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Abstract

Some bacteria have developed mechanisms to withstand the stress caused by ionizing radiation. The ability of these radio-
resistant microorganisms to survive high levels of radiation is primarily attributed to their DNA repair mechanisms and the
production of protective metabolites. To determine the effect of irradiation on bacterial growth, we propose to compare the
metabolites produced by the irradiated isolates to those of the control (non-irradiated isolates) using mass spectrometry,
molecular networking, and chemometric analysis. We identified the secondary metabolites produced by these bacteria
and observed variations in growth following irradiation. Notably, after 48 h of exposure to radiation, Pantoea sp. bacte-
rial cells exhibited a significant 6-log increase compared to non-irradiated cells. Non-irradiated cells produce exclusively
Pyridindolol, 1-hydroxy-4-methylcarbostyril, N-alkyl, and N-2-alkoxyethyl diethanolamine, while 5’-methylthioadenosine
was detected only in irradiated cells. These findings suggest that the metabolic profile of Panftoea sp. remained relatively
stable. The results obtained from this study have the potential to facilitate the development of innovative strategies for
harnessing the capabilities of endophytic bacteria in radiological protection and bioremediation of radionuclides.
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Introduction

Following the nuclear accidents at Chernobyl (1986) and
Fukushima Daiichi (2011), increased attention has been
paid to the environmental and human health impacts of
exposure to radioactive materials [1]. Radionuclides, such
as YK, 1¥7Cs, ??°Ra, ?**Ra, and ?*’Th, occur in rock forma-
tions and chemical fertilizers and can originate from min-
ing activities or nuclear accidents [2]. These radionuclides
are harmful and generally occur in different concentrations
in the environment [3]. Therefore, it is important to under-
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stand the behavior and concentrations of radionuclides in
the environment for developing strategies for protecting
human health and the ecosystem [2].

B37Cesium (half-life +30 years) is an artificial radionu-
clide that can be released into the environment following
nuclear weapons tests and/or accidents at nuclear power
plants [3]. The largest nuclear accident involving '3’Cs
occurred in the city of Goiania (Goias) in Brazil in 1987.
The accident exposed thousands of people to the ionizing
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radiation emitted by the material, resulting in the death of
many people [4, 5].

Gamma rays emitted by radionuclides and other materi-
als are examples of ionizing radiation. This type of radiation
is an electromagnetic wave that results in oxidative stress
and damages genetic material [6]. However, some organ-
isms, such as bacteria and fungi, can withstand high levels
of exposure to this type of ionizing radiation, which in many
cases is lethal to other organisms [7].

The ability of these so-called “radioresistant” microor-
ganisms to survive high radiation levels has been studied
and is mainly associated with particular DNA repair mecha-
nisms and the ability of these microorganisms to produce
primary and/or secondary metabolites that act against the
stress caused by the ionizing radiation [8, 9].

Endophytic microorganisms, which associate internally
with plant tissues in an asymptomatic manner [10], have
applications in different areas, including agriculture, where
they promote plant growth [11], and in industry, where they
produce enzymes [12] or bioactive metabolites [13]. These
microorganisms can also act as remediation agents at sites
contaminated with radioactive materials [14]. Endophytic
bacterial consortia have demonstrated an increase of up to
90% in the volume of radionuclides and heavy metals in
host plants in contaminated soils [15].

The interactions between microorganisms and radia-
tion for biotechnological purposes have not been properly
explored [7]; therefore, it is important to study the radioresis-
tance/sensitivity of these microorganisms to radionuclides,
such as !*’Cs, that emit ionizing radiation to get a better
understanding of the interaction and the protective/repair
mechanisms that they possess to identify those with potential
bioremediation roles at sites directly or indirectly contami-
nated with radioactive materials or to develop new biomate-
rials that can be used as radiological protection mechanisms.

This study investigated the radiotolerance of four endo-
phytic bacteria to the ionizing radiation emitted by a
137Cesium source. Culture-dependent methods, such as broth
microdilution, were used to determine differences in bacterial
growth between irradiated and non-irradiated cells. Metabo-
lites produced by bacterial isolates that showed differences
in growth after irradiation were compared with metabolites
from control (non-irradiated) isolates using mass spectrom-
etry, molecular networking, and chemometric analysis.

Materials and methods
Endophytic bacteria

The endophytic bacteria Pantoea sp. ELP04, Pantoea sp.
ELPO1, Erwinia sp. ELP06, and Pantoea sp. ELG24 were
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isolated from the ornamental plant Echeveria laui (Saxi-
fragales: Crassulaceae) [11] obtained from the Collection of
Endophytic and Environmental Microorganisms (CMEA) at
the Laboratory of Microbial Biotechnology (LBIOMIC) of
the State University of Maringa (Parana, Brazil). The use
of these isolates was registered at the Council for Genetic
Heritage Management (SisGen: A401F1E). The bacterial
isolates were initially preserved in 25% glycerol in trypti-
case soy broth (TSB; pH 7.3) medium and maintained at
-80 °C. They were reactivated using TSB medium (pH 7.3)
for 48 h at 28 °C, transferred to trypticase soy agar (TSA;
pH 7.3) medium, and grown for 24 h at 28 °C. Their sensi-
tivity to ionizing radiation was then evaluated.

lonizing radiation sensitivity test

The bacteria were cultivated in TSB medium (pH 7.3) at
28 °C for 24 h. A 20 pL bacterial suspension standardized
using a spectrophotometer (600 nm optical density of 0.2)
was added to a 96-well microdilution plate containing 180
pL TSB medium (Fig. 1). Gamma radiation experiments
were performed at the Nuclear Physics Laboratory (Phys-
ics Department of the State University of Maringa, Parana,
Brazil) accredited by the National Nuclear Energy Commis-
sion (CNEN; number 13,361).

The bacterial suspension was irradiated with gamma rays
emitted by the *’Cs source (50 mCi activity) at a distance
of 7 cm for 24 h and 48 h, with final doses of 0.72 Gy and
1.45 Gy, respectively. A microdilution plate not exposed to
gamma radiation was used as a control to study the growth
of each bacterial isolate. After exposure, aliquots were
taken, diluted in TSB medium (1:10), seeded (5 pL) on solid
TSA (pH 7.3), and then incubated at 28 °C for 24 h (Fig. 1).

Colony forming unit (CFU) counts were performed in
triplicates and the results compared using analysis of vari-
ance implemented in SISVAR v.5.6. Aliquots of the treated
and control bacteria were subjected to scanning electron
microscopy (SEM) at the research support center complex
(COMCAP) of the State University of Maringa (Parana,
Brazil).

Obtaining metabolic extracts

Metabolites produced by Pantoea sp. ELP04 were ana-
lyzed. The bacterium was chosen based on the results of
the radiation sensitivity test (Table 1). Metabolites were
obtained from bacterial cells exposed to radiation for 48 h.
A microbial growth curve was initially generated to identify
the isolate’s log growth phase. After pre-growth, the optical
density was adjusted to 0.2 (at 600 nm) using 0.85% saline
(NaCl). The adjusted inoculum (1 mL) was added to 14 mL
TSB medium (pH 7.3) and incubated at 28 °C with agitation
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Fig. 1 Test of sensitivity to ion-
izing radiation using a 96-well
microdilution plate
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Table 1 Gamma radiation sensitivity screening of endophytic bacterial isolates from Echeveria laui. Final doses 24 h (0.72 Gy) and 48 h (1.45 Gy)

Bacteria Treatments

24 h control* 24 h* Variation** 48 h control* 48 h* Variation**
Pantoea sp. ELPO1 9.74+0.03 12.71+0.21 13.32+0.08 11.23+0.06 -2.09
Pantoea sp. ELP04 19.63+0.16 21.69+0.05 30.87+0.02 36.92+0.03 6.05
Erwinia sp. ELP06 15.71+0.06 >16 13.69+0.04 11.76 +£0.03 -1.93
Pantoea sp. ELG24 13.76 +0.09 >16 25.56+0.03 28.65+0.07 3.09

*Means in Log CFU.mL™!; ** Log CFU.mL" ! in relation to the control

at 150 rpm. Optical density readings were taken over 11 h
at 30-30 min intervals to generate the growth curve (data
not shown).

After generating the microbial growth curve, 10 mL of
the adjusted Pantoea sp. ELP04 suspension (600 nm=0.2),
irradiated for 48 h, was added to 90 mL of TSB medium
(pH 7.3). The mixture was then incubated with agitation at
150 rpm and 28 °C for 9 h. The same procedure was per-
formed for the non-irradiated control isolate and for the
TSB culture medium containing no bacterial inoculum.
The treatments were designated as follows: F3 for metabo-
lites obtained from the irradiated bacteria, F2 for metabo-
lites from the control bacteria (non-irradiated), and F1 for
the negative control (culture medium with no microbial
inoculum).

To obtain the ethyl acetate fraction (EtOAc), the cultured
products and control were centrifuged at 16,000 g for 15 min
to separate bacterial cells (F2 and F3). Cultured products
(F2 and F3) and control (F1) were extracted through lig-
uid-liquid partition in a separating funnel using the organic
solvent ethyl acetate in a 1:5 ratio (ethyl acetate: medium).
The experiment was conducted in triplicates. The resulting
solvent was treated with sodium sulfate for 24 h and then
subjected to rotary evaporation to obtain EtOAc fractions
containing metabolites, as described by Oliveira et al. [16].

For the methanol fraction (MeOH), the cultured products
were centrifuged at 16,000 g for 15 min to separate cells.

The resulting bacterial cell mass was combined with 30 mL
of methanol in 50 mL centrifuge tubes, vortexed to generate
a homogenate, and placed in an ultrasonic bath for 15 min
at room temperature (28 °C). The solution was then cen-
trifuged at 16,000 g for 15 min and the resulting methanol
collected. The experiment was conducted in triplicates, and
the methanol fraction collected from each replicate was
collected and subjected to rotary evaporation, as described
above.

Ultra-high-performance liquid chromatography-
tandem mass spectrometry analysis (UPLC-HRMS)

The extracts were solubilized in methanol (1.0 mg.mL™),
centrifuged, and were analyzed using ultra-high-perfor-
mance liquid chromatography (Shimadzu, Nexera X2,
Japan) coupled to a quadrupole time-of-flight high-res-
olution mass spectrometer (Q-TOF) (Impact II, Bruker
Daltonics Corporation, Germany) (resolution of > 60,000)
equipped with an electrospray ionization source (ESI).
Chromatographic separation was performed using a C18
column (75 % 2.0 mm i.d.; Shim-pack XR-ODS III at 1.6 M).
The mixture of solvents A (H,O) and B (acetonitrile with
0.1% formic acid; v:v) was separated on a gradient using
the following parameters: 5% B for 0—1 min, 30% B for
1-3 min, 95% B for 3—12 min, held at 95% B for 12—15 min
and 5% B for 15—17 min at 40 °C. Zero point 1% of formic
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acid was added to the organic solvent to analyze the positive
ionization mode, while pure acetonitrile was used for the
negative mode. Flow rate and sample injection volume were
set at 0.2 mL.min"! and 3 pL, respectively. Capillary volt-
age was operated in positive and negative ionization modes
set to 4,500 V, with an endplate compensation potential of
-500 V. Gas parameters were set to 8 L.min! at 200 °C,
with nebulizing gas pressure of 4 bar. Data were collected
between m/z 50-1400, with an acquisition rate of 5 spectra
per second, and ions of interest were selected by automatic
MS/MS fragmentation. The data were processed using data
analysis software v.4.3 (Bruker).

Molecular networking and chemometric analysis

To conduct molecular networking analyses, raw data from
EtOAc and MeOH fractions obtained from the UPLC-HR-
MS/MS were converted to “.mzXML” file format in the
data analysis software (Bruker) and clustered using the
MS-Cluster algorithm in the global natural products social
(GNPS) [17]. A molecular network was generated using the
online workflow (https://ccms-ucsd.github.io/GNPSDocu-
mentation/) on the GNPS website (http://gnps.ucsd.edu).
Data were filtered by removing all MS/MS fragment ions
within +/- 17 Da of the m/z precursor. The MS/MS spectra
were window-filtered by choosing only the top six fragment
ions in the +/- 50 Da window across the spectrum.

The precursor ion mass tolerance and MS/MS fragment
ion tolerance were each set to 0.02 Da. A network was sub-
sequently generated where edges were filtered to have a
cosine score above 0.7 and more than five matching peaks.
Edges between two nodes were kept in the network only if
each of the nodes appeared in the top 10 most similar nodes.

The maximum size of a molecular family was set to
100; thus, the lowest-scoring border was removed until the
molecular family size was below this limit. The spectra of
the network were then searched in Global Natural Products
Social Network Analysis spectral libraries (GNPS). The
library spectra were filtered in the same manner as the input
data. All matches between the network and library spectra
were required to have a score above 0.7 and at least five
matching peaks. Finally, the spectra were imported into
Cytoscape (version 3.8.1) for visualization [18]. Com-
pounds were putatively identified based on literature data
[19, 20] and by comparing the spectra and fragmentation
patterns of the ions obtained with those available in Mass-
Bank (http://www.massbank.jp/) and GNPS (http://gnps.
ucsd.edu) databases.

MarkerLynx (V4.1) was used to select target ions for che-
mometric analysis using an ion exclusion list (those detected
in the mobile phase). The resulting ions were normalized
using Pareto scaling. Normalized data were analyzed using
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multivariate statistical techniques with unsupervised and
supervised approaches, such as principal component analy-
sis (PCA), and discriminant analyses, such as projections
for discriminant analysis of latent structures (PLS-DA) and
orthogonal projections for discriminant analysis of latent
structures (OPLS-DA). Heatmaps were generated to visu-
alize the output of discriminant analyses. Analyses were
conducted using MetaboAnalyst 4.0, an online statistical
platform, and MarkerLynx XS v.3.0.1.0.

Results and discussion
Radiation sensitivity test

Results of the sensitivity of the endophytic bacteria Pan-
toea sp. ELP04, Pantoea sp. ELPO1, Erwinia sp. ELP06,
and Pantoea sp. ELG24 to radiation emitted by '*’Cs are
presented in Table 1. After 24 h, the four isolates showed
growth variations compared with their respective controls,
with Erwinia sp. ELP06 and Pantoea sp. ELG24 showing
the largest differences (>16 Log CFU.mL™). However,
the growth of Pantoea sp. ELPO1, Erwinia sp. ELP06, and
Pantoea sp. ELG24 after 48 h was lower than the growth
recorded at 24 h. Although Pantoea sp. ELG24 had a>3
Log CFU.mL"! difference in growth compared with the con-
trol, there was a decrease of approximately 12 Log CFU.
mL™! between its growth at 24 and 48 h. Only Pantoea sp.
ELP04 showed higher growth at 48 h than that at 24 h (>4
Log CFU.mL™) (Fig. S1). Due to the differential growth
observed in both periods analyzed (24 and 48 h), the isolate
ELP04 was selected for further studies on its radiotolerance
potential, with a particular emphasis on its metabolome.

SEM showed slightly elongated rod-shaped and non-
encapsulated cells, a normal morphological characteristic
for bacteria of the genus Panfoea [21]. No visible external
morphological differences were observed between bacteria
that were not exposed to gamma radiation (Fig. S2a) and
those that were exposed to gamma radiation (Fig. S2b).

Microorganisms, particularly bacteria, comprise agents
with potential biotechnological properties for the biore-
mediation of sites contaminated with radioactive materials
[14, 22-26]. Some genera, including Methylobacterium sp.,
Bacillus sp., Pseudomonas sp., Nocardia sp., Deinococcus
sp., Micrococcus sp., and Staphylococcus sp. [27-30], have
been isolated from environments contaminated with nuclear
waste, suggesting that these microorganisms are at least
radiotolerant to ionizing radiation. To the best of our knowl-
edge, there are no reports on the sensitivity or resistance of
bacteria in the genus Pantoea to ionizing radiation emitted
by nuclear materials, particularly '*’Cs.
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These radioactive materials may be captured and/or accu-
mulated by microorganisms because many of the elements
show chemical characteristics similar to those of essential
nutrients and, when captured, are assimilated erroneously.
Thus, these organisms can help reduce the concentration of
these agents in the environment by sequestering them [31],
as shown in Pseudomonas sp. [30] and Streptomyces sp.
[32].

Oxidative stress caused by ionizing radiation can result
in abnormal production of peroxides and free radicals that
damage DNA [33]. The mechanisms available to the cell
to combat radiation-induced oxidative stress are important
indicators of its sensitivity or resistance [31] and include the
production of metabolites that act against this stress [8, 9].

o®0

Chemical analysis of fermented products

Molecular networking results of the EtOAc and MeOH
extracts are shown in Fig. 2 and Fig. S30-S33. The two
extracts contained similar metabolites (EtOAc X EtOAc/
MeOH x MeOH and EtOAc X MeOH), from which it was
possible to generate families (clusters). We analyzed 10.593
spectra with 990 nodes and 995 pairs.

Analysis of different databases, including MassBank,
as well as information available on GNPS, identified puta-
tively 24 compounds. A summary of these compounds and
their presence (+) or absence (-) in the extracts is presented
in Table 2, while detailed information on these compounds
is presented in Supplementary Table S1 (Table S1) and Sup-
plementary Figures (Figs. S3—-S29).
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Fig. 2 Molecular Networking containing the main molecular families
identified in the de-replication analysis of Pantoea sp. ELP04 using
GNPS platform. Nodes with black border: substances annotated by
GNPS. Nodes with gray color border: substances identified based on
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spectral similarities, fragmentation profile, and literature. In Blue:
Pantoea sp. non-irradiated (ethyl acetate); Yellow: Pantoea sp. irra-
diated (ethyl acetate); Purple: Pantoea sp. non-irradiated (methanol);
Orange: Pantoea sp. irradiated (methanol)
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A family of lipoamino acids was observed, includ-
ing m/z 404299 (N-(1-oxohexadecyl)-phenylalanine
3), m/z 396.33 (N-(1-oxo-9-octadecenyl)-leucine (5),
m/z 402.284 (N-hexadec-9-enoylphenylalanine (1), m/z
370.317 (N-(1-oxohexadecyl)-leucine (4), and m/z 368.301
(N -(1-0x0-9-hexadecenyl)-leucine (7) (Fig. 2; Table 2, and
Table S2). The ion with m/z 188.062 (2-alkyl-4-quinolone)
(14) was also detected in the MeOH fraction of non-irra-
diated bacteria and the MeOH/EtOAc extract of irradiated
bacteria (Fig. 2).

Ions with m/z 302.291 and m/z 274.261 were predomi-
nantly detected in MeOH fractions from non-irradiated bac-
teria and were identified as N-tetra decyl diethanolamine
(18) and N-Lauryl diethanolamine (20), and clustered in
the same family with other identified organic amines m/z
246.2428 (19), m/z 318.3008 (21), and m/z 346.3321 (22)
(Fig. 2; Table 2, and Table S2). Eight other ions detected
in this extract (m/z 362.308, m/z 346.314, m/z 390.338, m/z
374.344, m/z 418.368, m/z 330.320, m/z 400.358, and m/z
402,374) were also clustered in this family, indicating simi-
larity with these substances (Fig. 2).

Molecular networking is used for the visualization and
qualitative interpretation of spectroscopic data by identifying

possible similarities between MS/MS spectra within the
dataset [17]. The analysis is based on the assumption that
structurally related molecules have similar fragmentation
patterns and, therefore, are related within a network [34].

The lipoamino acid networks of N-(1-oxohexadecyl)-
phenylalanine (3), N-(1-oxo-9-octadecenyl)-leucine (5),
N-hexadec-9-enoylphenylalanine (1), N-(1-oxohexadecyl)-
leucine (4), and N-(1-0x0-9-hexadecenyl)-leucine (7) have
previously been reported by Touré et al. [20]. Furthermore,
analysis of the molecular networks verified that ionizing
radiation does not negatively affect the production of sec-
ondary metabolites with biotechnological interest that are
commonly produced by Pantoea sp., such as 3-indolepro-
pionic acid (9), Tryptophol (10), and Tryptophan (24) [19].
It has already been demonstrated that exposure to gamma
radiation can influence the production of auxin, notably
indole-3-acetic acid [35].

Analysis of the EtOAc extract identified 17 compounds
in the positive ionization mode and two compounds in the
negative ionization mode. Based on these two modes, 80%
of the ions were detected in both the non-irradiated (F2)
and radiation-exposed cells (F3). Pyridindolol (12) and
1-hydroxy-4-methylcarbostyril (13) were only detected in

Table2 Chemical identification of secondary metabolites produced by Pantoea sp. ELP04 not exposed (F2) and exposed (F3) to gamma radiation.

Exposure: 48 h, final dose: 1.45 Gy

Metabolite Molecular formula Extract
F2 F3 Ionization mode Extract type

N-hexadec-9-enoyl-phenylalanine (1) Cy5H39NO4 + + Positive EtOAc
N-(1-oxotetradecyl)-phenylalanine methyl ester (2) C,4,HyoNO; + + Positive EtOAc
N-(1-oxohexadecyl)-phenylalanine (3) C,sHy NO; + + Positive EtOAc
N-(1-oxohexadecyl)-leucine (4) C,,H;3NO; + + Positive EtOAc
N-(1-0x0-9-octadecenyl)-leucine (5) C,4,HysNO; + + Positive EtOAc
N-(1-oxotetradecyl)-leucine (6) C,oHyoNO; + + Positive EtOAc
N-(1-0x0-9-hexadecenyl)-leucine (7) C,,HyNO; + + Positive EtOAc
linolenic acid (8) CsH300, + + Positive EtOAc
3-indolepropionic acid (9) C,;H;NO, + + Positive EtOAc
Tryptophol (10) CioH;;NO + + Positive EtOAc
4-(hydroxymethyl)quinoline (11) C,oHyNO + + Positive EtOAc
Pyridindolol (12) CH4,N,04 + - Positive EtOAc
1-hydroxy-4-methylcarbostyril (13) C,oHgNO, + - Positive EtOAc
2-alkyl-4-quinolone (14) C,H;3sNO + + Positive EtOAc
5’-Methylthioadenosine (15) C;1H5sN;058 - + Positive EtOAc
Phenylpropanoic acid (16) CoH;,0, + + Negative EtOAc
Cinnamic acid (17) CyH,0, + + Negative EtOAc
N-tetradecyl diethanolamine (18) C,3H3oNO, + - Positive MeOH
N-decyl diethanolamine (19) C4H3NO, + - Positive MeOH
N-Lauryl diethanolamine (20) C,6H35NO, + - Positive MeOH
N-2-dodecyl oxyethyl diethanolamine (21) C,sH3oNO; + - Positive MeOH
N-2-tetradecyl oxyethyl diethanolamine (22) C,y0Hy3NO; + - Positive MeOH
Tyrosine (23) CoH;NO; + + Positive MeOH
Tryptophan (24) C,H;,N,0, + + Positive MeOH

F2: metabolic extract obtained from control cells (not exposed to radiation); F3: extract obtained from cells exposed to ionizing radiation (48 h/

1.45 Gy). (+) indicates presence and (-) absence in the evaluated extract
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F2, while 5’-methylthioadenosine (15) was detected only in
F3 (Table 2). Seven compounds in the MeOH extract were
identified in the positive ionization mode (18-24) (Table 2).

Secondary metabolites derived from carbostyril can
inhibit or limit bacterial growth, often acting as enzyme
inhibitors that block reactions in certain metabolic pathways
[36-38]. Based on this, we hypothesize that 1-hydroxy-
4-methylcarbostyril may also act as an inhibitor or limiter
of bacterial growth. Derivatives of monoalkyl ethers of
triethanolamines, including compounds 18-22 described
in Table 2, have antibacterial activity [39, 40]. Interest-
ingly, these molecules were observed only in F2 extracts,
indicating that gamma radiation can inactivate mechanisms
involved in the control of cell growth in this isolate. How-
ever, this needs to be validated by analyzing genes involved
in the metabolism of these molecules.

Pyridindolol (12) is synthesized by combining amino
groups with aldehydes, a process catalyzed by enzymes
known as Pictet-Spenglerase (PSases) [41]. However, the
synthesis process has not been completely elucidated [42].
Blocking pseudouridimycin biosynthesis in Streptomyces
sp. ID38640 led to the identification of a putative biosyn-
thetic gene cluster for pyridindolol, which includes a PSase,
FAD-binding oxidoreductase, and other key enzymes, and
revealed that altered production levels of pyridindolol in
various pseudouridimycin pathways (PUM) mutant strains
[41-42]. Pyridindolol is produced by bacteria [43] and may
act as a P-galactosidase inhibitor [44], thus impairing cel-
lular metabolic pathways that are important for energy gen-
eration, including the breakdown of lactose into galactose
and glucose. This suggests that this metabolite may play a
role in the growth of Pantoea sp. ELP04 under the studied
conditions, based on the results presented in Table 1 and
Fig. S1.

In the absence of ionizing stress, metabolites, such as
1-hydroxy-4-methylcarbostyril (13), may be produced and
excreted into the culture medium by the bacteria, and their
accumulation and combination with other factors in the sta-
tionary phase may limit bacterial growth. When exposed
to ionizing radiation originating from '*’Cs, putative DNA
damage caused by the radiation potentially impaired and/or
interfered with its biosynthesis route, preventing its produc-
tion and accumulation in the extracellular environment. This
was not detected in F3. This did not interfere with bacterial
growth but increased cell concentration (Table 1, Fig. S1).

The absence of Pyridindolol (12) in F3 cells suggests that
DNA damage might affect the functionality, or the radia-
tion affect the expression of genes or other genetic com-
plexes involved in these biosynthesis pathways. Ionizing
radiation can severely damage the genomes of organisms,
causing DNA breaks and, consequently, death or mutations.
Exposure to radiation can induce or repress multiple genes,

suggesting that gene regulation is important for developing
resistance to ionizing radiation [45—48].

In Pantoea ananatis, carotenoids can promote resistance
to toxoflavin and UV radiation, and their production is
dependent on the stress response regulator RpoS, which is
positively regulated by Hfq/ArcZ and negatively regulated
by ClpXP, were the Hfq protein and its associated small
RNAs, including ArcZ, play a crucial role in regulating this
pathway [49].

Pal et al. [50] investigates the gamma irradiation resis-
tance in Metabacillus halosaccharovorans (VITHBRAOO1)
and Bacillus paralicheniformis (VITHBRAO024) from high
background radiation areas in Chavara-Neendakara, India.
Key strategies of resistance include robust DNA repair
mechanisms such as homologous recombination (RecFOR
pathway), base excision repair (multiple glycosylases),
and nucleotide excision repair (UvrABC, UvsE). Both
strains manage oxidative stress through enzymes like cata-
lases, superoxide dismutases, and peroxidases, and have
systems for manganese/iron homeostasis involving Mn-
uptake transporters and iron-sequestering proteins. Unique
to VITHBRAOOI are additional protective enzymes (e.g.,
FrnE gene) and secondary metabolites like C30 carot-
enoids, which likely contribute to its higher resistance. The
results underscore gene redundancy and specialized meta-
bolic pathways adapted to radiation stress, comparable to
highly resistant Deinococcus radiodurans but distinct from
more sensitive Escherichia coli. While the specific genetic
responses of Pantoea bacteria to Cs'*” radiation remain to be
elucidated, the regulatory mechanisms and stress response
pathways observed in related organisms may provide valu-
able clues for future studies.

5’-Methylthioadenosine (15), detected only in F3, is
a hydrophobic sulfur-containing nucleoside that is found
in both prokaryotic and eukaryotic cells [51]. In bacteria,
one of the catabolic pathways of 5’-methylthioadenosine
involves the degradation of adenine and 5-mitolthio-a-D-
ribose and its deamination to methylioginsine [52]. This
catabolic pathway may favor not only an increase in the
replication of DNA molecules but also the translation pro-
cesses, thus increasing energy production [53].

In eukaryotic cells, the 5’-Methylthioadenosine can be
produced during polyamine metabolism, which is essen-
tial for cell growth [53—55]. Cells with enhanced pathways
for polyamine synthesis and direct or indirect synthesis
of 5’-methylthioadenosine show a high level of prolifera-
tion [53]. The presence of this nucleoside in the metabolic
extract of irradiated Pantoea sp. ELP04, but not in the non-
irradiated cell extract, may be correlated with the differen-
tial growth observed between these bacterial populations
(Table 1 and Fig. S1). This observation, along with the other
hypotheses raised, may offer insights into the mechanisms
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underlying the growth disparity, without drawing a direct
analogy to eukaryotic cells.

PCA was conducted using results from the UPLC-HRMS
chromatograms of the EtOAc extract. Retention times and
peaks obtained from the mass spectra were used to deter-
mine differences between EtOAc extracts of Pantoea sp.
ELPO04 bacterial cells exposed to radiation for 48 h (1.45
Gy) and cells that were not irradiated (Fig. 3).

PCA of data derived from the analysis of the positive
(Fig. 3a) and negative (Fig. 3b) ion modes in the EtOAc
extracts of F2 and F3 differed from those of F1, the control
containing only the culture medium. Principal component 1
(PC1) showed similarities between F2 and F3, while PC2
showed differences between F2 and F3. Notably, the sample
variability explained by PC2 in both analyses was relatively
low, showing that the F2 and F3 extracts have few quantita-
tive differences in relation to their variables.

A heatmap was generated to show the correlations
between positive mode ions with greater importance in rela-
tion to the detected sample variability (Fig. 4a). Six ions
in the metabolite extract from the irradiated bacteria (F3)
had greater intensities than those from the non-irradiated
control isolate (F2): m/z 208.0966 (4.11 min), m/z 353.2650
(10.93 min), m/z 485.3461 (8.16 min), m/z 567.2706
(4.04 min), m/z 355.3308 (90.09 min), and m/z 227.2001
(9.35 min). Five ions in the extract from the control iso-
late (F2) had greater intensities than metabolites from the
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Fig. 3 Principal Component Analysis (PCA) of the extracts’ spectral

data produced by bacterial cells exposed and not exposed to radiation.
In (A) positive ionization mode and in (B) negative ionization mode.
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irradiated isolate (F3), with the ion at m/z 573.3983 (at
7.97 min) having the highest intensity (Fig. 4a).

Analysis of the negative mode identified 21 ions with
great intensity in the extracts from irradiated bacteria, with
ions with m/z 151.0255 (0.97 min), m/z 107.0493 (4.33 min),
m/z 243.1954 (9.05 min), m/z 145.0498 (1.48 min), m/z
259.1897 (7.37 min), and m/z 159.0862 (4.82 min) having
the highest intensities. The ion with m/z 332.1379 (identi-
fied at 5.40 min) had a lower intensity in the F3 extract than
those in the F2 (non-irradiated bacteria) and F1 (control with
culture medium) extracts. The m/z 329.2307 (6.63 min), m/z
131.0707 (4.07 min), and m/z 135.0294 (0.96 min) ions
had greater intensities in the F2 extract than those in the F3
extract (Fig. 4b).

These results support the possibility of changes occurring
in the metabolisms of the microorganisms involved in the
radiotolerance process. However, it has not yet been deter-
mined whether these differences are due to genomic, epigen-
etic, or other alterations directly caused by gamma radiation
itself. Additionally, the molecular network and multivariate
analysis clearly show that the differences between irradiated
and non-irradiated cultures are small, allowing us to propose
that this could be an inherent mechanism of radiotolerance
in these microorganisms rather than a random occurrence.
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Fig. 4 Heatmap for positive ionization mode (A) and negative ioniza-
tion mode (B). F1 = culture medium only with no microbial inoculum,
F2 =non-irradiated bacteria, and F3 =irradiated bacteria for 48 h. The

Conclusion

In this study, we report, for the first time, on the sensi-
tivity of the endophytic bacterium Pantoea sp. to '*’Cs
gamma radiation. After 48 h, we observed an increase of
6 Log CFU.mL"! in the growth of irradiated bacteria com-
pared with the non-irradiated control. Although there were
no differences in microbial growth after 24 h of radiation
exposure, non-irradiated bacteria produced compounds that
potentially inhibited growth after 9 h of incubation, includ-
ing 1-hydroxy-4-methylcarbostyril (13), triethanolamine
derivatives (18-22), and Pyridindolol (12). These metabo-
lites were not detected in irradiated bacteria. 5’-Methylthio-
adenosine (15), which is produced by the bacteria following
exposure to ionizing radiation, may be used as an indicator
of radioresistance.
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greater the intensity for a detected ion, the redder the tone. In contrast,
the smaller the intensity, the bluer the tone

Chemometric analyses and molecular networking
revealed some variations between the F2 and F3 samples;
however, these results suggest that the metabolic profile
of the irradiated bacteria at such doses remained relatively
stable under both conditions, indicating that radiation mini-
mally affects their metabolomes and, consequently, the
integrity of their genomes. This is important when consid-
ering that this endophyte can produce other compounds of
biotechnological interest even after exposure to radiation.

Overall, our results are significant because they, along
with future investigations, may aid in the development of
new strategies for generating materials and molecules from
endophytic bacteria for radiological protection or bioreme-
diation of radionuclides.
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