor’s degree; IV: complete bachelor’s
degree, master’s degree), which contain 8, 8, 8, and 6 speakers, respectively.

Figure 5. Region results Figure 6. Gender results

Figure 7. Age group results Figure 8. Education results

Once we predicted results for those specific groups, we performed a statistical
significance analysis, measuring one-way ANOVA22, with the SciPy library23. Although
we did not find statistically significant differences between the groups in comparisons of
the F1 score (groups of different genres, ages, regions, and education levels), we report
the numbers we obtained.

As can be seen in Figure 6, there is a difference of 1% between male and female
speakers (p-value = 0.49). In Figure 5, we see a difference of 8-10% between the F1
scores for speakers of the southern and southeastern regions and speakers from other areas

22Analysis of variance (ANOVA) is a commonly used statistical test to determine whether two population
means are different. It indicates statistical significance if the p-value obtained is under 0.05.

23https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f_
oneway.html



(p-value = 0.68). Our classifier also seems to favor younger speakers (groups I and II),
reaching 58%-59%, compared to reaching 55% with older speakers (p-value = 0.5), and
disfavor speakers with lower education levels (2% below average for education groups
I and II (p-value = 0.86). However, to reliably affirm any of those possible biases, we
would need to test the model with more data.

5. Conclusions
In this paper, we propose a low-impact (8.2g CO2-eq for development, and an estimation
of 7.9g CO2-eq for usage with a corpus of approximately 2.5 hours) automatic prosodic
segmentation method based on acoustic features (pauses, duration, F0, and energy), which
are measured for each syllable. It is evaluated with spontaneous speech in BP, aiming to
bridge the gap of automatic prosodic segmentation methods explored for this type of
speech. We report an F1 score of 55% and 77%, with averages binary and macro, re-
spectively, and an accuracy of 97%. The model is available24 as well as a model trained
without feature f0 avg utt (as it requires annotated TBs) with the entire dataset for users
who wish to segment their datasets. We also present a comprehensive evaluation of clas-
sification algorithms explored to choose the best candidate for the task (Random Forest),
which includes classic performance metrics, as well as environmental impact. The two
major downsides of our approach are the dependency on UFPAlign, a third party software,
and the extraction of features, which could be costly according to the size of the user’s
dataset.

Furthermore, for our RF classifier, we present an analysis focused on the segmen-
tation bias according to speaker profile. The results indicate a difference of 1% in terms
of gender, differences ranging from 3% to 4% in terms of age groups and educational
levels, and differences ranging from 8% to 10% in terms of regions of birth. However,
since these values are not statistically significant, we intend to expand the test set in future
work to further analyze bias. We also plan to expand the training set with data from other
corpora and evaluate the difference in overall efficiency and efficiency according to each
speaker profile.

Regarding our method’s features, we are working on a new version of feature
f0 avg utt, which considers utterances to be the text between silences indicated by UF-
PAlign when calculating utterance averages, and no longer requires manually annotated
TB references. Moreover, we consider including syntactic, semantic, or pragmatic fea-
tures to better distinguish the conclusive aspect of TBs. And as our current segmentation
method only deals with TBs, in future work, we intend to focus on NTBs, to make the
technique closer to the manual segmentation task, which distinguishes both breaks.
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