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Abstract

Correlated mutation analysis has a long history of interesting applications, mostly in the detection of contact pairs in protein
structures. Based on previous observations that, if properly assessed, amino acid correlation data can also provide insights
about functional sub-classes in a protein family, we provide a complete framework devoted to this purpose. An amino acid
specific correlation measure is proposed, which can be used to build networks summarizing all correlation and anti-
correlation patterns in a protein family. These networks can be submitted to community structure detection algorithms,
resulting in subsets of correlated amino acids which can be further assessed by specific parameters and procedures that
provide insight into the relationship between different communities, the individual importance of community members and
the adherence of a given amino acid sequence to a given community. By applying this framework to three protein families
with contrasting characteristics (the Fe/Mn-superoxide dismutases, the peroxidase-catalase family and the C-type lysozyme/
a-lactalboumin family), we show how our method and the proposed parameters and procedures are related to biological
characteristics observed in these protein families, highlighting their potential use in protein characterization and gene
annotation.
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Introduction

Overview of amino acid correlation methods

The observation of patterns of correlation at certain positions in
a protein family multiple sequence alignment has been described
at least since the eighties. It gained considerable attention in the
nineties, when a variety of correlation metrics were proposed.
Since then, the primordial application of correlated mutations has
been the search for contact pairs - indeed it was soon observed that
two positions showing strong correlation would probably be near
in the protein three dimensional structure, as proposed in Gébel’s
seminal article in 1994 [1].

The search for sets of co-evolving position has also been
discussed since the late 90’s. Atchley, et al. [2] used a simple
procedure to find “cliques” of co-evolving positions in a quantity
named “‘position association” (“pa-values”), an estimation of their
mutual information. Cliques were defined as groups of positions
such that any two positions within one have pa-values among the
highest 5% of all such values [2]. In the same year, a different
metric of positional correlation was proposed by Lockless and
Ranganathan [3]. Loosely based on Boltzmann’s statistical
mechanics, their “statistical coupling analysis” (SCA) presented
two energy-like parameters to quantify both positional conserva-
tion and inter-positional correlation. The first one, termed AG,
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measures the overall conservation in a alignment position and
correlates well with the well known measure known as sequence
entropy [4]. The second one, termed AAG, measures the effect, in
an alignment position, of having a given amino acid in another
position. This procedure is called a “perturbation: therefore,
AAG;|j=ara will measure how much the distribution of amino
acids at position 1 varies when there is an alanine at position j. This
metric has two interesting features. The first one is the
“perturbation” concept, which results in much more useful
information when measuring the correlation between positions.
Being able to saying that, for a given alignment, position 25 and 45
are highly correlated is much less informative than saying that,
when there’s a cysteine at position 25, the fraction of cysteines at
position 45 increases considerably. While the former only suggests
that the two positions may be in contact in the three dimensional
structure, the latter also suggests that there might be a disulfide
bridge connecting the two positions for a subset of the proteins -
those having a cysteine at both positions. Although it was possible
to derive this information using SCA, the authors only reported
the overall AAG between two positions given a particular amino
acid at one of those positions. For example, the method only
reported that the presence of a cysteine at position 25 resulted in a
large variation of the amino acid distribution in position 45 when
compared to the overall alignment. IFurthermore, the authors have
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dropped this metric in more recent articles, using instead a
positional correlation method which abandons the “perturbation”
concept, only informing how much the two positions are
correlated [5], much like other correlation metrics which already
existed. Another interesting property of the original SCA
correlation metric is the fact that, since it uses binomial
probabilities, it automatically takes into account the sample size.
So, if a given correlation happened for 500 sequences in a 1000
sequence alignment, its measure is much bigger than the same
correlation for 50 sequences in a 100 sequence alignment
(something that would not happen for mutual information, for
example). However, it also has serious drawbacks. The idea of an
energy-like parameter was used in order to “measure energetic
coupling between positions on a multiple sequence alignment” [3],
and was supposed to be a theoretical alternative to experiments
such as thermodynamic cycle analysis. Although initially it seemed
that there was a linear correlation between the two quantities for
the selected residue pairs, subsequent studies showed that
correlated mutation algorithms (including SCA) can find residue
pairs which are close to each other and that these tend to be
thermodinamically coupled, but there is little evidence that
thermodynamic coupling is limited to residue pairs obtained by
these methods [6,7].

Dekker and co-workers [8] proposed a perturbation-based
method which, instead of using the energy-like approach, was
based in calculating the explicit likelihood of the observed
covariances, therefore providing a measure which is more directly
related to co-variation statistics [8], instead of an energy-like
quantity with no actual connection to a real energy. It still
measured the effect of a given “perturbation” (the presence of a
given amino acid in a position) on the overall distribution of
another site, but it showed increased predictive power in finding
native contacts, when compared to the original SCA algorithm. It
was also still dependent on a method to determine what would be
the “smallest significant perturbation”, and the authors used the
empirical jackknife-like procedure described by the developers of
SCA [9]. A theoretically sound procedure was proposed by Dima
and Thirumalai, based on choosing the smallest sub-alignment
that would still satisfy the central limit theorem [10]. This
procedure would reduce spurious results which would arise if
poorly conserved columns are included in the analysis.

From 2003 onwards [9], correlation (AAG) matrices were
subjected to clustering methods in order to obtain a set of self-
correlated positions. These sets were postulated to represent the
“structural motifs for allosteric communication in proteins” [9].
However, little attention has been paid to the fact that sets of
correlated (or anti-correlated, since both correlation and anti-
correlation implicate in positive AAG values) positions can have
very different meanings which could be better understood by
analyzing the individual contributions from each amino acid type,
the topology of the generated network, and the differentiation
from correlation and anti-correlation.

In recent work [11], we observed that correlated positions could
cluster into different groups, related to different properties in a
protein family, the Fe/Mn superoxide dismutases (SODs).
Members of the family can be either dimeric or tetrameric, and
usually selectively bind either Fe or Mn at the active site in a non-
substitutable fashion in order to present catalytic activity. The
clusters found seemed to be related to positions which were
already described as determinants of oligomeric state and metal
selectivity [12]. Therefore, instead of the previously postulated
view that clusters of correlated positions would reflect routes of
allosteric communication or energetic coupling, a much more
reasonable hypothesis can be proposed from these results: if a
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given protein family is populated by proteins having distinct
properties (e.g., binding or not a given ligand, having different
oligomeric states, being able to interact or not with a given protein,
etc.), it is expected that these properties may not be determined by
the presence of a single amino acid, but rather a group of them —
and this group will emerge from a correlation analysis if a sufficient
number of proteins present those properties. However, it may be
common to have cases when these residues overlap in which case
using any overall positional correlation metric would only result in
finding that there is a set of highly correlated positions, but not
differentiating complementary classes whose key residues are in
the same positions (as would be the case in binding site selectivity,
for instance).

By measuring specific positional correlation between pairs of
residues in given positions, it is possible to define a network in
which the existence of a connection between two nodes (nodes
being given amino acids in specific positions, say, H34 and S52)
implies that sequences having the first amino acid in that position
also tend to have the second one in the other position. By defining
such a network, it is possible to use algorithms for the detection of
community structures. A community in a network can be defined
as a group of nodes showing strong connections between them, but
not to the rest of the network. This topic has been receiving
considerable attention by different groups since the early 2000’s
[13,14,15], and is now applied to a large variety of problems from
computer to social networks, and also to the life sciences, especially
in the field of molecular systems biology.

In order to tackle the problem of detecting and assessing
communities in a network, it is necessary to have a measure of
community structure. This can be done using the definition of
modularity [14], which is a quantity related to a network and a
division of that network into groups. If there is a high number of
edges (connections) between the vertices (nodes) of the same group,
but not many between vertices from different groups, the resulting
modularity will have a high value. Community detection
algorithms, therefore, engage in maximizing modularity, either
by brute-force search or by heuristic methods, which may be
needed for large networks. The original definition of modularity
can be expanded to include weighted edges, i.e., by specifying the
strength of the link between the two nodes, directed edges, for cases
when the connection from A to B is not the same as from B to A,
and, finally, negative weights, to reflect the fact there may be cases in
which it 1s needed to represent the fact that two nodes should not be
connected. This is particularly useful for correlated mutation
studies, since, at times, there is anti-correlation between pairs (e.g.:
having an alanine in position 54 results in having much fewer
serines in position 78 than expected). A generalization of
modularity to include those cases is described in [16].

In this article, we propose a simple method which exploits and
quantifies specific correlations. Then we show how networks built
from these quantities can be analyzed by community detection
algorithms in order to find groups of specific amino acids which
tend to be present simultaneously. Finally, it is shown how these
results can be used to provide determinants for properties in a
given protein family by testing the method for three families with
distinct characteristics. The first, Fe/Mn-SODs, is the “ideal
case’: they are very well distributed in nature, with almost four
thousand sequences available in 1629 species, and they have two
independent properties (metal specificity and oligomeric state)
which are known for various members of the family. The second is
the peroxidase-catalase superfamily, which can be subdivided in
three classes with distinct characteristics, but for which the high
number of correlated pairs imposes a challenge for the community
detection procedure. Finally, the third family, C-type lysozyme/
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alpha-lactalbumin, also presents two characteristics which can be
readily tested (lysozyme activity and calcium binding), but since
they are present only in metazoan, with 693 total sequences spread
among 254 species, sampling is much more limited.

Theory

Since we are interested in obtaining a method to explore the
specific interdependence of amino acids in given positions, the
most naive approach would be to define that amino acid x at
position  and amino acid y at position j are correlated when every
sequence presenting x in 7 also presents y in j. This has a series of
problems which need to be resolved. First, we need to address the
fact that there is noise and uncommon sequences in the alignment
which would result in the above criterion being accepted only very
rarely. Changing it to “having x in ¢ results in having y in j for at
least 85% of the cases” is slightly better, but would still lead to
spurious results: if there are only a very limited number of
sequences having x in ¢, as the result would be statistically
insignificant, and also if virtually all sequences have x in ¢, these
two positions are not correlated, but rather, strictly conserved. So,
the putative correlated pairs must be filtered not only by a
minimum frequency, but also by a quantity which measures the
significance of the frequency shift for y in j upon the presence of x
n

Suppose that, in an alignment of N sequences, there are nu
sequences with a given amino acid x at position 1 and ng sequences
with a given amino y acid at position j. We want to test whether
the presence of x in position ¢ has any correlation to the presence of
yinj. If they were uncorrelated, the observed frequency of y in j for
the subset of sequences having amino acid x in position ¢ would still
be n;,/N, which is our null hypothesis. If it is not, we measure the
corresponding p-value using the cumulative binomial distribution
chbd(N,n,f) as described:

The expected number of sequences having y in j for the subset
having x in 7, considering no correlation, is ns(n,/N). If the
observed number, ng|,, is greater than this, we need to measure
the probability of observing at least ngja occurrences in ny trials,
of an event whose probability is n,/N, ie.:

”A ! n nygy—n
p= 2 ﬁ("b/iv) (1="0/p)™

ﬂ:"B‘A

If, conversely, the observed number of residues y in position j is
less than expected, we use the opposite tail of the cumulative
binomial distribution to measure the probability of having no
more than this observed value, i.e.:

"BlA |
ny: n nyg—n
p= Z;)n!(TA—n)!(nb/N) (1="8/5)™

Therefore, we can use —log(p) as a measure of the correlation
between two positions. Using log(p) instead of —log(p) in the
second case, it is possible to denote anti-correlation.

There are two known sources of bias which need to be
addressed. The first is the size of the perturbation, that is, the
minimum number of sequences having a given amino acid in a
certain position in order to measure its effect. This has been
addressed by some authors, and we have adopted the approach of
Dima and Thirumalai, based on the satisfaction of the central limit
theorem [10]. Finally, another source of bias is the variety of the
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multiple sequence alignment. If half of an alignment is populated
with identical sequences, for example, every pair of amino acids
appearing in that repeated sequence would be measured as very
highly correlated. Although this example describes a very unlikely
situation, it is known that the protein databases are populated by
mutations and polymorphisms, and also the distribution of
organisms having sequenced genomes is not well balanced among
the branches of the phylogenetical tree, therefore this effect must
be taken in consideration. While one can imagine different
approaches to exploit this feature, since this article deals only with
the extraction of overall correlations in a protein family which can
be used to detect and characterize classes/sub-families, we simply
apply an identity-based culling procedure: if two sequences have
more than a given pairwise sequence identity, one of them is
removed from the database. This procedure aims to remove
possible local correlations that would arise due to very similar
sequences, while still maintaining those that are well spread over
more distant taxa.

Networks of residue correlations are built using individual
combinations of residue type plus position as vertices, and —logP
as the edge weight between two nodes. Pairs presenting anti-
correlation have reversed sign. In order to restrict to meaningful
correlations, the possible pairs are filtered simultaneously by p-
value and frequency thresholds called minlogp and Af: Using
minlogp = 10 and Af=0.15, for example, means that a pair of
vertices remain connected if the presence of the first increases the
frequency of the second to more than 85% and vice versa (or
decreases to less than 15%, when they are anti-correlated) and the
p-value for this frequency shift is less than 107'°,

The network can then be submitted to a community detection
procedure, for which there are currently many algorithms. Here,
we use the community detection by maximization of modularity
[14] for the most general case [16,17,18], using taboo search plus
fine tuning [19,20] as heuristics.

Communities can be assessed by “self correlation matrices”, as
in Table 1, in order to observe why these nodes form a
community. They are useful to check for “outliers”, i.e., members
with insignificant or negative correlation with the remaining
members, which were included simply because, at the end of the
community detection procedure, all nodes are compulsorily placed
In a community.

We can also define some quantities and procedures in order to
analyze the community structure in more detail.

Table 1. Self-correlation matrix for community 1 in Fe/Mn
superoxide dismutases.

POS ALL D146 G71 G72 H73 M25 Q145
D146 54.1 X 784 73.1 66.7 81.7 89.7
G71 60.4 87.7 X 86.1 814 933 99.7
G72 639 86.3 90.9 X 89.1 97.7 99.4
H73 573 70.7 77.2 80.0 X 85.8 794
M25 51.1 77.3 789 782 76.5 X 87.7
Q145 517 85.8 85.3 80.5 71.6 88.7 X

Column all refers to the overall frequency for the first column (e.g., H is present
at position 73 in 57.3% of the sequences). Subsequent columns refer to the
frequency upon the presence of the given amino acid residue in each column
(e.g., the presence of a glycine in position 72 raises the rate of glutamines in
position 145 from 51.7% to 80.5%).

doi:10.1371/journal.pone.0027786.t001

December 2011 | Volume 6 | Issue 12 | e27786



Given that V(A) = [a},a9,...,an] and V(B)= [by,bo,...,by ] are the
vertices in communities A and B, respectively, and w(a,b,,) s the
weight of the edge connecting a,, and by, (—log(p) or log(p), depending
if there is correlation or anti-correlation), we can calculate the
quantity Axp, shown below, to compare two communities:

1
NI Z w(dnby,)

an,bm

Ayp=

If Axp approaches zero, then communities A and B may be
related to functions which are independent of each other. If it is
large and negative, then there might be characters represented by
the amino acids present in the communities which are mutually
exclusive. If it is large and positive, then they are correlated -
which may be a rare case to find since, if the two communities are
correlated, they would probably be merged into one by the
community detection algorithm. However, if the edge weights
between the two communities are positive but below the
significance threshold used (minlogp), they will not be merged
during the community detection phase. Also, if A=DB, this
parameter represents the overall connectivity within a single
community, and so could be used to rank communities from the
most significant to those with less correlated members.

The total number of community members is affected by
variables such as alignment size and the —log(P) cutoff to include
pairs of vertices. This is an undesirable feature - if, for example,
one wants to plan site-directed mutagenesis experiments in order
to see how the amino acids found affect the property which is
putatively associated to a community, which residue should first be
mutated? Therefore, it is necessary to define a procedure to rank
the community members to find those which would arise in most
settings. A simple iterative procedure to order the members by
“importance” for the community is shown below:

1. Calculate the sum of the correlation scores for each community
member against all others.

2. Remove the member which results in the lowest sum (meaning
that the “connectivity” of this member to other members is
lower and its removal implies the least overall connectivity
between remaining members).

3. If there are more than two members in community A, go to 1.

The members will be removed in ascending importance for the
community structure, with the two most important (expected to be
highly positively correlated) left at the end of the procedure.

We can also define an adherence measure to quantify the extent
to which a given sequence fits into a given community.

1
Adh(S,A)= m Z w(a,»aj)és(a,»,aj)

a,—,a/-eA

The delta function 3g(a;,a;) takes the value 1 if both vertices (i.e.,
given amino acids in alighment positions) are present in sequence
S and 0 otherwise. If the amino acids in community A are related
to a given property in the protein family, then high values of
Adh(S,A) indicate that sequence S may possess that property,
being useful for gene annotation applications.

Methods
Alignment input

Multiple sequence alignments for protein families were obtained
directly from PFAM [21]. In order to reduce the known phylogeny
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bias in correlation studies, alignments were culled according to an
identity cutoff. If the chosen cutoff is 80%, every sequence was
compared to all others and, every time two sequences had more
than 80% identity, the smallest sequence was removed from the
alignment. The alignments were also visually inspected to check
for errors in the alignment process or the presence of small
fragments. The Fe/Mn superoxide dismutase alignment presented
675 sequences using 80% as the identity cutoff, while the
peroxidases alignment still presented 977 sequences using 70%
as the identity cutoff. Since the C-type lysozymes/alpha-
lactalbumins were chosen as a test case for the effects of low
sampling, three alignments were used: one obtained after an 80%
identity cutoft (162 sequences), a second after a 90% cutoff (256
sequences) and a third after a 95% cutoff (323 sequences).

Correlation graph calculation

In order to be checked for correlation, given amino acids must
be present in a significant number of sequences at both positions.
This threshold was calculated as described in [10] and was found
to be 30% for SODs, 20% for peroxidases and 30% for C-type
lysozymes/alpha-lactalbumins. Given a pair (e.g., H15 and D58),
the correlation score as described in the theory section was
calculated for the two directions and then averaged. Each score
and also the average must be above the user specified threshold in
order to have that pair written into the output graph. A very high
threshold may result in missing useful data, while a low threshold
may include spurious results. A control procedure, described as
supplemental material (Text S1), indicates that while the
correlation score spread in real multiple sequence alignments
present a smooth distribution, column shuffled alignments show a
drastic fall in the maximum score observed. Therefore, no values
higher than 5 (virtually all of them among 0 and 1) are expected as
background for the protein families studied in this article. A
threshold of 10 with Af=0.2 for SODs resulted in 26 pairs, while
more restrictive criteria for peroxidases, with a threshold of 20 and
Af=0.15 still resulted in 514 pairs. For C-type lysozymes/alpha-
lactalbumins using Af=0.15 resulted in 3, 15 and 30 pairs (for the
alignments obtained after identity cutoffs of 80%, 90% and 95%,
respectively).

Community detection

The software package Radatools [16,19,22] was used for
community detection. We used ten repetitions of a taboo search
followed by bootstrapping [19], Newman’s fast algorithm for
community detection [20] followed by another round of boot-

strapping.
Results

Fe/Mn superoxide dismutases

Fe/Mn superoxide dismutases are an ideal test case for a
methodology to detect and evaluate sets of residues defining
functional characteristics in a protein family, since they simulta-
neously present mutually exclusive (as in iron versus manganese
specificity) and independent (as in oligomeric state versus metal
specificity) characteristics. After the procedures described in the
methods section, a network of 23 vertices and 26 edges is
generated, and after community analysis five groups and two
individual residues arise as a total of seven communities. The
resulting network is shown in figure 1.

The relation between the elements of a community can be
represented in tabular form in self-correlation matrices, as shown in
table 1, and by applying the ranking procedure to this community,
we obtain an order of these residues, shown in table 2 (self-
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Figure 1. Network of correlations for the Fe-Mn superoxide dismutase family. The five groups (1-5) found after the community detection
procedure have their members painted in orange, blue, gray, purple and yellow, respectively. The two isolated nodes or “one-member communities”
(6 and 7) are painted in black. The edges represent correlation (green) or anti-correlation (red) above the threshold of 10 for the correlation score (see

Methods).
doi:10.1371/journal.pone.0027786.9001

correlation matrices and ranking results for the other communities
can be seen in the supplemental material, File S1, S2, 23, 24, S5,
File S6, S7, S8, respectively). Finally, we can compute the values of
Aagp to compare the different communities. The result is shown in
table 3. The results in table 3 show that, from the five groups
(communities 1-5), communities 1 and 3 are highly anti-
correlated, while in all other cases they seem to present neither
correlation nor anti-correlation, as demonstrated by values close to
0. The isolated residues 6 and 7 appear to be related, respectively,
to communities 1 and 3, but were not placed in these communities
because they lacked positive links to these two communities for the
thresholds used.

Peroxidases-catalases

Peroxidases, like superoxide dismutases, are enzymes which are
mnvolved in oxidative stress, but have a large number of possible
substrates — they simultaneously promote the oxidation of organic
substrates while reducing HyOsy, producing water. They are
ubiquitous in living organisms and the latest release of PFAM
contains 4028 peroxidase domain sequences distributed in 666
species. They are classically subdivided into three classes (I, IT and
III) based on phylogeny. Class I peroxidases are intracellular and
present in prokaryotes, class II are extracellular and present in
fungi, while class III are secretory and present in plants. Some
other crucial features differentiate between them including the
presence of calcium ions, disulfide bridges and glycosylation sites
in class II and class IIT peroxidases. Being heme binding proteins,
they present proximal and distal sites containing histidines, but
varying in the other residues that constitute the tryads (usually, W/
H/R and D/H/W for Class I peroxidases and F/H/R and D/H/
T for classes II and III). These features, together with the previous
observation of a high correlation among a large number of
residues in the peroxidases family using the statistical coupling
analysis metric [23] turns this family into an interesting case for the
methodology described here. Even after limiting the alignment to
sequences with at most 70% identity, calculation of correlated
pairs with scores greater than 20 (or lower than —20, if anti-
correlated) and Af=0.15 results in a graph with 514 edges
between 113 vertices, a much larger network than the previous
case. Network decomposition yielded six communities and 41
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isolated residues. Some outliers (community members which are
not highly correlated to other members) have been observed after
network decomposition for some residues presenting only anti-
correlations in the complete graph, turning this case into an
interesting test for the subsequent methods as described above.

The first community is composed of 30 members, each one
composed of residues ranging from 20% to 40% overall frequency
and which, upon the presence of other members, increase their
frequency to very high values, characterizing a well-formed
community (Table 4).

However, a clear outlier can be seen in the table: residue H40 is
present in 20.9% of the sequences, but its rate drops to near-zero
values upon the presence of other community members. By
applying the ranking procedure (table 5), it is the first residue to be
removed from the community, since its mean score when
compared to other members is negative. All other members have
positive mean values, and the last two residues have a positive
score of 123 (due to the fact that the presence of the tryptophan
increases the rate of the arginine from 22.3% to 97.2%), while the
presence of the arginine increases the rate of the tryptophan from
21.9% to 95.4%).

The second community also presents three outliers, which are
also readily eliminated by the ranking procedure. The calculation
of Axp for peroxidases is shown in table 6.

Table 2. Member ranking for SOD community 1.

Element Mean score
H73 18.2

D146 28.25

G72 40.83

M25 42.0

G71 Q145 59.0

H73 is the first to be eliminated, since its mean correlation score when
compared to all other members is the lowest. After subsequent eliminations,
the procedure ends when only G71 and Q145, which have a correlation score of
59, are present in the community.

doi:10.1371/journal.pone.0027786.t002
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Table 3. A,g for the seven communities in Fe/Mn superoxide
dismutases.

Community 1 2 3 4 5 6 7

1 2608 —239 —328 —1.17 -075 11.83 —1233
2 —278 1531 6.7 292 11.08 5.7 1.33

3 —41.13 15.0 4424 32 4.4 —30.0 222

4 —0.75 1.83 1.0 7.25 —0.5 0.5 0.0

5 —0.33 5.8 1.6 -05 125 3.0 0.0

6 23.17 1333 —-304 25 125 0.0 —41.0
7 —16.33 2.67 214 -05 0.0 —40.0 0.0

doi:10.1371/journal.pone.0027786.t003

C-type lysozymes/alpha-lactalbumins

The family of C-type lysozymes/alpha-lactalbumins have an
interesting evolutionary history. Being a potent agent against
bacteria, an ancestral lysozyme gene suffered a duplication about
300-400 million years ago, which resulted in a new protein that
codes for alpha-lactalbumin. This proteins lacks the lysozyme
catalytic activity, but can associate with B-1,4-galactosyltransfer-
ase, forming a functional heterodimer known as lactose synthase.
Furthermore, some members of the family show calcium binding
capacity while others do not — a property which is not truly
independent of the presence of lysozyme activity since lactalbu-
mins seem to have originated from calcium binding proteins after
an early separation of calcium binding/non calcium binding
members [24].

The networks for this family are much smaller than those
described for the two previous examples. Using the alignment
obtained after an 80% identity cutoff, there are only five vertices
and three edges. For a 90% identity cutoff, there are 17 vertices
and 15 edges, and, finally, a network obtained from an alignment
after a 95% cutoff consisted of 25 vertices and 30 edges. It should
be noted that the number of edges is relatively low given the
number of vertices, which may be explained by the fact that the

Protein Classes from Amino Acid Communities

number of sequences used is much smaller, implying fewer
correlated pairs falling within the criteria used. The decomposition
of these small networks into communities is shown in figure 2.

Even though low sampling is clearly a problem, it was still
possible to obtain useful information from these data, as will be
described below.

Discussion

Structural and functional interpretation of correlation
results

The detection of contact pairs was the first application for
correlated mutation detection [1]. However, even though it is
common to see high correlation between residues in contact, many
times high correlation is observed between residues which are not
close. Correlation vs. distance plots for Fe/Mn superoxide
dismutases can be seen in Figure 3 (linear distance in 3A, three-
dimensional distance in 3B). Even though some of the highest
correlated pairs are either close in the sequence or in the 3D
structure, highly correlated pairs can still be seen for pairs which
are considerably distant in both cases. A linear fit (distance = a—
b*correlation) and an ANOVA analysis on both datasets showed
that there is an observed statistical significance for three-
dimensional distances (a=13.6=4 and b= —0.4%0.2), but the
value for the linear coefficient b is too small for any practical use.
No statistical significance was observed when linear distances were
used. Curiously, if communities are analyzed separately, it can be
seen that the two communities having only two residues each (4
and 5) in fact report contact pairs, while this is not the case for
communities 1-3, as seen in figure 4.

The observed pattern for Fe/Mn superoxide dismutases can be
readily interpreted, however, when analyzed at the light of the
well-defined characteristics in this protein family. In figure 1, it is
possible to immediately identify the functional connection to the
network decomposition into communities. Community 1 groups
six residues which are related to the presence of an active-site
manganese, while community 3 groups residues found in SODs
which bind iron instead. Since these properties are mostly
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Table 4. Self-correlation matrix for peroxidases.

POS ALL A49 A52 A152 D31 DX(483) D233 F251 F119 F21 G252 G166 G176 H29 H40
A49 333 X 81.2 91.0 88.5 83.1 83.0 92.7 734 91.4 89.2 85.8 70.6 89.7 0.0
A52 21.2 517 X 80.1 77.0 58.2 70.3 80.0 46.8 81.2 775 763 393 779 0.0
A152 20.6 56.3 77.8 X 88.0 67.5 81.7 93.2 522 91.4 90.1 87.7 41.6 89.7 0.0
D31 222 59.1 80.7  95.0 X 69.5 83.0 95.1 54.0 980 920 89.1 43.0 9.2 1.0
DX(483) 255 637 700 836 797 X 74.2 83.9 64.2 827 808 80.6 68.2 808 0.0
D233 234 585 778 930 876 683 X 92.7 53.2 909  90.1 87.7 444 89.2 39
F251 21.0 585 792 950 899  69.1 83.0 X 53.2 934  93.0 90.0 439 915 00
F119 38.1 840  84.1 96.5 926  96.0 86.5 96.6 X 954  93.0 924 91.1 939 00
F21 20.2 554 773 896 889 655 78.2 89.8 50.5 X 86.9 839 39.7 90.1 2.0
G252 21.8 58.5 79.7 95.5 90.3 69.1 83.8 96.6 53.2 93.9 X 90.5 439 92.0 0.5
G166 21.6 55.7 77.8 92.0 86.6 68.3 80.8 92.7 524 89.8 89.7 X 43.0 88.3 1.0
G176 219 46.5 40.6 443 42.4 58.6 41.5 45.9 524 43.1 441 43.6 X 43.2 0.0
H29 21.8 588 802 950 945  69.1 83.0 95.1 53.8 975 920 89.1 43.0 X 0.0
H40 209 0.0 0.0 0.0 0.9 0.0 35 0.0 0.0 2.0 0.5 0.9 0.0 0.0 X
To facilitate visualization, only the first fourteen residues are shown. The full matrix is available as a supplemental material. Residue numbering corresponds to royal
palm tree peroxidase. If a residue is not present in this protein, its numbering in the full alignment is shown within parentheses.
doi:10.1371/journal.pone.0027786.t004



Table 5. Member ranking for community 1 in peroxidases.
Element Mean score
H40 (130) —19.9
G176 (708) 14.0
F119 (469) 50.9
A49 (236) 52.1
DO (483) 56.0
A52 (243) 65.6
154 (246) 68.6
L155 (610) 81.1
T163 (624) 85.5
D233 (875) 87.2
V76 (282) 88.0
V117 (465) 89.8
G166 (630) 96.9
W25 (93) 98.9
Q64 (262) 100.4
L61 (258) 104.5
T131 (481) 105.2
F21 (89) 107.2
A152 (604) 110.1
G252 (1018) 110.3
L257 (1033) 111.4
D31 (108) 1133
R53 (244) 114.4
Q42 (133) 115.2
L28 (96) 1153
H29 (106) 115.5
PX (137) 116.3
F251 (1017) 122.5
R169 (698) WX (887) 123.0
Numbering corresponds to royal palm tree peroxidase and alignment
numbering is given between parentheses.
doi:10.1371/journal.pone.0027786.t005

mutually exclusive (except for the rare cambialistic SODs), the
residues in their communities are linked with negative edges,
shown in red. As previously noted, an overall correlation measure
would miss that feature, since positions 71 and 72 appear in both

Table 6. A,z matrix for peroxidase communities.

Community 1 2 3 4 5 6

1 71.2 —24.4 —66.9 56.7 65.7 —=11.9
2 —21.9 344 222 —415 —40.3 —15.1
3 —425 9.0 39.9 —11.7 —17.9 5.6

4 359 —43.6 —19.6 68.2 77.6 171

5 49.7 —440 —308 1009 79.0 6.0

6 —12.0 —-17.7 194 25.2 7.2 50.5

This matrix refers to communities having at least two members. The full matrix
is available as supplemental material.
doi:10.1371/journal.pone.0027786.t006
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communities, but with different residue types. Community 2
groups six residues which are related to dimeric SODs. It should
be noted that they do not present either positive or negative links
to the other communities, which is compatible with the notion that
metal selectivity and oligomeric state are independent properties.
Table 3, containing App values, quantifies the scenario which
could readily identified simply by examining figure 1: the fact that
the values for A5 and As; are high and negative is expected, since
communities 1 and 3 are related to mutually exclusive character-
istics (the binding of iron or manganese). On the other hand, the
values for Aap relating community 2 to communities 1 and 3 are
for most cases much smaller, consistent with the fact that the
oligomeric state property should be unrelated to metal specificity.

Since the Fe/Mn superoxide dismutase family presents a good
test set for oligomeric state and metal specificity [12], we can also
assess the utility of the adherence parameter Adh(S,A) as defined
above. Adh(S,A) was calculated for every sequence in the set, and
the results are shown as histograms in Figure 5. Each one refers to
sequences with a given characteristic — dimeric, tetrameric, iron-
binding and manganese binding.

For iron binding SODs, virtually all sequences have Adh(S,1)
equal to zero and the maximum value for Adh(S,3) (Figure 5A).
Conversely, all manganese binding SODs have Adh(S,3) equal to
zero, and most have high values for Adh(S,1). Most cambialistic
SODs have low or null values for Adh(S,1) and Adh(S,3),
suggesting that the lack of residues in communities 1 and 3 are
related to non-specificity for manganese or iron. Finally, all
tetrameric SODs have Adh(S,2) equal to zero, while most dimeric
SODs show higher values.

The six communities observed for peroxidases-catalases show
residues whose separation can be readily interpreted. Community
2 groups typical residues from a Class III peroxidase: the most
striking ones are the six cysteines involved in disulfide bridges in
this class. It also presents I'41, a phenylalanine on the distal side of
the heme which hinders access to the heme iron (a typical feature
of class III peroxidases). Community 3 groups F152, H42, H169
and R38. These residues are present in most peroxidase binding
sites: R38 and H42 make direct contacts with the peroxide and
F152 contacts the heme group, while H169 is the heme proximal
histidine. However, since not all peroxidases have the same
catalityc triad, the differences can also be seen in the community
structure: contrary to class III peroxidases, class I members present
a tryptophan in position 41 instead of a phenylalanine, and,
therefore, while 41 is present in community 2, W41 forms
community 4 with three other residues (E110, P63 and R55). Class
I peroxidases tend to have a different organization. They are
homodimers in which each chain is composed of two peroxidase
domains in tandem. From the three other residues in community
4, the proline and arginine are in the dimer interface, while the
glutamic acid is part of a salt bridge network connecting the two
peroxidase domains of a single chain, as seen in the crystal
structure of H. marismortui catalase-peroxidase (PDB code: 1I'TK).
The C-terminal domain of class I peroxidases also present
specifically conserved residues, which are grouped under commu-
nity 1. Since the exact function of this domain is not perfectly
understood, the roles of the residues in this community cannot be
readily interpreted. However, it has been shown that, albeit
mactive, the second domain is crucial to the dual peroxidase-
catalase activity of Class I peroxidases [25], and therefore some
evolutionary pressure on key residues must still be present in the
C-terminal domain. This analysis, therefore, suggests positions
which could be further investigated in order to understand the
function of this domain. Finally, community 6 is formed by an
arginine and a glutamic acid forming a salt bridge in KATGs, a

December 2011 | Volume 6 | Issue 12 | e27786



B

Protein Classes from Amino Acid Communities

C

ﬁ‘):o

(1) — 8
A42 D85 OAllO & D60 ®DSS
D90 N33 D90 D119 E11 D90
D91 D91 N44 N47 D91
OD—
D= ® A5 | (D=
6 2
619 D60 W111 p1s | (® L2
i N47 G22
F105 F105 [+=1 Nag
9 P70 5
— O O |20 Ocg
Flos | | T51 — Y20 >0

Figure 2. Community structure for the networks calculated for C-type lysozymes/alpha-lactalbumins. Data was calculated using as
identity cutoff A) 80% B) 90% and C) 95%. Residues shown in the same box were grouped into a single community. If, for two communities A and B,
both AAB, ABA and (AAB+ABA)/2 are higher than the chosen pair-wise correlation score cutoff (in this case, 10), the two boxes for communities A and
B are connected by a dotted line if (AAB+ABA)/2 is negative (no positive values were found). Residues involved in calcium binding are shown in bold,
and residues involved in lysozyme activity are underlined (see Discussion).

doi:10.1371/journal.pone.0027786.9002

catalase/peroxidase subfamily found among Class I members, and
the residues in community 5 are the charged pair D105 and R107
and a tryptophan residue, W123, also present in most KATGs —
the first two residues do not have structural equivalents in class II
and class III peroxidases, since they are in an inserted loop. The
relation between all those classes are consistent with the Axp values
found in table 6. The complete self-correlation matrices and
member rankings for all communities discussed above is provided
as supplementary material (files S9, S10, S11, S12, S13, S14, S15,
S16, S17, S18, S19).

The case of C-type lysozymes/alpha-lactalbumins is a nice
example to illustrate the effect of poor sampling in our proposed
methodology. There are two properties which are well character-
ized in this family and should, in principle arise in our analysis
assuming the validity of our hypothesis — that the presence of
different characteristics in a protein family will result in the
formation of communities grouping the residues involved in those
characteristics. The first property is lysozyme activity, which is lost
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in alpha-lactalbumins, and the second is the ability to bind
calcium. In figure 2, we see how the formation of correlated pairs
and communities evolves when using different identity cutoffs.
When using 80%, the same value used for Fe/Mn-SODs, there
are very few residues passing the criteria, but it is already possible
to identify a pair whose function can be readily interpreted: D90
and D91 are involved in calcium binding. When less stringent
identity cutoffs are used, D85 (which also coordinates the calcium
ion) joins this community, and the lysozyme catalytic pair D52-
E35 arises. However, this is at the expense of the appearance of
other residue communities whose roles cannot yet be readily
interpreted. In the search for novel communities it is therefore
probably prudent to employ more than one identity cutoff and
examine its effect on the results if the number of sequences is
limited.

The utilization of a residue-specific correlation metric followed
by community analysis can capture sub-class determinant features
that will not be observed using traditional methods described
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Figure 3. Effect of pair-wise distance on correlation. A) linear distance vs. absolute correlation B) three-dimensional distance vs. absolute

correlation.
doi:10.1371/journal.pone.0027786.9003
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Figure 4. Correlated residue communities in Fe/Mn Superoxide
dismutases. A-E refer to communities 1-5, respectively. The metal ion
is shown as a grey sphere. PDB code: 3ESF.
doi:10.1371/journal.pone.0027786.9g004

earlier. Since they usually report only the overall dependence of
two columns in an alignment, all the amino acid specific
information will be lost. In order to exemplify this, we generated
correlation data with three different methods: McBASC (the
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original correlation metric proposed by Gobel et al. [1]), Mutual
Information (the leading method used nowadays for correlation
studies, usually to find contact pairs) and ELSC, a perturbation-
based method which wuses explicit likelihood to calculate
correlations [8]. Since all these methods will report a correlation
value for each pair of positions, we have to apply a cutoff in order
to generate networks. Two cutofls (50% and 80% of the maximum
correlation value found) were used for each method, and the
results (Text S2) show that only McBasc report communities
related to metal binding and oligomeric state, and the metal-
specific information is lost (since the metric is not residue-specific,
there is only a single community for metal related positions). These
comparisons highlight the advantages of the method we describe
here.

Conclusions

We present a method based on correlated mutations and
network analysis to calculate and analyze groups of amino acids
which may be related to functional classes in protein families. Due
to nature of the correlation metric and the network decomposition
method, the results can be readily interpreted and related to
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Figure 5. Adherence value histograms for Fe/Mn superoxide dismutases. A) FeSODs, communities 1 and 3; B) MnSODs, communities 1 and
3; C) Cambialistic SODs, communities 1 and 3; D) Dimeric and tetrameric SODs, community 2.

doi:10.1371/journal.pone.0027786.9005
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biological features and their inter-relation (independence/mutual
exclusivity). We also propose additional parameters and proce-
dures that can be used to further analyze and extract information
from the data. We argue that community structure in networks
constructed using the described method is an expected feature for
protein families presenting functional sub-classes, and therefore
could be exploited to identify key residues for specific functional
properties. Also, it can be a useful tool for gene annotation, since
key residues which are clustered in a community should be more
likely to predict function than sequence identity methods, which
considers all residues evenly. The programs used for the presented
method are available to academic users upon request.
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