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 A B S T R A C T

This study aims to establish age- and sex-specific normative curves for intracranial (ICV) and lateral ventricular 
volumes (LVV) using computed tomography (CT), addressing a significant gap in the literature. A total of 2153 
head CT scans were analyzed, using the Generalized Additive Model for Location, Scale, and Shape (GAMLSS) 
to model the nonlinear relationship between age and volume of the brain structures, independently by sex. 
Model quality was evaluated through chi-square adherence test and residual analysis. Bootstrap resampling 
was used to generate 95% confidence intervals for the centile estimates. The results reveal distinct growth 
patterns for ICV, which peaks early in life, and LVV, which increases throughout life. Significant sexual 
dimorphism was found, with males showing larger volumes for both structures. Brain charts detailing the 
mean and median trends and coefficient of variation are presented and compared with previously published 
normative ranges. These normative curves have the potential to serve as important tools for research and 
clinical practice, facilitating the differentiation between normal and pathological brain changes, particularly 
in settings where CT is more accessible than magnetic resonance imaging (MRI).
1. Introduction

Understanding brain volume and structure is essential for neu-
roimaging research and diagnosing brain disorders. Two key mea-
surements in this context are intracranial volume (ICV) and lateral 
ventricular volume (LVV), both frequently measured by imaging tech-
niques such as computed tomography (CT) and magnetic resonance 
imaging (MRI) (Breakey et al., 2017; Huff et al., 2019; Ritvanen et al., 
2013; González-Villà et al., 2016). The ICV represents the total space 
within the skull, including the brain (encephalon), protective meninges, 
and cerebrospinal fluid. The value of ICV and its temporal variations 
have been identified as essential covariates in studies of neurodegenera-
tive disorders, aging, and cognitive decline (van Loenhoud et al., 2018; 
Fang et al., 2022; Westman et al., 2013). Additionally, ICV is commonly 
used as a proxy for ‘‘brain reserve’’, reflecting the brain’s capacity to 
withstand damage (Van Loenhoud et al., 2018). ICV is also valuable 
for diagnosing and monitoring conditions that affect cranial volume, 
such as microcephaly and craniosynostosis, and for evaluating brain 
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growth in children. Moreover, it plays a crucial role in postoperative 
assessments of craniofacial surgeries and is applied in anthropological 
and forensic studies (Maragkos et al., 2021; Kalucki et al., 2020).

The lateral ventricular volume (LVV) refers to the combined vol-
ume of the lateral ventricles. While total cerebrospinal fluid volume 
reflects heterogeneous compartments (e.g., subarachnoid spaces, cis-
terns), LVV provides a direct marker of structural changes in condi-
tions like hydrocephalus and neurodegenerative diseases, indicating 
brain atrophy or cerebrospinal fluid accumulation (Nestor et al., 2008; 
Kuller et al., 2005; Vita et al., 2006; Mosley et al., 2005). Moreover, 
in hydrocephalus, disproportionate LVV enlargement correlates with 
parenchymal compression and clinical dysfunction, making it a critical 
diagnostic criterion (Quon et al., 2021). By prioritizing LVV, normative 
curves align with radiological practice, enabling targeted assessment 
of pathologies where ventricular dynamics are central to diagnosis 
and monitoring (Hedderich et al., 2020; Pahwa et al., 2021). Beyond 
its clinical significance and integration into radiological practice, LVV 
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segmentation is also less susceptible to partial volume effects than cere-
brospinal fluid segmentation, enhancing its reliability for volumetric 
assessments (Tohka, 2014).

Manual measurement of ICV and LVV is labor-intensive and chal-
lenging to scale for large datasets (Huo et al., 2017; Klasson et al., 2015; 
Whitwell et al., 2001). However, advancements in imaging technology 
and computational power have facilitated the development of auto-
mated methods – primarily focused on MRI – significantly improving 
the efficiency and accessibility of volume estimation, including image-
quality agnostic models like SynthSeg (Billot et al., 2023; Huisman 
et al., 2024; Malone et al., 2015; Sargolzaei et al., 2015).

Normative volumes for various brain structures have been esti-
mated by combining datasets from studies of healthy controls (Peterson 
et al., 2018). However, specific normative curves for ICV and LVV 
derived from CT data are limited (Kellogg et al., 2023; Maragkos 
et al., 2021). Developing normative curves applicable to pediatric and 
adult populations is crucial to address this gap. Such curves would 
facilitate the accurate early diagnosis of pathological processes and 
the monitoring of therapeutic responses across a range of clinical 
settings (Cutler et al., 2020; Schipper et al., 2021). Several statistical 
models have been employed in the creation of these curves, includ-
ing the Lambda-Mu-Sigma (LMS) method (T.J. Cole, 1992), fractional 
polynomial parametric smoothing (Bethlehem et al., 2022), and cu-
bic penalized B-splines (Nasser et al., 2024), all of which served as 
references in our modeling process.

In low- and middle-income countries, relying on MRI for assessing 
intracranial volumes can be challenging due to limited
resources (Geethanath and Vaughan, 2019; WHO, 2022). In these 
settings, CT scans offer a more affordable and accessible alternative. 
To address this need, our team developed the DeepCTE3D model for 
automatic segmentation and quantification of LVV and ICV from head 
CT scans (Moraes et al., 2023). However, the lack of comprehensive 
normative data has limited the model’s broader utility. This study aims 
to establish age- and sex-specific normative curves for LVV and ICV 
using head CT scans, creating a foundation for effectively applying 
automated segmentation and quantification models in clinical practice.

2. Methods

2.1. Sample size

The sample size was determined using the methodology outlined 
by Bridges and Holler (Bridges and Holler, 2007) in their work on 
optimal sample size for pediatric neuropsychological normative studies. 
We assumed that the normal neuropsychological functioning observed 
in these studies reflects the typical functionality of a healthy central 
nervous system, which is often associated with normal intracranial 
and ventricular volumes. This approach was necessary given the lack 
of specific research addressing sample size for growth charts in CT 
brain volumetry. Based on their recommendations, we calculated that 
50 individuals per age group and sex would be needed to achieve a 
confidence interval with a width of 0.28 z-score, resulting in a total of 
1,900 scans. The distribution of these scans was stratified according 
to demographic data from the Brazilian Institute of Geography and 
Statistics (IBGE) (IBGE, 2024) (see Supplementary Table 1) and divided 
into 19 age groups, each spanning 5 years (0–4, 5–9, 10–14, 15–19...).

2.2. Data

Non-contrast head CT scans conducted at Hospital Israelita Al-
bert Einstein, a large tertiary care center in Brazil, were included in 
this study. These scans were performed using different CT scanners. 
The selection process involved a retrospective search in the institu-
tional Picture Archiving and Communication System (PACS) for reports 
containing the phrase ’encephalic parenchyma within normal limits.’ 
2 
Hence, we defined exams as normal based only on radiologic as-
sessments. Scans lacking thin-section image series (i.e., pixel spacing 
greater than 1.3 mm), those with significant imaging artifacts, or 
missing metadata on age or sex were excluded. Scans whose reports 
indicated normal findings were automatically retrieved for inclusion. 
Exams were deidentified using the Radiological Society of North Amer-
ica Clinical Trial Processor, with customized scripts to retain relevant 
DICOM (Digital Imaging and Communications in Medicine) tags for 
serial identification, patient age, and sex.

2.3. Annotation pipeline

Volumetric data for intracranial and ventricular structures were 
acquired through manual segmentation of CT scans by ten researchers 
with health science backgrounds. Using a web-based version of 3D 
Slicer, they created binary masks independently validated by five 
board-certified neuroradiologists, each with over six years of expe-
rience. Considering that annotation and validation were conducted 
independently for each structure and the process was completed once 
the necessary sample size was reached, some exams were validated 
for ICV but not for LVV, and vice versa. Anatomical variants of the 
ventricles, such as the cavum septi pellucidi and cavum vergae, were 
excluded from LVV measurements due to their lack of direct communi-
cation with the ventricular system; however, these cases were retained 
in the study. ICV calculations inherently encompass all intracranial 
structures. A detailed description of the segmentation and validation 
process can be found in our previous work (Pinto et al., 2024).

2.4. Outliers

Within each age group, the distribution of LVV was analyzed to 
detect outliers using the interquartile range (IQR) method. In each 
age group, values outside the range of (25% centile - 1.5 IQR; 75% 
centile + 1.5 IQR) were considered outliers. This method ensures that 
the outlier selection is balanced across the entire distribution curve 
(Supplementary Figs.  1–4). To further evaluate these cases, all were 
subjected to qualitative inspection by two neuroradiologists to confirm 
that the scans did not have significant pathological abnormalities.

Ethical approval for this study was granted by the institutional 
ethics committee (CAAE: 52257521.8.0000.0071). The requirement for 
informed consent was waived due to the retrospective design of the 
study and the use of anonymized data.

2.5. Statistical analysis

Continuous variables are presented as medians and IQRs (𝑄25% −
𝑄75%) depending on their distribution. Normality was assessed using 
the Anderson–Darling test at a 5% significance level and a visual 
inspection of quantile–quantile (Q–Q) plots. Categorical variables are 
reported as frequencies and percentages. We employed a two-tailed 
Kruskal–Wallis test at a 5% significance level to evaluate the impact 
of image characteristics on volumetric measurements. The null hy-
pothesis stated that there would be no difference between patient 
sexes in the median of ICV and LVV. The effect size was calculated 
using the 𝜂2 statistic (Tomczak M., 2014), in which small, moderate, 
and large effects were defined as 0.01–0.06, 0.06–0.14, and ≥ 0.14, 
respectively (Cohen, 1988).

The 95% confidence intervals for the normative curves were gen-
erated using nonparametric bootstrapping (Stasinopoulos et al., 2022) 
with 1000 samples drawn with replacement.
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2.6. Statistical modeling

We employed the Generalized Additive Models for Location, Shape, 
and Scale (GAMLSS) (Stasinopoulos et al., 2017), a flexible and adapt-
able framework recommended by the World Health Organization (Borgh
et al., 2005) for modeling non-linear growth trajectories. This approach 
provides a mathematical framework to describe the relationship be-
tween the studied volumes and age, enhancing the interpretability of 
the results.

GAMLSS extends Generalized Linear Models (GLM), which are lim-
ited to modeling probability distributions from the exponential family 
(e.g., Normal, Bernoulli) and characteristics such as the mean in linear 
regression or the log of odds in logistic regression. GAMLSS broadens 
this approach by allowing the response variable to follow any proba-
bility distribution and enabling the modeling of up to four statistical 
moments, symbolized by the parameters 𝜇, 𝜎, 𝜈, and 𝜏, which, de-
pending on the selected distribution, represent the mean, variance, 
skewness, and kurtosis, respectively.

The nonlinear relationship between age and the volume of the stud-
ied structures was modeled using fractional polynomials (Royston and 
Altman, 1994). This family of parametric smoothers has the functional 
form of 𝑎+𝛽1𝑥

𝑝1
1 +𝛽2𝑥

𝑝2
2 +⋯+𝛽𝑛𝑥

𝑝𝑛
𝑛 . The possible values of 𝑝𝑖 parameters 

are (−2,-1,−0.5,0,0.5,1,2,3) and are selected along with the estimation 
of 𝛽 coefficients by the GAMLSS package for up to n = 3. Because of 
this method’s stricter nature compared to non-parametric smoother, 
it produced more parsimonious and clinically interpretable curves, 
minimizing spurious fluctuations in volume. The final models were 
selected as described in Section 2.7 and their mathematical description 
is presented below. The interpretation of its parameters, especially 𝜇
and 𝜎, is a direct consequence of the choice of the distributions. 
𝑌𝐼𝐶𝑉 ∼ Gamma(𝜇, 𝜎)
log(𝜇) = 𝛼𝜇 + 𝛽𝜇,0 + 𝛽𝜇,1(𝑎𝑔𝑒)

𝑝𝜇,1 + 𝛽𝜇,2(𝑎𝑔𝑒)
𝑝𝜇,2

log(𝜎) = 𝛼𝜎 + 𝛽𝜎,0 + 𝛽𝜎,1(𝑎𝑔𝑒)𝑝𝜎,1
(1)

Where 𝑌𝐼𝐶𝑉  represents the intracranial volume in 𝑐𝑚3, 𝛽 are the 
coefficients of fractional polynomials, and 𝛼 is the model intercept. 
For the Gamma distribution, 𝜇 represents the mean, while 𝜎 is the 
coefficient of variation (CoV) - ratio between the standard deviation 
and the mean. In our context, this indicates that the mean volume 
increases faster than the standard deviation, meaning that variability 
becomes less significant relative to the absolute volume. For example, 
consider a male sample of 1-year-old children with a mean ICV of 
1200 cm3 and a standard deviation of 120 cm3. The CoV, defined as 
the ratio of the standard deviation to the mean, is 0.1. Now consider 
a male sample of 75-year-old adults with a mean ICV of 1500 cm3

and the same standard deviation of 120 cm3; in this case, the CoV is 
0.08. This reduction in CoV indicates that the relative variability among 
individuals in ICV decreases with age. 
𝑌𝐿𝑉 𝑉 ∼ BCT(𝜇, 𝜎, 𝜈, 𝜏)
log(𝜇) = 𝛼𝜇 + 𝛽𝜇,0 + 𝛽𝜇,1(𝑎𝑔𝑒)

𝑝𝜇,1 + 𝛽𝜇,2(𝑎𝑔𝑒)
𝑝𝜇,2

log(𝜎) = 𝛼𝜎 + 𝛽𝜎age
𝜈 = 𝛼𝜈

𝑙𝑜𝑔(𝜏) = 𝛼𝜏

(2)

𝑌𝐿𝑉 𝑉  represents the lateral ventricular volume in 𝑐𝑚3, and for the 
Box–Cox-t (BCT) distribution, 𝜇 represents the median, 𝜎( 𝜏

𝜏−2 )
0.5 is 

approximately the coefficient of variation, 𝜈 controls the skewness, and 
𝜏 controls the kurtosis. Models were independently fitted for each sex 
and subsequently used to calculate centile values.

Eqs.  (1) and (2) were used to interpret the relationship between 
age and volume (Figs.  4 and 5). The centile curves were derived from 
these equations. Once the parameters ((𝜇, 𝜎) for ICV and (𝜇, 𝜎, 𝜈, 𝜏)) are 
determined for all ages, the distribution is fully defined, allowing the 
centiles to be calculated accordingly (Figs.  2 and 3).
3 
2.7. Model selection and goodness of fit

Different probability distributions, selected based on the Akaike 
Information Criterion, were tested for the Lambda-Mu-Sigma (LMS), 
penalized B-splines, and fractional polynomials methods. The adequacy 
of the models was evaluated by inspecting three types of residuals. Ran-
domized quantile residuals, which usually produce distributed residuals 
aside from sampling variability, were used to verify general deviations 
from the fitted distribution (Dunn and Smyth, 1996).

Q-statistics were used to evaluate the normality of residuals, aiding 
in the detection of inadequacies in the 𝜇, 𝜎, 𝜈, and 𝜏 model parame-
ters (Royston and Wright, 2000). Plots of the residuals and a thorough 
explanation are presented in the Supplementary Material Section 3.1.

Two board-certified neuroradiologists were actively involved in the 
fitting process to ensure the clinical relevance and interpretability of 
the curve trends. Their expertise was critical in validating that the 
generated curves accurately reflected expected anatomical variations 
and did not introduce clinically implausible patterns.

The goodness of fit of the final models was assessed using the chi-
square adherence test at 5% significance level. The deviation of each 
volume from the model’s mean was quantified in terms of standard de-
viations, referred to as the z-score. We calculated the percentiles for the 
z-scores and binned them in 25 intervals. Under the null hypothesis, the 
binned z-score data were expected to be uniformly distributed across 
percentile intervals. If the models accurately represent the volumetric 
distributions, each percentile interval should contain an equal number 
of exams.

2.8. Comparison of curves

The intracranial curves were compared with those of Satanin et al. 
(2024a) for children. To allow the comparison, we binned their non-
integer age centiles as follows: individuals aged from 0 months to 5 
months were considered as 0 years, from 6 months to 1.25 years as 1 
year, from 1.5 to 2.25 as 2 years, and so on. Our lateral ventricular 
curves were compared with those from Maragkos et al. (2021) by 
grouping our age predictions into their respective bins and extracting 
the median of our quantiles. A Kruskal–Wallis test at a 5% significance 
level was then used to assess differences. The null hypothesis stated 
that both curves came from the same population.

2.9. Preliminary validation

A preliminary validation of the curve’s potential to detect cases with 
a clinical condition was conducted with six cases. Their volumes were 
compared with the normative ranges by the z-scores of their volumes. 
The abnormality is detected if |z-score| > 2, which is equivalent to their 
location falling below the 2.5% curve or above the 97.5% curve.

3. Results

3.1. Data

A total of 2,166 exams were retrieved from the PACS. After ex-
cluding scans with missing metadata, 2,153 head CT scans met the 
inclusion criteria and were used in the study. The age range was 
0–92 years for males and 0–95 years for females. The overall median 
age of the patients was 36 (18–52), with an overall range of 0–95 years. 
Of the participants, 1,061 (49.28%) were male, and 1,092 (50.72%) 
were female. Considering the intracranial and ventricle samples, no 
statistical difference was found in the ages of both.

Among the 1,092 male patients, 39 exams lacked specialist vali-
dation for ICV and 51 for LVV. Similarly, among the 1,092 female 
patients, 46 exams were not validated for ICV, and 70 were not vali-
dated for LVV. Volumes from non-validated exams were discarded from 
the fitting procedure for the respective structure (Fig.  1). No image 
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Fig. 1. Validation flow of CT exams. Segmentation masks not validated by specialists 
were removed from the fitting procedure.

Table 1
Age distribution of male and female patients between structures.
 Age group Intracranial 

Male
Intracranial 
Female

Ventricle 
Male

Ventricle 
Female

 

 0–4 72 73 68 67  
 5–9 68 61 68 61  
 10–14 70 65 68 65  
 15–19 73 66 71 65  
 20–24 79 77 79 79  
 25–29 81 75 84 74  
 30–34 76 76 76 77  
 35–39 77 76 77 77  
 40–44 74 77 71 71  
 45–49 78 80 75 72  
 50–54 68 71 63 71  
 55–59 55 58 55 55  
 60–64 44 51 47 51  
 65–69 43 53 43 52  
 70–74 30 35 30 35  
 75–79 15 22 15 20  
 80–84 11 16 11 16  
 85–89 5 9 6 9  
 90+ 3 5 3 5  
 Total 1022 1046 1010 1022  

lacked validation for both the intracranial and the ventricular volume, 
and while they differ in number, 96% of patients are shared between 
the samples. The final distribution of each structure by sex is presented 
in Table  1.

The ICV masks resulted in a median volume of 1,349.98
(1255.93–1456.76) cm3, while the median LVV was 12.81 (8.65–18.89) 
cm3. When stratified by sex, females were observed to have smaller in-
tracranial and ventricular volumes compared to males. No statistically 
significant difference was found between the median ages of both sexes. 
P-values and effect sizes are provided in Table  2.
4 
3.2. Outliers

Of the 96 scans flagged as outliers based on the IQR, 87 showed 
age-appropriate brain parenchyma. Five had suboptimal segmenta-
tion. One scan revealed a cavum vergae, an anatomical variant. Two 
demonstrated signs of suspected normal pressure hydrocephalus (Sup-
plementary Figures 5, 6, and 7), with one showing focal white matter 
hypoattenuation. Another scan showed the lateral ventricular roof en-
largement, likely representing ischemic injury sequelae (Supplementary 
Figure 8).

3.3. Curves

Figs.  2 and 3 present the normative curves for intracranial and 
lateral ventricular volumes. The majority of the data points fall within 
these boundaries, and the chi-square test yielded a 𝑝-value of 1 for all 
fitted models, as expected if the centile curves accurately reproduce the 
data centiles (i.e., the number of observations between the 25%–50% 
and 50%–75% intervals is statistically the same). The curves also 
appear to accurately capture the non-linear trend between volume and 
age of the studied structures.

For the ICV models, a residual analysis (Supplementary Figures 
11 to 14) indicates a slight overestimation of the mean ICV for male 
patients aged 29–34 years. Overall, there are no strong indications of 
misfit in the chosen distributions. Fig.  4 illustrates the trends in the 
mean and coefficient of variation (CoV) in the proposed models for 
ICV. The early rapid development (0–12.5 years) is effectively captured 
by the rapid increase in the mean of ICV and the decrease of CoV. 
While the CoV model consistently demonstrates a decline throughout 
adulthood for both sexes, visual assessment of the ICV model strongly 
suggests a more pronounced reduction in females compared to males. 
Future statistical analyses are expected to robustly confirm and further 
elucidate this apparent sex-specific trend. The wider confidence inter-
vals of the centile estimates in the bootstrap analysis (Supplementary 
Figure 15) suggest that additional data is needed to accurately estimate 
key developmental milestones, such as the mean peak of ICV value and 
the growth rate throughout life.

For the male LVV curves, residual analysis (Supplementary Fig-
ures 16–19) indicated a possible underestimation of the median in 
individuals aged 8–14 years and the CoV in those aged 48–55 years. 
Additionally, there were signs of overestimation in the median for 
ages 15–21 years and in kurtosis for ages 22–28 years. For the female 
curves, we observed a potential overestimation of the median in in-
dividuals aged 44–50 years, while the median for ages 58–67 years 
and the kurtosis for ages 24–29 years appeared to be underestimated. 
Despite these indications, randomized quantile plots revealed no signs 
of overall model misspecification or misfit.

As shown in Fig.  5, lateral ventricular volumes tend to increase 
exponentially throughout life. In both males and females, the CoVs 
exhibited an approximately linear decrease, suggesting that ventricular 
volume is highly variable among infants but becomes more consistent 
among older individuals. Similar to the ICV curves, bootstrap analysis 
(Supplementary Material 20) indicates greater variability in centile 
estimates for younger (< 12 years) and older individuals (> 75 years), 
particularly for the 97.5% centile.

3.4. Comparison to previously published curves

The intracranial curves were compared to Satanin et al. (2024b) 
work for children. We found no statistical significance between the 
3rd (p = 0.49,p = 0.09), 50th (p = 0.14,p = 0.06), and 97th (p =
0.87,p = 0.38) centile curves for both male and females individuals 
(Supplementary Figure 21 and 22).

The comparison of our lateral ventricle curves with those of 
Maragkos et al. (2021) (Fig.  6), resulted in statistically significant 
differences in the 2.5% and 97.5% quantiles of male curves, as well 
as in the median and 2.5% quantile of female curves (Fig.  6).
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Fig. 2. Centile curves for the intracranial volumes (cm3) for male and female individuals. Black dots represent the exams used to fit the curves.

Fig. 3. Centile curves for the ventricular volumes (cm3) for male and female individuals. Black dots represent the exams used to fit the curves.

NeuroImage 317 (2025) 121272 

5 



P.V.A. Silva et al. NeuroImage 317 (2025) 121272 
Table 2
Median and interquartile range (𝑄25% −𝑄75%) of ICV, LVV, and age.
 Variable Male Female Kruskal–Wallis 𝜂2 Anderson–Darling 
 Intracranial volume sample (cm3) 1,442.73 (1364.32-1521.76) 1,272.73 (1207.59-1340.28) <0.001 0.36 <0.001  
 Age in the intracranial volumes sample 34 (17-50) 36 (18-54) 0.05 – <0.001  
 Lateral ventricular volume sample (cm3) 13.98 (9.40-20.71) 11.89 (8.17-17.53) <0.001 0.01 <0.001  
 Age in the lateral ventricular sample 34 (17-51) 36 (18-54) 0.08 – <0.001  
Fig. 4. Mean and Coefficient of Variation (CoV) for intracranial volume (ICV) models. Panels (a) and (b) show the mean ICV, and (c) and (d) show the CoV for males and females, 
respectively.
3.5. Preliminary validation

To illustrate the clinical application of these normative curves, we 
analyzed six pathological cases, including congenital anomalies and 
acquired conditions. When plotted on our curves, these cases consis-
tently appeared as outliers, highlighting their deviation from normative 
values (Supplementary Table 2 and Supplementary Images 25 to 28).

4. Discussion

This study aimed to establish normative curves for ICV and LVV, 
potentially providing radiologists and clinicians with valuable tools to 
detect and monitor abnormal changes in brain volume in individuals 
with neurological disorders. As automated tools for segmenting and 
quantifying brain regions become more prevalent (Moraes et al., 2023; 
Maragkos et al., 2021; Kellogg et al., 2023), these curves serve as essen-
tial references for distinguishing normal from pathological cases. The 
creation of normative curves addresses the global need for more accu-
rate assessments, diagnoses, and treatment plans, especially considering 
the literature’s lack of CT-derived normative values for brain regions. 
CT offers several advantages, including being less resource-intensive, 
faster, and more widely available.

We employed a rigorous methodology to conduct the proposed 
analyses. Without established sample size guidelines for normative 
6 
brain structure curves, its size was determined based on prior lit-
erature concerning pediatric neuropsychological norms (Bridges and 
Holler, 2007). Most existing data rely on convenience samples or 
public databases (Nasser et al., 2024; Cutler et al., 2020; Peterson 
et al., 2021). Careful sample planning provides numerous benefits. 
First, tailoring the curves to a specific population reduces the risk of 
over- or underestimating volumes, which can occur when using data 
from other populations (Bethlehem et al., 2022). Second, convenience 
samples often fail to fully represent the target population, leading to 
potential bias, particularly in underrepresented age groups. In the short 
term, our sample planning results in a more manageable number of 
images. In the long term, it establishes a foundation for refining the 
model and improving curve accuracy across specific age groups.

Using GAMLSS for flexible modeling allowed us to capture non-
linear trends between age and brain volumes while also enabling the 
interpretation of this relationship. Models were fitted separately by sex, 
as the data revealed statistically significant sexual dimorphism. Females 
exhibited smaller median ICV and LVV than males, consistent with 
previous findings (Eliot et al., 2021; Ruigrok et al., 2014). Nonparamet-
ric methods, such as penalized cubic B-splines, are commonly used in 
normative studies of intracranial and ventricular volumes based on MRI 
data (Nasser et al., 2024). However, with smaller sample sizes spanning 
wide age ranges, this approach can lead to overfitting and introduce 
artificial fluctuations in growth trajectories. In contrast, the fractional 
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Fig. 5. Median and Coefficient of Variation (CoV) for lateral ventricular volume (LVV) models. Panels (a) and (b) show the median LVV, and (c) and (d) show the CoV for males 
and females, respectively. 𝜏 and 𝜈 remain fixed throughout the lifespan.
polynomials used in this study offered a more precise fit and produced 
clinically interpretable curves.

Luo et al. (2015) conducted a chi-square analysis to assess their 
models and also observed high p-values for their studied structures. 
This demonstrates our model’s good performance in reproducing the 
data quantiles. Residual analysis revealed a potential overestimation 
of mean ICV in males aged 29–34 years. For the LVV curves, signs of 
misfit were detected in the median for males aged 8–21 years, the CoV 
for those aged 48–55 years, and the kurtosis for ages 22–28 years. In 
the female curves, median misfits were observed in individuals aged 
44–50 and 58–67 years, along with misfits in kurtosis for those aged 
22–28 years. The randomized quantile residual plots did not present 
strong indications of overall misfit for all models. Although such devi-
ations are expected even with a well-fitted model, they highlight areas 
where the current fits could be improved. Normative studies often rely 
on 𝑅2 (Potvin et al., 2016; Kalucki et al., 2020) or Q–Q plots (Cutler 
et al., 2020) to assess model quality. However, 𝑅2 tends to favor models 
with more covariates without fully capturing the goodness of fit, while 
Q–Q plots provide only a broad overview, lacking detail on age-specific 
misfits. Neglecting residual analysis risks selecting suboptimal models 
by overlooking significant trends and over- or underestimations in 
specific age groups. This should be especially harmful to the sensitivity 
of detecting abnormal cases, as changes in the location and shape of 
the chosen probability distribution will affect the 2.5% and 97.5% 
percentile curves.

Regarding the interpretation of our models, early-life variability in 
ICV likely reflects underlying neurodevelopmental processes, followed 
by stabilization as growth plateaus in adulthood. Females tend to 
exhibit an earlier and more pronounced decline in ICV compared to 
males. Two hypotheses may account for this pattern. First, frontal 
hyperostosis – a benign, idiopathic overgrowth of the inner frontal 
bones, often extending to parietal regions – may contribute to reduced 
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measurable ICV. This condition is commonly incidental, with a reported 
post-mortem prevalence of 12%, and 87% of severe cases observed in 
women over 65 years of age (Raikos et al., 2011). Second, generalized 
age-related skull thickening, which may differ by sex, could also reduce 
the intracranial cavity and bias ICV estimates (Royle et al., 2013). These 
structural changes may represent compensatory cranial remodeling 
processes aimed at preserving intracranial pressure homeostasis in re-
sponse to age-related reductions in parenchymal volume (Urban et al., 
2016). Although we did not assess cranial bone volume in this study, 
future research incorporating direct measures of bone thickness or 
cranial vault volume could help disentangle these effects. The median 
LVV, on the other hand, increases exponentially throughout life. These 
findings are consistent with those reported by Bethlehem et al. (2022), 
who describe an exponential trajectory for both the median volume 
and rate of change of the ventricular system (including the third and 
fourth ventricles). The coefficient of variation (CoV) for ICV and LVV 
decreases, reflecting a shift from high variability between individuals in 
early life to greater stability in adulthood. This trend likely results from 
neurodevelopmental consolidation and a more predictable trajectory 
of age-related changes. As these conclusions are derived from visual 
inspection, further statistical analysis is required for validation.

Few studies have established sex- and age-specific CT-derived nor-
mative data for brain structures. Kellogg et al. (2023) analyzed ventric-
ular volumes from 866 CT scans, providing reference ranges for males 
and females aged 18–99 but excluding individuals under 18. Maragkos 
et al. (2021) generated normative values from 6,239 scans of individ-
uals aged 3–90 years. However, both studies lacked statistical sample 
size calculations for each age group and relied solely on descriptive 
statistics for binned age ranges. This limited the interpretation of the 
relationship between volume and age across the lifespan and hindered 
uncertainty analysis, such as using bootstrap to generate confidence 
intervals for their centile estimates. In contrast, Satanin et al. (2024b) 
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Fig. 6. Comparisons between our lateral ventricular curves and Maragkos’. (a) Comparison for male individuals. (b) Comparison for female individuals.
focused on a sample of 673 CT exams for children (aged 0–17 years) 
to construct normative curves for ICV using a similar approach to ours 
with GAMLSS and the Lambda-Mu-Sigma (LMS) method. This study un-
derscores the importance of developing sex- and age-specific reference 
curves in pediatric neurology, in which precise volume measurements 
are essential for the early detection of brain abnormalities. When 
we compared our curves with these studies, no significant statistical 
difference was found between our ICV curve and Satanin’s. In contrast, 
Maragkos’s LVV curves differed from ours in the median and 2.5th 
centile for females, as well as in the 2.5th and 97.5th centiles for males. 
This discrepancy may be attributed to over- or underrepresented age 
groups.

Dima et al. (2021) have established MRI-based normative values 
for total intracranial volume and constructed distinct growth curves 
for the left and right lateral ventricles. Notably, the trajectories ob-
served in their curves align closely with those identified in our study. 
Similarly, Bethlehem et al. (2022) have developed normative charts 
for total brain volume and total ventricular cerebrospinal fluid. While 
these regions are not identical to those assessed in our analysis, they 
are anatomically related—the brain (encephalon) constitutes a major 
subregion of the intracranial volume, and the lateral ventricles rep-
resent the largest component of the ventricular system. Their overall 
observed trends are also consistent with our findings. To further eval-
uate the similarities between CT and MRI, future studies should focus 
on comparing the normative ranges of the same anatomical structures 
across both modalities. Such efforts could also help establish modality-
independent normative standards, particularly if anatomical definitions 
are harmonized across studies.

The bootstrap analysis provided 95% confidence intervals for all 
centile estimates, allowing us to assess the stability and reliability of 
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the models. For both ICV and LVV curves, the confidence intervals 
were wider in the early years and older age groups. The broader 
early-year intervals likely reflect the higher variability observed in the 
formative stages. Since the models employed age as integers rather than 
continuous values, finer distinctions – such as between a two-month-
old and an eleven-month-old – were not captured. Conversely, in older 
age groups, this variability may be attributed to smaller sample sizes. 
While these edge effects can be mitigated by oversampling infants and 
elderly individuals during sample size planning (Cole, 2021), acquiring 
normative CT scans for children is challenging due to the risks associ-
ated with radiation exposure, making CT less commonly performed in 
this age group.

Our qualitative analysis of the outlier cases revealed that most 
scans showed age-appropriate brain parenchyma. This suggests that the 
1.5*IQR threshold for defining outliers may be overly sensitive and fail 
to capture normal biological variability. A few scans exhibited subopti-
mal segmentation, consistent with previous findings of substantial but 
imperfect agreement among neuroradiologists (Pinto et al., 2024). Only 
three scans revealed unexpected brain findings for age. This highlights a 
limitation of our study, as it was not feasible to comprehensively review 
all scans, potentially leading to mislabeling some abnormal scans as 
normal.

In clinical practice, the assessment of ICV and LVV on CT and MRI 
often relies on subjective visual inspection or two-dimensional indices, 
with three-dimensional measurements rarely applied. This subjective 
approach, combined with limited analysis, introduces variability and 
potential inaccuracies, especially when comparing patients to norma-
tive standards. The development of CT-derived normative curves for 
ICV and LVV provides a more objective and standardized method for 
evaluating brain volumes, offering significant clinical benefits.
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First, these curves provide radiologists and clinicians with a reliable 
reference for detecting subtle deviations from normal brain volumes—
variations that may go unnoticed with subjective assessments. This 
is particularly useful for evaluating conditions such as hydrocephalus 
or other volumetric changes, in which early detection is crucial for 
timely intervention. Second, integrating these normative curves into 
automated segmentation tools enhances diagnostic accuracy by offer-
ing real-time, data-driven comparisons to age- and sex-specific norms. 
This shift toward objective, quantitative assessments reduces variability 
between radiologists and institutions, leading to more consistent and 
reliable diagnoses. An automated flagging system within radiologists’ 
worklists could also streamline workflow efficiency by prioritizing 
flagged cases, potentially reducing reporting times and expediting pa-
tient management. While our preliminary clinical validation is primar-
ily illustrative, it demonstrates the potential of these normative curves 
in triaging abnormal findings and improving radiology workflows. 
Finally, as medicine increasingly embraces quantitative tools, clinicians 
must adapt to interpreting volumetric data and understanding its rel-
evance to actual pathological changes. While this transition involves 
a learning curve, it fosters a more precise, data-driven approach to 
neuroimaging. Using CT-derived normative curves increases the poten-
tial for early detection and improved patient outcomes, particularly in 
settings where MRI is less accessible or where CT is preferred for its 
speed and availability (Cauley et al., 2021; Rosenkrantz et al., 2015). 
Future studies should validate these curves in larger, more diverse 
cohorts and assess their impact on diagnostic accuracy, workflow ef-
ficiency, and clinical decision-making. Multi-center trials could further 
evaluate automated flagging systems across imaging protocols, while 
comparisons with MRI-based volumetric analysis could also strengthen 
the clinical utility of CT-derived curves.

This study has additional limitations. Its single-center, cross-sect-
ional design may limit the generalizability of the findings. The nor-
mality criteria were based solely on radiological assessments of the 
brain parenchyma (excluding the cranial vault and subarachnoid space) 
without incorporating clinical evaluations. Evaluating normality in CT 
scans is inherently subjective, particularly when determining whether 
radiological findings align with expectations for a specific age. While 
this morphological approach lacks clinical context, it remains valu-
able for imaging workflows that frequently rely on such criteria. This 
limitation is mitigated by the study’s primary focus on imaging data. 
Future research should prioritize longitudinal studies to better capture 
intracranial volume dynamics over time and integrate clinical data for 
a more comprehensive understanding of neurological development and 
health. Further studies could also explore the impact of varying scan 
acquisition parameters to evaluate how they influence the performance 
of normative curves.

5. Conclusion

This study provides comprehensive normative curves for ICV and 
LVV based on CT scans, offering sex- and age-specific data to enhance 
diagnostic accuracy in conditions where precise volume measurements 
are critical for patient management. Notably, we employed sample size 
calculations that considered specific demographic factors and modeling 
techniques to capture non-linear trends between age and brain vol-
umes, improving the precision of the normative curves. These CT-based 
curves have the potential to enhance diagnostic consistency, especially 
in environments with restricted access to MRI facilities.
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