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Abstract: The aim of this experiment is to explore the effect of sodium sulfate (NapSO,4) on methane
reduction in the rumen, and its impact on anaerobic methane-oxidizing archaea (ANME). Using
mixed rumen fluid from four Angus cattle fistulas, this study conducted an in vitro fermentation.
Adding NaySOy to the fermentation substrate resulted in sulfur concentrations in the substrate of
0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, 1.6%, 1.8%, 2.0%, 2.2%, and 2.4%. The gas production rate
and methane yield were measured using an in vitro gas production method. Subsequently, the
fermentation fluid was collected to determine the fermentation parameters. The presence of ANME
in the fermentation broth, as well as the relationship between the number of bacteria, archaea, sulfate
reducing bacteria (SRB), ANME, and the amount of Na;SO, added to the substrate, were measured
using qPCR. The results showed that: (1) the addition of Na;SO, could significantly reduce CHy
production and was negatively correlated with CO, production; (2) ANME-1 and ANME-2c did exist
in the fermentation broth; (3) the total number of archaea, SRB, ANME-1, and ANME-2c¢ increased
with the elevation of NaySOy4. The above results indicated that Na;SO,4 could mitigate methane
production via sulfate-dependent anaerobic methane oxidation (S-DAMO) in the rumen. In the future
management of beef cattle, including sodium sulfate in their diet can stimulate SSDAMO activity,
thereby promoting a reduction in methane emissions.

Keywords: rumen; methane emission reduction; anaerobic oxidation of methane

1. Introduction

Methane (CHy) has a very high global warming potential, which is 28 times that of
carbon dioxide (CO,). Methane emissions from ruminants account for approximately 3%
to 5% of total global greenhouse gas emissions [1]. They constitute a significant 80% of
the methane emissions produced by the livestock industry [2], and they represent 2% to
12% of the energy loss in ruminants. With the continuous improvement of people’s living
standards and the increasing demand for meat and milk, gastrointestinal CH4 emissions
from ruminants are expected to increase significantly. Therefore, mitigating CH, emissions
from ruminants is crucial for enhancing feed efficiency and achieving the long-term goal of
carbon neutrality. Sulfur is a crucial trace element required for the growth and development
of beef cattle. Studies have shown that incorporating Na,;SO, into beef cattle’s diets can
significantly diminish CHy4 production. Sandeep, U, et al. [3] found that when Na;SOy
was exogenously added to the diet of goats, methane production in the rumen could
be significantly reduced when the substrate sulfur concentration reached 0.76% (on a
dry matter basis). Wu et al. [4] found that the in vitro addition of Nay;SOy at a sulfur
concentration of 1.39% of DM in the substrate significantly reduced CH,4 production. Wu
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etal. [5] demonstrated that adding Nay;SO4 to beef cattle’s diets to adjust the substrate sulfur
concentration to 1.0% can also reduce CHy production, and it can increase the permeability
of the rumen epithelium, while having no significant impact on the rumen microbial
community. Studies have shown that adding NaySO, (with a sulfur concentration of 0.225%
DM) to the ruminant diet enhances the activity of fiber-digesting bacteria and rumen
fungi [6]. Feeding a total mixed ration (TMR) soaked in sulfate can increase the degradation
rate of cellulose [7]. Adding Na,SO, with a substrate sulfur concentration of 0.64% can
promote the growth and reproduction of rumen micro-organisms [8], and supplementing
the diet with NapSOy4 (with a sulfur concentration of 0.19% DM) does not have any adverse
effects on rumen fermentation. However, the effect of Na;SO,4 on the reduction of CHy
emissions in the rumen is generally accepted as an outcome caused by SO,?>~ competing
with CO, for hydrogen atoms to form HS™ [9]. In the natural environment, a type of
pathway called sulfate-dependent anaerobic methane oxidation (S-DAMO) has a capacity
to reduce methane by up to 90% [10]. This mechanism operates chiefly via the reverse
methanogenesis pathway, where the transfer of electrons converts CHy into CO,, thereby
achieving this effect [11]. The final product of the reaction is HS™, which is consistent with
the rumen environment [12]. Its occurrence conditions are strictly anaerobic, and the pH
is similar to that of the rumen environment [13]. Hence, we hypothesize that the rumen
harbors the conducive conditions for the occurrence of S-DAMO, given its three defining
features: decreased methane production, the presence of sulfate-reducing bacteria (SRB),
and the occurrence of anaerobic methanotrophic archaea (ANME) [14]. To this end, we
plan to employ a dual approach of in vitro gas production experiments coupled with qPCR
to ascertain whether sulfate supplementation can diminish methane emission in the rumen,
and to identify the presence of ANME and SRB populations within the rumen environment,
in order to provide new ideas and methods for methane mitigation in ruminants and data
support for the study of SSDAMO in the rumen.

2. Materials and Methods
2.1. Experimental Design

A completely random single-factor design was employed to study the effects of
sulfur on in vitro fermentation parameters, methane emissions, and rumen microbiota.
NaySO4 was used to adjust the sulfur content of the substrate, whose basic level was set
at 0.4% (basal sulfur content of the substrate dry matter), 0.6% (using sodium sulfate as
exogenous sulfur source), 0.8%, 1.0%, 1.2%, 1.4%, 1.6%, 1.8%, 2.0%, 2.2%, and 2.4%. In this
experiment, the standard diet containing 0.4% sulfur was used as the control group, with
no additives, reflecting the typical sulfur concentration found in TMR for beef cattle in
conventional farming.

2.2. Management of Experimental Animal

Four castrated Angus cattle, each with a permanent rumen fistula and weighing approxi-
mately 500 kg, were selected as experimental animals. They were fed daily at 8:00 am and
4:00 pm, a 5% allowance for leftover feed was ensured, and animals had free access to water
throughout the experiment. All animal experiments were approved by the Animal Welfare
and Ethical Committee of the China Agricultural University (AW81404202-1-3). The feeding
standards were based on the ‘Beef Cattle Nutrition Requirements’ of the National Academy
of Science, Engineering, and Medicine (NASEM). The composition and nutritional levels of
the diet are presented in Table 1.
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Table 1. Composition and nutritional level of the diet (DM basis).

Items Contents
Ingredients (g/kg DM)
Whole plant corn silage 310.00
Corn stalker 130.00
Ground corn 320.00
Jujube powder 60.00
Soybean meal 80.00
Palm meal 60.00
Premix 17.00
Sodium bicarbonate 8.00
Salt 10.00

Total 1000.00

Nutritional composition

ME (MJ/kg) 10.72
CP (%DM) 9.88
NDF (%DM) 49.02
ADF (%DM) 22.92
Ca (%DM) 0.60
P (%DM) 0.27
S (%DM) 0.40
Na2504 (O/ODM) 0.00

Note: each kilogram of premix contained the following: vitamin A acetate 150-450 thousand IU, vitamin D
340-120 thousand IU, Mn 1000-3000 mg, Fe 1000-5000 mg, Zn 1500-3700 mg, Cu 250750 mg, Ca 10-25%, total
p > 0.3%, NaCl 15-30%, H,O < 12%; metabolic energy is the calculated value, while other components are the
measured values. ME: metabolic energy. CP: crude protein. NDF: neutral detergent fiber. ADF: acid detergent
fiber. Ca: calcium. P: phosphorus. S: sulfur. Na;SOy: sodium sulfate.

2.3. Experiment Method

Fresh rumen fluid was collected from four Angus steers with permanent rumen fistulas,
and the fluid was filtered through four layers of gauze before the morning feed. Artificial
saliva was prepared according to Menken et al. [15]: 400 mL distilled water + 0.1 mL
solution A + 200 mL solution B + 200 mL solution C + 1 mL Tianging oxidation-reduction
indicator + 40 mL reducing solution. Under a continuous flux of CO,, the rumen fluid and
artificial saliva were mixed in a 1:2 (v/v) ratio to prepare the in vitro fermentation inoculum.

A total of 200 mg of feed sample (dry matter basis) was weighed and placed at the
bottom of a 100-mL glass syringe (Deli Electric Power Equipment, Shijiazhuang, Hebei,
China). Different concentrations of Na,SO,4 solution were added to the fermentation
substrate to adjust the S content. There were 11 treatments, each treatment containing
6 syringes. A total of 30 mL of inoculum was added to each syringe and incubated at 39 °C
in an automatic shaker for 48 h (Jie Cheng Experimental Apparatus, Shanghai, China).
During this period, 3 syringes were taken from each group at 24 h for the determination
of pH, VFA, NH3-N, and gas components. At the end of the 48-h experiment, 3 syringes
were taken out to measure pH, VFA, NH3-N, and gas components. The volume of the
cumulative gas production was recorded manually at time points of 0, 2, 4, 6, 8, 10, 12, 16,
20, 24, 30, 36, 42, and 48 h.

2.4. Measurement Indicators and Methods

Volatile fatty acids (VFA) and gas components (CHy, CO,) were determined using gas
chromatography. Ammonia nitrogen (NH3-N) was measured using the phenol sodium
hypochlorite colorimetric method. pH was measured using a portable pH meter. The H,S
content was determined using GASTEC fast gas detection tubes (Japan). Dry matter (DM)
was analyzed using the AOAC method, and neutral detergent fiber (NDF) was determined
using the Van Soest detergent fiber method. DNA was extraced using a DNA extraction
kit (Tiangen Biotech Co., Beijing, China). The DNA quality was assessed by agarose gel
(1%) electrophoresis, and DNA concentrations were measured using a NanoDrop 2000
Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and stored at —20 °C.
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The count of total bacterial, archaea, sulfate-reducing bacteria, and ANME were quantified
using an ABI 7300 Prism real-time PCR (ABI, Foster City, CA, USA) with SYBR Green PCR
RealMaster Mix (Cwbio, Beijing, China) staining method. The reaction system is shown
in Table 2. The specific reaction procedure was as follows: pre-denaturation at 95 °C for
10 min; denaturation at 95 °C for 10 s; annealing at 5664 °C for 30 s; extension at 72 °C for
32 s, repeating steps 2—4 for 3540 cycles; dissolution curve analysis: 95 °C for 15 s; 60 °C
for 1 min; 95 °C for 15 s; 60 °C for 15 s.

Table 2. qPCR reaction mixture.

Items Reaction System 50 uL
2 x Ultra SYBR Mixture (High ROX) 25
Primer-Forward (uM) 1
Primer-Reverse (uM) 1
Template DNA 2
ddH,O up to 50

2.5. Statistical Analysis

The dynamic parameters of gas production were calculated according to the formula
of Menke et al. [15], with Y = B x (1 — e~ ") (the formula represents the change in gas
production over time; B: the asymptotic gas production; c: the rate of gas production). All
data were preliminarily calculated and organized using Office 365 Excel (version number
1808). Employing SPSS 27.0’s General Linear Model (GLM), a one-way ANOVA was
performed, followed by subsequent multiple comparison tests to elucidate significant
differences among groups. The orthogonal polynomial comparison method was used
for first and second linear fitting, and the correlation analysis was conducted using the
bivariate Pearson test, with a significance level of p < 0.05. Images were created using
GraphPad Prism 10.

3. Results

3.1. Effect of Different Sulfur Concentrations on Gas Production and Fermentation Parameters
In Vitro

As shown in Figure 1, during the in vitro fermentation the 11 different treatment
groups exhibited a similar trend in gas production. There was no lag at the onset, and the
rates of gas production were rapid during the first 12 h. But with the extension of the time,
the curve gradually flattened and entered the plateau period at 48 h.
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Figure 1. Dynamic changes of gas production of in vitro ruminal fermentation in different sulfur
concentrations.
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At each time point, the group with a concentration of 0.4% (control group) showed
the highest gas production, while the group with a concentration of 2.2% had the lowest
gas production. As indicated in Table 3, the total gas production in all groups decreased
linearly with the increase in sulfur content in the substrates. The theoretical maximum
gas production (B value) displayed a linear decrease trend, whereas the rate of gas pro-
duction (c value) showed a quadratic linear increase. The findings of the study reveal that
incorporating Na;SOy into the mixture leads to a decrease in total gas production.

Table 3. Effects of different sulfur levels on gas production parameters in vitro.

Treatments p-Value
Items SEM p-Value ———
04% 0.6% 0.8% 1.0% 12% 14% 1.6% 18% 2.0% 22% 24% L Q
Gas production (mL/0.2 g DM)
24h 54.07 49.57 5247 5257 51.03 4930 49.13 4747 4888 4482 4803 0.79 0.20 <0.01 091
48 h 58.60 53.60 56.53 5647 5483 52.63 5293 5093 5197 4892 5220 0.84 0.21 <0.01 0.82

B(mL/02gDM)!  58.10
Ch1H?2 0.11

Gas production parameters

5294 5597 5598 5447 5226 5212 5070 51.69 4841 5216 0.72 0.24 <0.01 0.57
0.11 0.11 0.11 0.11 0.12 0.12 0.11 0.12 0.13 0.11  <0.01 0.11 048 0.02

1: the asymptotic gas production (mL/0.2 g DM); 2: the rate of gas production (h™1).

3.2. Effect of Different Sulfur Concentrations on the Gas Composition of Rumen Fermentation
In Vitro

As shown in Figure 2 and Table 4, with the increase in sulfur dose, the concentration
of H,S gradually increased and stabilized at 2.0%. Compared to the control group (sulfur
concentration of 0.4%), the methane production in the first four groups was significantly
reduced (sulfur concentration of 0.6-1.2%), and the methane production in the groups with
a sulfur concentration of 1.4-2.0% was also lower than that of the control group. However,
the methane production in the last two groups (sulfur concentration of 2.2-2.4%) increased.
Figure 3 shows that adding sulfur increased the proportion of CO, in the gas composition
when compared to the control group. Once the sulfur concentration surpassed 2.2%, the
CO, proportion modestly declined. Table 5 shows the significant negative correlation
between the sulfur concentration in the fermentation substrate and the proportion of CHy,
as well as the production of CH4 and CO;.

E 4000 - 26
& H,S — CHy S
-
Z) o
="' 3000+ L o4 8
S =]
& =
£ 2000+ 2
o / =22 =
; I\'\\ / E
= AN — ] — =
£ 1000+ T e BE 8
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0.4% 0.6% 0.8% 1.0% 1.2% 1.4% 1.6% 1.8% 2.0% 22% 24%
Sulfur Concentration of fermentation Substrate(%o)

Figure 2. Effects of different sulfur levels on gas components of concentration of CHy and H,S in vitro
fermentation.
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Table 4. Effects of different sulfur levels on gas components of concentration of CH4 and H,S in vitro
fermentation.

Treatments

Items SEM Val;le
0.4% 0.6% 0.8% 1.0% 1.2% 1.4% 1.6% 1.8% 2.0% 2.2% 2.4%

%,1/3)4 22,03 bed 20.38 21.92 bed 20.512 20.382 21.16 2b¢ 20.81 2 21.13 2bc 21.08 2bc 22.68 4 22.17 «d 0.24 <0.01

(I;;ISH) 1237.83°  2314.14° 232656  2678.64°  2646.91°¢  2549.34¢  253457¢ 2701.84° 3127499 3062679 3064569  157.66  <0.01
Note: The letters a-d denote significant mean differences, as established by Tukey’s honest significant difference
(HSD) post-hoc analysis, with a significance level of p < 0.05.
§ 75
8 70+ - - -
= ; S
o 65+
g
IR
&
£ 554
2
=
=
Q
0.4% 0.6% 0.8% 1.0% 12% 1.4% 1.6% 1.8% 2.0% 22% 2.4%
Sulfur Concentration of fermentation Substrate(%)
Figure 3. Effects of different sulfur levels on gas components of concentration of CO, in vitro
fermentation.
Table 5. Correlation analysis of different sulfur levels and the proportion of CH,; and CO,.
Items Sulfur Concentration (%) CHy4 (%) CO; (%)
Sulfur concentration (%) 1
CHy (%) —0.628 ** 1
CO, (%) 0.346 —0.478 ** 1
** mean extremely significant correlation at p < 0.01.
3.3. Effect of Different Sulfur Concentrations on Rumen Fermentation Parameters In Vitro
Table 6 presented the fermentation parameters at 24 and 48 h, respectively. Despite
the increasing sulfur content in the substrate, pH levels remained within the normal range,
and there was no significant difference in NH3-N among the groups (p > 0.05). Similarly,
the proportion of TVFA and various VFA did not exhibit significant changes (p > 0.05).
Moreover, the type of in vitro fermentation remained unchanged (P4, = 0.69, Psgj, = 0.52).
Table 6. Effects of different sulfur levels on rumen fermentation in vitro.
Treatments p-Value
Items SEM p-Value ——
04% 0.6% 0.8% 1.0% 12% 14% 1.6% 1.8% 2.0% 22% 24% L Q
24 h Fermentation parameter
pH 6.61 6.61 6.60 656 6.58 6.58 6.59 6.57 6.61 6.64 6.58  <0.01 0.63 0.19 0.66
NH3-N ! (mg/100mL)  13.09 1494 1217 1480 11.99 13.09 1272 11.99 1480 1280 1512 0.38 0.46 0.40 0.08
TVFA 2 (mmol /L) 7199 7255 6184 6672 66,60 7020 6581 67.64 80.09 5834 5894 192 0.80 045 071
Acetate (%) 6556 6399 6396 6440 6463 6478 6593 6491 66.85 64.68 63.60 0.29 0.73 0.73 0.57
Propionate (%) 1752 1736 1728 17.04 17.69 1746 1712 1747 17.69 16.89 1752  0.08 0.06 0.68 0.59
Isobutyrate (%) 1.64 1.76 1.76 178 1.67 1.70 1.65 1.65 1.55 1.74 1.82 0.02 0.82 0.86 0.52
Butyrate (%) 1113 1196 12.06 11.59 1159 11.70 1091 1147 1047 11.68 1199 0.15 0.66 0.64 0.64
Isovalerate (%) 291 3.49 350 366 3.12 3.09 3.08 3.20 2.70 3.54 3.57 0.09 0.45 093 0.60
Valerate (%) 1.23 1.45 143 152 129 1.27 1.31 1.29 1.04 1.46 1.50 0.04 0.46 0.82 0.53

A/P3 374 369 370 378 365 371 386 372 384 383 3.63 0.02 0.69 0.66 0.53
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Table 6. Cont.
Treatments p-Value
Items SEM p-Value
04% 0.6% 0.8% 1.0% 12% 14% 1.6% 1.8% 20% 22% 24% Q
48 h Fermentation parameter

pH 6.67 666 6.62 6.60 661 661 661 665 6.66 664 6.64 <0.01 0.33 0.96 0.02
NH3-N!(mg/100mL) 1459 1533 14.12 1439 1439 1426 1497 1456 1456 1572 1568 0.17 0.31 0.09 0.03
TVFA 2 (mmol/L) 7867 59.34 6713 6249 59.01 6781 5783 7145 91.58 5520 6098 3.25 0.90 0.82 0.96
Acetate (%) 60.44 64.00 65.05 6547 6198 66.64 6399 6592 7250 6543 6831 0.96 0.24 0.04 0.89
Propionate (%) 1742 1722 17.02 16.64 1722 1658 1716 1673 1421 1730 1619 0.27 0.55 014 093
Isobutyrate (%) 243 202 191 194 229 179 210 190 148 192 170 0.08 0.41 0.04 0.86
Butyrate (%) 1310 1137 11.09 10.82 1242 1041 1149 1059 8.00 1067 9.51 041 0.40 0.03 094
Isovalerate (%) 473 389 362 3.69 434 331 381 351 280 341 311 016 0.50 0.03 0.77
Valerate (%) 189 149 137 143 175 128 145 135 1001 127 117 0.7 0.31 0.02 0.80
A/P3 347 372 394 395 360 402 373 394 601 378 425 021 0.52 0.14 0.96

1

: ammoniacal nitrogen; 2: total volatile acid; 3: acetate: propionate ratio.

3.4. PCR Validation of Methane Anaerobic Oxidizing Archaea and Optimization of PCR

ConditionThe extracted total DNA was evaluated for quality using 1% agarose gel

electrophoresis, as shown in Figure 4. The results revealed clear bands without extraneous
bands, indicating that the DNA is suitable for subsequent amplification with specific
primers and qPCR amplification.

-'»uuuugbug’

Figure 4. Quality examination of metagenomic DNA using agarose gel (1%).

Five pairs of primers were selected for PCR amplification and the optimization of

amplification conditions. As shown in Figure 5, all five pairs of primers successfully ampli-
fied the corresponding DNA bands, which were subjected to gel extraction for subsequent
gqPCR standard preparation. The reaction conditions were optimized (Table 7), and the most
suitable annealing temperature was determined for each pair of primers: the annealing
temperature for Archaea806F/8958R and Bacteria BAC27F/EUB338R is 55 °C; ANME-1
1337F/1724R is 54.4 °C; ANME-2c 468F /736R is 56.3 °C; SRB F/R is 60 °C.

SRB

Bacteria Archaea

ANME-1

Figure 5. Quality examination of PCR amplification products sing agarose gel (1%).
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Table 7. Primer sequence and optimized annealing temperature.

Name Primer Citation

Annealing Temperature

5-ATT AGA TAC CCS BGT AGT CC-3’

Archaea 806F/958R 5'-YCC GGC GTT GAM TCC AAT T-3' [16,17] 55.0 °C
. 5-AGA GTT TGA TCC TGG CTC AG-3’ o
Bacteria BAC27F/EUB338R 5'-GCT GCC TCC CGT AGG AGT-3 [17,18] 55.0 °C
5-AGG TCC TAC GGG ACG CAT-3 o
ANME-1 1337F/1724R 5.-GGT CAG ACG CCT TCG CT-3' [19] 54.4°C
5’-CGC ACA AGA TAG CAA GGG-3 o
ANME-2¢ 468F /736R 5'-CGT CAG ACC CGT TCT GGT A-3’ [20] 56.3 °C
5’-CCG TAG ATA TCT GGA GGA ACA TCA G-3’ o
SRB 691F/826R 5-ACA TCT AGC ATC CAT CGT TTA CAG C-3' (21] 60.0°C
3.5. Effect of Different Sulfur Concentrations on Archaea, Bacteria, SRB and ANME
gPCR was employed to ascertain the abundance of archaea, total bacteria, SRB, and
ANME within the fermentation. As shown in Table 8, there were significant differences
in the number of Archaea, SRB, and ANME among different substrate sulfur concentra-
tions, and an increase was observed with the increase in sulfur concentration, while the
total number of bacteria did not show a significant change with the increase in sulfur
concentration.
Table 8. The total number of archaea, bacteria, SRB, and ANME in fermentation broth with different
sulfur concentrations (logjo no. of copies).
Treatments p-Value
Items SEM  p-Value
04% 0.6% 0.8% 1.0% 12% 14% 1.6% 1.8% 2.0% 22% 24% Q
Archaea 5.09 5.62 5.52 5.13 5.14 5.11 5.42 5.15 5.08 5.48 5.84
(log1o no.of copies) 2 P b 2 Py A b ab 2 b d 0.08 <0.01 <0.01 <0.01
(L BaCtefna . 695 665 680 614 6.5 68 684 690 656 656 659  0.08 0.98 048 0.63
og1o no.of copies)
ANME-11 2.77 2.82 2.19 2.70 2.44 2.49 3.10 2.73 2.69 2.96 2.88
(log10 no.of copies) od de a ¢ b b h ¢ p ig of 0.08 <0.01 <0.01 <0.01
)
(logﬁlf\ggfzcgpies) 3.;11 SéZZ 351530 ?1’5?«13 %.C%l 3}.3%9 4.96 3(.128 3£9 3.?6 Sé?l 0.06 <0.01 <001 033
SRB 3 1.356 1£0 1.;18 l.;16 1.353 1.;15 1BZ2 1}?4 1.;2 l.c77 1.d98 0.05 <0.01 <001 <001

(log1p no.of copies)

1. methane anaerobic oxidation archaea-1; 2: methane anaerobic oxidation archaea-2c; %: sulfate-reducing bacteria.
Note: The letters a-h denote significant mean differences, as established by Tukey’s honest significant difference

(HSD) post-hoc analysis, with a significance level of p < 0.05.

4. Discussion

4.1. Effect of Adding NaySOy4 on Gas Production Parameters and Gas Composition

The cumulative gas production and the gas parameters from the in vitro gas production
assay are indicative of the ruminal fermentation capacity to a certain extent. Sulfur is a
pivotal element for the proliferation of ruminal micro-organisms and the normalcy of
cellular metabolism. The National Research Council (NRC), in its publication “Nutrient
Requirements for Beef Cattle”, recommends a dietary sulfur concentration of 0.15% to
support the growth of beef cattle. Previous studies have indicated that adding Nay;SO4
to the diet of ruminants can reduce methane emissions, which has a positive effect on
mitigating the greenhouse effect. Patra, A.K.’s [22] and Wu et al.’s [5] in vitro trials have
proven that the addition of NaySO4 can reduce the total gas production and CHy emissions.
Hunerberg et al.’s [23] and Wu et al.’s [4] in vivo trials also showed that adding Nay;SO4 can
reduce the methane emissions from ruminants. The results of this experiment are consistent
with previous findings, showing that the total gas production decreases with an increase
in NapSO4 dosage. Furthermore, compared to the control group (0.4%), the methane
production in the 0.6-1.2% group was significantly reduced, and the methane production in
the 1.4-2.0% group was also lower than that in the control group. The correlation analysis
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also showed that methane production was significantly negatively correlated with the
addition of sodium sulfate, which is consistent with the results of PATTAYA [24] and ABDL-
RAHMA et al. [25]. These results all indicate that the addition of an appropriate amount of
sodium sulfate to the diet of ruminants can, indeed, reduce methane emissions. However,
the methane production in the 2.2% and 2.4% groups increased, while the carbon dioxide
production decreased. This phenomenon may be postulated as arising from the enzymatic
threshold being reached within the reaction system. As the enzymes mediating CO,
conversion to CHy in the rumen are all bidirectional enzymes [26,27], enzyme inhibition
reactions occurred [28]. When a certain amount of Na,SO4 was added to the substrate,
this type of enzyme could promote the reverse production of methane by converting
CH,y to COy, resulting in a decrease in CHy production. At substrate S concentrations
surpassing 2.2%, these enzymes appear to enhance CHy synthesis. Correlation analyses
further substantiate a significant inverse relationship between CH,; and CO, levels. The
essence of AMO is to achieve the conversion of CHy to CO; [29], and its functional enzymes
are also the same as those in the rumen [30,31]. Consequently, it can be inferred that there
is a process of CHy conversion to CO; in the rumen, and S-DAMO exists in the rumen.

In addition to methane production, attention should also be paid to the content of H;S.
An excessive intake of Na;SO4 can be metabolized into H,S by sulfate-reducing bacteria
(SRB), which increases the risk of polioencephalomalacia (PEM) in livestock [32]. Gould
et al. [33] demonstrated that the administration of 1.8% Na;SOy in the feed of Holstein
steers weighing 120-160 kg manifested symptoms of PEM. Conversely, other studies have
reported that high-sulfur diets (1.72%) did not induce PEM in calves and sheep [34]. This
study showed that the concentration of HyS increased correspondingly with the incremental
addition of NaySQy, reaching a stable level after the 2.0% concentration threshold was
surpassed. However, this study is an in vitro experiment, and the tolerability of such H,S
concentrations in vivo, relative to the weight and dietary composition of beef cattle, remains
to be ascertained.

4.2. Effect of Adding NaySOy on Fermentation Parameters In Vitro

The ruminal fermentation parameters serve as direct indicators of the microbial ac-
tivity and metabolism of fermentation products. The stability of the ruminal internal
environment is paramount for fermentative processes. The appropriate pH levels and
NHj3-N concentrations are crucial for maintaining the stable ruminal internal environment,
and ensuring the normal growth and reproduction of rumen micro-organisms. In this
study, the pH levels across all groups fell within the normal range, showing no significant
differences. Similarly, the NH3-N concentrations were within the effective range for micro-
bial protein synthesis (5.0-30 mg/dL) [35]. Regarding volatile fatty acids, including acetate,
propionate, butyrate, valerate, isobutyrate, isovalerate, and the acetate to propionate ratio,
there were no significant differences observed with the increasing addition of NaySOy,
in agreement with the findings of Wu et al. [5]. However, in vivo studies have indicated
a marked elevation in butyrate levels when the sulfur concentration reaches 1.0%. This
discrepancy may be attributed to the limitations of in vitro experiments to fully replicate
the complex ruminal environment, necessitating further in vivo experiments for validation.

4.3. Effect of Adding Nay;SO4 on S-DAMO in the Rumen

Anaerobic methane oxidation (AMO) is a prevalent and promising pathway for
methane mitigation within natural ecosystems [6], with sulfate-dependent anaerobic
methane oxidation (S-DAMO) being a significant one. The ruminal environment, charac-
terized by strict anaerobiosis and a pH ranging from 6.0 to 7.0, produces HS™ as a final
product, which is highly consistent with the occurrence conditions of SSDAMO [36]. Ther-
modynamically, the reaction CHy + 5042~ —HCO;~ +HS~ +H,0 is more favorable than
the process of SO42~ + 4H,"H*—HS™ + 4H,0 [37], suggesting the potential existence of
S-DAMO in the rumen; ANME of S-DAMO is essential, and it has been confirmed that
the S-DAMO process is mediated by micro-organisms [38] and is closely related to SRB.
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Typically, ANME and SRB engage in a symbiotic relationship, with ANME-1 associating
loosely with SRB, whereas ANME-2 displays a tighter association [39,40]. Studies have
shown that supplementing beef cattle diets with Na;SO4 can increase the counts of total
archaea and SRB [32], indicating the possible presence of S-DAMO in the rumen. Therefore,
this study focused on detecting total bacteria, total archaea, SRB, ANME-1, and ANME-2c
in the fermentation broth. PCR amplification, qPCR, and gel electrophoresis revealed corre-
sponding bands, providing preliminary evidence of ANME in the fermentation broth. The
gPCR results indicated a significant increase in the total numbers of archaea, SRB, ANME-1,
and ANME-2c, with higher NaySOy levels in the substrate. These findings support the
presence of ANME in the rumen, influenced by sulfur concentration. The data indicate
the presence of S-DAMO within the rumen, and, to gain further insights, high-throughput
sequencing can be utilized to explore potential elevations in its expression levels.

5. Conclusions

In this study, a total of eleven addition levels of sodium sulfate were set to achieve
substrate sulfur concentrations of 0.4%, 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, 1.6%, 1.8%, 2.0%, 2.2%,
and 2.4%. This was demonstrated through in vitro gas production experiments showing
that adding a certain dose of Nay;SO4 to the diet of ruminants can effectively reduce methane
emissions. However, excessive addition that causes the sulfur concentration in the diet to
exceed 2.2% DM will result in the loss of methane reduction effectiveness. Additionally, the
addition of sodium sulfate had no significant effect on the fermentation parameters. Using
the dutilization of PCR and qPCR techniques to affirm the presence of ANME in the rumen,
it was noted that their abundance increased with the addition of Na;SOy, indicating that
the S-DAMO process exists in the rumen However, the precise mechanistic role of ANME
in the rumen, and the specific tolerance of NaySO, at different growth stages of beef cattle,
still require further in vivo experiments to verify.
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